

Learning eZ publish : Building
Content Management
Solutions

Paul Borgermans
Tony Wood
Paul Forsyth
Martin Bauer
Björn Dieding
Ben Pirt
Bruce Morrison

Learning eZ publish :
Building Content Management Solutions

Copyright © 2004 – 2024 7x and Graham Brookins

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version

published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documentation
License".

Source code of the Learning eZ Publish Book is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.

Learning eZ Publish Book is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
Learning eZ Publish 3 in this document. If not, see <http://www.gnu.org/licenses/>.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, 7x, nor its dealers or distributors
will be held liable for any damages caused or alleged to be caused directly or indirectly
by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, 7x cannot guarantee the accuracy of this information.

Second edition: August 2024

 GFDL Document Version Number: 2.0.4

Published by 7x.
www.se7enx.com

Cover Design by www.visionwt.com

Credits

Authors
Paul Borgermans
Tony Wood
Paul Forsyth
Martin Bauer
Björn
Dieding
Ben Pirt

Additional Material
Bruce Morrison

Technical Reviewers
Jan Borsodi
Bård Farstad
Balazs Halasy

Release Author
Graham Brookins

Commissioning Editor
Douglas Paterson

Technical Editors
Ashutosh Pande
Deepa Aswani

Indexer
Ashutosh Pande

Proofreader
Chris Smith

Layout
Ashutosh Pande

Cover Designer
Helen Wood

About the Authors

Paul Borgermans holds a Masters degree in Science and a PhD in Applied Physics. He
became involved with high-performance computing from the start of the 90s while doing
plasma physics research. From then on, computing has always been an important part of
his job, which gradually involved the integration of large databases, computations, and
operational management in R&D. The birth of the World Wide Web also marked the
start of projects around intranet developments. Recently, he started a knowledge-
management program with his current employer, the Belgian Nuclear Research Center.
In this program, eZ publish is used as a cornerstone for developing support tools to
capture and preserve knowledge in the long term.

I wish to thank my daughter and wife for the many hours and weekends of patience while
working on this book during my free time.

Tony Wood has over 16 years of experience working for both small and large clients,
with work ranging from system administration to knowledge management.

Tony is an active member of the eZ publish community and regularly contributes to it.
Tony works for VisionWT—a company he founded on the principle that content
management should be available to all—which was the first company outside of eZ
publish to deploy an eZ publish version 3 site and has focused on creating only eZ
publish sites. Tony concentrates on building VisionWT, whatever its budget.

Paul Forsyth is an active contributor to the eZ publish community, and lead developer
at Vision with Technology. As Lead Developer, Paul helps to develop processes,
methods, and technical standards in addition to developing systems and overseeing the
development team.

Previously, Paul was a Software Engineer at Parc Technologies, where his work included
programming and system architecture on sophisticated applications optimizing flight
schedules and managing fleet size for the airline industry. Paul was a PhD student at the
University of Leeds after completing an MSc with Human Computer Systems at De
Montfort University and a BSc (Hons) with Artificial Intelligence and Computer Science
at the University of Edinburgh.

Martin Bauer is the Managing Director of designIT (www.designit.com.au). Martin
draws on a varied background having studied a wide range of subjects including
computer science, mathematics, law, literature, and visual arts before graduating from
law. Deciding against a career in law, Martin started working as a writer in an advertising
agency. This gave him the chance to work on his first website and has been his passion
from that point on.

Soon after, Martin joined Creative Access, a reputable web design firm that was
purchased in 1999 by Sausage Software and became the head office of Australia’s largest
web development company, Sausage Interactive. Martin became responsible for a 20+
web development team.

During 2001, Martin worked as a Project Manager for Nebulon, a software consulting
firm lead by world-renowned Project Manager Jeff Deluca, creator of one of the most
popular agile methodologies, Feature-Driven Development.

In late 2001, Martin joined forces with the original directors of Creative Access to form
designIT, which has grown to once again become one of Melbourne’s most reputable
web design and development firms.

I’d like to thank everyone at designIT for their support and positive attitude without which
we could not produce the results we do. I’d also like to thank everyone at the Centre for
Design at RMIT for providing us with such a great opportunity. And thanks to my family
and friends for always believing in me.

Bruce Morrison is Chief Technical Architect at designIT. Bruce’s experience with the
Internet started while at Queensland University in the early 1990s. He can recall when all
Australian websites could be visited in around 15 minutes, images opened in a separate
application, and there were no such thing as tables. Haven’t things changed!

Bruce began his career as a System Administrator, working in various fields, including
medical research, internet service providers, consultancies, and non-government
organizations. In 2002, he turned his back on the heady world of system administration
and joined designIT as a Systems Architect.

Bruce has been working with the eZ Publish CMS since the release of the first beta
version of 3.0 in December 2002. He has since completed a number of sites using eZ
publish.

I would like to thank the great team at designIT for being a terrific bunch of people to work
with and my family for their love and support.

Ben Pirt studied architecture at Edinburgh University. In 1999 he moved to New York,
where he developed animation skills through working for a design and visualization

company. Here he was also able to strengthen his web development skills through the use
of PHP, SQL, CSS, and XHTML. On his return to Edinburgh in 2001, he co-taught a
course on architecture and multimedia before completing his postgraduate diploma at the
Bartlett School of Architecture. His work with the Interactive Architecture Workshop at
the Bartlett enabled him to increase his programming capabilities and to combine this
knowledge with other media through embedded programming and hardware design.

Since finishing his diploma, he has continued to develop skills in this area and has
extended his web development knowledge through the use of eZ publish in combination
with XHTML and CSS. He has recently set up a company, More Associates, where he is
able to combine his two main fascinations: design and technology.

Björn Dieding attended the Ev. Gymnasium Werther, where he took advantage of a
student exchange to the U.S. in 1997, and at this time, first came into contact with web
design. From then on he invested much of his free time gathering knowledge and learning
about Internet-related topics. In 1999 he started realizing his first commercial projects. In
2000 Björn attended the b.i.b. Hannover (http://www.bib.de), graduating in 2003 as a
computer scientist in e-commerce (Staatl. gepr. Informatiker Electronic Commerce).
After graduation, he became a freelance web application programmer and web designer.
In March 2004, Björn became the first core developer of eZ publish outside eZ systems.

Björn Dieding met Sören Meyer while studying, and at the end of 2002 they decided to
team up as xrow GbR (http://www.xrow.de). Their main objective was to deliver
value- added services for professional and high-quality open source software. Today,
xrow GbR is one of the top German consultancies for delivering eZ publish services.

I would like to thank Sören for being my trusted business partner and eZ Systems for their
wonderful work on eZ publish.

Table of Contents

Introduction 1

Chapter 1: Installing eZ publish 5
Setting Up 5

Unpacking the Installation 5
Initializing the Database 6
Apache Virtual Host Settings 7
Image Settings 8

ImageMagick 8
GD 8

Cron Jobs 9
Configuration Files 9

The Setup Wizard 10
Page 1 of the Setup Wizard: Welcome to eZ publish 11
Page 2 of the Setup Wizard: System Check 12
Page 3 of the Setup Wizard: Email Settings 13
Page 4 of the Setup Wizard: Choose a Database 14
Page 5 of the Setup Wizard: Database Initialization 15
Page 6 of the Setup Wizard: Language Support 16
Page 7 of the Setup Wizard: Site Packages 17
Page 8 of the Setup Wizard: Site Access Configuration 18
Page 9 of the Setup Wizard: Site Details 19
Page 10 of the Setup Wizard: Site Security 20
Page 11 of the Setup Wizard: Site Registration 21
Page 12 of the Setup Wizard: Finished 22

Troubleshooting 22
PHP Memory Limits 22
PHP Running as a CGI 23

Summary 23

Chapter 2: Content Management with eZ publish 25

What Is Content Management? 25
eZ publish Fundamentals 26

Structuring Content 26
Site Structure 26
Node Tree (Content Object Tree) 26
Sections 27
Content Classes 28
Content Class Attributes 28
Content Object 28

Displaying Content 30
Separation between Content and Presentation 30
Site Structure versus Page Layout and Content Views 30
Overall Page Layout and Content Views 30

Authorization and Roles 31
Disabling a Module/Function outside the Role System 36

Adding Content with the Default Admin Interface 36
Creating Content Classes 37

Datatypes 38
XML Tags Available with ezxmltext Datatypes 46
Datatypes as Information Collectors 48

Creating a New Content Object 48
Editing Objects and Versioning 50
Managing Translations 51
Related Content 53
Workflows 54

Triggers 54
Workflow Events 55

Permissions/Roles 57
Templates 59
More Administrator Functions 61

Removing and Restoring Objects 61
URL Translation 61
URL Management 62
RSS Export and Import 62
Cache Administration 64
Search Stats 65
System Information 65
Section Setup 66
PDF Export 67
Rapid Application Development (RAD) 68

Extension Setup 68
Packages 68
Notification 68

Personal 68
Shop 69

Creating an Example Site 69
Creation of Basic Classes 69

Documents 70
Images 70
Discussion Forums 71
Calendar of Activities 71
Personalization 72
Miscellaneous 72
Creating Classes 72
Taxonomy or Structure 72
Users and Roles 74
Sections Setup 74
User Groups 75
Roles and Role Assignments 76

Summary 78

Chapter 3: Displaying Content with eZ publish Templates 79
Principles 79

Page Layout and Content Views 80
Page Layout 81
Content Views 81
Attribute Templates 82
Template Modularization 82
Style Sheets and Images 82
Edit Templates 82
Templates and Caching 83
Cascading and Overriding Templates 83

Working with eZ Publish Templates 83
Overview 83

Where Does the Content (Data) Come From? 84
Comments 84
Variables 85

Setting and Modifying Variables 85
Variable Types 87
Type Creators 87
Sections in Templates and their Effects on Variables 88

Variable Namespaces 88
Predefined Variables 88
Using Variables across Templates 93

Controlling Template Output Flow 94

Section 94
If-then-else Constructs with Section 97
Loops with Section 97
Switch Constructs 98
Variable Namespaces Revisited 99

Using Functions from Kernel Modules 101
Functions in the Content Module 101

Fetching a Single Node or Object 104
Fetching Node Lists and Node Trees 105
Counting the Objects of Certain (or all Types) 107
Displaying Version Information 108
Fetching the Current User 108
Others 109

Increasing Performance with Caching 109
Overall Caching 109
Cache-blocks 109

Custom Template Operators 111
The Template Override System 111

Using Cascading Effects in Templates 112
Overriding Templates Using Specific Conditions 112

Syntax of override.ini.append.php 112

Common Template Tasks 114
Navigation Menus 114

Top Level Menu 114
Breadcrumb Navigation 115
Tree Menus 115

Adding Edit Functions to Your Templates 116
Allow Users to Add Content to Your Site 116
Adding an Edit Link 117
Adding a Remove Button 117
Adding a Comment Button 117

Date and Time Tasks 117
Displaying Tomorrow's Date 118

String and Text manipulation 118
Limiting Text Output 118
Limiting XML Text Output 118
Automatic Linking and Conversion 119

Providing a Custom User Experience 119

Creating Dummy Nodes 119
A Specific User Panel 119
Putting the User Preferences Function to Work 120
Showing a User's Groups and Roles 120

Miscellaneous 121
Show a Version History Audit Trail 121

Show Creator, Modifier, and Publishing Date 122
Listing keywords and their Automatically Related Objects 122
Advanced Keyword Facility 122

Creating a Threaded Forum Template 124
Summary 124

Chapter 4: A Glimpse Inside the Core 125
Permissions 125
Object Persistence 128

Getting Attribute Values 130
Setting Attribute Values 130
Other Attribute Functions 131

Persistent Storage 131
Fetching Data 131
Storing Data 131
Other Data Manipulation 132

Content Classes 132
Content Class Attributes 134

Content Objects 135
Creating a Content Object 136

Workflows and Triggers 138
Notifications 142
Information Collection 145
Searching 146
Summary 148

Chapter 5: Extending eZ publish 149
Why Create an Extension? 149

Adding an Extension 150
Locating Your Extension 151

Example Directory Extensions 152
Datatype Extension 152
Module Extension 152

Workflow Eventtype Extension 152
Documentation on Extensions 153

Modules 153
Module Definitions 154

Module Names and Views 154
View Permissions 155
View Parameters 155

View Actions and Post Variables 156
View Navigation 158

Module Coding 159
Reading Module Input 159
Returning Information 159
Processing a Template 160
Redirecting a Module 161
Module Functions 162

Datatypes 164
Datatype Settings 164
Datatype Templates 164
The Datatype Wizard 165
Implementing the Datatype 167

Constructing a Datatype 167
Storing Datatype Information 167
Initializing with Default Values 168
Working with Class Attributes 169
Working with Object Attributes 171

Other Datatype Functions 171
Template Design 172
Complex Datatypes 173

Template Operators 173
Adding a PHP Command 173
The Template Operator Wizard 174
Writing an Operator 176

Registering the Operator 176
Coding the Operator 177
Initializing the Operator 177
Executing the Operator 177

Workflow Events and Triggers 178
Workflow Settings 178
Workflow Events 179
Workflow Triggers 181

Defining Triggers 182
Actions 183
Translations 184

Overriding Translations 185
Notifications 185

Notification Events 185
Adding Collaborations 187

SOAP Server 187

RSS (Really Simple Syndication) 193
Data Interoperability 196

Importing Information 197
Publishing a Folder Object 197

Login Handlers 199
LDAP (Lightweight Directory Access Protocol) 199
Text File Login 201

Summary 201

Chapter 6: Extension Development 203
Extension Development Practices 203

Designing Your Extension 203
Goals and Targets of the Extension 204
Preparing to Test Your Extension 204
Timescales 204
Anticipate the Learning Curve 204
Software Requirements 204
Development Tools 205
Sharing with the Community 205
Documentation 206

Creating the WorldPay Extension 206
Creating the Environment 207
Creating Workflow Events and Triggers 208
WorldPay Module 212

Creating the Module Extension Environment 213
Creating the Module 213
Reviewing the ini Settings 217
User Settings 217
Permissions 218

Callback Testing 218
Creating the Category Datatype 219

Category Datatype Design 219
Setting Up the Extension Environment 219
The Category Database Table 220
Database Communication 221
Category Discussion 221
Category Templates 224

The Category Datatype in Action 224
Integrating Existing Code with eZ publish 225

Making a Bridge to External Applications 225
Strategies 226
Who Am I? 227

Authentication 227
Communicating with Google 230
Modifying Existing Code 233

Summary 233

Chapter 7: Deploying eZ publish 235
Define Your Hosting Requirements 235

Number of Visitors 236
Security Needs 237
Reporting Requirements 238
Budget 239
Time Limits 239
Shared or Dedicated 239
Is My Server Powerful Enough? 240

Documentation 241
How and When to Update the Documentation 241
Contact Details 241
Location 242
Hardware 242
Operating System 242
Software 242
Patching Process 242
DNS Information 242
TCP/IP Information 242
Access Control 243
Upgrade Roadmap 243

Disaster Recovery 243
Preparing the Linux Environment 243

Apache 244
PHP 245
Database (MySQL/PostgreSQL) 246
GD Graphics library 247
ImageMagick 247
Cron Jobs 247
SMTP 248
PHP Accelerators 248

Deploying 249
New Project Deployment 250
Updating Project Deployment 250
Backups 251
Ports 251

Summary 252

Chapter 8: Center for Design at RMIT Case Study 253
The Client 253
The Existing Site 255
The Project 255
The Process 256
Requirements 257

Key Objectives 257
Creative 257
Functionality 257
Content 258
Hosting Environment 258

Selecting a CMS 258
Specifications 259

User View 259
Admin View 261
Links 263
Miscellaneous 264
Content Model 265

Display Templates 267
Sustainable Products, Sustainable Buildings, and LCA Template 268

Content Types 269
Interface Design 272

Visual Design 272
HTML Prototype 274

The Home Page 275
Section Pages 275
Content Pages 277

Development 278
Install eZ publish 278
Define Content Classes and Sections 279

Configure Roles and Permissions 279
Apply Display Logic and Templates 280

Create Page Layout Templates 281
Navigation 282
Setting Up 283
Summary Pages 292
Content Templates 296

Testing 300
Requirements 300
Specifications 300
Implementation 300
Functional Testing 300
Content Population 301

Deployment 301
Maintenance and Support 301
Training 301
Project Assessment 302

Requirements and Specification Phases 303
Development Phase 303
Content Population and Review Phase 304

Extending the Site 304
Workflow 305
Archiving 305
Integration with CRM 305

Summary 305

Chapter 9: Creating a Standards-Compliant eZ publish Site 307
What Are Web Standards? 307

XHTML 308
CSS 309

Web Standards: Real-World Scenario 310
Accessibility 310
Bandwidth 310
Future Proofing 310
Ease of Maintenance 310

eZ publish and Web Standards 311
The Client Requirements 311
Planning and Preparation 314

Template Design 316
page_head.tpl 319
header.tpl 320
navigation.tpl 321
image.tpl 322
footer.tpl 323

CSS Rules 325
Designing the Content 328

The News Article Class 329
The Data Class Definition 329

Class Templates 329
CSS Rules 330

Performance 332
View Caching 333
Template Compiling 333
Template Cache Blocks 333
PHP Accelerators 334
Benchmarking 335

ab 335
Effects of Optimization 336

Summary 337

Appendix A: Template Operators and Functions 339
Operators 339

String Operators 339
String Transformations 341
Counting and Comparing Strings 344

Array Operators 344
sum and sub 348
inc and dec 348
div 348
mod 349
mul 349
Max and min 349
abs 349
ceil and floor 349
round 349

Localization and Translation Operators 349
Logical Operators 351

ne 351
lt 351

gt 351
le 351
ge 351
eq 351
null 352
not 352
true 352
false 352
or 352
and 352
choose 353
contains 353

Type Checking 353
Image Handling 354

Other Template Operators 357
count 357
Accessing Variables in the ini Files 358
cond 358
first_set 359
eZ publish Kernel Operators 359

Index 363

Introduction

eZ publish is an open-source Content Management System created by eZ systems of
Norway (www.ez.no). Built primarily upon around the LAMP platform—Linux, Apache,
MySQL and PHP—eZ publish is based on open standards, with a flexible content model,
a powerful template engine, workflow management, role-based permissions, and much
more. Now at version 3, eZ publish has matured beyond a Web-based Content
Management System to a powerful, Content Management Framework, which developers
can extend and customize to produce unique web solutions.

There is also a set of commercial licenses for eZ publish, but the free version places no
restrictions on your usage of the system.

Like most open-source products, eZ publish has a large and dedicated community whose
members share their experience and knowledge with the rest of community. At:

http://www.ez.no/community

you will find forums, contributions, bug reports, documentation, news, and more.

eZ publish is powerful and versatile, and as such, many have found it difficult to get to
grips with initially, with much hair-pulling over some of its seemingly esoteric features.
This book owes much to such hair-pulling and cursing—our authors have come through
that experience, and the material we present here will help you develop the skills required
to become an accomplished eZ publish developer.

What This Book Covers
The structure of this book is as follows: we begin with installing eZ publish, look at how
to implement and customize a site, and then extend and deploy the system. The book is
rounded off by two real-world case studies of eZ publish implementations, and the design
choices and strategies that were employed to realize them.

Chapter 1 starts us off with a straightforward guide to installing an eZ publish instance.
Once we are setup, Chapter 2 moves on to look at the fundamental features of eZ publish
—its content handling and the structure of an eZ publish site. The chapter takes us
through the eZ publish administration area, and shows how to use it to work with content,
users, and permissions.

Chapter 3 takes us into eZ publish's template system—through templates, we control our
site's output, and this chapter shows the general principles of the template engine, an
in-depth discussion of the template language and syntax, and the template-override

Introduction

2

system. The chapter is linked to Appendix A, which discusses the various operators and
functions. Before we embark on a detailed exploration of eZ publish extensions, Chapter
4 looks at how some of eZ publish's fundamental concepts are realized at the code level.

eZ publish is designed to be extended, and in Chapter 5 we look at the different types of
extension that can be created for eZ publish. Extensions allow new template operators,
datatypes, and modules (among others) to be developed separately and added to the base
eZ publish system. An extension may be something as small as a new template operator,
or something as critical as an interface to your other business applications. In Chapter 5,
we tackle how to use the extension mechanism to add your functionality to eZ publish.

In Chapter 6, we look at real-world examples of extension development, create new
modules and datatypes, and explore strategies for integrating existing code or systems
with eZ publish.

Chapter 7 covers strategies and techniques for successfully deploying eZ publish
projects, from assessing and preparing your hosting environment to moving the project to
your production server.

The final two chapters of the book are real-world case studies of eZ publish 3
implementations. In the first case study, we see the journey from client requirements to
content model, and from HTML mockup to template design. eZ publish requires you to
think about the structure of your site and the types of content it supports in a way that
may be different from how you usually view your site—this first case study provides a
vivid illustration of how to approach this problem. The second case study shows us how
eZ publish, XHTML, and CSS fit together to produce a standards-compliant eZ publish
site, with particular emphasis on the template design.

What You Need for Using This Book
To use this book, you will of course need eZ publish. This is freely downloadable
from http://www.ez.no/ez_publish/download.

If you have working installations of PHP, Apache, and MySQL, you can download the
source code for eZ publish. Alternatively, there are installer packages that install all the
required software to run eZ publish (PHP, Apache, and MySQL). Note that these
packages are meant for testing purposes only.

Conventions
In this book you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Tips, suggestions, or important notes appear in a box like this.

Introduction

There are three styles for code. Code words in text are shown as follows: "For the
category class, the category_string attribute returns a comma-delimited string listing
the categories the attribute belongs to".

If we have a block of code, it will be set as follows:
<?php
include_once("kernel/classes/ezdatatype.php");
define("EZ_DATATYPESTRING_NEWDATATYPE", "newdatatype");
class newDataTypeType extends eZDataType
{

function newDataTypeType()
{

$this->eZDataType(EZ_DATATYPESTRING_NEWDATATYPE, "None");
}

}
eZDataType::register(EZ_DATATYPESTRING_NEWDATATYPE, "newdatatypetype"
);
?>

When we wish to draw your attention to a particular part of a code block, the relevant
lines will be made bold:

<?php
include_once("kernel/classes/ezdatatype.php");
define("EZ_DATATYPESTRING_NEWDATATYPE", "newdatatype");
class newDataTypeType extends eZDataType
{

function newDataTypeType()
{

$this->eZDataType(EZ_DATATYPESTRING_NEWDATATYPE, "None");
}

}
eZDataType::register(EZ_DATATYPESTRING_NEWDATATYPE, "newdatatypetype"
);
?>

New terms and important words are introduced in a bold-type font. Words that you see
on the screen—in menus or dialog boxes, for example—appear in our text as follows:
"clicking the Next button moves you to the next screen".

Any command-line input and output is written as follows:
mysql> create table books (name char(100), author char(50));
Query OK, 0 rows affected (0.03 sec)

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this
book, what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.
3

Introduction

4

The downloadable files contain instructions on how to use them.

To send us general feedback, simply drop an e-mail to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the Suggest a title form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles to
download any example code or extra resources for this book. The files available for
download will then be displayed.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in text or a code
error—we would be grateful if you could report this to us. By doing this you can save
other readers from frustration, and also help to improve subsequent versions of this book.

If you find any errata, report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the Submit Errata link, and entering the details of your
errata. Once your errata have been verified, your submission will be accepted and the
errata added to the list of existing errata. The existing errata can be viewed by selecting
your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

1
Installing eZ publish

Installing eZ publish can seem like quite a daunting task at first, but if you follow the
guidelines it's one of the easiest content management systems to set up. In this chapter
you will learn how to install and configure eZ publish once you have set up the server.

There are two parts to this chapter: the first part deals with where to place the files and
how to initialize the database, and the second part takes you through the setup wizard.

Setting Up
There are several ways of performing the steps in this guide, which depend upon whether
you have command line access to the server or not. In each example, instructions on
using either of these setups are provided. I have focused on UNIX-based installations
because these are the most common environments in hosting. Windows users can still
follow these steps, but will need to find Windows equivalents of the commands here.

Unpacking the Installation
The first thing to do is download the latest distribution of eZ publish from
http://ez.no/. The archives are normally available in tar.gz, tar.bz, and .zip
file formats. Windows users should choose the .zip format for compatibility, and
*NIX users can choose from the tar.gx or tar.bz formats. The most compatible
method is to expand this archive on your own computer and then use FTP to
transfer the files to the correct folder on your server.

Since the archive is only about 4MB in size compared to the 20MB size of the expanded
archive, it makes sense to upload the archive and then extract it rather then uploading the
extracted files individually. If you have command line access to the server, you can use
the following UNIX commands to do this:

wget http://ez.no/downloads/ezpublish.3.x-x.tar.gz
tar -xzf ezpublish-3.x-x.tar.gz

Installing eZ publish

6

All files needed for installation will be extracted to a folder called ezpublish-3.x-x
(where x is the version number). These files should then be transferred to the correct
folder on your web server. Some web hosting packages have powerful control panels
(such as CPanel or Ensim) that allow you to expand archives through their interface. If
this is the case, you can upload the archive and use the control panel to expand it.

