{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# The Hanging Chain\n", "\n", "For mathematical details, see https://scipython.com/blog/the-hanging-chain/\n", "\n", "Set the variable `mode` in cell 2 to visualize different modes of the motion." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "from scipy.special import j0, jn_zeros\n", "import matplotlib.pyplot as plt\n", "from matplotlib import animation\n", "from IPython.display import HTML" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Acceleration due to gravity, m.s-2\n", "g = 9.81\n", "# Chain length, m\n", "L = 1\n", "# Maximum amplitude, m\n", "A = 0.05\n", "# Vertical axis (m)\n", "z = np.linspace(0, L, 201)\n", "# Scaled vertical axis\n", "u = 2 * np.sqrt(z/g)\n", "\n", "mode = 3\n", "# jn_zeros calculates the first n zeros of the zero-th order Bessel function of the first kind\n", "w = jn_zeros(0, mode)[mode-1] * np.sqrt(g/L) / 2" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Set up the Figure and Axes\n", "fig, ax = plt.subplots(figsize=(4,6))\n", "\n", "ax.axis('off')\n", "ax.set_xlim((-2*A, 2*A))\n", "ax.set_ylim((0, L))\n", "ax.set_title('m = {}'.format(mode))\n", "\n", "line, = ax.plot([], [], 'k', dashes=[5,2], lw=3)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Initialization function for the animation\n", "def init():\n", " line.set_data([], [])\n", " return (line,)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Delay between frames (ms)\n", "interval = 10\n", "# Total number of frames in the animation so that the animation is for one period of oscillation\n", "nframes = int(2 * np.pi / w * 1000 / interval)\n", "\n", "# The animation function, to be called sequentially\n", "def animate(i):\n", " t = i * interval / 1000\n", " x = A * j0(w*u) * np.cos(w*t)\n", " line.set_data(x, z)\n", " return (line,)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Set up the animation\n", "anim = animation.FuncAnimation(fig, animate, init_func=init,\n", " frames=nframes, interval=interval, blit=True)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# To save the animation as a gif, run this cell.\n", "anim.save('chain_{}.gif'.format(mode), writer='imagemagick', fps=1000/interval)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# To show the animation in a Jupyter Notebook cell, run this cell.\n", "HTML(anim.to_html5_video())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:py35]", "language": "python", "name": "conda-env-py35-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }