Hypercomplex Iterative Methods for
Fractal Generation and Visualization

Samuel J. Monson
June 9, 2023

Abstract

Fractal generation and rendering has been a topic of interest in
the computer graphics field for decades, with numerous tech-
niques developed for exploring the complex and often beauti-
ful world of fractals. In this paper, we focus on the use of
quaternion iterative methods for generating fractals, utilizing the
unique properties of quaternions to create visually stunning and
mathematically intriguing fractals. We explore the definition and
properties of quaternions. Using these properties, we define
quaternion iterative methods. Finally, We discuss the challenges
of rendering fractals in three dimensions, including the use of ray
marching and distance estimation.

Contents

1 Introduction
1.1 Fractals
1.2 Quaternions,
1.3 Rendering

2 Background
2.1 Iteration
2.2 Complex Dynamical Systems
2.2.1 TheJuliaSet
2.3 Quaternions
2.3.1 BasicTheory
2.3.2 Polynomials.
24 RayTracing

3 Main Results
3.1 Quaternion JuliaSet
3.2 Ray Tracing Quaternion Fractals
3.2.1 Mapping Quaternions to Real Space .
3.2.2 Ray Marching and Distance Estimation

4 Conclusion

11
11
11
12
13

14

1 Introduction

The path towards understanding hypercomplex fractals encom-
passes various topics that are not typically covered in a stan-
dard mathematics education. It includes components of frac-
tals, hypercomplex quaternion numbers, and computer graphics.
Although each of these subjects build on existing mathemati-
cal principles, they are extensive and could each be studied
separately. Fractals, in particular, are a vast topic that spans
numerous disciplines. Thus, we will begin by providing a brief
overview of each topic.

1.1 Fractals

Fractals, derived from the Latin word “fractus” meaning bro-
ken or irregular, are geometric structures characterized by self-
similarity. They possess a unique property wherein they exhibit
the same pattern regardless of the scale at which they are ob-
served. This recursive nature allows fractals to possess an infinite
level of detail, providing an infinite reservoir of complexity within
finite boundaries. The study of fractals combines elements of
mathematics, physics, computer science, and other disciplines to
unravel the fundamental principles that govern their formation
and behavior.

The idea of fractals mostly originates from the groundbreak-
ing work of mathematician Benoit Mandelbrot. Mandelbrot intro-
duced the term “fractal” and developed a comprehensive frame-
work for their study. His seminal work, “The Fractal Geometry
of Nature,” laid the foundation for understanding the inherent
fractal nature of various natural phenomena [Man83]. Since then,
researchers have expanded upon Mandelbrot’s ideas, exploring
fractals in different contexts and uncovering their presence in a
myriad of systems, ranging from the microscopic to the cosmic.

One of the fundamental aspects of fractals lies in their
capacity to generate an infinite number of shapes and patterns
through simple iterative processes. Fractals often emerge from
recursive algorithms that repeatedly apply a set of rules to gen-
erate self-similar structures. By manipulating these rules, we

can create an array of intricate fractal forms, each exhibiting its
unique properties and characteristics. This ability to generate
complexity from simplicity has profound implications for fields
such as computer graphics and visualization, where fractals serve
as valuable tools for generating realistic landscapes, simulating
natural phenomena, and modeling complex structures.

Moreover, fractals play a crucial role in understanding the
dynamics and behavior of complex systems. Natural processes,
such as the growth of biological organisms, the flow of fluids,
and the formation of geological structures, often exhibit fractal
characteristics. Fractals have also proven valuable in under-
standing phenomena such as chaos theory, network theory, and
the behavior of financial markets, providing a fresh perspective
on complex systems that defy traditional linear analysis. [Gle88,
BDM'88]

1.2 Quaternions

Quaternions are a 4-dimensional numbering system that extends
the complex number. Developed by the Irish mathematician
William Rowan Hamilton in the mid-19th century [Ham66], quater
nions have since found some applications in various scientific
and engineering disciplines, but their most extensive use is in
computer graphics where they provide a powerful framework
for representing and manipulating rotations in three-dimensional
space.