Once you have expanded the archive, you will find a number of files and folders. The
most important of these are shown in the following table:

Name Function
design This is where all of the default eZ publish templates are stored

and is where you will create your new ones.
index.php This is the main controller script for eZ publish. All requests to the

website come via this.
kernel This folder contains the main scripts that make eZ publish

function.
lib This folder contains all the additional libraries that add

functionality to eZ publish.
runcronjobs.php This script should be run regularly to ensure that various tasks are

performed.
settings This folder contains all of the default settings, as well as all the

override settings that you will create.
var This folder is used to store all the images and files that get

uploaded and provides a location to store all the cache files that
are generated.

Initializing the Database
MySQL is the most commonly used database for eZ publish, so we have used it in these
examples. All you need to do at this stage is create a database for eZ publish to use, and
assign a user for that database. On many shared hosting solutions, a database already
exists for you, and all you need to do is note down its name and the user name and
password used to access it (which should have been provided with the hosting package).
In case you need to set up the database yourself, perform the following steps:

1. With command line access, log in to the server on which the database
is hosted and use the following command to launch the MySQL
application: mysql -u username -p

2. This will then prompt you for your password. Once you have logged in to the
database, issue the following command to create the database:
CREATE DATABASE database_name;

Chapter 1

7

This will create the database, but it will be accessible only to the user that you logged in
as. For security reasons it is better to create a new user for this database, because if
someone else were to somehow read your configuration files, your password would be
compromised, because it is stored in plain text.

3. To create a user who only has access to this database, issue the following
command:
GRANT ALL PRIVILEGES ON database_name.*

TO username@localhost
IDENTIFIED BY 'password';

If you do not have access to the command line, the best method is to install a web-based
database administration tool such as phpMyAdmin, which will enable you to create the
database and user using a web browser.

Apache Virtual Host Settings
Although it is possible to run eZ publish in a subfolder of a website, it works
extremely well when set up properly as a virtualhost in Apache with mod_rewrite
enabled (this also increases security, because all requests are directed to index.php).
eZ publish uses URLs such as /node/view/253 to view a node in the CMS.
Mod_rewrite means that this URL could be translated into something like /contact/,
which is far more meaningful and memorable to the end user. Most hosting services
have mod_rewrite enabled as it is on by default in Apache. If you can't access your
httpd.conf file for apache, it is still possible to enable rewriting by using a
.htaccess file in the root of your eZ publish directory.

If you have access to the settings for your virtual host, you need to set it up as follows:
<VirtualHost *>

DocumentRoot /path/to/ezpublish
ServerName test.ez.local
<Directory /path/to/ezpublish>

Options FollowSymLinks Indexes ExecCGI
AllowOverride None

</Directory>
RewriteEngine On
RewriteRule !\.(js|gif|css|jpg|png)$ /path/to/ezpublish/index.php

</VirtualHost>

The most important lines in this code are the rewrite statements at the end. If you already
have a working virtualhost configuration, just add these two lines to it, rather than
copying this whole setup. If you are able to override the settings for mod_rewrite in
your htaccess files (check with your hosting provider), you can place a file called
.htaccess containing the following lines in the root of your installation. This is the
default name, and what 99% of hosting providers use, but it pays to check first!

RewriteEngine On
RewriteRule !\.(js|gif|css|jpg|png)$ /path/to/ezpublish/index.php

Installing eZ publish

8

If you are using a GD version prior to v2, image scaling will look bad because
those versions used a very simple re-sampling algorithm.

Image Settings
eZ publish uses server-side image manipulation utilities to create the different versions of
images that you will upload. For example, if you upload a large photograph, eZ publish
can resize it to a size you specify and then create thumbnails at a size you specify. There
are two main utilities that do this: ImageMagick and GD. ImageMagick is the more
powerful of the two, being able to apply a number of effects (such as border, blur, twirl,
etc.) to the image, but both perform equally well for the simple requirement of resizing.

ImageMagick
ImageMagick is the more powerful of the two utilities, and is used to add many different
effects to the images you upload. It is a standalone binary located on the server and often
needs to be installed manually. If your server is running on a UNIX-based system and
you have full access to the machine, installation is simple. Download the binary for your
system (or the source if you have an unusual setup) from
http://www.imagemagick.org and follow the guide for installing it. If you are
running Windows, it is also possible to download a binary for your system from this
source. If you have limited access to your system, first check if your hosting provider is
willing to install it. Otherwise, depending on your system limitations it may be possible
to upload the binary. If you do perform a custom installation, remember that eZ publish
must be able to locate the convert binary before it can use it. If stored in a normal
location, it will be found automatically, but if it is in a custom location, specify this in
/settings/override/image.ini.append.php:

[ImageMagick]
IsEnabled=true
ExecutablePath=/path/to/binary
Executable=convert

GD
GD is a library for image manipulation that has to be compiled into PHP to run. In recent
versions of PHP (>4.3), GD is included by default, which makes life a lot easier. GD is
less powerful than ImageMagick, and is normally used only as a fallback if
ImageMagick is not found. Hosting providers running the latest versions of PHP will
obviously have GD, but those running older versions of PHP are unlikely to add it to
their existing installation as it requires rebuilding PHP. Visit
http://www.boutell.com/gd for more information on the GD library.

Chapter 1

9

The order of precedence of files according to their location is
override > siteaccess > settings.

Cron Jobs
It is necessary to have a regularly executed script to execute various tasks that need to be
carried out periodically. These tasks include the execution and processing of workflows
and the issuing of notifications to users via e-mail. On the most common setup, a
UNIX-based system, the best way of doing this is to set up a cron job that runs
approximately every 15 minutes. A cron job is simply an automated process that uses a
script to carry out various tasks periodically. Most systems have crontabs for individual
users; these are programs that allow users to define cron jobs. You will need to edit the
crontab file for your system and add the following lines:

#This must be set to the directory where eZ publish is installed.
EZPUBLISHROOT=/path/to/your/ezpublish/directory

Location of the PHP Command Line Interface binary.
PHP=/usr/local/bin/php

Executes the runcronjobs.php script every 15th minute.
0,15,30,45 * * * * cd $EZPUBLISHROOT; $PHP -C runcronjobs.php -q 2>&1

This will execute the runcronjobs.php script from the command line every 15 minutes.
If you are not able to set up this task, the site will still be useable, but some features, such
as the ones mentioned, will not function properly. On a Windows system you need to use
the Scheduled Tasks mechanism to execute a batch file, which would execute the
runcronjobs.php script.

Configuration Files
eZ Publish is configured through a collection of files known as ini files, located in the
settings directory. The Setup wizard, which we discuss in the next part of this chapter,
automatically defines some settings for these files, but it is necessary to understand how
these are used in order to modify an eZ publish installation.

In the root of the settings folder are the default configuration files that come with
the installation. Two folders, override and siteaccess, are used to modify these
default settings to make the site work for you. The siteaccess folder is used to
configure multiple views of the site and contains subfolders that correspond to the name
set up for the site. For example, there may be subfolders called admin and plain.
The order in which these locations are read is:

1. The default configuration files in the settings folder
2. The files in the siteaccess folder corresponding to the current view
3. The files in the override folder

Installing eZ publish

10

The recommended extension is .ini.append.php, because if the file were
somehow requested through the web server, it would be served as a standard PHP
file, and since the configuration lines are interpreted as standard PHP comments,
there would be no output.

Although there are many configuration files (about 30 at the last count, and more are
added every time a new feature is added) you generally need to tweak only a few:

Configuration File Comments
site.ini The main configuration file for the site; covers database

settings, site access list, and cache settings
override.ini Defines the template overrides for the different sites defined
image.ini Defines the different image presets for the sites
i18n.ini Defines the different language setups for the sites

In general, there will be a site.ini file in the override folder, which defines the
database access for the entire site because the database access will be the same for
both the user site and the admin site. More site-specific settings, such as the template
overrides in override.ini, will be in the siteaccess folder because they vary
between the different site accesses. The files image.ini and i18n.ini will often be
specific to individual sites because these settings depend upon the audience and the
design.

The eZ publish configuration files can have a number of different file endings: .ini,
.ini.append, and .ini.append.php. eZ publish will search for files with all of these
endings in the relevant folders.

Several ini files will be discussed throughout the book as we encounter more features of
eZ publish that need to be configured and controlled.

The Setup Wizard
eZ publish has a very user-friendly setup system that takes you through all of the
parameters necessary for setup and checks the system to make sure that everything is
configured correctly. We will now go through all of the steps in turn to explain what
they mean and what needs doing at each stage. Point your browser to the location in
which you extracted the eZ publish setup files to start the Setup Wizard.

Chapter 1

11

Page 1 of the Setup Wizard: Welcome to eZ publish

This is the first page of the setup wizard. By clicking Next you will be taken through a
series of steps to configure eZ publish for your system. It will automatically detect the
image system you are able to use. If you have ImageMagick installed it will use that,
otherwise it will attempt to use GD if it is compiled into PHP. You can tell if it has found
a usable system by looking at the bottom right part of the next screen, under Image
System.

Installing eZ publish

12

Page 2 of the Setup Wizard: System Check

The setup wizard checks the permissions for various directories that eZ publish uses to
run. These are:

/var Used by eZ publish to store all the image files and the cache files
/settings Used by eZ publish to store the settings
/design Used by eZ publish to store the design templates

If the permissions are not correct, you can use the script shown on the page to set their
permissions, or use your FTP client to change the permissions for each folder to 777,
which means they are writeable by the web server. There is an issue with this command
—if you are on a shared hosting environment, other users may be able to access these
files. If this is a problem, you should look for dedicated hosting. Note that if you are

Chapter 1

13

able to change the owner of files on the web server, you can make these files belong to
the web server user and disallow access to others. The command to do this is:

chmod –R og+rwx var
chown –R user.group var

where user.group is the username and the group that the web server process runs under.

If everything is already set up properly, you will not see this page. When you click Next,
the check will be run again unless you have selected Ignore this test.

Page 3 of the Setup Wizard: Email Settings

For eZ publish to send out e-mails to users, it must be configured to use a mail server. If
you are using a UNIX-based system, you can normally use the local sendmail program.

Installing eZ publish

14

If you are using Windows or for some reasons do not have sendmail installed, you can
use an external SMTP server to send your mails.

Page 4 of the Setup Wizard: Choose a Database

This is a particularly simple stage and lets you choose between MySQL and PostgreSQL
as your database of choice. PostgreSQL includes some more advanced features that are
not present in MySQL, although these do not greatly affect the running of eZ publish.

If you don't have a reason for wanting to run PostgreSQL, you probably don't need to!

Chapter 1

15

Page 5 of the Setup Wizard: Database Initialization

When we set up the database user earlier in this chapter, we defined a username and
password. This is where you enter them. You do not need to select a database at this point
because eZ publish will only let you choose from the databases you have access to.

If eZ publish cannot connect to the database using the credentials you have supplied, you
will have to repeat this step until it can. Recheck the user name, password, and privileges
you set up earlier if this happens.

Installing eZ publish

16

Page 6 of the Setup Wizard: Language Support

eZ publish has very strong support for multi-language installations. At this stage you can
choose a default language as well as any other languages you need setting up on the
system. Languages can be added at a later stage if necessary, so do not add languages
here if you aren't sure you need to.

Chapter 1

17

Page 7 of the Setup Wizard: Site Packages

The best way of getting to know eZ publish is by installing one of the pre-configured site
packages and playing around with it. By default, eight site packages come bundled with
eZ publish to fulfill a number of different needs. Choose the Plain site package if you are
planning on building your own site from scratch. Otherwise, it may be simpler to modify
an existing package. Each site is unique and requires its own database.

Site Description
Blog A simple blog setup with dated posts

Corporate A multi-section site with a simple corporate look and feel

Forum A user forum, similar to the forums at http://ez.no

Gallery A powerful gallery using eZ publish’s image-handling system

Intranet A typical corporate intranet

News A news site with news stories in different categories

Plain The no-frills setup to use if you need to roll your own site

Webshop A sample e-commerce application using eZ publish’s shop functionality

Installing eZ publish

18

Page 8 of the Setup Wizard: Site Access Configuration

The different sections of the site can be accessed in a number of different ways.

Access
Type

Description Example URL

URL The simplest method of accessing
different sections of the site.

http://www.mysite.com/admin

Port It is possible to assign a port through
which to access your site. This is
more complex to set up and requires
custom Apache configuration.

http://www.mysite.com:81/

Hostname Specific host names can be used to
decide which part of the site is
accessed. This is more complex to
set up and requires custom Apache
configuration as well as adding DNS
entries for the different hosts.

http://admin.mysite.com

Chapter 1

19

Page 9 of the Setup Wizard: Site Details

At this stage you can choose the title for the site and set up the URL that will be used to
access it. It's also possible to fill in the administrator's e-mail and set up the paths that
will be used to access the admin and user sections of the site. If the database already
contains some data, this page will reappear and ask you what to do. Possible actions are:

• Leave the data and add new
• Remove existing data
• Leave the data and do nothing
• I've chosen a new database

Installing eZ publish

20

Page 10 of the Setup Wizard: Site Security

If you cannot use the virtualhost mode, you will need to use an htaccess file to
secure your system. There is an example .htaccess file in the root of the
distribution that if renamed from .htaccess_root to .htaccess will make the setup
secure. If you are running in virtualhost mode you will not see this screen.

Chapter 1

21

Page 11 of the Setup Wizard: Site Registration

This page of the setup allows you to send an e-mail to eZ systems to let them know the
details of the set up of the system you are using. Although this is optional, it is good
practice because they will be able to focus their developments upon the areas that are
useful for the most users.

Installing eZ publish

22

Page 12 of the Setup Wizard: Finished

At this stage the site setup is finished. Make a note of the URLs on this page as they will
be used to access your site in future.

Troubleshooting
Once you have reached this point you should have a fully functional eZ publish site to
start working with. If you've hit a snag, there are a few common issues you can look at to
get things working.

PHP Memory Limits
A common problem in hosting environments is that the memory limit of PHP is set too
low. The default value of the limit is 8MB, but this is too low for eZ publish to run
(although the eZ team has been working hard at reducing memory consumption). If you
get output similar to the following, then you have this problem:

Chapter 1

23

You may need to increase this setting later, if your pages are very complex.

Fatal error: Allowed memory size of 8388608 bytes exhausted (tried
to allocate 184320 bytes) in /www/ezsite/kernel/classes/ezpackage.php
on line 2140
Fatal error: eZ publish did not finish its request

The execution of eZ publish was abruptly ended, the debug output is
present below.

There is an easy fix to this if you are allowed to override the PHP settings using a
.htaccess file (if your host doesn't support this, you may need to look for a new host)
placed in the root of the eZ publish installation. In this file, add the following line:

php_value memory_limit "16M"

This will raise the memory limit to 16MB. If this still does not work, continue raising the
limit until it does. In general, you will not have to go over 32MB for the site to work.

PHP Running as a CGI
If your hosting provider is running PHP as a CGI instead of an Apache module, then eZ
publish will have problems. The main symptom of this is that regardless of the link you
click on, you will always get the front page of the site. The only way of fixing this
problem (in versions of eZ publish prior to 3.4) is to modify ezsys.php, one of the eZ
publish files. There are a number of posts in the forums at http://ez.no describing how
to do this.

Fortunately, one of the outlined features for version 3.4 of eZ publish is a fix for this
problem, so the best thing is to use this version when it becomes available.

To tell if your host is running PHP as a CGI, create a PHP file on your server containing
the following script:

<?php

if (php_sapi_name() == 'cgi')
echo "PHP is running as a cgi";

else
echo "PHP is running as a module";

?>

Summary
In this chapter we've discussed the steps for a basic eZ publish installation. We've looked
at initializing the database, the Apache web server settings, setting up the image
manipulation libraries, and scheduled jobs, and discussed the role of the ini file in eZ
publish configuration.

Installing eZ publish

24

We also walked through the Setup Wizard, which greatly eases the installation and
configuration of eZ publish, and looked at some common installation problems.

Now that your system is installed and configured, it is time to move on. In the next
chapter, you will start using eZ publish as a tool for content management.

A Content Management System (CMS) is used for collecting, managing, and
publishing content.

2
Content Management with

eZ publish

The prime objective of eZ publish is web-based content management. With the
powerful, flexible content object model, it is easy to map any kind of structured
information into a collection of attributes. The basic architecture of eZ publish includes
version management, multi-language possibilities, relations between pieces of
information, and all kinds of interactions and manipulations defined and offered by
standard or custom- built modules.

This chapter will guide you through the basic concepts and paradigms of eZ publish. At
the end of the chapter, we will create an example site to show how the concepts and
architecture map to a concrete eZ publish site—this is something that you will see more
of in the two case studies later in the book. By then, you should have a sound idea of
what eZ publish is all about.

What Is Content Management?
Content management covers the processes and workflows involved in organizing,
categorizing, and structuring information resources so that they can be stored, published,
and reused in multiple ways.

Content is stored either as components (including metadata) or as whole documents (in
the form of binary file attachments), while maintaining the links between components or
documents. The CMS preferably also provides revision control by keeping track of
versions. Workflow is usually a part of the game in the form of electronic
implementations, where for example, approvals and notifications are performed through
e-mail and/or online in the CMS itself.

Content Management with eZ publish

26

eZ publish fulfills the needs and roles of a web-based CMS where interaction with the
client (browser) is over standard HTTP and related protocols (including WebDAV and
SOAP). It is therefore perfectly possible to make links (through some additional
programming) with traditional desktop environments, even though the internal modular
design and architecture is agnostic towards your preferred desktop environment.

With respect to documents, eZ publish supports its own basic XML format for structuring
content, which includes basic elements such as headers, lists, tables, and some embedded
or linked media types like images and movies.

eZ publish Fundamentals
The first step is to create a design or architecture for your content. This is done before
you start with the implementation, but the powerful and sometimes unique features of eZ
publish may influence your design decisions. You are encouraged to explore this chapter,
the tutorial, and the two case studies in this book, and experiment with eZ publish before
undertaking your first real project.

Structuring Content
We will begin with the site structure, followed by a drilldown through concepts such as
node trees, sections, object classes, attributes, and features or functionality that are
important for managing eZ publish-based websites through its modular kernel system.

Site Structure
How to structure your site depends a lot on the types of content you want to serve, the
audience, and how you want clients to interact with the site content. There are no fixed
rules on how you should design the structure of a site, only some good practices that you
can borrow from people who create taxonomies for document collections.

If you are on tight time schedules and already have some experience with eZ publish or
another CMS, you can start immediately by implementing a global outline (through the
admin interface) and site design with the base eZ publish distribution. However, the
design and implementation of major projects requires a good deal of blackboard
brainstorming and careful global planning.

Node Tree (Content Object Tree)
Once you have determined the global structure, you will find that a direct reflection of
such a structure is given by a node tree. The following diagram gives an example of a
simple structure implemented in an eZ publish node tree:

Chapter 2

27

It includes a document structure, ordered galleries, and a forum branch. The node tree is a
structured way of placing content objects (the real information). This distinction in eZ
publish is important because content objects can have more than one placement (node).

A single node is in fact the placement of a collection of object versions and translations
sharing the same object ID (a number in the eZ publish database implementation). The
object name is shared by versions of the same translation.

Sections
Sections are virtual collections of nodes that belong together, either conceptually or
functionally. They are used as a mechanism in role-based permission management and
are also design parameters. Once a node is assigned to a certain section, newly created
child nodes inherit this section information by default. There is always at least one
section for content objects that is assigned by default.

In the role-based permission system, sections can be used to control access and the type
of actions users or user groups can perform. In their bare essence, sections categorize

Content Management with eZ publish

28

your content to enable an additional layer of presentation logic; for example, you could
use a special navigation panel for each section or even change the entire page layout.

Content Classes
Content classes define the way content is structured for a certain content object type. This
flexible system—where any number of base datatypes (called content class attributes) can
be used for structuring information into workable units of information—is one of the
prime features of eZ publish.

Content Class Attributes
Content class attributes are the lowest level of information 'typing', although some of
them are already powerful compound datatypes. eZ publish contains a rich set of 30
datatypes. A few more can be found on http://ez.no as community contributions.

Content Object
Content objects are simply instances of certain classes. The content elements are
therefore specified by the class attributes. The following diagram shows an example
object after creation. Besides the attributes defined in the corresponding class, there are a
number of generic properties such as an object ID, name, and creation date among others.
The name of a content object is usually bound to one or more of the content object
attributes, such as a title.

Chapter 2

29

You cannot specify VersionHistoryClass[8]=1 because then you will not be
able to edit the object after creation. This is because a temporary version is
created as a draft version while editing an object.

eZ publish allows you to revert to an older version of an object by copying the
older version to a new draft and publishing it again. The history of objects is
always preserved within the limits of version history as described earlier. This
can be of importance if you should use eZ publish as a document management
system, where quality systems impose the maintenance of document versions.

Content Object Version
An object in eZ publish is always under version control. The versioning can be controlled
to maintain only a certain number of versions, possibly only one.

Versions are handled by the parameters in the settings file content.ini, in the
[VersionManagement] section, where you can specify the maximum number of
versions to keep. You can either specify a global default with
DefaultVersionHistoryLimit or specify versions per class with an array containing
the class ID as the index and the number of versions to keep as a value. For example,
VersionHistoryClass[8]=2 will allow the minimum of versions (two) for the class
with an index number of 8.

Older versions of objects are kept within the limits of the version history settings. This
means objects older than the current 'published' version are set into an 'archive' state.
When there is more than one user editing objects, it could so occur that there are still a
few draft versions lingering around in the underlying database tables between the
archived versions.

In the current state of eZ publish, spotting the real differences between object versions is
not easy unless a UNIX diff-like tool is used. However, the construction of an audit trail
listing the object history is pretty straightforward.

Content Object Attributes
These are instances of content class attributes. It is important to note that the version
management applies to all attributes, including binary files that may be stored in the eZ
publish system.

Content Object Translations
Objects may be translated into languages other than the default-configured main
language. If for some reason, you do not want translations for certain attributes, they can
be disabled at the attribute level. A typical example is a photograph, which is usually
language independent.

Content Management with eZ publish

30

Displaying Content
In this chapter, content has been treated in an abstract way. However, in most practical
situations, the content should reach and appeal your target audience in some way or
another. As eZ publish is mainly a web-based CMS, you will want to format the content
in a clear and attractive way for display inside a web browser. eZ publish enables you to
do so by way of the built in template engine that transforms your content in a manner of
your choice for delivery; by default, it transforms it as XHTML output.

Separation between Content and Presentation
One of the fundamental architectural properties of eZ publish is the separation between
content, application logic (to manipulate content), and the content presentation for either
a browser or other output media such as PDF files (introduced in eZ publish 3.3).

Site Structure versus Page Layout and Content Views
In principle, the structure of your site (node trees) is independent of the page layout and
content views (introduced in the next section). However, by carefully planning your sites
in the design stage, you may come up with a solid model that can equally be used for
parts of the page layout. You can gain more insight into this process from the example
site we will create at the end of this chapter, and also from the two case studies later in
the book.

One such example is the navigation and menu structures used. You can, for instance, use
the top nodes as top menu or navigation entries and second-level nodes (most of the time
these will be folder types) as entries for further navigation.

Overall Page Layout and Content Views
In the paradigm that eZ publish uses, there are two main 'areas' where content is
delivered: the overall pagelayout and content views. Navigational elements are mainly
bound to the page layout templates, and the main content views are normally placed
inside the global page layout. You can assume for now that the content views are
extracted from the database and kernel modules depending on the URL you use to
browse an eZ publish-based site.

Examples of content views are the display of articles and other complex content, folder
listings, and forms, but also the content from managing functions such as template
manipulation, role definitions, and the output from custom-built extensions.

The following figure gives an overview of this simple concept. The parts marked P are
generated in the page layout template(s), while the part marked C is generated with
content view templates.

Chapter 2

31

All the items mentioned earlier are accessible in the same object-oriented
paradigm inside the templates.

The concepts and a detailed explanation of the template system are covered in Chapter 3.

Authorization and Roles
The eZ publish permission system is based on the concept of roles. This is different from
what you may be used to in a traditional file system where permissions are set on
individual files and directories (with inheritance). The latter is still possible with the eZ
publish role-based system as it provides granularity down to the level of individual nodes
or a node and all of its children. In general, setting permissions or roles for individual
nodes should be avoided and applied only to special cases as this may complicate the
administration of a site.

The role-based system goes further; you also can specify the functions of kernel modules
that can be used by a given role. For example, you can specify that a normal user can add
comments to articles, but not submit articles themselves.

A role in eZ publish consists of one or more policies with details of modules, functions,
and limitations that apply to the particular role. For any module or function, you can omit
limitations altogether; for example, in the case of the default administrator user who has
access to all modules and functions. An example is the content module. This module
handles most of the functions dealing with the management of content. The most obvious
function is view(), which fetches the content objects for sending to the browser through

Content Management with eZ publish

32

the template system. Limitations for this function can specify one or more content
classes, a section, any special conditions (access specifications to modify content), a
single node, or a set of one or more node trees (subtrees).