Quaternions consist of a real part and three imaginary parts,
adding an additional two imaginary components to complex num-
bers. Quaternions retain most of the algebraic properties of
complex numbers, and like complex numbers, they also retain
most of the properties of real numbers. However, one intrigu-
ing difference between quaternions and complex numbers is
that quaternions exhibit non-commutative multiplication, mean-
ing that the order of their multiplication matters.

For our purposes quaternions offer a great opportunity to
visualize complex fractals in 3-dimensions. They naturally ex-
tend the complex numbers and enable us to use similar fractal
formulas that we use for complex fractals. However, we cannot

prove some theorems that apply to complex fractals for quater-
nion fractals due to the loss of commutativity. This challenges
the rigorous definition of quaternion fractals compared to their
complex counterparts.

1.3 Rendering

Moving from the 2-dimensional complex fractals to producing 3-
dimensional renders of hypercomplex fractals introduces a lot of
challenges. With complex fractals, it is sufficient to calculate
an iteration for each screen pixel. While this posed difficulties
for computers in the 1980s, modern machines can perform this
operation in microseconds if coded appropriately. However,
when it comes to hypercomplex fractals in 3-dimensions, things
get more difficult. In general, 3-dimensional rendering is accom-
plished through the rasterization process, which projects shapes
geometrically onto a viewport plane. Unfortunately, fractals
are implicit surfaces, which makes geometric transformation
impossible.

Instead of rasterization, we use a rendering technique called
ray tracing. Ray tracing simulates the behavior of light as it
interacts with objects in a virtual environment. This process
follows rays of light from a virtual camera that interact with sur-
faces through reflection, refraction, and absorption. Ray tracing
has been used for many years in cinema to create photorealistic
imagery, but recent advances in computing power have made
real-time ray tracing possible, leading to a craze of ray tracing
in video games. What once took hours on the greatest graphics
computing hardware of 1996 can now be accomplished on a
personal computer many times faster thanks to these advances.

2 Background

2.1 Iteration

The basic technique for generating fractals is iteration, which
involves repeatedly applying a function to a point in space and
observing the resulting trajectories. The simplest way to define

iteration is with function composition. Given some function f, the
k-th iteration of f is f composed k times. Large values of k can
become tedious to write, thus to simplify notation we can define
iteration as an operation.

Definition 2.1 (Function Iteration Operation)
For some function f and all k € Z™,

fO=1
fk+1 .= f ° fk
For our operation it is also helpful to define our Oth value as

the input of our function. Thus for the function f(x) = x + 1 and
input of x = 1 will result in,

o =1
fl=1+1=2
fPMH=0++1=3
=1+ +H+1=4

2.2 Complex Dynamical Systems

We can generate dynamical systems by using iteration. One
interesting case is the quadratic function

f(z2)=2%+c (2.1)

where 2z is some iterative variable and ¢ some fixed constant.

This example produces some interesting behavior. Namely,
for most values of z there is some finite n € Z* values in the set
P ={f™(z):0=m < }. We call this set the cycle of the point z.
The value of n is called the period of our cycle. For example with
the equation

f(z)=2%2-1 (2.2)

an initial point of f(0) has a period of 2, since

fo0)=0%2-1=-1

floy=-n2-1=0

F2(00=02-1=-1 (2.3)
f0)=(-1*-1=0

A periodic point with a period of 1 is called a fixed point.
Points whose orbits become cycles are called preperiodic and
points that do not start in a cycle but eventually enter one
are called strictly preperiodic. [DKS02] We can classify cycles
using eigenvalues given by the derivative of the n-th point in the
cycle. For a given eigenvalue, A, we give the cycle the following
classification:

A =0 superattractive

A <1 attractive
A =1 neutral
A >1 repelling

Attractive cycles end up drawing in many preperiodic and
strictly preperiodic points. We can define the basis of attraction,
A (2) as the set of all points that approach the cycle containing
the periodic point z. Thus for any point z,

Ac(2) = {zo : fk(zo) = 7z for some k > 0} (2.4)

For any polynomial function we will find that infinity is an
attractive fixed point and thus,

A (o) ={20:fk(20)—>ooask—>00} (2.5)
See [BDM*88] for a visual proof.