The following table gives an overview of the kernel modules and functions that are
available for role assignments in eZ publish version 3.3. The access-control limitations
listed are to be used in the policies for a role.

content read Class,
section,
owner, node,
subtree

content create Class,
section,
parent class,
node, subtree

content edit Class,
section,
owner, node,
subtree

content remove Class,
section,
owner, node,
subtree

Read access. A finer
specification can be made for
"self" or "any".

A create policy also needs an
edit policy.

Allow a user to edit content
objects. A finer specification can
be made for "self" or "any".

Allow a user to remove objects.
A finer specification can be
made for "self" or "any".

content bookmark None Allow a user to make bookmarks
that are stored inside eZ publish.

content translate Class, section,
owner, node,
subtree

content versionread Class, section,
owner, status,
node, subtree

Allows a user to add translations
of an object.

The status can be draft,
published, pending (workflow),
rejected (workflow), or archived
(older versions).

content pendinglist None Shows the pending objects;
these are objects that are the
subject of some workflow.

Access-Control Comments / Definition
Limitations

FunctionModule

Chapter 2

33

content urltranslator None Provides access to the
urltranslator.

Content Management with eZ publish

34

content cleantrash None Allows the clearing of the trash
can.

content translations None Access to the definition of
languages available (to be used
only in the default admin
interface).

class None None Access to the class edit
functions.

collaboration None None Access to the collaboration
module.

error None None Access to the error module.

ezinfo None None Access to the eZ publish info
page with version, PHP
configuration, and so on.

form None None Access to the form module
(simple form processing, which is
different from information
collection).

layout None None Access to the layout module
for overriding the current page
layout (for example, a print
layout).

notification use None Access to the notification
mechanism (adding/deleting
notifications).

notification administrate None Running the notification
subsystem outside the cron jobs.

package read Type Package type can be class, site,
site style, and patch. Only
classes and site style are
implemented in version 3.3.

Access-Control Comments / Definition
Limitations

FunctionModule

Chapter 2

35

package list Type See package/read.

package create Type, creator
type, role

Type: see package/read.

Creator type can be content
class export or site style.

Role is not a role in the role
system but acts as a
classification of the package:
lead, designer, developer, tester,
or contributor.

package edit Type See package/read.

package remove Type See package/read.

package install Type See package/read.

package import Type See package/read.

package export Type See package/read.

pdf create None Access to create PDF generation
definitions.

pdf edit None Access to edit PDF definitions:
edit.

reference None None Access to the doxygen
generated documentation.

role None None Access to the roles for editing.
Currently assigned roles can be
read in the user object inside
templates.

rss feed None Access to the RSS feed or import
definitions.

search None None Access to the search module.

Access-Control Comments / Definition
Limitations

FunctionModule

Content Management with eZ publish

36

section None None Access to section definitions and
edit functions.

setup None None Access to the setup functions.

shop administrate None Access to the shop
administration.

shop buy None Access to buy items.

shop setup None Access to the shop setup
functions (discount rules, VAT
schemes).

soapserver None None Access to soapservers (currently
no soapserver services are
defined by default).

trigger None None Access to the trigger/workflow
administration.

url None None Access to URL administration.

user login siteaccess Specifies who can login to which
siteaccess.

user selfedit None Access to users for editing their
own data.

user password None Permission to users to change
their passwords.

user preferences None Access to user-bound
preferences (variables).

workflow None None Access to workflow
administration.

Currently (in eZ publish 3.3), the role system is limited to the level of objects/nodes as
the smallest unit. You cannot apply roles at the attribute level (yet). If you really need to,
you can implement permission-related features inside templates. For example, you could

Access-Control Comments / Definition
Limitations

FunctionModule

Chapter 2

37

check the (main) user group of the current user and display part of the attributes in view
and edit templates.

Disabling a Module/Function outside the Role System
In certain situations, you may want to disable a module or function altogether, and
not just for specific roles. This can be done in the site.ini configuration file. For
example, you could choose to turn off the user/register function so that new users
can only be defined by an administrator:

[SiteAccessRules]
Rules[]=Access;disable
Rules[]=Module;user/register

After disabling the user/register function, you will also need to edit the template for
user login to avoid the function being called, otherwise this could result in an error
message that is not very user friendly.

For an intranet site, you will probably not need the shop module or any of its functions:
[SiteAccessRules]
Rules[]=Access;disable
Rules[]=Module;shop

Adding Content with the Default Admin Interface
In this section, we will walk through the administration site access. The functionality
offered by the administration site access can be used to understand the functionalities of
the major underlying kernel modules.

When you first log in to the admin site, you are directed to the content section. At the
top, you will notice the various areas of the admin site. The top menu tabs give access to
the Content, Media, Shop, Users, Set up, and Personal sections.

Content Management with eZ publish

38

Creating Content Classes
To create a new content class, go to the Set up menu and choose Classes from the
advanced part in the left menu box.

The first screen gives an overview of the class groups. Class groups are used to
group similar classes by either content type or functionality. For example, the users class
group holds the basic user-related classes for both individual users and user groups.

When entering a certain class group (or after creating a new group), you have the option
to create a new class. Any new class has a few generic properties:

• Class name
• Class identifier
• A name pattern for objects created as instances of this class

The latter is important, as it will determine the URL part of this object when URL
translation is configured.

With the new button and selection, you can add new attributes based on one of the 30
standard datatypes available. In the following screenshot, the generic attributes are shown
as well as the first attribute created for the new class: a title that is defined as a text line
datatype (also called ezstring). For the Object name pattern, the title is inserted as the
primary component for subsequent object names.

If you change the object name pattern later, objects already published will not adhere to
the new name pattern unless they are re-published.

The ezauthor datatype is not related to the users defined in your eZ publish site.

Chapter 2

39

Datatypes
This section lists the available datatypes along with possible applications. The table with
indicators for 'Searchable' and 'Information Collector' is meant to indicate whether the
datatype can be indexed in the search engine or be used as an information collector.

ezauthor
The ezauthor datatype can be used to store one or more authors. The subfields are the
author name and e-mail address. This datatype also checks for valid input for the e-mail
address. This datatype actually can hold more than one author and can be used to specify
a list of authors for a certain object (like a document).

Searchable Information Collector

Yes No

ezbinaryfile
The binary file datatype can be used to store any file. The indexing for the search engine
is done with external programs if the content is not simple ASCII text. The configuration
for these external handlers is done in settings/binaryfile.ini.

You can specify an upload limit size in MB (or 0 for no limits). You can use this datatype
to upload legacy documents, for example Acrobat PDF or MS Word files.

Searchable Information Collector

Yes No

ezboolean
This datatype corresponds to a checkbox-type datatype. It is typically used for controlling
further template elements, like the display of a button for adding comments.

Searchable Information Collector

Yes Yes

ezdate, ezdatetime, and eztime
The date- and time-related datatypes allow for adding date and time as attributes. The
input validation code checks for correct values. Although you cannot use these attributes

Searchable Information Collector

The ezdate values are stored as UNIX timestamps in the database. Therefore,
you are limited to a certain date range depending on the platform.

Searchable Information Collector

Content Management with eZ publish

40

in the normal search functions, you can use them in custom searches inside templates like
most other datatypes (see Chapter 3).

No No

The year range on Linux/UNIX is 1901 to 2038. On Windows-based systems, the range
of valid years includes only the years 1970 through 2038. If you need a larger range, you
need to either use a string function, which of course has its limitations, or create a new
extended date datatype in PHP.

Note that the validation of input data is not foolproof; some checks are not performed on
date items; for instance, there are no checks on the limits of date items, such as on the day
of a month. This could possibly result in unwanted behavior—you could try to enter a
non-valid date like March, 56 2004 and the system might not complain.

ezemail
A single e-mail address can be stored with this datatype. The input is validated for the
correct format. Currently, this check only applies to the format, and not the actual
existence of the e-mail address or its domain part.

No No

ezenum
The ezenum is deprecated from version 3.3 onwards because of its complexity and
performance issues related to it. For new classes, you should avoid this datatype in favor
of the ezselection datatype. This datatype is included in the eZ publish package only
for reasons of backward compatibility.

With the ezenum datatype, you can present the user with a predefined set of values. These
can be either specified as a single selection or multiple selections. The style can also be
set to either use radio buttons (single selection) or checkboxes (multiple selection). This
datatype is similar to the ezselection datatype discussed later.

Content Management with eZ publish

40

Searchable Information Collector

Yes No

ezfloat
The ezfloat datatype stores floating-point numbers. You can specify the minimum and
maximum value at the class level for input validation.

Searchable Information Collector

No No

ezinteger
The ezinteger datatype is similar to the float datatype where you can specify a
minimum, maximum, and default value. Contrary to the float datatype, integers can be
searched for with the search engine.

Searchable Information Collector

Yes No

ezidentifier
The ezidentifier datatype can be used for constructing (sequential) identifier strings
such as doc-xxx-en, where xxx is a numerical value with a predefined number of digits.
You can set a prefix and a suffix, the number of digits to use, and the number part to start
from. The values for the number part are created automatically and cannot be edited. The
number part does not increase when new versions of objects are created. You need to be
careful when you update the attribute definition; for example, when you change the
prefix and/or suffix, you must change the initial value at its primary setting. Identifiers
assigned earlier on remain unchanged.

Searchable Information Collector

Yes No

You could use this datatype to automatically assign a serial number for articles,
photographs, or products.

ezimage
The ezimage datatype is used to store bitmaps in various formats. The supported formats
are defined in settings/image.ini, where you can specify a number of predefined
sizes

Searchable Information Collector

Searchable Information Collector

Searchable Information Collector

Chapter 2

41

with a label (such as medium, small, large). Upon uploading the image, new variations in
size for the image are created according to the defined sizes.

No No

ezinisetting
This is a special datatype that can be used to modify or display various INI settings. The
INI setting to be modified is defined in the class by specifying the siteaccess, ini file, ini
section, and ini parameter. In addition, the type of setting needs to be specified and can
be one of the following: text, enable/disable, true/false, integer, float, and
array. To determine the type of setting you need to use, you need to look at the
settings in the default INI file(s) shipping with eZ publish.

A word of caution here: since the content of this datatype is determined at the class level,
it is possible to have more than one object that can alter an INI setting. On the other hand,
this may be wanted behavior for cases where you want different administration profiles.
For example, you can create a class that allows for the modification of a large set of INI
settings along with a class with the ability to modify a restricted set of INI settings.

No No

ezisbn
The ezisbn datatype is used to store an ISBN; the input validation checks for the correct
ISBN format.

Yes No

ezkeyword
The ezkeyword datatype can be used to specify keywords as a list of comma-separated
strings. An advantage of this datatype is that it can be used to link objects of the same
class; whenever there is one or more common keyword, a list of keyword-related objects
is available for use when displaying the content object. Note that the relations are within
the same class. When you use keyword attributes in different classes, there is no
automatic linking of related objects.

Content Management with eZ publish

42

Searchable Information Collector

Yes No

This datatype can be used to enhance the user experience: for example, in a document
archive where you can provide a See also list of documents that share one or more
keywords with the current object.

ezmatrix
The ezmatrix datatype can be used for data that is best stored as a matrix or in a table.
You need to specify the maximum number of columns and the initial number of rows.
Upon object creation, the author can add more rows to those initially specified.

Searchable Information Collector

Yes Yes

This datatype comes in handy when you need to input a varying number of items within
a content object. With clever template programming, the matrix datatype becomes one of
the most versatile available in the standard distribution of eZ publish.

ezmedia
The ezmedia datatype is used for storing media clips and currently supports the following
formats: Flash, RealPlayer, Quicktime, and Windows media. You can also specify a
maximum file size to upload, or 0 to remove any size limit.

Searchable Information Collector

No No

ezobjectrelation
You can use this datatype to specify one related object upon creating or editing an object.
This datatype can be useful when you need to assign a single item out of a pool of
existing objects to a newly created object. There is no way to restrict the object class of
the related object.

Searchable Information Collector

No No

Chapter 2

43

ezobjectrelationlist
The object relation list is a powerful datatype that can even be used to create compound
objects (of different classes). Alternatively, it can be used to create categories of related
objects. When the creation of objects is enabled, you also can specify a restricted set of
classes from which the object can be composed. A further parameter specifies the default
node at which newly created objects can be placed.

In the content.ini file, under the [ObjectRelationDataTypeSettings] section, you
can specify parameters to assign default nodes to start browsing. The node can be
specified by the node name or the node ID.

Searchable Information Collector

Yes No

ezoption
This datatype can be used to specify a number of options upon object creation. This is
most useful for collecting information through forms. At object creation, you specify the
options with a name and value pair.

Searchable Information Collector

No Yes

ezpackage
The ezpackage datatype is used in administration classes to specify the available
packages. You need to specify the type as a text field, and the mode of displaying the
available packages as a combo box or a group of icons. For this, you can specify an
image such as a screenshot for guiding the user with each package.

Searchable Information Collector

No No

ezprice
The ezprice datatype is used in product classes for representing prices. If one of the
attributes is of this type, the standard view templates automatically add buttons for
adding the object to a shopping cart or the wish list of a current logged in user.

Content Management with eZ publish

44

Searchable Information Collector

No No

ezselection
The ezselection datatype is used to specify a number of options from which you can
specify single or multiple values. The definition of the options is done upon class
creation and comprises a certain number of values—this is different from the ezoption
datatype, where the options are for object creation.

Searchable Information Collector

Yes Yes

A modified version of this datatype where you can specify an option name and value has
contributed by the eZ community.

ezstring
The string datatype is used to hold short strings, such as titles, with less than 255
characters.

Searchable Information Collector

Yes No

ezsubtreesubscription
The ezsubtreesubscription datatype is used for the notification system and behaves
like a boolean variable (checkbox) upon object creation (not class creation). When the
creator of an object selects this checkbox, a notification rule is added, where the creator
gets e-mail notifications when the object is updated or child nodes are created/changed.

Searchable Information Collector

No No

eztext
The eztext datatype is used for plain text, such as simple forum messages. The size of
the text is limited only by the database and possible browser constraints. By default, eZ
publish uses the text datatype to store the value of a text field in MySQL (65,534 bytes).
You can choose larger sizes by modifying the database setup for versions up to 3.3. From
version 3.4 onwards, the default size is increased to MySQL medium text fields.

Chapter 2

45

Searchable Information Collector

Yes Yes

ezurl
As its name implies, the ezurl datatype is used to store the URL (contents of the href
attribute) and a display string. The interesting feature with eZ publish is that the link is
also stored separately in the database to allow link-checking with a cron job or some
other scheduler. When a URL becomes invalid, you can change this to a new value from
the admin interface, and all instances of the URL's use are automatically updated.

Searchable Information Collector

No No

ezuser
The ezuser datatype is a special datatype that is connected to the User module of eZ
publish. Indeed, you can create several user classes in your system, grouped under the
User class group in the class list. This datatype specifies the following properties:

• A login name
• An e-mail address
• A password

You can use this feature for several types of users, mainly with different metadata
(attributes) depending on the type. Although modifying the base user class is in principle
not a problem, you can take the safest approach and create your own. To use it as the
default User class, you can set the class ID in site.ini under the [UserSettings]
section.

Searchable Information Collector

Yes No

ezxmltext
The XML text datatype is used to store rich-text content through a well-structured yet
simple variant of XML. It supports some elements of the XHTML 2.0 specification and
is further characterized by the possibilities of specifying special input and output
handlers. For instance, there are handlers to format the contents in plain XML, XHTML,
or PDF (introduced in eZ publish 3.3).

A browser-based DHTML editor known as the Online Editor is available from
eZ systems. It offers WYSIWYG editing for the easy creation of structured (and
formatted) text.

Lists cannot be nested in eZ publish up to version 3.3 (and, at the time of
writing, 3.4 as well).

Content Management with eZ publish

46

Searchable Information Collector

Yes Yes

There is one caveat: your editors or end users will have to learn the syntax for providing
or editing this rich-text content.

The structured text is rendered as XHTML, and you have control over the display
through the template system.

XML Tags Available with ezxmltext Datatypes
As the ezxmltext datatype is used for enabling structured blocks of text, it provides
several XML tags, by default, which you can use. Furthermore, it is possible to extend
the available XML tags through custom-defined XML entities.

All XML entities can have a class parameter. This parameter is normally used in the
tag templates to specify a CSS class, but you are free to use sophisticated
transformations with the eZ publish template language. For example, a header can be
made of the chapter class and will be rendered in a more complex layout than available
in CSS alone.

Headings
Headings and titles can be tagged by making use of either the <h> or the <header>
tag. You can specify two optional parameters: level and class. The level parameter
can be used to define the size or the level of the heading.

<header [level="1-6"] [class="packt"]>My header</header>

Lists
Lists are tagged in the same way as their XHTML counterparts for ordered and unordered
lists with the help of the ... and

Chapter 2

47

Emphasizing Text
To emphasize text portions, you can use a variety of XML tags that correspond to their
use in traditional XHTML markup. By default, emphasized text can be rendered in italic
or bold typefaces. Here is a list of available tags:

• <i [class="test"]>Italic text.</i>
• <em [class="test"]>Emphasized text.
• <emphasize [class="test"]>Emphasized text.</emphasize>
• <b [class="test"]>Bold text.
• <bold [class="test"]>Bold text.</bold>
• <strong [class="test"]>Bold text.

Literal (Unformatted) Text
The <literal> tag can be used to render unformatted text, for example, program
source code, HTML code, XML source, and so on. Everything that is inside a literal
block will be rendered in the same way (character by character) as it was input into the
XML text field. By default, this effect is achieved using the XHTML <pre> tag.

Hyperlinks
Hyperlinks can be inserted by making use of the <a> or <link> tags. Both tags accept
a target parameter, which is used in the same way as the corresponding XHTML
parameter. It accepts the _self or _blank values. The href parameter is required,
and needs to be set to a valid URL.

In addition to the href parameter, a parameter called id can also be used. This is
because eZ publish stores every hyperlink used in XML text datatypes in a separate
ezurl table. The automated link checking (enabled through cron jobs) validates these
URLs, and is very convenient when you need to fix any broken links. The id
parameter should be assigned a value (number) corresponding to the ezurl ID.

The <anchor> tag makes it possible to insert XHTML anchors inside the XML text
datatype field. An inserted anchor will work just like a standard XHTML anchor: it
accepts a name parameter that should be unique in the collection of anchors used in the
final rendered XHTML output.

Tables
Tables in XML text datatype fields are created in the same way as in XHTML. The
<table> tags accept values for the border and width parameters. Rows are created
with the <tr> tag, table headers with the <th> tag, and table data with <td> tags. The
<th> and
<td> tags accept the width, colspan, and rowspan parameters.

Objects
The <object> tag is a special and unique eZ publish feature that can be used to embed
other eZ publish objects inside XML text fields. This is typically used for embedding

Content Management with eZ publish

48

images, but you can use an object of any class you define. It accepts a parameter ID
corresponding to the object ID (not the node ID!).

Further parameters can be used to specify alignment (with align accepting the values
left, right, or center), size (a size parameter that accepts small, medium, and
large as values), and a view parameter with values embed or text_linked. Finally,
href and target parameters can be specified to turn the embedded object into a link to
whatever you wish.

Custom Tags
You can also define your own custom tags. A custom tag is defined inside
[CustomTagSettings] in an override for the content.ini configuration file. It accepts
a name parameter that corresponds to the definition in the content.ini configuration
file. In accordance with CSS stylesheets, you can specify a custom tag as being inline
(like
<i>) or a block style (like <p>).

By default, a few custom tags are defined in the standard eZ publish distribution, such as
<superscript> and <subscript>.

Datatypes as Information Collectors
Some datatypes can serve as information collectors. Objects created with datatypes
marked as information collectors can be used as a mechanism in forms where data is sent
to a preconfigured e-mail address or stored in the database (to make polls, for instance).

This can be useful in small surveys or feedback-type applications. The main way to
collect information for your site is of course by creating new objects that are placed in an
appropriate node in the node tree.

Creating a New Content Object
New content objects are created in the Content section of the admin area. In this section,
you can browse through the node tree and create new objects in certain locations.

The following screenshot shows the Content section, where we want to create a new
object (a simple folder).

Chapter 2

49

The selection box shows the newly created class, after pressing the Create Here button; a
new edit screen is then presented where you can fill in the required and optional attributes
for the object created.

A small toolbar is displayed on the edit screen, with information on the current location,
the default sorting method for child objects, and the sort order (ascending and
descending).

The Main field in the toolbar is used for determining the main node location for an object.

By using the Move button, you can change the main location by browsing through the
node tree.

With the Remove icon (the little trashcan icon), you can delete one or more locations
assigned for this object.

Clicking on the Add locations button brings up a browse view of the node tree that you
can use to select additional locations for the object.

The following screenshot shows the edit screen for a newly created article object. From
this point on, there exists a draft object with a corresponding object ID and location
specified by the node ID.

When you add another placement, the child nodes do not inherit these extra
placements. For applications where you need to display the children at these
locations, you will have to resort to template programming, look up the main
node placement, and fetch the children on the basis of their IDs.

Content Management with eZ publish

50

Further in the edit screen, you can create content by filling in the attribute parts.

The prime effect of adding additional node locations is that additional links can be
created. For example, you could assign a new location to an article inside the news tree
of your site, for display on the default page that a user sees when accessing your site.
When a normal (full) view of the object is requested, the display will be done according
to the main object placement parameters.

Editing Objects and Versioning
With the version management part in the edit screen, you can go back and copy one of
the older versions to a new draft and publish it again. This is illustrated in the following
screenshot, where you can either continue to work on the current draft (provided this
draft is created by you) or select an older version for copying to a new version. A radio
button is used to select the version you want to edit or copy and edit. The selection
button is used to remove versions.

Chapter 2

51

Managing Translations
If you did not specify the available languages for translation during the installation of eZ
publish, you can still add them in the Set up menu as shown in the following screenshot:

To add translations for content objects, edit an object and then click the Manage button
in the Translations section of the edit screen that you saw earlier. This brings you to a
screen where you first select the additional languages (provided that you have configured

Content Management with eZ publish

52

your site to be multilingual) after which you can add a translation to your new content
object.

By selecting the language you want to translate the content into and clicking the Add
button, you arrive at the translation screen. This is shown in the following screenshot,
where the original text is displayed on the right side of the screen along with the newly
translated version so as to guide the translator.

Chapter 2

53

Related Content
Relating content objects in eZ publish is a very powerful feature that can be
accomplished in two ways:

• By the general object relation mechanism available with any content object.
• By using one of the two special datatypes (objectrelation or

objectrelationlist). The object relation can hold a single relation
while the object relation list can hold one or more object relations.

The following screenshots show how you can add a generic object relation to an object
(by clicking the magnifying glass icon in the Related objects panel in the edit screen).
The action is fairly straightforward from there on, as you can browse through the node
tree and select an existing object.

Clicking the Select button brings you back to the edit screen where the newly related
object is added to the list in the Related objects panel:

Content Management with eZ publish

54

The page on which all users should start browsing can be customized (by default it is the
main content node) by changing settings in the browse.ini file and the
[AddRelatedObject] section. For newly created related objects, the same
browse.ini file offers various settings (both default and per class). You can specify
where the main node for such objects can be placed upon creation.

An interesting alternative is to use the ezobjectrelation and
ezobjectrelationlist datatypes. The ezobjectrelationlist is a very powerful
alternative to generic object relations as it allows categorizing related objects (create
more than one ezobjectrelationlist attribute) and limiting the possible classes or
related objects. You can even nest object relation lists by relating classes that in turn
contain other object relation lists. The initial placement can again be configured in
the content.ini file.

Workflows
A workflow can perform certain actions in the background (without user interaction) or
require a user to perform certain tasks like approving an object before it can be published.

The workflow system of eZ publish provides the basics for implementing business
procedures in electronic workflows. In the normal distribution of eZ publish, you have a
few basic building blocks called workflow event types, but the workflow system can be
extended with your own event types through PHP programming.

Triggers
Triggers launch the actual workflow chain. They are available for pre- and post-
publishing workflows, as well as some shop functions. For each trigger, you can specify a
workflow to execute. The list of triggers can be seen from the Triggers link of Set up,
which becomes visible by expanding the Advanced section:

Chapter 2

55

You may think that you can have only one workflow per trigger. This is more or less true,
but workflows can be parallel. In particular, the multiplexer event type is actually a hub
for launching specific workflows depending on the object class and section (another use
for sections!) Furthermore, you can specify an exclude-list of a group of users that cannot
activate a specific workflow. For example, "approvers" who do not need to approve their
own created objects need not activate approval workflows.

Workflow Events
A workflow consists of one or more workflow events. Currently, eZ publish comes with
four predefined event types:

• Event/Multiplexer
• Event/Approve
• Event/Wait until date
• Event/Simple Shipping

The multiplexer event is a very versatile tool that allows multiple workflows to run for a
given trigger. It provides a filtering on sections, classes, and users who are not the
subject of a workflow, and then allows another defined workflow to run.

The approve event can filter on sections and define the users who can approve and the
groups of users that do not need approval.

The wait-until-date event filters on classes, but relies on the presence of a date attribute
of the class of the objects for which it enforces delayed publishing. You can specify more
than one class and the date attribute on which publishing should occur. Normally, the
publishing date of an object is set when a user issues a "send for publishing" action. In
the wait-until-date event, you can override this with the actual publishing date defined by
the class-specific date attribute.

The simple shipping event can be used in e-commerce or shop applications to add a
shipping cost to an order. The values are not set in the workflow definition in the admin
interface, but are obtained from appropriate values defined in the workflow.ini
configuration file.

The following screenshots show the creation of a simple approval workflow for articles
(a default class installed with the base distribution). First, a workflow is created
consisting of a single approval event where the administrator user has to approve
publishing (this is valid only if called from the pre-publish trigger). To do so, click on
the Workflows menu entry under the Advanced section of the Set up tab. This will bring
you to workflow groups. In a certain workflow group, select the New button to create
your new workflow.

Content Management with eZ publish

56

Next, a multiplexer workflow is created. This will be attached to the pre-publish trigger.

Unlike traditional user-group systems, nesting of user groups is not supported
in versions of eZ publish before 3.4. This is in spite of the fact that you can create
hierarchies in the Users section of eZ publish. You can do this for other purposes
(such as displaying an organization chart, for example), but for the role system,
you needed to specify "flat" user groups—groups with user objects and without
child user groups. Inheritance of user groups is supported in eZ publish version
3.4 onwards.

Chapter 2

57

An example of a delayed publishing workflow event is shown next. This should be
attached to a new multiplexer event in the base workflow just created.

Permissions/Roles
The permissions in eZ publish are based on roles. On one hand, this involves
the definition of roles, and on the other hand, the users and user groups to whom
the workflow is assigned.

Users, user groups, and roles are created in the Users section of the admin interface:

Content Management with eZ publish

58

Roles can be created in the Roles submenu, where you can define the policies associated
with a role and the assignment to users and user groups. For example, here we see the
creation of a typical role for users with limited editing capabilities.

There needs to be an edit policy along with the create policy, because eZ publish
generates a draft version upon content creation that is then edited.

An advantage of template editing through the admin interface is that any cached
version gets deleted after editing. This is not always true when using a standalone
editor action within the file system when you edit the files directly instead of
through the admin interface.

Chapter 2

59

These users will be able to:

• Log in
• Create (and edit) articles beneath folders
• Remove their own articles

Additionally, these power users are allowed to create bookmarks.

Templates
The Template submenu in the Set up section can be used to edit and create override
templates. By default, the templates available in the standard design directory are used.

However, for each template defined there (or in the directory tree below design/<your
design>/templates), you can create templates that will override the default template for
a given class, section, or other qualifier.

Some of the common qualifiers are accessible from the Templates submenu, but the
complete power is only released by editing the override.ini.append file in
settings/siteaccess/<your siteaccess>.

Upon first entry into the template edit system, you are presented with a list of common
templates. This list is generic in the sense that it contains a predefined set of templates
including hard-coded templates in the setup module of the kernel and the templates found
in the design/<your design>/templates directory:

Content Management with eZ publish

60

To actually work on templates, you will first need to select a type of template to work on.
For example, select /node/view/full.tpl, and then select the siteaccess for
which you want to edit or add override templates:

Chapter 2

61

More Administrator Functions
In this section, we will look at some of the common functions found in the administration
area of eZ publish.

Removing and Restoring Objects
You can remove objects in the admin interface from the Content section. Since version
3.3, you have the option to put objects into a trashcan so they can be restored later or to
remove an object permanently. Here we see the result of a remove action:

And here is the trashcan view:

From the trashcan you can restore objects into their original location by default.

URL Translation
eZ publish provides a mechanism for URL translation. This can be handy for the
construction of easy-to-remember URLs like http://mysite.com/about, which in

When moving objects around in your eZ publish site, you strictly do not need to
retranslate locations; eZ publish will redirect to the new location automatically.

If your server is behind a firewall that blocks outgoing HTTP requests, you need
to modify the cron job for URL management to make use of a proxy or contact
your network administrator to allow outgoing HTTP traffic.

Content Management with eZ publish

62

reality points to an article deep inside the site node tree. You can also use this to
translate entire hierarchies into a new location or handle old URLs that are no longer
valid.

URL Management
Every URL in your eZ publish site, entered either from the ezlink attribute or as an
external link inside an ezxmltext attribute, is stored separately in the database. When
properly set up, the scheduled cron jobs will check all these URLs for validity. This is
one of the unique features in eZ publish and the admin interface provides access to this
functionality as it gives a list of valid and invalid URLs used in your site:

For each URL, you can also see the objects that make use of the URL. This can help you
decide to edit the objects or simply replace the invalid URLs with new valid values.

RSS Export and Import
eZ publish adheres to major standards and RSS is one of them. You can do both RSS
exports and imports from a variety of sources. The current implementation supports RSS
import of versions 0.9, 1.0, and 2.0. RSS exports can be configured for RSS version 1.0
or 2.0. For exports, you can define the mapping of the children of a particular node (one
level of depth and limited to five items). The following screenshots demonstrate RSS
import and export respectively.

Chapter 2

63

For both import and export, you need to map the RSS fields to the eZ publish class and
attributes. For RSS import, the default link class is a good candidate. Imported RSS items
are stored in a node tree location that can be specified in the RSS configuration admin
interface.

Content Management with eZ publish

64

Cache Administration
eZ publish is a powerful application, but is also resource intensive. To minimize the use
of resources (CPU and memory), cache mechanisms are implemented for the major parts
of the underlying kernel functions and libraries. Roughly, caching is active in for the
following operations:

• Content views
• Template compiling
• INI file caches

You can use the cache administration screen to clear any of the sections of the cache, or
even make a fine-grained selection to clear, such as the template block cache:

Normally, cache clearing is necessary during development or after upgrades that you
should perform only in a development environment instance of your site. However, small
changes on a live (production) site gain from the cache interface. The fine-grained
control is especially useful for live sites.

Chapter 2

65

Search Stats
While eZ publish by default does not keep track of the objects visited, it does keep
statistics on search phrases and words. This helps you determine if the taxonomy of your
site matches the average expectation of your target audience. The Search stats page
shows a view of these statistics and also allows the clearing of statistics gathered this far:

System Information
The system information page shows details of the current setup, including PHP version,
PHP extensions, and other important settings. This is useful in determining if the PHP
configuration, HTTP server (mostly Apache), and other items meet the requirements of
eZ publish.

Caches should be cleared after major updates in design (templates) and system
upgrades (eZ publish upgrades). Make sure that you also clear the caches from
PHP accelerators when executing system upgrades, as these can become corrupt
due to changes in the PHP classes used.

Content Management with eZ publish

66

Section Setup
In the Sections page, you can define or remove section definitions. Here we see the basic
(minimum) sections as defined for the plain demo package:

When adding sections, you can specify a navigation part that can be used in templates.
For example, the admin interface itself makes use of this to map certain parts of the
content to other navigation tabs. Normally, you do not want to do this except for
assigning a gallery of images and multimedia parts of your node tree to the Media tab.

Chapter 2

67

PDF Export
eZ publish not only provides web content through normal web browsing or RSS feeds,
but also delivers content as an Acrobat PDF file. This is done in the PDF export submenu
where you can define several PDF export configurations for parts of your site. Due to the
heavy processing involved, you should limit the generation of PDF files of your content
to relatively few objects (at least in version 3.3 of eZ publish).

The following screenshot shows an example entry for PDF export where you can define
the node or node tree, classes, introductory page elements, and the way of publishing
(either direct download or a cached PDF file).

A common error in eZ publish administration is the deletion of the Users section
by accident. This leads to the situation that the Users tab no longer displays the
left-hand menu for users and roles. To restore this functionality, you need to
create a new section that is assigned to the users root node and has Users as the
navigation part. The integer value known as the section ID is not important here.

Content Management with eZ publish

68

When importing a package with new classes, make sure you have all the included
datatypes installed. If not, the package import will fail, leaving the
contentclass and contenclassattribute tables in a dirty state.

Rapid Application Development (RAD)
The RAD menu currently provides tools for generating skeleton PHP files for the
creation of new template operators or datatypes. It is expected that later releases will
include more options.

Extension Setup
You can activate third-party extensions such as the Online Editor in the extension setup
menu. These need to be enabled in the appropriate INI files. Most extensions come with
an explanation of how to do this, and any requirements specific to enabling the extension.

Packages
With the Packages menu, you can install or remove packages in the eZ publish native
format. Currently supported types are class packages and design packages (CSS files).
This is useful when you create several classes that you may need on other installations.
Third-party submissions from the eZ publish community may come in this format for
convenient installation.

Notification
The notification system can be run ad hoc from the notification section. The functions
provided here are used mainly during development to test the proper functioning as
they should normally be executed from a scheduled cron job. It can be used as a
workaround for installations that do not allow access to a cron system or scheduler
during development.

Personal
The Personal tab provides some useful functions for individual users (provided that you
have created and assigned the necessary policies). It provides:

• Drafts for listing objects in draft mode by the users currently logged in.
• A pending list that details objects that have a pending workflow event, such

as approval or delayed publishing.
• Notification settings for sending e-mails about new or updated objects

(somewhat limited in version 3.3, but this will improve with later releases).

Chapter 2

69

• Bookmarks for storing nodes of interest at the server level (independent of
the browser or computer that the current user is working from).

• Collaboration—currently this holds the items for which an action is required
by the currently logged-in user, such as approvals.

• Password management for changing the password of the current user. The
administrator can also do this in the Users section for any user.

Shop
The Shop tab provides some functions for e-commerce (shopping) like different types of
taxes or discounts to apply for certain objects and user classes. When users add items to
their baskets, the admin interface provides simple handling of shopped items.

Creating an Example Site
This section is all about the first few steps that you need to take to build your own sites
with eZ publish. To jumpstart, you should install the plain package that comes with the
default distribution of eZ publish.

We begin with an overview of typical requirements of our project: setting up a portal for
a nature photography and astronomy club website.

The portal for the nature photography and astronomy club should provide the following
feature set:

• A public part with documents, pictures from members organized in galleries,
discussion forums, calendar of activities, logbooks, news (with subscription
service), and a few personalization features (for registered users)

• A private part for the club management for statutory documents, meeting
reports, actions, and private discussions

Creation of Basic Classes
Now that you have learned about the powerful features of eZ publish to accommodate
whatever high-level data model and structure you want for your website, a little analysis
of the requirements soon brings forward a number of solutions. Indeed, with eZ publish
you often have more than one way of accomplishing your goals.

Using the example website, the requirements can be synthesized as follows.

Content Management with eZ publish

70

Documents
The term document means different things, yet we want to limit the number of document
types for our website. Roughly speaking, we want both structured documents, where the
different parts such as title, introduction, body, keywords are separated, and legacy
documents in the form of PDF files or typical word-processing documents. This is
possible if we use a super-document class consisting of the following elements:

• Title (text line)
• Intro (XML text field)
• Body or summary (XML text field)
• A file as attachment (binary file)
• A keyword list (keyword datatype, as an automated form of related

documents)
• Miscellaneous related items (object relation list)
• A flag for allowing/disallowing comments (as with the default provided

article class)
• A flag to signal that a document should appear as a news item on the

home page

Another type of document is a logbook—a kind of dedicated weblog. This is in fact a
collection of logbook entries linked to each user registered with our site. The logbook
itself will be a simple folder object. A logbook entry will consist of a simple list of
elements:

• A subject (text line)
• A body (XML text field)
• A list of related items published elsewhere on the site (object relations list)

Images
Images won't be just an image with a caption. Our nature photography and astronomy
friends are eager to provide information on the equipment they used, location, date and
time, and perhaps a few other details. Since this is not a book on astronomy, we'll
nevertheless limit the number of attributes.

After some deliberation with the website project team (the webmaster and his daughter in
this case), the image class will consist of:

• A title (text line)
• A description (XML text field)
• Image file

Chapter 2

71

• Caption to display with each picture (text field)
• Equipment used (XML text field)
• Date and time (datetime field)
• Location (XML text field)
• Keywords

Discussion Forums
For the forums, we basically need a list of topics, sticky forum messages (the ones that
are displayed at the top of each forum containing important information), and a forum
folder. The folder will be just the standard folder object as delivered with a plain eZ
publish distribution, consisting of a title (text line) and a description (XML text field).
The forums are also folder-like objects, but nevertheless we'll create a new class for them
adding an icon as a new attribute. Messages or topics (a top-level message) will consist
of the following attributes:

• A subject (text line)
• A message body (plain text field)
• The type of message (selection datatype) to distinguish between a

question, a remark, important news, and so on

Calendar of Activities
Activities can be of different types, but nevertheless we want them to be implemented
with only one class. A calendar item therefore consists of the following attributes:

• Subject (text line)
• Description (XML text field)
• Location (XML text field)
• Start date and time (datetime)
• End date and time (datetime)
• Keywords (keyword)
• Category (selection)
• Related items (object relation list)

The navigation will also need a calendar; the kind of component you may be familiar
with from groupware applications.

Content Management with eZ publish

72

Personalization
With respect to personalization, we want each registered user (member if you wish), to be
able to have his or her own mini-site with details on their level of skills, equipment, and
other information. In addition, we want to offer some preferences and access to
notifications, a draft space, and user-interface preferences. We can implement this under
an umbrella (a folder) object with subfolders containing user-specific details.

Miscellaneous
We will need one more class: a generic object with only a name. We will use objects
created for hosting special functionality, such as a home page, in the templates later on.
Our dummy class will be:

• Name (text line).
• For each of the nodes associated with this class, we will make a dedicated

template overriding the default. It will hold things like the entry point of My
site with preferences, statistics, and more.

• Furthermore, we also want a links or bookmarks section of general interest
(not to be confused with the bookmarks functionality in eZ publish). For this,
the standard link class will be used, which consists of a title, a description,
and the link itself with a URL and the display name (the thing you generally
put between <a ...> and).

• Finally, we need comments that will be added by members. This will be done
in the templates, which we look at in the next chapter.

Creating Classes
Creating a class is left as an exercise for you by using the default admin interface
delivered with eZ publish. The mechanics of this has been covered in some detail in the
Creating Content Classes section.

Taxonomy or Structure
The site structure will be straightforward, and the visual experience will be made mainly
through the use of powerful template functions provided by eZ publish. When viewed as
a tree-like structure, the taxonomy will consist of:

• Home (a dummy object) aggregating news and other items
• News (show all the news items with a navigator for archived news)
• Documents
• Technical documents

Chapter 2

73

• Meeting reports
• Miscellaneous
• Calendar of events
• Links
• Astronomy related
• General photography
• Galleries
• Astronomy
• Nature
• Forums
• Announcements (by the club management)
• Astronomy related
• Nature related
• My site (personal stuff)
• Restricted part for the club management
• Forum
• Statutory documents

Here we see the sitemap view in the admin interface (the sitemap template has been
modified to show the class name of the objects).

Content Management with eZ publish

74

Users and Roles
For the roles settings, we want users (members) and the general public to be able to read
everything except for information in the restricted parts. Regular members should also be
able to create new forum messages and topics, and submit documents and images (which
would be reviewed by the club management). Self-registration will be disabled—every
member will be created by the club management. For example, they could grant
membership on the condition that applicants have paid their annual membership fee.

Sections Setup
To make it easier to implement permissions and roles, we will assign sections to the
various parts of the site. By default when new folders are created, they inherit the section
from the parent (or top-level) element, usually the Standard section. For our purposes,
we can make the following sections and assign them to subtrees in the taxonomy
described earlier:

• A restricted section for club management
• A section for forums where only members can post
• A section where each member can view the details of other members, but

which is not accessible to the broad public (anonymous users in eZ publish)
• A visitors section for all users, including anonymous users, which is assigned

to the top-level elements (Home, Documents, Calendar, Forum)

Here we see the result of creating these sections:

The following screenshot is the result of their assignments:

Chapter 2

75

In this screenshot, the template from the admin interface was slightly modified to show
the section-access details in square brackets alongside the section ID.

User Groups
Basically, there are four categories of users:

• Anonymous users
• Visitors (non-members registered with the site)
• Members (assigned by the club management)
• Club management

For each of these categories, you need to create user groups. The default group for
non members will be the visitors group. This has to be set in the
settings/override/site.ini.append.php file in the [UserSettings] section with
the DefaultUserPlacement parameter. For example, in the tutorial site, the node ID of
the Visitors group is 12, so the configuration line should look like:

File: settings/override/site.ini.append.php
[UserSettings]
...
DefaultUserPlacement=12
...

Here are the final user groups:

Content Management with eZ publish

76

Roles and Role Assignments
For clarity, each type of user (defined in their separate user groups) is assigned a role
definition.

Anonymous
An anonymous user gets a content/read policy for access to the visitor section and has the
permission to log in. You can also disable policy checking in the [RoleSettings]
section in settings/override/site.ini.append.php by specifying
PolicyOmitList[]=user/login (default setting at the time of writing).

The role view of the anonymous role is shown in the following screenshot:

Chapter 2

77

Visitors (Registered Non-Members)
Registered users have almost the same permissions as the anonymous user, except that
they have two additional permissions—creating bookmarks and notifications.

Members
Members are granted the ability to create documents, upload pictures, and keep their
logbooks in addition to the policies defined for visitors.

Content Management with eZ publish

78

Club Management
The club management can do almost anything with the content and users, so the policies
are rather simple:

Summary
In this chapter, we have seen how to use eZ publish for content management. We looked
at the fundamentals of an eZ publish site and content handling within it, including content
classes and objects, versioning, and how eZ publish displays your content.

We moved on to the administrative interface of eZ publish, and how it is used to add
content to your site. We looked at the default datatypes that are available with eZ publish
from which can construct your content objects, as well as how the other main concepts of
eZ publish are realized in the administrative area.

We concluded the chapter with a tutorial on the basics of creating a sample astronomy
and nature photography site, and walked through the basic classes and roles required by
the site.

In the next chapter, we look at the templating system of eZ publish, which is at the heart
of content display in eZ publish.

3
Displaying Content with eZ

publish Templates

eZ publish comes with a powerful template engine that is capable of presenting the
content in various output formats, including XHTML and PDF. Template files can also
be used to create functionality that is sometimes described as portlets (portal
components) in other content management systems.

You already know how eZ publish can be used as a content management system from a
pure content perspective. The next layer for gaining knowledge is the template system
and how it can be used to extract and present content to the user. The caveat is that the
syntax of the template system means another language to learn.

In eZ publish, every page is generated dynamically, based on templates that are processed
to add the content. This is because the architecture of eZ publish separates design and
presentation logic (including internationalization) from content and processing, which
happens mainly in the kernel modules.

Templates are generally a mix of XHTML and the eZ publish template language,
providing access to the data (in the database or file system) and functions of the
underlying application and content management framework.

In the next section, the overall idea of the template system is explained. The subsequent
sections go into the details and show you how to use the template language.

Principles
The eZ publish template system is designed in a hierarchical fashion, where some
first-level templates (pagelayout.tpl) control the rendering of more specific blocks like
the content views and navigation structures (menus). Content views are rendered through
templates, which can be tied to specific classes and view modes. The datatypes that make
up a class are also controlled by individual templates. Further down the template
hierarchy, even individual elements are controlled by templates (for example, the

Displaying Content with eZ publish Templates

80

<header> tags in XML text fields). Almost all templates can be overridden by custom
templates, depending on the section, class, depth in the node tree, and so on.

Page Layout and Content Views
When you visit the main eZ publish site or most of the sites created with it, you are
presented with a page containing navigation elements (such as top-level menus), polls,
and content, such as article listings, image galleries, and so on.

eZ publish distinguishes between page layout templates and content view templates.
Page layout templates are used to present the user with a global page layout. This
includes everything except the main content. The main content referred to here is what is
actually requested by the URL, and displays along with the navigation elements to
assemble the whole page.

However, because of the power of eZ publish, the distinction between page layout
elements and content presented here can be blurred by your specific needs, imagination,
and creativity.

The template system is component based, which means that a template generally calls
other template files for common parts or when you need a particular functionality, or
intrinsically by the hierarchical organization of templates from the top level (page layout)
to individual objects, object attributes, and the XML text tags of XML text attributes.

Chapter 3

81

When you activate 'nice URLs', the URL actually does not contain a view mode.
The full view mode is implicitly tied to the nice version of the URL.

Page Layout
The main template that is always called is the pagelayout.tpl template. This template
will be used to display the overall page layout, <head> elements such as cascading
stylesheets, the <body> section top-level menus, navigation parts, a search box, etc.

The page layout template can be overridden by specific instances. For example, the
'home' page layout may be different from the page layout used for presenting a catalog
of articles or products.

You can also define additional page layouts for a printer-friendly version or for pop-up
windows. These are called by prepending the normal URL part with /set/layout/<your
pagelayout.tpl override>/.

Content Views
View templates are mostly associated with the content views. The content view is
actually a presentation of the content or page requested by the user through the URL. For
example, http://www.example.com/content/view/full/2/ refers to viewing the
content in full view mode of node 2.

There are more standard view modes that can be called in the URL, such as
http://www.example.com/content/view/sitemap/2/, where a sitemap View template
is called to present the content of node 2.

Alternatively, you can create your own view modes and call them with a name you see fit
(and which is not yet defined). The only thing you need to do is to create a file with your
specific view name in the default directory for View templates:
design/mydesign/templates/node/view/

For example, if you want to have a view mode that displays more information than the
full view template, you can create a template called extended.tpl, which could add, for
instance, the audit trail (version history), the date when the content was last modified
and by whom, related objects, and so on.

These custom views can further be subjected to the template override system, effectively
adding another dimension to the possibilities of the eZ publish template system.

A second class of often-used view templates corresponds to view modes as used in lists
(the line view) or when embedded within XML text attributes (the embedded view).

Displaying Content with eZ publish Templates

82

Like page layout templates, content view templates may be overridden for specific
classes and also depending on which section is active or which node is being called.

Attribute Templates
The templates in eZ publish are further broken down in components for object attributes;
these constitute the attribute view templates. They are normally used for abstraction in
the display of normal view templates for nodes. For example, the default view template
for the full view just loops over all the available attributes and calls a generic template
function (attribute_view_gui), which takes care of the proper display, depending on
the datatype. The attribute view templates are located in the /design/standard/
templates/content/datatype/view/ directory.

Attribute templates can also be overridden for specific classes, nodes, and sections.

Template Modularization
Template code can be reused by placing it in specific template files. These can be
included in other template files by using the include template function. Along with this
function, you can specify parameters to pass to the included template. In this way,
templates can become the equivalent of small applets that take input parameters.

Some typical examples of these are:

• <head> elements for specifying style sheets
• A calendar widget
• Navigators
• Menu/navigation blocks

StyleSheets and Images
To adhere to the design standards of eZ publish, most of the style information should be
put in CSS files, leaving only pure XHTML and template code in the template files. CSS
files should be placed in design/mydesign/stylesheets.

If you need to use images that are not part of the content of your site (such as navigation
icons or logos) in your template, you should place them in the design/mydesign/images
directory.

Edit Templates
For a lot of websites, the edit functionality you offer to the end user may be quite limited.
However, for intranet portals and other highly collaborative sites, you may not be content
with the default edit functionality of the admin interface. To get around this, you can

Chapter 3

83

create edit templates to allow specific users to modify part of the content and offer
tailored edit interfaces that are integrated seamlessly within the same site design, coupled
to the normal site access.

Templates and Caching
As the template mechanism is used for abstracting the data from presentation, the
processing involved is considerable and the page-processing time is typically an order
of magnitude larger than spaghetti-style PHP with HTML embedded or vice versa.
Since version 3.1, the template engine also includes a template compiler that converts
the eZ publish template code into native PHP code. This code is stored in the var/cache
directory of your installation (the most daring among you are invited to look at the
generated PHP code: it is impressive). You can enable or disable template compiling in
your site.ini.append.php files.

Not only the template code, but also the content retrieved from the database is cached as
PHP code. This is called view-mode caching and actually combines data (node structures
converted to multidimensional arrays) with template output (normally XHTML).

Cascading and Overriding Templates
When you learned about configuring your site in Chapter 1, the structure of design
directories was introduced. The template system partly depends on this structure to
determine the template file to use. Along this directory-traversing algorithm, you can
override the templates depending on specific conditions defined in the
override.ini.append.php file.

In this way, you can specify a certain template to be used according to a specific node,
the depth in the tree, the class of the object, or some other parameters (explained later in
this chapter).

Working with eZ Publish Templates
After this general overview of the principles, the next step is to explore the various
aspects of the template system in more detail.