2.2.1 The Julia Set

Consider the function f, : C = C; f.(z) = z2 + ¢ for some c € C.
Since f . is polynomial, there exists a set A, (). The set A ()

7

will have a natural boundary between points that are attracted
to the period of infinity and points that create their own cycles
that do not go to infinity. Since we have at least the fixed points
of 22 + ¢ = z, this boundary will always exist. This boundary is
known as the Julia set of f . and can be written as d A () or J..

A third set of interest is known as the filled-in Julia set, which
we can derive by subtracting the A () from the set of complex
numbers. We can denote this set K. and define it with,

K,=C\A () = {ZO € C:|fX (zo)!is not infinite for all k}

where the |fX (z()| denotes the order of the cycle containing z.
Thus, by our notation,

9K, = J,=0A,()

For most values of ¢ the Julia set, J. exhibits fractal nature
that can change quite drastically as ¢ varies. We can classify
filled-in Julia sets based on whether the border, J., is one contin-
uous space or a set of infinitely many points. We call the former
a connected Julia set and the latter a Cantor set.

2.3 Quaternions

To create and understand hypercomplex fractals, we require a
hypercomplex space to operate within. William Rowan Hamilton,
an Irish physicist and mathematician, invented the first hyper-
complex space, the quaternion, in 1843 [Ham66]. Other hyper-
complex spaces such as the tessarines, coquaternions, biquater-
nions, and octonions (Cayley Numbers) followed the quaternions.
However, this paper will solely focus on quaternions as they
provide the simplest and most intuitive extension to complex
space.

2.3.1 Basic Theory

We can denote the set of quaternions as H. We can visualize
the set H with the direct product H = R & P where P is a
3-dimensional Euclidean vector space. In this configuration a

quaternion can be written as
g=w+xi+yj+zk (2.6)

for some w,x,y,z € R where q € H and i, j, k represent
linearly independent unit vectors such that under quaternion
multiplication

2=-j2=k?=ijk=-1 (2.7)

From (2.7) we can derive a few other interesting relation-
ships. First that
ij=k; jk=1;ki=j (2.8)

but also
ji=-k;kj=-i;ik =—-j (2.9)

The combination (2.8) and (2.9) shows us that quaternion multi-
plication is noncommutative since we have different definitions
forij and ji.

We can call a quaternion with a non-zero w component and
zeroed x, y, z components a real quaternion since it is analogous
to a real number. Quaternions with a zeroed w component and
some non-zero combination of x, y, z components are called pure
quaternions. Because (2.7) only defines relationships between
quaternion units, it is apparent that real quaternions are not
affected by their noncommutative nature. In fact, real quaternion
can be treated for all intents as real numbers just like real
complex numbers.

2.3.2 Polynomials

Because of their noncommutativity, quaternion polynomials can-
not be as simply described as other polynomials. Thus, a quater-
ntion polynomial can be defined as

1

m
p(2)= > > pigZpi1Z-2Pik (2.10)
k=01i=0

where I,m € N, p;; € H and z is indeterminate. In this case, I
represents the highest degree of our polynomial.

2.4 Ray Tracing

The algorithm for ray tracing involves simulating the paths of
rays of light as they interact with surfaces in a scene to generate
realistic 2-dimensional images of 3-dimensional objects. A ray
is defined as a point in 3-space, known as the origin, plus a
normalized vector known as the direction. The set of rays can
be represented with the tuple R = (R3, P).

To begin, the algorithm takes a scene containing the objects
we wish to visualize. We define a point known as our eye or
camera and we define a grid, known as our image plane some
set distance and direction away from the eye. In real terms,
the image plane represents a computer display and the eye
represents the point of perspective relative to the display.

The next step is to generate rays that originate from the eye
point and pass through each pixel on the image plane. These rays
are traced through the scene by testing for intersections with the
objects in the scene. If an intersection is found, the algorithm
calculates the color and shading of the object at that intersection
point.