Overview
The main prerequisite for the template system to work properly is that the configuration
parameters should be correctly specified, according to the instructions in Chapter 2.
Where appropriate, some details on configuration settings are treated with specific topics.

Displaying Content with eZ publish Templates

84

Where Does the Content (Data) Come From?
To manipulate the content for display in templates, it is important to know where the
content (or part thereof) comes from. The following list should provide a decent idea:

• Navigation elements, such as menus, or banners: Navigation elements
could be hard-coded in the page layout template, but they are, in general, tied
to the site structure or taxonomy of your site. Therefore it is sensible to fetch
the site structure dynamically and use the results to build menus and other
navigation elements.

• Applets where content is explicitly fetched like polls, news, or RSS feeds:
Applets are generally built using applet-specific templates and called with
certain parameters, which are usually nodes somewhere in your site.

• The module_result.content as the main content delivered from
the requested module or function: The main result of the
module/function called is handled by specific content templates, but
you can use a few elements from the result set for other purposes.

• Additional content implicitly fetched by the main module/function
result(s): Finally, the main content, as it is being handled by the view
templates, is a rich object structure that you can use where appropriate.

The following sections discuss the basic syntax of the eZ publish template system. As
stated before, the template system employs an eZ publish-specific language which you
can use in your own templates. We are now actually getting into the template files, so
buckle up!

Comments
It is good practice is to add comments to your template files. Although comments
generate a little overhead in parsing the template files, you should not be economic in
their usage. Document the objectives and implementation for your custom templates in
terms of features, methods, and expected outcome.

Comments are enclosed between {* and *}. The content between these delimiters is
never sent to the client. Actually, it is ignored even by the compiled template code.

{* this is a comment *}
{* This is a
multi line
comment with a portion of code commented out:
{let fruit=array(apple,orange,strawberry)}
{section loop=$fruit}
{$:item}
{/section}
{/let}
*}

Chapter 3

85

The variables that you define inside a template file will have their scope for that
particular template.

If you really want or need comments sent to the client, you can use XHTML comments.
However, be aware that these comments are also parsed by the template subsystem, so
you need to make sure that are no clashes with the template syntax.

Also, be careful with JavaScript in templates, especially the { and } characters, which are
treated as 'block start' and 'block end' by the template parser. This means you cannot input
them directly in the template code to get a { or } on the web page. Instead, you must
use the {ldelim} and {rdelim} functions, as shown in the following example:

{* use of the left and right delimiters *}
Hi, the next piece of template code uses {ldelim} and {rdelim} tags

This produces the following:
Hi, the next piece of template code uses { and } tags

Note that the comment block does not appear in the output!

To ignore larger blocks of template code with potential conflicting delimiters, you can
also use the {literal} construct. For example, to make sure JavaScript code blocks
will work, surround them with this tag, as shown in the following example:

{literal}
<script language="JavaScript">
<!--
function MyJavaScriptFunction (Param) {

Param=1
}
// -->
</script>
{/literal}

Variables
Variables are containers for various types of content, and are set either by operators and
functions of a module, or explicitly inside templates.

Setting and Modifying Variables
To set or modify variables, use the constructs {let ...}, {set ...}, or {default ...}.

{let} and {default} declare variables, and with {set}, you can modify them further.
{let} and {default} require closing equivalents {/let} and {/default}
respectively, which also un-set the variables they defined.

Displaying Content with eZ publish Templates

86

{let a=3
b='a string'
c=false() }

{$a} times {$b} is {$c}
{set c=true()}
{$c}

{/let}

This code will output the following:
3 times a string is 1

{default} is special, since it will assign a value to a variable unless it is already
defined by a parameter passed to the template where {default} is used. This helps
make templates more robust and modular.

To assign the result of complex template code to a variable or for larger text fragments,
variables can also be set with {set-block}. The syntax is:

{set-block name=<name> scope=<scope> variable=<myvariable>}
{* things you want to assign to, including further eZ

template expressions*}
{/set-block}

The name parameter is optional and introduces a new namespace (discussed further in the
sections on variables and namespaces). scope can be global, root, or relative, and
variable is the identifier to use. The scope parameter makes it possible for a template
to return different text fragments, as opposed to a single output block. This is used,
for example, in e-mail templates where the subject and body text are set separately.

With the global keyword for the scope parameter, you can even set variables that live
in the global namespace, which is mostly outside of the current template. For example,
you can define a variable called extra_javascript in the <head> section of your
pagelayout.tpl file, in which you can set blocks of JavaScript from within a view
template. This is handy for reusing JavaScript files or adding a JavaScript file from
within an extension, as the eZ publish Online Editor does.

{append-block} is similar to {set-block}, but instead of setting (replacing) the
content of a variable, you append content to an existing variable. This is used in the
Online Editor product, which appends instructions for including the JavaScript files in the
<head> section for the extra_header_data variable. The syntax is the same as with
{set- block}, but without the name parameter:

{append-block scope=<scope> variable=<myvariable>}
{* things you want to assign to *}
{/append-block}

Both {set-block} and {append-block} can be used to modify variables outside the
current namespace.

Chapter 3

87

Variable Types
Both atomic (simple) and compound variable types can be used in the template language
of eZ publish.

Simple Types
The common simple variable types supported by eZ publish are numeric values (integers
and floats), strings, and boolean values (although booleans are special functions).

Compound Types
The compound types supported by eZ publish are arrays and objects. Arrays also come in
two flavors: classical arrays with a numerical index, and associative arrays.

Objects are only generated by the kernel functions and operators of eZ publish. Arrays
can be created in templates with the array and hash functions, much like in PHP.

Type Creators
Some types can only be created from PHP, by using operators. Arrays are created
with the array or the hash operator and booleans with the true() and false()
operators. Objects cannot be created in templates directly, but for object-like structures,
you can use nested (multidimensional) arrays. Note that like the general objects, there are
also methods involved, not only static data.

true()
Creates a true boolean. Remember to use brackets:

{true()}

false()
Creates a false boolean. Remember to use brackets:

{false()}

array()
Creates an array.

{array(1,2,'tree')} {*creates a mixed type array consisting of
numbers and a string*}
{array(true(),true(),false()} {*creates an array of boolean values*}

Like PHP, array elements can be mixed types with numbers, literals, other
arrays, and objects.

Displaying Content with eZ publish Templates

88

hash()
Creates an associative array, with the keys being the odd parameters and the values being
the even parameters.

{hash(haircolor,'none, bald',age,41)}

Accessing Elements of Arrays and Objects
Elements of arrays and objects are accessed by the '.' operator. For example, a member
called member of an object called object is accessed as:

$object.member

Array elements are accessed in the same way:
$array.0 {*selects the first element in an array*}
$array.mykey {*selects the element of a hash array with key "mykey"

*}

Sections in Templates and their Effects on Variables
Sections are not just restricted to group nodes and node-trees; they are also used in the
template language for a variety of constructs. They are used for loops and constructs like
if-then-else, and also appear subtly when defining and using variables, even in constructs
that do not bear the section name.

This is all due to the use of variable namespaces inherently created by using section,
let, and other constructs for which you can assign a name parameter.

Variable Namespaces
In general, every variable in an eZ publish template is associated with a namespace. By
introducing sections for loops and other constructs, a variable defined one of these
sections is assigned to the namespace associated with that section. Failure to understand
this is one of the main causes of errors in template programming.

Predefined Variables
Most templates have one or more template variables available for use within them. Some
are passed from a template higher in the template stack; others are set by the eZ publish
kernel modules and functions.

The following sections list the most common and useful variables, but plenty more exist,
and even more will be present in future releases.

Effects of Caching and Availability of Predefined Variables
Caching has a major influence on the available predefined variables. As a rule of thumb,
it is best to always think of the situation with view caching 'on'. The main variables used
are $module_result (in the page layout templates) and $node (in the view templates).

Chapter 3

89

Variables Available in the Page Layout Templates
$module_result is the basic variable available in page layout templates. For instance,
$module_result.content contains the result of module/function processing and
template compiling/processing in the form of XHTML output.

$module_result

Attribute Type (in
template)

Comments

content string Content generated by the requested
module/function

node_id string Current node ID

content_info object Compound object containing useful data

$module_result.content_info

Attribute Type Comments

site_design string Current site design used.

node_id string Current node ID.

parent_node_id string Parent node ID of the current node.

node_depth string Current node depth.

url_alias string Current URL alias for use in nice URLs.

object_id string Object ID (a numerical value).

class_id string Class ID (a numerical value).

section_id string Current section ID (a numerical value)

navigation_part_identifier string Current navigation part (used in admin
templates).

viewmode string Current viewmode: very useful for
determining navigation elements.

Displaying Content with eZ publish Templates

90

language string Current language.

view_parameters array Additional view parameters. Since
version 3.3, this array contains the offset
parameter for the Google or plain
navigators and year, month, day
parameters for the monthview navigator.
These navigators are templates you can
include in your own template (see the
files in design/standard/templates/
navigators).

role_list array Array of role objects for the current user.

role_id_list array Array of the role IDs.

The navigators mentioned in the view_parameters entry add navigation elements in the
style of Previous and Next to your pages, much like the elements used to move between
pages on Google search results. The monthview navigator displays links to objects
published on certain dates.

Variables Available in Content Views
The main variables set in the view templates are $node and $view_parameters. The
former is an entire object, with a wealth of data ranging form generic node attributes,
such as creator, creation date, depth in the node tree, to others that give access to
attributes, related objects, and more. On the attribute level, along with the available
content, depending on the datatype, many object methods and specifiers offer
additional output formats (for example, XML text fields converted to XHTML and
image variations).

$node

Attribute Type Comments

node_id string Current node ID

parent_node_id string Parent node ID

main_node_id string Main node ID (an object can have multiple
locations or nodes)

Attribute Type Comments

Chapter 3

91

contentobject_id string Content object ID, necessary for editing

contentobject_version string Current version of the object

contentobject_is_published string Can be either 1 (published) or 0 (not
published)

depth string Depth in the node tree, 1 is the root node

name string Name of the object, as defined in the class
it is derived from

path_identification_string string Part of the URL

data_map array Array of ezcontentobjectattribute
objects

object object Class: ezcontentobject

parent_object object Class: ezcontentobject of the parent node

sort_array array Sort method, as defined in the admin
interface

path_array array Array with the node IDs starting from 1, the
root node and so on

subtree array Entire subtree of this node

children array Array of child objects at the
level immediately below this
node

contentobject_version_object object Current version of the object as a version
object

creator object User object of the creator: you can use
$node.creator.name for displaying the
owner of the object

Attribute Type Comments

Displaying Content with eZ publish Templates

92

$node.object
The $node.object variable exposes the content object assigned to the current node.

Attribute Type Comments

section_id string Current section ID

owner_id string Owner ID

contentclass_id string Class ID of the object

class_name string Class name of the object

name string Name of the object; should be the same
as $node.name

published string datetime value of the creation time as
UNIX timestamp

modified string datetime value of the last modified time as
a UNIX timestamp

can_read , can_create,
can_edit, can_translate,
can_remove

boolean Show what the current user can do with
this object and whether the current user
can create children of the current object

can_create_class_list array Array of class IDs, for which the current
user can create child objects

related_contentobject_array array Array of related objects, as defined in the
admin interface

related_contentobject_count string Number of related objects, as defined in
the admin interface

View Parameters
In some cases, view parameters like offset and limit are passed to templates.
Mostly, this is done from a template file higher in the template stack. These are
accessible by the
$view_parameters.offset and $viewparameters.limit variables.

Variables Available in Edit Templates
In edit templates, the main variables are $class and $object. From these (compound)
variables, the relevant items such as class attributes, (initial) node placement, versions,

Chapter 3

93

and related objects are obtained for editing objects.

Be careful when using the preference system, as it is not part of the content view
cache mechanism. You will have to resort to disabling the view caching with
{set-block scope=root variable=cache_ttl}0{/set-block} and use cache
blocks to optimize the response times.

If your parameter values contain spaces, they will be converted to a URL
encoded form by most browsers. Therefore, you should always decode these
values before using them. The urldecode operator is not specified by default in
3.3, but you can easily add this operator through the template.ini file, which
contains the urlencode operator as a direct match to the PHP equivalent.

Displaying Content with eZ publish Templates

94

It is perhaps challenging at first sight, but you should take a look at the edit templates in
design/standard/content to see how edit templates are set up. You can override these
edit templates to incorporate them in your site design.

Other Mechanisms
One of the mechanisms to have variables is to use the ezpreference system. You can set
user-bound preference variables with /user/preferences/set/<variable
name>/<value>. The variables can be accessed by ezpreference('<variable
name>').

Using Variables across Templates
This topic is currently not addressed in eZ publish, in spite of its obvious benefits. From
version 3.4, a mechanism will be introduced where variables can be passed by adding
them to the URL in a special way. The URL-passed variables are then also part of the
default view cache keys.

The mechanism is as follows: you simply append a variable enclosed in brackets
followed by a slash and the value of the variable. For example:

http://mysite.com/content/view/full/2/(myvariable)/myvalue

This assigns the value myvalue to the myvariable variable. Its value can be called as a
child of the predefined $viewparameters template variable. So:

{$view_paramters.myvariable}

This will output the myvalue string.

You can also override normal view parameters, such as offset and limit, by using these
as your custom template variables.

In version 3.3, the best method is to use the ezpreference mechanism.

Chapter 3

95

Controlling Template Output Flow
Here we will look at some of the basic language constructs that allow us to control the
flow of template output:

• The {section} construct
• Looping with {section}

• {switch} constructs

At the end of the section, we will revisit namespaces and see how to better handle the
problem of a variable definition being tied to the section in which it is defined.

Section
{section} is one of the most important functions in the template engine. It provides
looping over arrays and numeric ranges (equivalent to a for statement), and conditional
control of blocks and sequences (if-then-else). It is controlled by a series of input
parameter and sub-functions.

An example of its use for looping is:
{let myarray=array(1,2,3)}
{section name=myloop loop=$myarray}

{$myloop:item}
{delimiter}, {/delimiter}

{/section}
{/let}

This will output the string "1, 2, 3".

In general the syntax for {section} is:
{section name=<myname>

show=<showcondition>
loop=<array>
sequence=<sequence-array>
max=<max iterations>
offset=<offset in the index for loops>}

{* code if showcondition is true *}
{delimiter}

--- {* this is printed/executed except for the
last iteration *}

{/delimiter}
{section-else}

{*code if showcondition is false*}
{/section}

Parameters
Having seen the basic syntax of the {section} function, let's look more closely at
each of its parameters.

When the {section-else} block is used, no looping occurs.

Displaying Content with eZ publish Templates

96

name
name defines the namespace for all generated template variables; see loop and sequence
for a list of generated variables.

loop
loop defines the data that the section should loop over. For every iteration of the loop, it
sets the template variable $name:item. The data can be an array (array of scalars or an
array of objects), in which case each item in the array is traversed sequentially.

The data can also be a number that determines the number of iterations (a negative
number makes the iteration go backwards).

It's possible to constrain the number of iterations performed and control the iteration of
single elements. See parameters max and offset and sub-children {section-
exclude} and {section-include}.

Each time the section iterates, it sets four template variables in the new namespace. The
variables are index, number, key, and item.

• index: A number that starts at 0 and increases for each iteration.
• number: Behaves in the same way as index but starts at 1.
• key: If an array is being iterated, key holds the key of the current item.

Otherwise, the current iteration index is set.
• item: If an array is being iterated, item holds the value of the current

item. Otherwise, the current iteration index is set.

show
This parameter determines whether the section block should be shown or not. If the
parameter is not present or is true (either a boolean true, non-empty array, or non-zero
value) the {section} block is shown, otherwise the {section-else} block is shown.
This is quite useful for conditional inclusion of template code depending on a variable.

sequence
Defines a sequence that is iterated as the normal loop parameter. However, the difference
is that the sequence will wrap and only support arrays. The current item will be set in the
sequence template variable. This parameter is useful if you want to create, for instance,
alternating colors in lists.

Chapter 3

97

max
Determines the maximum number of iterations. The value must be an integer or an array;
if it's an array, the number of elements of the array is used.

offset
Determines the start of the loop array for the iterations. The value must be an integer or
an array; if it's an array, the number of elements of the array is used.

section-else
Determines the start of the alternative block that is shown when show is false.

delimiter
{delimiter} determines a block of template elements that should be placed between two
iterations.

section-exclude and section-include
{section-exclude} and {section-include} add filter rules for excluding or
including a loop item. The rules will be run one after another, as they are found. The
rule will read the match parameter, which expects a boolean value, and changes the
current accept/reject state for the current item. The default action is to accept all
items. The match parameter can match any template variable available, including
loop iterators, keys, and items, but not the loop sequence itself.

Sequences and iteration counts (number and index) will not be advanced if the loop item
is discarded.

For example:
{section name=Myloop loop=array(a,b,c,d,e)}
{section-exclude match=true()}
{section-include match=array(c,d)|contains($Myloop:item)}
{$Myloop:item}[key:{$Myloop:key}][number:{$Myloop:number}]{delimiter}
,{/delimiter}
{/section}

This will produce:
c[key:2][number:1],d[key:3][number:2]

Note that the $Myloop:number variable only increments for each iteration while the
variable $Myloop:key is still the correct array key (which starts at 0 for ordinary arrays).

Displaying Content with eZ publish Templates

98

If-then-else Constructs with Section
If-then-else constructs are carried out using the show parameter. This parameter expects a
boolean or the equivalent of a boolean (a zero or non-zero value). A non-empty array will
evaluate to true. For example:

{let a=array(1,2,3,4)}
<p>-if-then-else</p>
{section name=if show=$a}
{*this loop will be selected because an array will evaluate to true
if it has one ore more elements*}
{section loop=$a}

a={$:item}
{/section}
{section-else}

<p>nothing to show</p>
{/section}
{/let}

The output will show:
if-then-else
a=1 a=2 a=3 a=4

Loops with Section
The following examples demonstrate how to use loops:

A Fairly Normal Loop using a Sequence Array
{section name=myloop loop=array(1,2,3,4,5)
sequence=array('odd','even')}

{delimiter} --- {/delimiter}

{$myloop:item} - {$myloop:sequence}

{/section}

This will output:
1 - odd

2 - even

3 - odd

4 - even

5 - odd

A Negative Loop:
<p> A negative loop:

{section loop=-3}
{$:item} &
{/section}
</p>

For eZ publish versions up to 3.3, there must always be one default case present.
A default case is created by inserting a {case} block without any match
parameters. From version 3.4 onwards, the default case is not required.

Chapter 3

99

This will output:
-1 & -2 & -3 &

A Positive Loop with Limits and an Offset:
<p> A positive loop with offset
{section loop=8 max=4 offset=2}
{$:item} {delimiter} & {/delimiter}
{/section}
</p>

This will output:
3 & 4 & 5 & 6

You may also use {run-once} blocks inside loops to make sure parts are only
processed once for all iterations. A trivial example:

{section loop=array(1,2,3,4)}
{run-once}
<p>Here come 4 iterations of a loop</p>
{/run-once}
{* here a nameless loop is used, so the name is omitted
but not the colons *}

<p>{$:item}</p>
{/section}

This will output:
<p>Here come 4 iterations of a loop</p>
<p>1</p>
<p>2</p>
<p>3</p>
<p>4</p>

Switch Constructs
The {switch} function allows conditional control of output and is an alternative for if-
then-else constructs, when many possibilities need to be coped with. For instance, you
can display some XHTML code, depending on a template variable. The matching can be
directly between two types or for an element in an array.

The matching is done by creating one or more {case} blocks inside the {switch} block.

The parameter to a case can either be match, which determines the value to match
against, or in, which must contain an array. match does a direct match, while in looks
for a match among the elements in the array. The in parameter behaves differently if the
key

Displaying Content with eZ publish Templates

100

parameter is used, which must be an identifier. It then assumes that the array sent to in
has an array for each element and uses the key to match a key in the sub-array. Take a
look at the following examples:

Simple Scalar Matching

{let matchme='Skien'}
{switch name=city match=$matchme}

{case match='Paris'}
This does not match

{/case}
{case match='Skien'}

This matches, lets visit the ez crew
{/case}
{case}

default, must be present!!
{/case}

{/switch}
{/let}

Matching with an Array
{let matchme=4}
{switch name=city match=$matchme}

{case in=array(1,2,3,4,5)}
This matches, you gained 4 points

{/case}
{case}

{* default, must be present for versions up to 3.3!!*}
{/case}

{/switch}
{/let}

Variable Namespaces Revisited
Now that you have learned about the various section constructs, it's time to tackle the
effects on variable namespaces more deeply.

In general, a variable definition is tied to the section in which it is defined. At the top
level, variables are associated with the implicit root namespace of a template. When
defining variables inside sections, they are associated with the depth level of their section
by the namespace built using the section names, separated by a colon (:).

For example:
{* start of template *}
{let a=2

b=array(1,2,3)
}
{* variable $a is now in the root namespace *}
{section name=level1 loop=$b}

{let a=$level1:item}

Chapter 3

101

<p> a inside loop is {$level1:a} </p>
<p> root level variable a is {$a} </p>
{/let}

{/section}
{/let}

This will output the following:
a inside loop is 1
root level variable a is 2
a inside loop is 2
root level variable a is 2
a inside loop is 3
root level variable a is 2

Sections without a Name Parameter
In the absence of a name parameter, you access the current namespace with $:. When
using a named {let name=myname} construct surrounding a nameless section, the
namespace will actually inherit the namespace from the {let} construct.

Set or Change a Variable from an Outer Namespace
You cannot use {set} for changing variables outside a loop, but the {set-block} can
be used to achieve the desired results. For example:

{let a=3
b=array(1,2,3,4,5)}

{section name=test loop=$b}
{let a=$test:item}
<p>local a={$test:a}, global a={$a}</p>
{set-block scope=root variable=a}{$test:a}{/set-block}
<p>again after set-block, local a={$test:a}, global a={$a}</p>
{/let}
{/section}
{/let}

This will produce the following output:
local a=1, global a=3
again after set-block, local a=1, global a=1
local a=2, global a=1
again after set-block, local a=2, global a=2
local a=3, global a=2
again after set-block, local a=3, global a=3
local a=4, global a=3
again after set-block, local a=4, global a=4
local a=5, global a=4
again after set-block, local a=5, global a=5

Displaying Content with eZ publish Templates

102

Avoiding Namespace Problems
Since version 3.3, you can deal with (or avoid) namespace problems by introducing the
var parameter in sections. var specifies a variable name that is valid inside the loop and
every sub-level of it.

For example:
{section var=outer loop=array(a,b,c)}

{section var=myloop loop=array(1,2,3,4,5)}
{$myloop.item}{$outer.item}{delimiter}-{/delimiter}

{/section}
{delimiter}
{/delimiter}

{/section}

This will result in:
a:1 - a:2 - a:3 - a:4 - a:5
b:1 - b:2 - b:3 - b:4 - b:5
c:1 - c:2 - c:3 - c:4 - c:5

From eZ publish version 3.4 onwards, you can also use the var parameter instead of a
name parameter in {switch} constructs to determine the iterator.

Using Functions from Kernel Modules
The eZ publish kernel modules can expose some of their functions for use in templates.
This is done by the standard module file ezfunctiondefinition.php, which you will
find in various modules such as content, user, collaboration, and so on.

The general syntax is as follows:
fetch(module, function, parameters)

Functions in the Content Module
We will now discuss the most common functions from the content and user modules.
The following table provides a summary of the available functions. Some of the
important functions are treated in more detail.

Function Description

node Fetches a single node based on the node ID.

object Fetches a single object based on the object ID.

list Fetches all or filtered subset of child nodes with a
certain depth (default depth = 1).

Displaying Content with eZ publish Templates

Function Description

102

tree The same as lists, but with unlimited depth.

list_count Gives the number of child nodes for a given node
with a certain depth (default depth = 1).

tree_count Gives the total number of child nodes for a given
node.

search Searches for objects with specified criteria.

locale_list Returns the locale objects defined for the current
siteaccess.

translation_list Returns the translations defined for the current
siteaccess.

non_translation_list Returns the list of possible translations for a certain
object, excluding those that already exist.

class Returns the class object structure for a given class
ID.

class_attribute_list Returns the class attributes as an array of attribute
objects for a given class ID (and optional version).

class_attribute Returns a single class attribute structure with a
given attribute ID and optional version.

trash_count Returns the number of objects in the trash.

trash_object_list Returns the objects in the trash.

draft_count Returns the number of drafts for the current user.

draft_version_list Returns the objects in draft for the current user.

pending_count Returns the number of pending objects for the
current user (objects that are not yet published
because they are subject to a pre-publishing
workflow).

pending_list Returns the array of pending objects for the
current user.

Chapter 3

103

Function

version_count

Description

Returns the number of versions for a given content
object.

version_list Returns the versions for a given object (with
optional limit and offset).

can_instantiate_class_list Returns the classes for which the current user can
create objects with optional parent node ID and
class group ID.

can_instantiate_classes Same as above, but only for a optional given parent
node ID.

contentobject_attributes Returns the attributes for a given version object with
optional language code.

bookmarks Returns the list of bookmarks for the current user.

recent Returns the list of recent items for the current user.

section_list Returns the list of sections IDs defined.

tipafriend_top_list Fetches a list with node objects based on the most
tipped objects. Offset and limit may be supplied.

view_top_list Fetches a list of most viewed node objects. Needs
the log file counter script to be run.

collected_info_count For the information collector system; fetches the
number of collected items for a given object if
object_id is sent, or a specific attribute if
object_attribute_id and value is sent. This can
for instance be used to display the results of a poll
(attribute with ezoption) or the number of
feedbacks from a form.

Displaying Content with eZ publish Templates

Function Description

104

collected_info_count_list Similar to collected_info_count but counts a
given attribute (by its ID) and returns a list of counts
for each element in that attribute. This assumes that
the attribute is of type ezoption. Again, this is
useful for polls.

Chapter 3

105

collected_info_collection Fetches the collection with a given ID if
collection_id is specified. If the
contentobject_id parameter is used instead, it
will find the first collection item that is related to the
current user and object ID. This works for both
anonymous and registered users. This can, for
instance, be used to fetch a user's response to a
given form object. If there are multiple collections,
the first (may be randomly selected) is chosen.

object_count_by_user_id Returns the number of objects created by a given
user ID and class ID. Useful for statistics.

same_classattribute_node Returns a list of nodes where the value for a given
attribute ID and datatype name are the same.
This is faster than a search function.

keyword Returns the keywords and nodes that have
keywords matching a certain portion defined in the
alphabet parameter. Useful to create keyword
indexes and is used by the PDF export system.
Optional parameters are a limit and offset for
browse interfaces.

keyword_count Returns the number of keywords for a given class
and 'alphabet string'.

Fetching a Single Node or Object
To fetch a single node data structure, you need to provide the <node id> as an integer
value:

fetch(content, node, hash(node_id, <node id>))

For example, to get the current node in a page layout template, you can use the following
code fragment.

{let thisnode=fetch(content, node, hash(node_id,
$module_result.node_id))}
...
{$thisnode.name} {* print out the node name *}
...
{/let}

If you have only an object ID available, you can fetch it with this command:
fetch(content, object, hash(object_id, <object id>))

Chapter 3

105

In general, the use of fetching objects by object ID is not necessary as the object data
structures are available directly.

Fetching Node Lists and Node Trees
The syntax is fetch(content, list|tree, hash(<parameters>)).

The difference between the list and tree functions is only the default depth parameter.
For list, the depth is by default set to 1; with tree the default depth is set to 0
(meaning unlimited depth). All other parameters are shared by both functions.

Parameters are specified by an associative array. Some parameter values also be arrays.

Parameter name Type Required Default Description

parent_node_id integer yes none The node ID for which you
want to fetch the children.

sort_by array no node
name

The sort method you want to
apply.

offset integer no false() The subnode to start from,
mainly used for navigation
lists.

limit integer no false() The maximum number of
nodes to return.

depth integer no 1 or
false()

The depth of subnodes to
recurse. For lists, this is
preset at 1, for tree, this is
preset at false (unlimited
depth). 0 also means
unlimited depth.

depth_operator string no le The operator to use for
determining how to treat the
depth value. By default this is
set to le but you can also use
eq to specify the nodes at a
certain depth level only. Other
operators are not yet
implemented.

Displaying Content with eZ publish Templates

106

class_id integer no false() Limit the subnodes to the
given class (single).

attribute_filter array no false() Select nodes returned based
on attribute values.

extended_attribute
_filter

array no false() The extended attribute filter
can call filter functions from
an extension. Currently, no
such extensions are in the
base distribution.

class_filter_type string no false() Type of filter: either include
or exclude.

class_filter_array array no false() Array of class identifiers
(names) or class IDs
(integers).

group_by array no false() Group nodes together
(currently only for date parts
of published and modified
object attributes).

main_node_only boolean no true() When an object has more
than one location, this flag
ensures that only the main
node is used (avoids
duplicates in for example
'what's new' lists).

Some of the parameters are discussed here in more detail.

Filtering
Filtering can be done based on (an array of) class IDs, and also attributes. The syntax for
class filtering is based on two parameters: the class_filter_type, which can be
either include or exclude, and the array of numeric class IDs or class identifiers. For
example:

{let mylist=fetch(content,tree,hash(...,class_filter_type,
'exclude',class_filter, array(12, 14)}

For portability of templates, you can use class identifiers as follows:
{let mylist=fetch(content,tree,hash(...,class_filter_type,

Parameter name Type Required Default Description

Chapter 3

107

'exclude',class_filter, array('book','magazine')}

Displaying Content with eZ publish Templates

108

Displaying Content with eZ publish Templates108

The general syntax for attribute filtering is an array of arrays that are combined with the
keyword and or or. The array elements are the attribute ID (as found in the class attribute
list in the administrator interface), an operator, and a value. For example:

{let mylist=fetch(content,list,hash(..., attribute_filter,
array('or',array('myclass/color','=','blue'),

array('myclass/width','>',20))}

Instead of using the numeric attribute ID, you can also specify a combination of class
and attribute identifiers such as 'book/title', which enhances portability of templates. The
usual operators can be specified: >, <, >=, <=, =, and !=.

Sorting (with sort_by)
Sorting can be done either on one of the basic object attributes or on the value of an
attribute. You can also combine sorting methods in an array, for example, to sort by
class and then sort by name. With a boolean, you can specify whether a sort rule should
be ascending or descending.

The syntax for sorting on the basic object attributes is as follows:
{let mylist=fetch(content,list, hash(..., sort_by, array(

array('class',true()), array('name',false())}

Counting the Objects of Certain (or All Types)
Counting nodes can either be done with the tree_count or list_count functions.
The difference between them is only the default depth parameter, which is '1' for
list_count. Both functions expect the following parameters:

Parameter name Type Required Default
value

Description

parent_node_id integer yes none The node tree starting
from this node ID

depth integer no 1 or 0 Depth 0 for tree_count,
1 for list_count

class_filter_type string no false() Either 'include' or
'exclude'

class_filter_array array no false() An array with class IDs or
class identifiers

Chapter 3

109

Chapter 3109

attribute_filter array no false() Array of attribute filters
as in list and tree
functions

main_node_only boolean no true() Counts only the main
node placements in case
of objects with multiple
placements

The syntax for the parameters is the same as discussed for the tree and list functions.

Displaying Version Information
To display version information, you can use either the supplied version_list
function (best used in page layout templates) or from the $node.object structure
(best used in view templates to minimize the processing overhead).

The syntax for the version_list() function is:
{let versions=fetch(content,version_list, hash(contentobject,
$object, limit, $limit, offset, $offset))}

Parameter name Type Required Default
value

Description

contentobject object yes false() The object for which you
want to list the versions

limit integer no false() The number of versions
to fetch

offset integer no false() An offset in the list of
versions

The version_list function returns a list of version objects. A method for showing
audit trails with the $node.object structure is discussed in the tips and tricks
section.

Fetching the Current User
The current logged-in user and its associated object can be obtained by using the
current_user function from the user module. If there is no logged-in user, the

DescriptionRequired Default
value

TypeParameter name

Displaying Content with eZ publish Templates

110

anonymous user is returned. The user object has the basic parameters from any object,

For small edits to your templates, you can also consider using the admin
interface. When you change templates and save them, the relevant portions of the
cache are selectively cleared.

Chapter 3

111

and user-specific attributes set from the ezuser datatype (user ID, login ID, and e-mail).
If you use the default user class, the other attributes are name and firstname.

The object structure returned also contains user-specific data on the roles that are
assigned and the user groups the user belongs to.

Others
Listing all the functions here would be reaching too far, but some functions to consider
using are the bookmark lists (which can be used as user-specific menus), pending lists
and collaboration items (for workflows), and so on. You should consult the online
documentation and the user forum for more information.

Increasing Performance with Caching
Besides the overall caching mechanisms (view caching, INI caching, template
compilation), you can also manipulate the caching of parts of your templates by using
customized cache blocks.

Overall Caching
The main cache use is controlled by INI variables in the template and content sections of
the site.ini.append.php file. During template development, you may want to disable
view caching and template caching (compiling), so that your modifications show up
immediately without resorting to caching.

Cache Blocks
Cache blocks store the result of dynamic template code contained in these blocks in a
plain text file. The next time the same code is requested, the plain text file is loaded
without template processing overhead (but the template blocks also introduce processing
overhead that can grow significantly if you employ many cache blocks).

The {cache-block} construct normally needs two parameters: the cache block keys,
which control the scope of the cache block, and an expiry period.

Whether or not you provide keys, the template cache system will create additional ones
based on the template file name and path, the position (!) of the cache block in the file
and the current siteaccess. So, multiple cache-blocks in a template file with no explicit

Displaying Content with eZ publish Templates

112

keys still get a unique key. This works even for different site accesses that use the same
design (and templates within), in which the content differs with site access.

The use of keys is mandatory when you use the cache block in a template and the
content of the cache block can be different. For view templates, I would recommend at
least the node ID and the user ID (if different users have different roles). You may add
other variables here too.

Alternatively, when you have a large number of users who share a few roles, you may be
better off with using the role_id_list of the $current_user object for cache block
keys in page layout templates.

View templates employing cache blocks can be necessary when you provide more than
the basic attribute content, provided you first switch off the view cache at the top of the
template with the directive {set-block scope=root variable=cache_ttl}0{/set-
block}

For use in page layouts, and when you have navigation menus which remain constant, it
is safe to use no keys at all for the surrounding cache block. Otherwise, you will need a
key which discriminates the different content (for example, the user ID when roles affect
the menus to display).

Keys
The keys parameter uniquely identifies a cache block. The default keys used by eZ
publish are the template name and block position. You can specify a key either as a
single variable or as an array. This means that when you use, for example, the array of
role IDs as key, each type of user defined by assigned roles will cause a new cache block
to be created.

For example, in a page layout template you may want to surround a treemenu block with:
{cache-block keys=$module_result.node_id}
{*template code*}
{/cache-block}

Expiry
If you don't specify the expiry parameter, eZ publish will automatically expire the cache
block in two hours or if any content is published. This means that if you publish anything
on your site all cache blocks will be expired. However, you can disable content expiry for
certain blocks with the ignore_content_expiry parameter:

{cache-block ignore_content_expiry}
{* Always cached template output,regardless of the new objects being
published*}
{/cache-block}

Chapter 3

113

If the default expiry does not fit your needs, you can specify the expiry time manually,
in seconds.

The following example expires a certain cache block every five minutes:
{cache-block expiry=300}
{* comment list *}
{/cache-block}

Custom Template Operators
As eZ publish is an extensible CMS, you can create your own template operators and
functions. An easy way to add more operators is to use (standard) PHP functions that take
a single argument; you can add their definitions to the template.ini file.

For example, the following settings are commonly added for the author's eZ publish
portals in settings/override/template.ini.append:

[PHP]
PHPOperatorList[lefttrim]=ltrim
PHPOperatorList[urldecode]=urldecode
PHPOperatorList[striptags]=strip_tags

This makes available the new template operators lefttrim (like the trim function, but
operates only on the start of a string), urldecode (reverse of the urlencode operator,
which is added as a PHP operator in the default template.ini) and striptags (which
strips XML and HTML tags of a given string). When you edit your template.ini file,
remember to clear the INI cache in the admin->setup->cache interface.

The Template Override System
The template system itself can be configured to provide a dedicated mechanism of
choosing which templates are used. This is accomplished by the specification of design
directories and their specific content. For example, when you place a pagelayout.tpl
file in design/<yourdesign>/templates, it will take precedence over the
pagelayout.tpl found in /design/standard/templates.

Through the mechanism provided by the override system (with the
override.ini.append file in your site access settings directory), the flexibility is
virtually endless and can be controlled down to a single node based on one or more
conditions, such as the class of the object, a certain class of an XML tag, the depth of a
node in the node tree, and more.

Displaying Content with eZ publish Templates

114

It is important that you put the most stringent specifications at the top, because
if a more general match is encountered, it will be used. This is an error made by
a lot of novices, who wonder why their template is not used.

Using Cascading Effects in Templates
The template system will first start by looking for a given template file in the
override.ini file. However, if nothing is defined there, the search logic is implemented
to first look in the design/<your design>/templates directory structure. If nothing
is available there, it will go through the additional design directories specified in
site.ini.append. Finally, it will fall back to the default design directory, which should
be standard.

To know which template should go where, you need to study the
design/standard/template directory structure.

Overriding Templates Using Specific Conditions
The override.ini file contains entries that are matched from top to bottom. The first
match found is used. This is also why you can specify a priority in the template admin
interface. When editing the file manually (which you will want to do, since the Admin
interface does not provide all the possible features), be careful about what you put where.

Syntax of override.ini.append.php
The override.ini.append.php specifies blocks identified by a 'header' surrounded by
square brackets. You can put anything in this header, as its sole function is to separate a
certain block from other blocks. However, best is to use a meaningful identifier. When
editing the templates through the admin interface, the header is simply the filename of
your template stripped from the trailing .tpl. You may also use this convention as it
makes sense provided you use meaningful filenames. The example below is from a
hypothetical eZ publish site and design:

<?php /* #?ini charset="iso-8859-1"?
[calendar_folder]
Source=node/view/full.tpl
MatchFile=calendar_folder.tpl
Subdir=templates
Match[class]=1
Match[node]=65

[calendar_event_line]
Source=node/view/line.tpl
MatchFile=calendar_event_line.tpl
Subdir=templates
Match[class]=28
*/ ?>

Chapter 3

115

[calendar_folder] and [calendar_event_line] are the headings denoting the start
of a new block. The parameters Source, MatchFile, Subdir, and Match[condition]
are defined below.

Source
Source is the template that will be called by default, if you do not provide your own
template file.

SubDir
SubDir is the directory inside your design/<yourdesign>/override directory, which
holds the template overrides.

MatchFile
MatchFile specifies the filename of your template that will override the Source file
relative to the SubDir directory.

Match
Match can actually consist of more than one Match condition; specify them with one
entry for each condition to match.

The conditions are listed in the following table:

Condition Value type Description

class numeric, class ID Matches one (or more) of
your object classes

node numeric, node ID A specific node

depth numeric, node depth The depth of the node in the
node tree

section numeric, section ID A specific section

object numeric, object ID A specific object regardless
of its node location

navigation_part_identifier navigation part
identifier

Used in the admin interface
to determine which
navigation part it belongs to
(content, setup, etc.)

Displaying Content with eZ publish Templates

116

parent_node numeric, node ID Matches the node ID of the
parent

url_alias string Matches the URL alias of a
node

class_identifier string can be used instead of class
(from version 3.4 onwards)

Common Template Tasks
In this section, we will look at some common template tasks and how to solve them. We
will look at:

• Navigation menus
• Adding edit functions to your pages
• Date and time tasks
• String and text manipulation
• A custom user experience
• Further miscellaneous tasks

Navigation Menus
Providing suitable menus for users to navigate your site is a must to make your site both
usable and accessible. In this section, we will look at how to create three of the most
common types of navigation menus.

Top Level Menu
Let's create a top-level menu by fetching the top-level elements just below the root node,
using the treemenu operator. It is to be used inside a pagelayout.tpl file.

In the following code, the top-level nodes are all of class folder with class ID one. The
first parameter to the treemenu operator, module_result.path, contains the required
array of node IDs from the top-level node to the current node. The top-level node,
specified in the second parameter, is set to 2 (the default node of the root-level node for
the content tree). The next parameter is the class of the nodes (folder). Then comes
depthskip, which is set to 1, and the final parameter indicates the depth from there
(zero, because we don't want to go any deeper than the level immediately below the root
node).

Condition Value type Description

Chapter 3

117

{let topMenus=treemenu($module_result.path,2,array('folder'), 1, 0)}
{section name=topMenu loop=$topMenus}

{section show=$topMenu:item.is_selected}
<a href={$topMenu:item.url_alias|ezurl}

title="{$topMenu:item.text}"
class="topmenuselected">{$topMenu:item.text}

{section-else}
<a href={$topMenu:item.url_alias|ezurl}

title="{$topMenu:item.text}">{$topMenu:item.text}
{/section}

{/section}
{/let}

In this example, the class attribute is used to define an appropriate CSS highlight for the
current part of the node tree.

Breadcrumb Navigation
In order to create breadcrumb-like navigation structures, the path array is used to loop
over the nodes from the top level down to the current node. To avoid very long strings,
the link display is shortened to 60 characters per path item. A cache block is also used for
performance.

{cache-block keys=array("path",$module_result.node_id)}
<p class="path">
HOME >

{* we'll skip the root node name here by usign an offset of 1 to
loop over the node ids *}

{section name=Path loop=$module_result.path offset=1 }
{section show=$Path:item.url}

{$Path:item.text|shorten(60)|wash}

{section-else}

{$Path:item.text|shorten(60)|wash}
{/section}
{delimiter}
/
{/delimiter}

{/section}
</p>

{/cache-block}

Tree Menus
This time we use the efficient treemenu operator to create a genuine tree-like menu. In
the following example, we start one level below the root node (hence the depthskip of 1)
and allow for five levels down the node tree.

To indent, we use the depth level with $:item.level to change the margin-left
property, shifting the menu entry ten pixels to the right with every depth level.

Displaying Content with eZ publish Templates

118

{cache-block keys=array($module_result.node_id)}
<div style="width: 150px; border: none">

<div class="menuhead">{$module_result.path.1.text}</div>

{let mainMenu=treemenu

($module_result.path,$module_result.node_id,
false(),1, 5)}

{section name=Menu loop=$mainMenu}
<li style="margin-left: {$:item.level}0px;"
{section show=$:item.is_selected}class="menuselected"
{section-else}class="menu"{/section}>

<a href={$:item.url_alias|ezurl}
{section show=$:item.is_selected}

class="menuselected"
{/section}

title="{$Menu:item.text}">
{$Menu:item.text|shorten(50)}

{/section}
{/let}

</div>
{/cache-block}

Adding Edit Functions to Your Templates
There are a number of times when you may wish to have facilities for users with
sufficient privileges to add, edit, or remove content directly from the page where it is
displayed. Here is a selection of such situations.

Allow Users to Add Content to Your Site
Adding a button and a menu to create objects of certain classes is defined in the roles
settings. This is accessed in the current node variable. In view templates this variable is
available by default, but if you want to use this in a pagelayout.tpl file, you will have
to fetch the $node variable explicitly.

{section show=count($node.object.can_create_class_list)}
<form method="post" action="/content/action">
<input type="hidden"

name="NodeID"
value="{$module_result.node_id}" />

<select name="ClassID">
{section name=Classes loop=$node.object.can_create_class_list}

<option value="{$Classes:item.id}">
{$Classes:item.name|wash}</option>

{/section}
</select>
<input class="button" type="submit"

name="NewButton"
value="{'Create here'|i18n('design/standard/node/view')}"/>

</form>
{/section}

Chapter 3

119

Adding an Edit Link
The following code snippet adds an edit link to full-view or line-view templates:

{section show=$node.object.can_edit}

[Edit]
{/section}

Adding a Remove Button
In order to present users with a button to remove content, provided they have sufficient
privileges to do so, a little more work is required. Instead of a simple link, you need to
create a small <form> structure. In the following code, the existence of a suitable icon in
the <your design>/images/small directory is assumed. The form structure expects
both the node ID and content object ID to be present.

{section show=$node.object.can_remove}
<form method="post" action={"content/action"|ezurl}>

<div style="display: inline;">
<input type="hidden" name="ContentNodeID"

value="{$node.object.main_node_id}" />
<input type="hidden" name="ContentObjectID"

value="{$node.object.id}" />
<input type="image" name="ActionRemove" src={"small/edittrash.gif"|

ezimage} />
</div>

</form>
{/section}

Adding a Comment Button
To add a comment button, you can use a small form in which the content class is preset.
The only other parameter to provide is the parent node ID.

<form method="post" action={"content/action"|ezurl}>
<input type="hidden" name="NodeID"

value="{$node.main_node_id}" />
<input type="hidden" name="ClassID" value="13" />
<input class="button" type="submit"

name="NewButton" value="New comment" />
</form>

Date and Time Tasks
To format date and time output, you can use the l10n (with one of the date-related
modifiers date, time, shortdate, datetime) or the datetime operator for more
fine-grained control. In general, the l10n operator should be used since it is tied to the
locale setting of your site access.

Displaying Content with eZ publish Templates

120

Displaying Tomorrow's Date
To display a date in the future with a fixed offset, you only need to use the localization
operator l10n and the sum and currentdate operators. The offset for tomorrow needs to
be specified in seconds and added to the current datetime value. A full day is 86,400
seconds, so the code below uses this hard-coded value.

<p>Tomorrow: {sum(currentdate(),86400)|l10n(shortdate)}</p>

You could further enhance this by creating a small template file that expects a reference
datetime expressed in seconds since the epoch, and a number of days.

{default ref_date = currentdate()
number_of_days = 1}

{sum($ref_date,mul(86400 , $number_of_days))|l10n(shortdate)}

By using the default construct, you are sure some sensible default values are used
when this template is called without parameters.

String and Text manipulation
The most basic text-manipulation tasks involve shortening and converting strings, as we
shall see in the following subsections.

Limiting Text Output
For limiting text output, you can use the shorten operator. For example, to limit node
names in line views you can use:

{$node.name|shorten(80)}

Limiting XML Text Output
For limiting XML or XHTML text output from the XML text datatype attributes, you
cannot simply use the shorten operator, due to the presence of the tags. If you
implemented the example in the Custom Template Operators section earlier in this
chapter, you should have the striptags operator available for use. The following is an
example of a line view of the default link class. The relevant part is highlighted:

{default node_name=$node.name}<a href={$node.url_alias|
ezurl}>{$node_name|wash} [Direct
Link] ({$node.object.published|datetime(custom,"%Y-%m-%d
%H:%s")})
<div style="padding-left:20px; padding-bottom:1px; font-size: 80%;">
{$node.data_map.description.content.output.output_text|striptags|shor
ten(180)}
</div>
{/default}

The XHTML text is first retrieved, has its tags stripped, and is then shortened (operator
cascading is from left to right).

Chapter 3

121

Remember that operators are executed from left to right.

Automatic Linking and Conversion
For manipulating plain-text fields (for example, a plain-text forum message), you can add
operators for washing, introducing line breaks, and converting links to real XHTML links
as follows:

{$forum_text|wash|break|auto_link}

Providing a Custom User Experience
You can make certain nodes behave like 'administration' pages by overriding the template
with specific (sometimes hard-coded) content. I usually employ a dummy class holding
just one attribute—a text string—and then create override templates for the nodes created
with this class.

Creating Dummy Nodes
The start of a custom user experience can be created easily with a dummy node called
something like My Site below the root node. This page does not relate to content directly.
Below this dummy node, you can create other dummy nodes where the content is not set
by the content object residing at that node, but by template code inside a dedicated
override template. For the example code below, dummy nodes called Preferences, My
Groups, and Statistics are created.

A Specific User Panel
Inside a dedicated page layout for a My Site node, the following menu structure can be
created. Part of the menu is copied from the default administration interface menu for
Personal, but other menu entries point to sub-nodes of My Site. For readability, no CSS
styles or l18n operators are used.

My drafts
My notification
settingsa>
My bookmarks
Collaboration
Pending list
Preferences
Groups & Roles
Change your password

Displaying Content with eZ publish Templates

122

Putting the User Preferences Function to Work
The template code shown here is to be placed inside the override template for the
Preferences node. It is imperative that you disable the view cache for this kind of
interactive page, otherwise the preference values will not be updated in successive
renderings.

The user preference variable set in the example is about showing audit trails. This
variable is used in the audit trail example further in this chapter and can be set to ON
or OFF.

{set-block scope=root variable=cache_ttl}0{/set-block}
<h1>{$node.name}</h1>
<table>
<tr>

<td>Show audit trails</td>
<td>Current:

{section show=ezpreference('audittrail')}
{ezpreference('audittrail')}

{section-else}
--

{/section}
</td>
<td>Change to:

{section show=eq(ezpreference('audittrail'),'on')}
OFF
{section-else}

ON
{/section}

</td>
</tr>
</table>

Showing a User's Groups and Roles
This template code for overriding the view template of the My Groups node below My
Site shows the usergroups the current logged-in user belongs to, and the defined roles:

{set-block scope=root variable=cache_ttl}0{/set-block}
<h2>{$node.name}</h2>
{let current_user=fetch(user,current_user)

parent_nodes=$current_user.contentobject.parent_nodes
my_roles=$current_user.roles }

{cache-block keys=array($current_user.contentobject_id,"usergroups")}

{section name=mygroup loop=$parent_nodes}

{let thisnode=fetch(content,node,hash(node_id,$mygroup:item))}

{$mygroup:thisnode.name} ({$mygroup:thisnode.url_alias})
{/let}

{/section}

<h2>Assigned roles</h2>

Chapter 3

123

{section name=myrole loop=$my_roles}
{$myrole:item.name}

{/section}

{/let}

Miscellaneous
Finally, here are some miscellaneous useful template tasks.