To calculate the color and shading, the algorithm considers
the properties of the surface material, such as its reflectivity and
transparency, as well as the position and intensity of light sources
in the scene. This information is used to determine the color of
the object at the intersection point, which is then projected onto
the corresponding pixel on the image plane.

The process of generating and tracing rays for each pixel on
the image plane is repeated until all pixels have been processed,
resulting in a complete image of the scene.

We can formally write this algorithm for tracing the object 0
where B is a maximum ray length condition and 6 is some small
amount to increment by:

10

Algorithm 1: Ray Tracing

ecR3
R « {r € R : origin is e and ray intersects image plane}
forr e Rdo
po < point of intersection between r and image plane
P < DPo
while |e — p| < B do
if p intersects 0 then
Calculate surface for p and display at pg

break
else

| p=p+6
end

end

end

3 Main Results

3.1 Quaternion Julia Set

Just like the complex case, Julia sets can be generated by quater-
nion polynomials. Let p(z) be some quaternion polynomial. Then,
for any quaternion g, there exists another quaternion p(q). This
means we can preform the iterative operation from definition 2.1
on quaternion polynomial functions.

Since we are able to iterate quaternion polynomials, we can
apply the same analysis seen in the section 2.2 to quaternions.
Assuming the same definitions for fixed points and cycles, we
can define our basis of attraction for a Julia set generated by the
polynomial function p(z) to be A}, (). Thus we can define a Julia
set J, = dA, () and the filled-in Julia set

Kp =H\A_,(0) = {20 eH: |pk (zg)! is not infinite for all k}

3.2 Ray Tracing Quaternion Fractals

To render quaternion fractals, we can adapt the ray tracing
algorithm to our case:

11

Algorithm 2: Ray Tracing Fractals

ecR3
R « {r € R : origin is e and ray intersects image plane}
forr e Rdo
po < point of intersection between r and image plane
P < DPo
while |e — p| < B do
if |f K (p)|+4o0 as k — o then
Calculate surface for p and display at p

break
else

| p=p+6
end

end

end

The algorithm has a few issues that need to be addressed.
Firstly, although we have described quaternions as a 4-dimensional
numbering system, science has only allowed us to observe up to
the third dimension. We will present a solution to this problem in
section 3.2.1.

Secondly, the algorithm is computationally expensive to ren-
der. For instance, when rendering to a typical 1920x1080 pixel
computer display with 2,073,600 rays, assuming a maximum
length of 2 for each ray, and incrementing 6 = 0.0005 along each
ray, we need to calculate a fractal intersection 4000 times per
ray. This amounts to a total of 8,294,400,000 tests. In section
3.2.2, we will discuss some optimization techniques to address
this issue.

3.2.1 Mapping Quaternions to Real Space

We can solve the human lack of dimensionality by mapping our
quaternion fractals into a 3-dimensional space. We do this by
ignoring one dimension. For example, given q = xi + yj + zk
we can take the slice {w + xi+ yj+ Ok} and define a function
g:{w+xi+ yj+ 0k} - R3 such that

g(q@) = (w, x,y) (3.1)

12

We can then take advantage of the equations (2.8) and (2.9)
to rotate the dimension hidden by (3.1) into focus. For example if
we multiply g by k and then take g(qk) we will get

g (gk) = g (wk + xik + yjk + zk?)
=gwk—-xj+yi-2)
=g(—z+ yi—xj+wk)
=(=2,¥,—x)

3.2.2 Ray Marching and Distance Estimation

Ray marching is a technique used to optimize ray tracing by
reducing the number of iterations needed per ray. Instead of
taking fixed steps along the ray, the distance to the fractal
surface is estimated at each point and the ray is advanced by that
distance. This allows for adaptive step sizes that can be reduced
as the distance to the fractal surface decreases, resulting in more
accurate rendering with fewer iterations.

To achieve this, we need to be able to estimate the distance
to the fractal surface at any given point along the ray. This is
where distance estimation comes into play. Distance estimation
is a technique used to approximate the distance to the fractal
surface at any point in space.

For quaternion fractals of the form f,(2) + q, where g € H
and n € Z*, we can use the formula

fi)
(rk @)

where a is some constant parameter, to determine the lower
bound of our distance to the fractal.

a <6 (3.2)

With the distance estimate, we can now perform ray march-
ing to efficiently render the fractal. At each point along the
ray, we estimate the distance to the fractal surface and advance
along the ray by that distance. We repeat this process until we
either reach the fractal surface or we exceed a maximum number
of iterations. By using adaptive step sizes, we can achieve
more accurate rendering with fewer iterations, resulting in faster
rendering times.

13

4. Conclusion

In conclusion, this paper has presented an exploration into the
use of quaternion polynomials to generate fractals in 3D space
and the adaptation of ray tracing algorithms to render these
fractals. By defining quaternion Julia sets and filled-in Julia sets,
we have shown how the dynamics of hypercomplex systems can
be analyzed and visualized through fractals. Our adapted ray
tracing algorithm for rendering quaternion fractals provides a
powerful tool for visualizing these complex structures, though
it is computationally expensive. Finally, we discussed various
optimization techniques to address this issue, such as marching
cubes, which can significantly reduce computation time.

14

References

[BDM*88] Michael F. Barnsley, Robert L. Devaney, Benoit B.

[Buc09]

[CCI3]

[DKSO02]

[Gle88]

[Ham66]

[HSK89]

[Man83]

[Nyl]

[SC15]

[Od]

Mandelbrot, Heinz-Otto Peitgen, Dietmar Saupe, and
Richard F. Voss. The Science of Fractal Images.
Spinger-Verlag, 1988.

David Bucciarelli. Juliagpu (v1.2). http://davibu.
interfree.it/opencl/juliagpu/juliaGPU.html, 2009.

Lennart Carleson and Theodore W. Camelin. Complex
Dynamics. Universitext: Tracts in Mathematics.
Spinger-Verlag, 1993.

Yumei Dang, Louis H. Kauffman, and Daniel Sandin.
Hypercomplex Iterations: Distance Estimation and
Higher Dimensional Fractals, volume 17 of Knots and
Everything. World Scientific, 2002.

James Gleick. Chaos: making a new science. Penguin
Books, 1988.

Sir William Rowan Hamilton. Elements of Quater-
nions. Longsmans, Green, & Co., 1866.

John C. Hart, Daniel J. Sandin, and Louis H. Kauffman.
Ray tracing deterministic 3-d fractals. SIGGRAPH
Computer Graphics, 23(3):289-296, July 1989.

Benoit B. Mandelbrot. The Fractal Geometry of
Nature. Henry Holt and Company, 1983.

Paul Nylander. Hypercomplex fractals. http://www.
bugman123. com/Hypercomplex/index.html. Accessed:
2023-02-10.

Daniel C. Stoll and Hubert Cremer. A Dbrief
introduction to complex dynamics. 2015.

Torkel Odegaard. Raytracing 4d fractals, vi-
sualizing the four dimensional properties of the
julia set. http://www.codinginstinct.com/2008/11/
raytracing-4d-fractals-visualizing-four.html. Ac-

cessed: 2023-02-10.

15

http://davibu.interfree.it/opencl/juliagpu/juliaGPU.html
http://davibu.interfree.it/opencl/juliagpu/juliaGPU.html
http://www.bugman123.com/Hypercomplex/index.html
http://www.bugman123.com/Hypercomplex/index.html
http://www.codinginstinct.com/2008/11/raytracing-4d-fractals-visualizing-four.html
http://www.codinginstinct.com/2008/11/raytracing-4d-fractals-visualizing-four.html

	Introduction
	Fractals
	Quaternions
	Rendering

	Background
	Iteration
	Complex Dynamical Systems
	The Julia Set

	Quaternions
	Basic Theory
	Polynomials

	Ray Tracing

	Main Results
	Quaternion Julia Set
	Ray Tracing Quaternion Fractals
	Mapping Quaternions to Real Space
	Ray Marching and Distance Estimation

	Conclusion