Show a Version History Audit Trail
To show an audit trail in view templates, you will have to control the cache lifetime for
your view templates. This is best done by turning off view caching in the template file
itself with the following code fragment at the top of your view template file:

{set-block scope=root variable=cache_ttl}0{/set-block}

Alternatively, you can also disable view caching, but this is not recommended because
this will affect all your view templates. To compensate for the performance loss, cache
blocks are used with relevant keys.

The following code extract looks for a user preference variable audittrail. You
may omit this code, but then the audit trail will always be shown.

{let showaudit=ezpreference('audittrail')}
{cache-block keys=array($node.object.modified,$node.node_id,
$showaudit)}
{section show=eq(ezpreference('audittrail'),'on')}

<div style="font-size: small; background: lightyellow;
border: 1px solid blue;">

<h3>Audit trail (document history)</h3>
<table width="100%">

<tr><th><p>Version</p></th>
<th><p>Modified by</p></th>
<th><p>Date</p></th>

</tr>
{section name=versions loop=$node.object.versions

sequence=array(lightgrey,lightblue)}
<tr style="background: {$versions:sequence};">

<td><p>{$:item.version}</p></td>
<td><p>{$:item.creator.name}</p></td>
<td><p>{$:item.modified|l10n(shortdatetime)}</p></td>

</tr>
{/section}

</table>
</div>

<p style="text-align: right;">Hide audit
trail</p>
{section-else}
<p style="text-align: right;">Show audit
trail</p>

Displaying Content with eZ publish Templates

124

{/section}
{/cache-block}
{/let}

Show Creator, Modifier, and Publishing Date
The following code snippet displays the original author, the publishing date as well as the
last modified date, and the user who modified the content:

<p class="date" style="text-align : right;">(Published:
{$node.object.published|l10n(shortdate)}, last modified:
{$node.object.modified|l10n(shortdatetime)})
</p>
<p class="date" style="text-align : right;">(Owner:
{$node.object.owner.name}, last edited by:
{$node.contentobject_version_object.creator.name})
</p>

Listing keywords and their Automatically Related Objects
The following code example can be used in view mode. The view caching is first
disabled at the top of the view template with:

{set-block scope=root variable=cache_ttl}0{/set-block}

After this, surround your normal attribute list with a cache block (with the node ID for
the keys parameter) and add the following code to display the list of keyword-related
objects of the same class:

<h2 class="title">Keywords</h2>
{cache-block
keys=array($node.object.data_map.keywords.content.keyword_string,

$node.node_id)}
{let related=$node.object.data_map.keywords.content.related_objects}

{section show=$related}
<h3 class="luna">Related documents containing one or more of the

same keywords</h3>

{section name=Related loop=$related}

{$:item.name}
{/section}

{/section}

{/let}

{/cache-block}

Advanced Keyword Facility
The normal keyword list provided by the keyword attribute structure may be a bit too
limiting. For example, the related objects are all of the same class as the node they are
derived from.

You can create a dummy node somewhere in your node tree that does more than
displaying its content. The strategy is simple, and consists of overriding the template for

Chapter 3

125

the keyword datatype and providing links to the node that will service the advanced
keyword functionality.

The override template for the keyword attribute is placed as a cascading template inside
the design-specific templates:

design/<yourdesign>/templates/content/datatype/view/keyword.tpl

The content of keyword.tpl becomes:
{let kwarr=$attribute.content.keyword_string|explode(',')}
{section name=kw loop=$kwarr}

<a href={concat('/home/services/keyword/(keyword)/',
$kw:item|trim(' ')|urlencode)|ezurl}>{$kw:item}

{delimiter} | {/delimiter}
{/section}
{/let}

In this template code, /home/services/keyword is the special node for which we will
create an override template. The next part of the URL is the custom template variable
(available in eZ publish 3.4) with the name keyword and with a value of the actual
keyword properly trimmed and URL encoded.

In an override template, you can put the following code, which will be the template code
for the /home/services/keyword/ node:

{set-block scope=root variable=cache_ttl}0{/set-block}
<h1>Keywords</h1>
<p>{$view_parameters.keyword|urldecode}</p>
{* if the keyword is in fact a phrase, split it and allow for
more drill-down of the keywords *}
{section show=$view_parameters.keyword|count_words|gt(1)}
<p>Maybe try the compound words too:

{section loop=$view_parameters.keyword|urldecode|explode(' ')}
<a href={concat('/home/services/keyword/(keyword)/',

$:item)|ezurl}>
{$:item}{delimiter} | {/delimiter}

{/section}</p>
{/section}
{* do we really have a keyword from the url? *}
{section show=count($view_parameters.keyword)}
{* url decode needed for example to put back special characters *}
<h2>Keywords containing {$view_parameters.keyword|urldecode}</h2>

{let keynodes=fetch(content,keyword,hash(alphabet,concat('%',
$view_parameters.keyword|urldecode)))}

{section name=kwlist loop=$keynodes}
{* the keyword list with objects/nodes will only for the first
item in the keyword group contain the actual keyword. We will use
this fact to build our list. Counting the characters does the
trick*}
{section show=count($kwlist:item.keyword)}<h2>Matching objects for
keyword <span
style="color:red;">{$kwlist:item.keyword|urldecode}</h2>
{/section}
<p><a href={$kwlist:item.link_object.url_alias|ezurl}
title="{$kwlist:item.link_object.name}">

Displaying Content with eZ publish Templates

126

{$kwlist:item.link_object.name|shorten(70)}

Chapter 3

Chapter 3

127

127

</p>
{/section}
{/let}
{section-else}
<p>No keyword specified</p>
{/section}

Creating a Threaded Forum Template
This is simple: use the depth of the current child node relative to the top-level node in
the forum to indent the item.

Suppose $node contains the main forum message object and $Child the array of child
nodes of this main forum message. You can then use the following inside the loop to
create an indented, threaded display:

{* inside loop for child forum messages *}
{let usedepth=sub($Child:item.object.main_node.depth,

$node.object.main_node.depth,1)}
<div style="margin-left: {$usedepth}em;">

{node_view_gui content_node=$Child:item view="line"}
</div>

Summary
In this chapter, we have looked at eZ publish's powerful template engine, which is used to
extract and present content to the user. To make use of the template engine, the language
of the template system has to be learned.

We looked at the general principles of the template system, at page layout templates and
content views, attribute templates, and edit templates. We saw how eZ publish uses
caching to store template output for improved performance, and the template override
system that allows a particular template to be used for a specific node, the depth in the
site tree, the class of the content object, or other parameters.

We moved on to look at the basics of the template language—working with variables,
and the constructs for controlling the flow of template output. We had a detailed look at
the template functions available, and how to fetch, filter, and sort node lists, and display
user information. The final part of the chapter showed how to implement common
template tasks.

The eZ publish template engine is a very powerful beast, and in this chapter, we have
only scratched the surface. You will find a reference to many of the template operators in
Appendix A: Operators and Functions.

Displaying Content with eZ publish Templates

128

Displaying Content with eZ publish Templates128

4
A Glimpse Inside the Core

eZ publish is not just another content management system that only allows you to add
and modify content from an administrative interface—it actually provides a framework
for creating your own extensions to the system, and allows you to work
programmatically with many of the objects that you have seen over the last few chapters.

There is an extensive object model at the heart of eZ publish's core framework, and in
this chapter, we take a look at some of the classes that relate to the concepts already
discussed, and prepare you for creating your own extensions in the following chapters.

We also look at some of eZ publish's fundamental objects, the kernel classes, and see
how they are realized at the code level. These classes, found in the kernel/classes
folder, drive eZ publish's low-level functionality, and deal with activities such as
persisting objects to the database, content handling, permissions and workflows,
and datatypes.

Permissions
Restrictions on what a user can do are handled by roles in eZ publish. A role consists of
one or more policies. A policy is related to a certain module and one or all functions of a
module. Depending on the module function being applied to the policy, there will be
certain policy limitation options that restrict or allow actions upon a section, node, or
subtree, or other options that might be provided by the module definition.

The following database diagram shows the relations between objects, roles, permissions,
and limitations:

A Glimpse Inside the Core

126

Currently, the following limitations of policies are known to eZ publish. They are
available for all modules. This list shows the actual identifiers for the limitation:

• Class
• Section
• Owner
• Status
• Node
• Subtree
• ParentClass

Here is how you set permissions in the module definition—the next chapter contains
more information on module definitions.

$FunctionList['read'] = array('Class' => $ClassID,
'Section' => $SectionID,
'Owner' => $Assigned,
'Node' => $Node,
'Subtree' => $Subtree);

The following example gives an overview of how the main execution script can
determine whether a user is allowed to access the module functionality.

The first thing that needs to be done is identify the user. When you have a user ID, you
will know which roles this user has. From these roles, you can obtain the permission list:

Chapter 4

127

The module parameter has a higher priority than the global variable.

include_once("kernel/classes/datatypes/ezuser/ezuser.php");
$currentUser =& eZUser::currentUser();
$accessResult = $currentUser->hasAccessTo($module->attribute('name'),

$runningFunctions[0]);

The hasAccessTo() function returns information about the role, based on the name of
the module and the function the user is attempting to access. hasAccessTo() returns
an array with two keys of data, the accessResult. The accessWord will have the
values yes, no, or limited. If the accessWord is limited, another key, policies, will
be filled with a list of objects of eZPolicy that apply to that user. eZ publish will take
one of the following actions based on the result:

• If the access result is yes, grant full execution rights to the user.
• If the result is limited, assign the list of policies to a global

variable. Policies are individually handled for every module
function.

• If the result is no, deny access to the user.

We will now look at a limitation check inside an eZ publish module. Actually, these
limitations are not controlled by the module—they are controlled by the classes that
handle content objects, such as eZContentObject, eZContentObjectTreeNode,
and eZSearchEngine.

You should be able to find the limitations in the following global variable. However, they
are submitted as a parameter to the module. Consider:

$GLOBALS['ezpolicylimitation_list']

And
$params['Limitation']

This following code demonstrates how eZContentObjectTreeNode::subTreeCount()
handles the limitation by building the proper SQL query. Only the content objects that
match the limitation are fetched.

if (count($limitationList) > 0)
{
$sqlParts = array();
foreach($limitationList as $limitationArray)

{
$sqlPartPart = array();
$hasNodeLimitation = false;
foreach ($limitationArray as $limitation)
{

if ($limitation->attribute('identifier') == 'Class')
{

$sqlPartPart[] = 'ezcontentobject.contentclass_id in ('.
$limitation->attribute('values_as_string').')';

A Glimpse Inside the Core

A Glimpse Inside the Core

128

128

}

Chapter 4

Chapter 4

129

129

elseif ($limitation->attribute('identifier') == 'Section')
{

$sqlPartPart[] = 'ezcontentobject.section_id in ('.
$limitation->attribute('values_as_string') . ')';

}
elseif($limitation->attribute('identifier') == 'Owner')

{
user =& eZUser::currentUser();
$userID = $user->attribute('contentobject_id');
$sqlPartPart[] = "ezcontentobject.owner_id = '" .

$db->escapeString($userID) . "'";
}

The following error codes are used by the system. They mostly apply to access and
permission issues.

• Access denied (1)
• Object not found (2)
• Object not available (3)
• Module not found (20)
• Module view not found (21)
• Module or view disabled (22)
• No DB connection (50)

Object Persistence
eZ publish features a persistent object model for classes to store their data in the
database. Providing metadata that links the code object to the corresponding database
table makes it straightforward to store, fetch, or delete an object without having to
explicitly construct SQL statements. This functionality is achieved through the
eZPersistentObject class.

The eZPersistentObject class can be viewed as a database abstraction layer
between the application and the eZDB database interface. By creating a class that inherits
from eZPersistentObject, just like the eZContentClass and eZContentObject
classes, you obtain all the data-access functionality for free, and after specifying the
object metadata, you have an easily persistable object.

For such persistable objects, there is a uniform way to access their fields or methods and
also to provide object metadata—attributes. Attributes provide an easy mapping
between database fields and the equivalent fields of the object representing the data.
They also provide the mapping to member functions of the object, which allow for
setting of data that goes beyond simple values stored in object fields.

130

A Glimpse Inside the Core

A Glimpse Inside the Core

130

The attributes of an object are defined and returned by its definition() function. Each
class that inherits from eZPersistentObject will need to implement this function to
provide object metadata.

The definition() function returns (a reference to) an associative array that includes the
following information:

Value Description
Fields An associative array of field mappings, mapping the

database field to the object field. This array also contains
metadata about the datatype of the field, the default
value, and whether the field is required.

function_attributes An associative array of attributes that map to member
functions, used for fetching data with functions.

set_functions An associative array of attributes that map to member
functions, used for setting data with functions.

keys An array of fields that are the keys of the database table,
and are used to identify a row in the table.

increment_key The name of the field incremented on table inserts.
class_name The class name used for instantiating new objects when

fetching from the database.
name The name of the underlying database table.

By way of an example, here is a class that manages a list of names stored in the eznames
database table with the two columns id and name:

class eZNames extends eZPersistentObject
{

function eZNames($row = array())
{

$this->eZPersistentObject($row);
}
function &definition()
{

return array("fields" => array(

"id" => array('name' => 'ID',
'datatype' => 'integer',
'default' => 0,
'required' => true),

"name" => array('name' => "Name",
'datatype' => 'string',
'default' => ''
'required' => true)),

"keys" => array("id"),

Chapter 4

Chapter 4131

131

"increment_key" => "id",

"sort" => array("name" => "asc"),

"class_name" => "eZNames",

"name" => "eznames");
}

}

The two database fields, id and name, map to the object fields ID and Name respectively,
as indicated by the name value of their array.

Getting Attribute Values
The attribute() function is used to get the value of an attribute by passing in the
name of the attribute. This function returns the value of the member function or field
corresponding to the attribute. The attribute() function is provided by the
eZPersistentObject base class.

Note that some classes provide their own implementation that explicitly checks the name
of the attribute and calls a specific function based on the name, and passes to the
base class implementation for other attributes. For example, here is the attribute()
implementation in the eZBasket class:

function attribute($attr)
{
if ($attr == "items")

return $this->items();
else if ($attr == "total_ex_vat"

) return $this->totalExVAT();
...
else

return eZPersistentObject::attribute($attr);
}

This class does not have any mapping between database fields and member functions
defined in the definition() function, and chooses to handle it here in the
attribute() method.

Setting Attribute Values
Attribute values are set through the setAttribute() function of the
eZPersistentObject base class, by passing in the name of the attribute and the value
to store. Once again, this function determines which member function or field is to be
used to hold the value.

A Glimpse Inside the Core

A Glimpse Inside the Core132

132

Other Attribute Functions
Two other functions in eZPersistentObject complete the attribute handling
functionality: attributes() and hasAttribute().

The attributes() function returns an array that contains the name of all the attributes,
both field and function mappings. One thing to note about the eZBasket situation is that
the attributes listed in its attribute() function would not be returned in the array from
attributes()—this function returns the attributes specified in the definition()
function.

The hasAttribute() function indicates whether the specified attribute is defined for that
object.

Another thing to note about the definition() function is that if you inherit from a
class that already provides a definition() function, your new implementation of
definition() will override the list of attributes from the parent class.

Persistent Storage
Through the use of attributes and the metadata specified by the definition() function,
the eZPersistentObject class can:

• Fetch a fully-populated object (or list of objects) representing data stored
in the relevant database table

• Store a populated object into the appropriate fields in the relevant database
table

Fetching Data
Single objects can be fetched with the fetchObject() function. This calls the
fetchObjectList() function, which fetches a collection of objects, but fetchObject()
only takes the first result from this list. For example, to fetch the name field for a
given record from the eznames table, we would use:

$object->fetchObject(eZNames::definition(),array('id' =>$id))
$name = $object->attribute('name');

Storing Data
Using all the metadata provided by the definition() function, eZPersistentObject
can generate the SQL statement required to persist the object to the database. It can also
work out if this data needs to be an INSERTT or an UPDATE, so a call to store()
removes much of the data-access code that is usually required for saving objects to the
database.

Chapter 4

Chapter 4

133

133

The following code inserts a new value in a table and gets the ID:
$object = & new eZNames(array('name'='Bjoern'));
$object->store();
$id = $object->attribute('id');

Other Data Manipulation
eZPersistentObject has other methods for general manipulation of data, such as
deleting or moving rows within the database.

For example, to remove a row from our eznames table by specifying the ID of the row,
you can use:

$object->remove(array('id' => $id));

Now that you have seen how eZ publish persists object to the database, let's move on to
look at how content classes and content objects are handled by the system.

Content Classes
A content class in eZ publish is represented by the eZContentClass class. This class
offers methods for creating, modifying, deleting, and fetching content classes. Content
classes usually have multiple content class attributes assigned, and these are in turn
managed by the eZContentClassAttribute class.

In the code download for this chapter, you will find a script called create.php that
creates a content class with two content class attributes: the datatypes ezstring and
ezimage. In this section, we will walk through the important points of the process using
this example as an illustration.

The steps to create a content class are:

1. Create a new empty eZContentClass instance.
2. Define and add content class attributes.

Each content class has two important properties that are used throughout the system. The
first is the identifier. This is a name pattern that can be used instead of the numerical ID.
Always try to use your named identifiers before you use content object class IDs. This
will make your code more portable and easier to maintain. The other important property
is the object name. The name of an object can consist of a list of strings and values of
content object attributes.

A class can have three states that can be defined when creating new classes:

• Current active class: EZ_CLASS_VERSION_STATUS_DEFINED

• Draft of a class: EZ_CLASS_VERSION_STATUS_TEMPORARY

• Modified class not active: EZ_CLASS_VERSION_STATUS_MODIFED

A Glimpse Inside the Core

A Glimpse Inside the Core

134

134

To begin creating a new content class, we get a new instance of eZContentClass,
fetching the current user to be the object owner:

$user =& eZUser::fetch($user_id);
$user_id = $user->attribute('contentobject_id');
$class =& eZContentClass::create($user_id);

Next, we set the class's attributes, its version (the version is always 0 for a content class),
name, identifier, and the pattern for content objects that can be created from this class:

$class->setAttribute('version', 0);
$class->setAttribute('name', 'My Custom Class');
$class->setAttribute('identifier', 'custom_class');
$class->setAttribute('contentobject_name', 'Custom Class <id>');

Next, we store the class:
$class->store();

Finally, we assign the content class to a content class group. We will assign it to the
group Content, which has a group ID of 1. We also need the class ID and the version of
the class:

$ClassID = $class->attribute('id');
$ClassVersion = $class->attribute('version');
$ingroup =& eZContentClassClassGroup::create($ClassID,
$ClassVersion, GroupID, $GroupName);
$ingroup->store();

Now that we have created our basic content class, we can add content class attributes.

Chapter 4

Chapter 4

135

135

Content Class Attributes
Content class attributes are represented by the eZContentClassAttribute class. To
create a content class attribute for a content class, we specify the class ID and the
datatype of the content class attribute.

In the previous chapters, we saw the datatypes that ship with eZ publish. Datatypes are
actually classes that inherit from eZDataType, and the standard ones can be found in the
kernel/classes/datatypes folder.

Continuing our example, we will create two content class attributes for our content class:
one of type ezstring and the other of type ezimage. First, the ezstring type:

$DataTypeString = 'ezstring';
$new_attribute =& eZContentClassAttribute::create($ClassID,

$DataTypeString);

We need to set the version, name, and identifier for this content class attribute:
$new_attribute->setAttribute('version', $ClassVersion);
$new_attribute->setAttribute('name', 'new attribute

'.$DataTypeString);
$new_attribute->setAttribute('identifier',

'new_identifier_'.$DataTypeString);

The datatype can initialize the content class attribute (this is not the same as providing a
default value for the content object attribute):

$dataType = $new_attribute->dataType();
$dataType->initializeClassAttribute($new_attribute);

The new attribute is stored to the database:
$new_attribute->store();

We follow a similar process to add a content class attribute of type ezimage:
$DataTypeString = 'ezimage'
$new_attribute =& eZContentClassAttribute::create($ClassID,

$DataTypeString);
$new_attribute->setAttribute('version', $ClassVersion);
$new_attribute->setAttribute('name', 'new attribute '.
$DataTypeString);
$new_attribute->setAttribute('identifier',

'new_identifier_'.$DataTypeString);
$dataType = $new_attribute->dataType();
$dataType->initializeClassAttribute($new_attribute);
$new_attribute->store();

Now that the content class attributes are in place, we can proceed with creating content
objects from the content class.

A Glimpse Inside the Core

A Glimpse Inside the Core

136

136

Content Objects
In this part of the book, we look at handling content objects of eZ publish at a low level.
With the help of these objects, you can define your site tree. A content object is assigned
to a certain user and section. Usually, every object is assigned to one or more nodes out
of the content object tree.

Content objects are represented by the eZContentObject class, and the following
diagram shows the database tables that relate to the underlying ezcontentobject
content object table:

Chapter 4

Chapter 4

137

137

Creating a Content Object
An object definition is needed before an actual content object can be populated. Content
objects are defined through content classes. Further on, we will also need to assign a
certain node or placement to this object. This placement is called the parent node. The
parent node has a unique node ID like any other node in the system. A content object has
three states it can be assigned to:

• EZ_CONTENT_OBJECT_STATUS_DRAFT
• EZ_CONTENT_OBJECT_STATUS_PUBLISHED
• EZ_CONTENT_OBJECT_STATUS_ARCHIVED

To create and populate a content object, we need to go through the following steps:

1. Create a content object instance from its content class.
2. Create content object node assignments.
3. Store the empty content object.
4. Fill the content object attributes.
5. Store the filled content object.
6. Publish the object if needed.

We will now go into the process of creating a new content object from a certain class. In
the first step, we will need to instantiate an object from the content object class.

Create a Content Object Instance
The requirements to create a new content object are a system user and a section ID. The
system user will be the owner of the content object. For creating a node assignment, we
will also need a related parent object. We can draw the objects section from the parent
object.

$parentNodeID=2;
$class = eZContentClass::fetchByIdentifier('custom_class');
$parentContentObjectTreeNode =

eZContentObjectTreeNode::fetch($parentNodeID);
$parentContentObject = $parentContentObjectTreeNode-

>attribute("object");
$sectionID = $parentContentObject->attribute('section_id');
$contentObject =& $class->instantiate($user_id, $sectionID);

Content Object Node Assignments
In this step, we will place the empty object inside the site tree. This node will be also the
main node of the content object. To properly assign this content object, we also need to
set a parent node to this object.

$nodeAssignment =& eZNodeAssignment::create(array(
'contentobject_id' => $contentObject->attribute('id'),
'contentobject_version' => $contentObject-

>attribute('current_version'),

A Glimpse Inside the Core

138

A Glimpse Inside the Core138

You should always create the first node assignment before you enter any data
into the object.

'parent_node' => $parentContentObjectTreeNode->attribute
('node_id'),
'is_main' => 1));

Now we can store the information about this node in the content object tree:
$nodeAssignment->store();

Before we add the content class attributes, we need to define the name attribute of the
content object:

$contentObject->setAttribute('name', 'Custom Class Number One');

We will now store the current object in the database, before adding any of the content
class attributes:

$contentObject->store();

Content Object Attributes
We will now save data for every content object attribute the content class provides to our
content object.

First, we need to get all content object attributes.
$attribs =& $contentObject->contentObjectAttributes();

We will loop through each attribute and process each one depending on the identifier.
$loopLength = count($attribs);
for($i=0;$i<$loopLength;$i++)

{
switch($attribs[$i]->attribute(

"contentclass_attribute_identifier"))

{
case 'new_identifier_ezstring':

$attribs[$i]->setAttribute('data_text', "Some input string");
$attribs[$i]->store();

break;

case 'new_identifier_ezimage':
$content =& $attribs[$i]->attribute('content');

//Image init data

$imageAltText="Alternate Text";

//name on disk

$filename="logo.gif";

Chapter 4

Chapter 4

139

139

//how we name it

$originalFilename="logo.gif";
$content->initializeFromFile($filename,

$imageAltText,
$originalFilename);

$content->store();
$attribs[$i]->store();

break;
}

}

The main attributes of eZContentObjectAttribute that hold data are:
• data_float
• data_int
• data_text

In the final step, we set the status of the content object, and make it available as a draft
for the user we selected before.

$contentObject->setAttribute('status', EZ_VERSION_STATUS_DRAFT);
$contentObject->store();

It could be also nice to run some operation on this object. We could, for example, publish
it:

$operationResult = eZOperationHandler::execute('content', 'publish',
array('object_id' =>

$contentObject->attribute('id'),
'version' => 1));

Executing this operation will execute a group of other functions and triggers.

Workflows and Triggers
The following diagram shows the main database tables and the relations between them
that handle the interplay between objects, workflows, and triggers:

A Glimpse Inside the Core

A Glimpse Inside the Core

140

140

Workflows are triggered by the operation definition of the operation. The triggers are
defined in the operation_definition.php file of each module:

$OperationList['publish'] = array('name' => 'publish','body' =>
array(

'type' => 'trigger',

Chapter 4

141

141

Chapter 4

'name' => 'pre_publish',
'keys' => array('object_id','version')

)
)

array('type' => 'method',
'name' => 'set-object-published',
'frequency' => 'once',
'method' => 'setObjectStatusPublished',
'parameters' => array(array('name' =>
'object_id', 'type' => 'integer',
'required' => true),

)
)

An operation consists of triggers and methods. For example, the operation could be
processed in this way:

• Run the first trigger before anything else (trigger)
• Do something useful (method)
• Run the second trigger (trigger)
• Do something else (method)
• Run the last trigger at the end of the operation (trigger)

We find an example in the content/edit/ module, which corresponds to the file
content/edit.php. When this example is executed, a content object will be published.
We will now look closer into the process of running a workflow connected to the
pre_publish trigger.

if ($module->isCurrentAction('Publish')){
include_once('lib/ezutils/classes/ezoperationhandler.php'

);
$operationResult = eZOperationHandler::execute(

'content', //module
'publish', //operation

array(
'object_id' => $object->attribute('id'),
'version' => $version->attribute('version')));

eZOperationHandler() is now executing the publish operation out of the content
module on a certain version of a content object. eZOperationHandler() has a helper, the
eZModuleOperationInfo() function, which switches control of the process of execution
and fails if the operation definition is not properly set. The utilities that deal with
operation handling are found in the eZUtils library.

Each trigger will return the status of the current operation. eZ publish currently knows
three statuses:

• EZ_MODULE_OPERATION_CANCELED
• EZ_MODULE_OPERATION_HALTED
• EZ_MODULE_OPERATION_CONTINUE

A Glimpse Inside the Core

142

142

A Glimpse Inside the Core

The status tells eZ publish whether the operation is canceled, stopped temporarily, or can
be continued. If the operation is executed again on the same object and version, it will
continue from where it had stopped the last time. The following code shows the
pre_publish trigger being executed:

$status = eZTrigger::runTrigger(
$triggerName, $this->ModuleName, $operationName,
$operationParameters, $triggerKeys);

eZ publish provides the following return statuses for triggers:
• EZ_TRIGGER_STATUS_CRON_JOB
• EZ_TRIGGER_WORKFLOW_DONE
• EZ_TRIGGER_WORKFLOW_CANCELED
• EZ_TRIGGER_NO_CONNECTED_WORKFLOWS
• EZ_TRIGGER_FETCH_TEMPLATE
• EZ_TRIGGER_REDIRECT
• EZ_TRIGGER_WORKFLOW_RESET

A workflow is processed when it is connected to a trigger. If the workflow hasn't started
earlier, eZ publish will now create the new workflow process; otherwise it will process
the existing one. The identifier for a workflow process is the process key.

$processKey = eZWorkflowProcess::createKey($parameters, $keys);
$workflowProcessList =& eZWorkflowProcess::fetchListByKey(
$processKey);

If the fetch returns no result, we can create a new one:
$workflowProcess =& eZWorkflowProcess::create($processKey,
$parameters);
$workflowProcess->store();
return eZTrigger::runWorkflow($workflowProcess);

eZ publish provides the following return statuses for Workflows:
• EZ_WORKFLOW_STATUS_NONE
• EZ_WORKFLOW_STATUS_BUSY
• EZ_WORKFLOW_STATUS_DONE
• EZ_WORKFLOW_STATUS_FAILED
• EZ_WORKFLOW_STATUS_DEFERRED_TO_CRON
• EZ_WORKFLOW_STATUS_CANCELLED
• EZ_WORKFLOW_STATUS_FETCH_TEMPLATE
• EZ_WORKFLOW_STATUS_REDIRECT
• EZ_WORKFLOW_STATUS_RESET

Chapter 4

Chapter 4

143

143

When running the workflow, eZ publish will process all workflow events that are
assigned to the workflow in a loop until a proper return has been found. Each time the
loop starts over, an event of the workflow is processed.

An eZWorkflowtype should return one of the following—watch your returns on module
development:

• EZ_WORKFLOW_TYPE_STATUS_NONE
• EZ_WORKFLOW_TYPE_STATUS_ACCEPTED
• EZ_WORKFLOW_TYPE_STATUS_REJECTED
• EZ_WORKFLOW_TYPE_STATUS_DEFERRED_TO_CRON
• EZ_WORKFLOW_TYPE_STATUS_DEFERRED_TO_CRON_REPEAT
• EZ_WORKFLOW_TYPE_STATUS_RUN_SUB_EVENTT

• EZ_WORKFLOW_TYPE_STATUS_WORKFLOW_CANCELLED
• EZ_WORKFLOW_TYPE_STATUS_FETCH_TEMPLATE
• EZ_WORKFLOW_TYPE_STATUS_FETCH_TEMPLATE_REPEATT

• EZ_WORKFLOW_TYPE_STATUS_REDIRECTT

• EZ_WORKFLOW_TYPE_STATUS_WORKFLOW_DONE
• EZ_WORKFLOW_TYPE_STATUS_REDIRECT_REPEAT
• EZ_WORKFLOW_TYPE_STATUS_WORKFLOW_RESET

Notifications
eZ publish has a built-in notification system. On certain events, a system user is able to
receive a notification about this event. The events are based on a plug-in implementation.
The following events are known to the eZ publish system by default:

• Collaboration
• Publish
• Current time

The following sub-diagram of the database shows the relations between content objects
and the notification system:

A Glimpse Inside the Core

A Glimpse Inside the Core

144

144

Notification events are placed inside the kernel/classes/notification folder.

There are several handlers that process notification events. The following handlers are
known to the system by default:

• Collaboration notification
• General digest
• Subtree notification

We will look at the process of the subtree notification on a publish event.

Each time a content object or content object version is published through the content
module, the publish operation is used:

$operationResult = eZOperationHandler::execute(
'content',
'publish',
array

Chapter 4

145

('object_id' => $contentObject->attribute('id'),
'version' => $contentObject->attribute('current_version')

)
);

The publish operation invokes a method call to eZContentOperationCollection::
createNotificationEvent():

array(
'type' => 'method',
'name' => 'create-
notification', 'frequency' =>
'once',
'method' => 'createNotificationEvent',

),

This call will result in a new event of the type ezpublish being created and stored to the
database.

include_once('kernel/classes/notification/eznotificationevent.php'
);
$event = & eZNotificationEvent::create
(

'ezpublish',
array

(
'object' => $objectID,
'version' => $versionNum

)
);
$event->store();

This event can be processed by zero, one, or more notification handlers.
eZNotificationEventFilter will start this process. If the handler knows how to
handle a certain event that is identified by the event_type_string, it will be
processed.

include_once('kernel/classes/notification/
eznotificationeventfilter.php');

eZNotificationEventFilter::process();

eZ publish will now loop though every unhandled event and try to run it with every
available handler in the system. If every notification has been sent successfully, the
event can now be deleted from the system.

$eventList =& eZNotificationEvent::fetchUnhandledList();
$availableHandlers =&

eZNotificationEventFilter::availableHandlers();
foreach(array_keys($eventList) as $key)
{

$event =& $eventList[$key];
foreach(array_keys($availableHandlers) as $handlerKey)
{

$handler =& $availableHandlers[$handlerKey];
$handler->handle($event);

}
$itemCountLeft =&

eZNotificationCollectionItem::fetchCountForEvent(

A Glimpse Inside the Core

146

$event->attribute('id'));
if ($itemCountLeft == 0)

Chapter 4

147

{
$event->remove();

}
else
{

$event->setAttribute('status',
EZ_NOTIFICATIONEVENT_STATUS_HANDLED);

$event->store();
}

}

A handler can return the following statuses that describe the current state:
• EZ_NOTIFICATIONEVENTHANDLER_EVENT_HANDLED
• EZ_NOTIFICATIONEVENTHANDLER_EVENT_SKIPPED
• EZ_NOTIFICATIONEVENTHANDLER_EVENT_UNKNOWN
• EZ_NOTIFICATIONEVENTHANDLER_EVENT_ERROR

Information Collection
The eZ publish information collector can gather information or feedback about a content
object. This information will be stored in the database and can be also sent via e-mail.
The storage and presentation of a collected item is defined through the information
collector type. This diagram shows the relations between the relevant database tables.

eZ publish comes with several information collector types by default.

• Poll
• Form
• Feedback

The information collector is setup through the collect.ini file and has various
options that can be modified. A type can be also assigned through an attribute of a
content object. By default, the attribute identifier is collection_type:

TypeAttribute=collection_type

A Glimpse Inside the Core

148

In the collection setting, you can define how the submission of user information should
work or what policies should apply.

CollectAnonymousData can be set to enabled, allowing an anonymous user to submit
information to a type:

CollectAnonymousData=enabled

You can override each setting per type individually:
CollectAnonymousDataList[poll]=disabled

You can also set a content object attribute that will pass the setting to the information
collector:

CollectAnonymousDataAttribute=collection_anonymous

eZ publish offers three policies on how user input is handled. Once again, just like
CollectAnonymousData, you can set the definition globally, per type, or per content
object:

• multiple: Each user can submit multiple data
• unique: One set of data per user, if data already exists give a warning
• overwrite: One set of data per user but new entry overwrites old one

Users are tracked by their user ID, and if they are anonymous to the system, their remote
IP will be used to identify them.

Setting the global policy:
CollectionUserData=multiple

Setting the policy per type:
CollectionUserDataList[poll]=overwrite

Setting the policy per content object
CollectionUserDataAttribute=collection_userdata

Searching
eZ publish offers an eZSearch class for including your own search engine. All the
existing implementations are used as plug-ins to the system. They can be found under
kernel/search/plugins. By default, eZ publish uses the eZSearchEngine plug-in.
OpenFTS is also available as a plug-in, but it doesn't seem to be fully implemented.
OpenFTS can be only used with PostgreSql. Writing your own search engine is quite a lot
of work.

The following database diagram shows the relations between objects and the
eZSearchEngine search engine plug-in. The ezsearch_tmp_0 and ezsearch_tmp_1
tables are temporary tables, and are created on demand. Each temporary table gives the

149

Chapter 4

result from one word of the search phrase. The result of a search in eZ publish is a
combination of all temporary tables. The tables ezsearch_search_phrase and
ezsearch_return_count are only important for the purpose of the search statistics
(kernel/search/stats.php).

eZSearch (kernel/classes/ezsearch.php) is the interface to the plug-in. You will
find its setup in site.ini:

[SearchSettings]
SearchEngine=eZSearchEngine
#SearchEngine=openFts
SearchViewHandling=default
LogSearchStats=enabled
MaximumSearchLimit=30
AllowEmptySearch=disabled

Every time a content object is edited, the object must be deleted and inserted into the
search again. Here is how the kernel/content/edit.php file uses the eZSearch
interface:

eZSearch::removeObject($object);
eZSearch::addObject($object);

A Glimpse Inside the Core

150

If a content object is removed or put into trash, only a single function is called:
eZSearch::removeObject($object);

eZ publish offers two module views that you can use for searches. Both are very similar
and work in the same way. Both perform their search over the interface of eZSearch
(eZSearch::search()). The content/search view uses the fulltext search type by
default, and the content/advancedsearch view uses a wide spectrum of search
types and filters offered by the plug-in.

With those two steps, the advanced search will get the requested information from the
eZSearch engine. eZSearch::buildSearchArray() prepares a search definition
depending on the plug-in. eZSearch::search() returns an associative array with
information about the result (array of eZContentObjectTreeNodes, SearchCount, and
StopWordArray).

$searchArray =& eZSearch::buildSearchArray();
$searchResult =& eZSearch::search(
$searchText,

array('SearchSectionID' => $searchSectionID,
'SearchContentClassID' => $searchContentClassID,
'SearchContentClassAttributeID' =>

$searchContentClassAttributeID,
'SearchSubTreeArray' => $subTreeArray,

'SearchDate' => $searchDate,
'SearchTimestamp' => $searchTimestamp,
'SearchLimit' => $pageLimit,

'SearchOffset' => $Offset),
$searchArray);

The available general search filters for eZSearchEngine are:

• class: Filters a content object class
• publishdate: Filters a certain creation date
• subtree: Filters a certain subtree
• section: Filters a certain section
• offset: Where to start with the result
• limit: Where to end the result

Summary
In this chapter, we took a brief look at realizing eZ publish fundamentals at the code
level, and how objects are persisted to the database.

The next chapter looks at the process of creating an eZ publish extension.

5
Extending eZ publish

The eZ publish system contains a collection of modules and libraries that together
provide a wide range of functionality for users. In order for eZ publish to address the
needs of the growing CMS market, users must be able to add functionality of their own.
This is achieved by using custom-designed extensions.

The modular nature of eZ is reinforced through the use of extensions. Extensions allow
for template operators, datatypes, functions, and whole modules that can co-exist with
one another to be developed separately and added to the eZ publish install. A functional
extension may be something as small as a new template operator, or something as critical
as an interface to your other business applications.

The aim of this chapter is to discuss how to use the extension mechanism. With almost
every area of eZ publish open to the extension system, the areas covered by this chapter
include:

• Modules
• Datatypes
• Template operators
• Workflow events
• Actions
• Notifications

We will also discuss examples of how to use eZ for data interoperability with other
systems, including using SOAP and RSS as a means of facilitating the transfer of data.

Why Create an Extension?
Before embarking on creating an extension, you need to understand why you are creating
an extension. It also is worth spending time researching eZ publish forums and reviewing
the functionality that will be available in the next release of eZ publish. You may

When naming your extensions, make sure you use a unique name, as this will
prevent problems with duplicate names in the future. Do not use a hyphen "-" to
separate text, as this will not work. For example, eZ systems always prepend eZ
to their extensions. Prepend a useful name before the function of the extension.

Extending eZ publish

150

discover that a feature is already available in the SVN code repository at
http://pubsvn.ez.no.

There are several reasons why you may need to write an extension:

• eZ publish does not have the functionality you require.
• A similar but not exact feature may be available, in which case you can

submit a feature request to the eZ team.
• The feature may have bugs, preventing it from being used as intended. This

should be reported as a bug, but if time is short, a quick extension can be
used as a temporary solution.

• The feature may be proprietary to your company and essential for use in
your CMS.

• The feature may facilitate import/export functions for data from/to another
system.

In addition to the functions available in eZ publish, there is a community effort to build
extensions to offer additional functionality. You can check this out at
http://pubsvn.ez.no.

Adding an Extension
To add a new extension:

• Decide upon the kind of extension to be created, based upon the previous
discussion.

• Create a new directory with the name of your new extension. eZ publish
expects extensions to be located within the extension directory of the eZ
publish root directory.

• Inform eZ publish about your new extension by adding it to the configuration
file: site.ini.

For example, to activate the newExtension extension, add the following to the main
configuration file (settings/site.ini):

File: settings/site.ini
[ExtensionSettings]
ActiveExtensions[]=newExtension

Chapter 5

There is no need to include all these directories in your extension. If, for
example, your extension is a new datatype, then only the settings, design, and
datatypes directories need be included.

151

If the extension is to be used for a specific site design, a different site.ini must be
used instead. For example, the standard site design for users is named user, but as of
eZ publish 3.2, there are additional designs such as news, intranet, and so on. If
you wish your extension to be present in one of these site designs but not the others,
add the extension to the configuration file for that particular design:

File: settings/siteaccess/<mydesign>/site.ini.append
[ExtensionSettings]
ActiveAccessExtensions[]=newExtension

Here <mydesign> is the specific site design where your extension is to be used.

Locating Your Extension
Each extension requires its own subdirectory within the extension directory. The
extension called newExtension will be located within the extension/newExtension
subdirectory.

Within this new directory, eZ publish expects to find a settings file that describes what
type of extension it is. Depending upon this type, other directories are expected to exist.
The following table lists the standard set of subdirectories that can be recognized and
used by an extension:

Directory Description

actions/ New actions for forms

datatypes/ New datatypes to enhance a class

eventtypes/ New event types for workflows

modules/ New kernel modules and views

settings/ Settings for this extension

translations/ New translation extensions

design/ New design extensions

Extending eZ publish

152

Extending eZ publish

152

Example Directory Extensions
The following examples list the files and subdirectories associated with a typical
extension directory. Notice that the subdirectories within each extension area follow the
same structure as those within the eZ publish kernel and design areas.

Later in this chapter example, the content of these files will be given.

Depending on the type of the extension, you would typically have the subdirectories
listed in the following sections inside your extension/newExtension/ folder:

Datatype Extension
A datatype extension contains settings that notify eZ publish that there is a new datatype
(specified in the content.ini) and that the extension design directory should be used
(specifically, the design.ini file).

Here is a list of files typically affected by the creation of a datatype extension:
settings/content.ini.append
settings/design.ini.append
datatypes/newDatatype/newDatatypetype.php
design/standard/templates/content/datatypes/edit/newDatatype/newDatat
ype.tpl
design/standard/templates/content/datatypes/view/newDatatype/newDatat
ype.tpl

Module Extension
For a very simple module with only a single view and no functions, the extension
directory would typically contain the following files:

settings/module.ini.append
settings/design.ini.append
modules/newModule/module.php
modules/newModule/newView.php
design/standard/templates/newView.tpl

Workflow Eventtype Extension
The following workflow is again very simple, with a single new eventtype and template
to show that view.

The settings directory is always present, as it contains files used to inform eZ
of the nature of the extension. The only exception is with template operators, as
discussed later in this chapter.

Chapter 5Chapter 5

153153

settings/workflow.ini.append
settings/design.ini.append
eventtypes/event/myEvent/myEventtype.php
design/standard/templates/workflow/eventtype/result/event_myEvent.tpl

These examples may be used either as separate extensions or within the same extension,
depending on your design needs. It may be the case that your extension is large and
requires the addition of new datatypes, workflow events, modules, and other additions. If
you use separate extensions, ensure that each is named appropriately.

The directories discussed here are automatically recognized by eZ publish, but others can
be added for your own use. For example, documentation should be handled in the same
way and given its own documentation subdirectory.

In some cases, it is good practice to follow the directory structure eZ publish employs, for
example, when files such as database updates are added. Here files containing the SQL
update code are specified as follows, with a second file describing what the update file
does.

update/database/mysql/3.2/dbupdate-3.1-1-to-3.2-1.sql
update/database/mysql/3.2/dbupdate-3.1-1-to-3.2-1.info

Documentation on Extensions
Popular coding languages use documentation generators to create human-readable
documents, based on the code structure and comments entered by developers. PHP is no
exception to this, and there are several documentation generators available. eZ systems
have chosen to design their comments to the format that doxygen uses. Doxygen can be
found at http://www.doxygen.org. If you have this installed on your system, you can
build your documentation by running the following command from the eZ publish system
directory.

>doxygen doc/doxygen/Doxyfile

This allows the documentation to be referenced from within the eZ publish
administration site through the URI http://<your-admin>/reference/view/ez.

This documentation provides very useful low-level details of PHP files, linked together to
allow navigation.

For a high-level view of the eZ publish system, the eZ publish documentation is located
on the eZ publish website at http://ez.no/ez_publish/documentation.

Also available is a good introduction to the system, although only for versions 3.0 and
3.1, found at http://pubsvn.ez.no/sdk/ and http://pubsvn.ez.no/manual.

Extending eZ publish

154

Modules
The first type of extension we will look at is a module. Having registered the new
extension as described, the next step is to inform eZ publish that the extension contains
modules. This is accomplished by adding a module.ini.append file containing the
name of the extension as shown.

File: extension/moduleExtension/settings/module.ini.append
[ModuleSettings]
ExtensionRepositories[]=moduleExtension

If the module contains templates to render output from the module, then once again, eZ
publish must be told to use the templates from the design directory in the extension as
shown below.

File: extension/moduleExtension/settings/design.ini.append
[ExtensionSettings]
DesignExtensions[]= moduleExtension

Module Definitions
Modules allow information to be displayed through the view mechanism. An object is
normally shown by a call to /content/view or when edited by /content/edit.
Here content is the module and view and edit are the views.

Each module view is defined within the module definition file, module.php,
located within the modules directory underneath the module name
extension/moduleExtension
/modules/newModule/module.php.

Notice that we have declared the name of the module to be newModule. eZ publish
automatically recognizes new modules if they have a unique name and contain a separate
module.php file. There is no need to specify this name within a configuration file.

This module definition file contains the specification for each module view, the access
permissions granted to users, which parameters are used, and other features that will be
discussed in the coming sections.

Module Names and Views
To enable eZ publish to interoperate with new module extensions, the definition file must
use recognized variables, such as $Module, $ViewList, and $FunctionList.

An array variable named $Module must be initialized with the name of the module:
$Module = array("name" => "newModule");

Module views are initialized by declaring the variable $ViewList as an array:

Chapter 5

155

$ViewList = array();

156Extending eZ publish

Extending eZ publish

156

With the views initialized, a simple view can be added:
$ViewList["newview"] = array("script" => "newView.php");

This points the view newview to the correct PHP file newView.php. The URI for this
view would be http://<your-site>/newmodule/newview.

View Permissions
Permissions allow users to have a predefined access to a view. Once permissions are
declared in the definition file, the administrator can use these within the administration
interface. If no permission is set for a module, it is left up to the main site configuration
file, site.ini, to decide whether a whole module is accessible or not. By default, the
module and its views are not available to anyone but the Administrator role.

Permissions for a view can be added by first declaring the permission as a
$FunctionList variable, and then adding this to the view definition. For instance, to
add a permission called read to a view, the following code can be used:

$ViewList["newview"] = array("script" => "newView.php",
"functions" => array('read'));

$FunctionList['read'] = array();

In this example, the read permission is declared and then added as an array element to
the $ViewList["myview"] array. Note that the order of declaration is not important
here.

Another view may allow editing, and shown below are two views, one with read
permissions, and the other allowing editing:

$ViewList["newview"] = array("script" => "newView.php",
"functions" => array('read'));

$ViewList["neweditview"] = array("script" => "newEditView.php",
"functions" => array('edit'));

$FunctionList['read'] = array();
$FunctionList['edit'] = array();

Here the permissions are used separately; one for read and another for editing, but such
permissions can be applied to a single view:

$ViewList["newview"] = array("script" => "newView.php",
"functions" => array('read', 'edit'));

$FunctionList['read'] = array();
$FunctionList['edit'] = array();

It is important to note that it is up to the developer of the module and view to test the
permissions that a user has and to present the appropriate response to the user request.

View Parameters
Module views are not very useful on their own unless parameters are passed in to allow
adequate customization of the view response.

Chapter 5Chapter 5

157157

eZ publish expects uses to be declared for each parameter view, and performs checks to
ensure that these parameters are valid for their declared type. For example:

$ViewList["newview"] = array("script" => "newView.php",
"functions" => array('read'),
"params" => array("ViewMode", "NodeID"

),

"Language",

);

"unordered_params" =>
array("language" =>

"offset" => "Offset")

$FunctionList['read'] = array();

There are two types of view parameters:

• params: Parameters that follow directly from the module and view in the
URI and are listed in left-to-right order. For instance, if the URI was
/newmodule/newview/full/20, then ViewMode will be full and NodeID
would be 20.

• unordered_params: The unordered term implies that these parameters can
come in any order after the ordered params. For example, if the URI was
/newmodule/newview/full/20/offset/10/language/en, ViewMode and
NodeID are the same as before, and the value for Offset will be 10 and
Language will be en (representing English).

Note the use of an associative array ("offset"=>"Offset") for unordered_params.
This means one form of the parameter can be used in the URI (offset) and another
in the PHP script (Offset). Ordered parameters do not use associative arrays so the name
of the parameter has to be the same as the one available in the module view script.

Unordered parameters may also be available to the template, after the module has been
processed. Currently eZ publish returns the variable $view_parameters to the
template, and if offsets have been used, this is available as $view_parameters.offset.

View Actions and Post Variables
Parameter values are passed to module views by means of HTML POST variables.
Normal HTML is used to encode the data, and the form is submitted to the module view.
When the data arrives, an action might occur, depending upon the input data.

The following example lists several actions that can occur:
$ViewList["newview"] = array("script" => "newView.php",

"single_post_actions" =>
array('ConfirmButton' => 'Confirm',

'CancelButton' => 'Cancel'),
"post_actions" =>

array('BrowseActionName'),
"post_action_parameters" =>

array('Confirm' =>

Extending eZ publish

158

Extending eZ publish

158

The system will take the name of the single_post_action as the module action, but will
take the value of the post_actions variable as the module action.

array('ConfirmParameter' =>
'ConfirmValue')));

There are four parts to viewing actions.

single_post_actions
A web form has a single action to perform. The eZ template will set an input tag with the
desired action, and when the submit button clicked, its name will be passed through to the
specified eZ module view. The submit buttons allow either a confirmation or a
cancellation action. For example:

<form method="post" action="/newModule/newview/">
<input type="submit" name="ConfirmButton" value="Confirm" />
<input type="submit" name="CancelButton" value="Cancel" />

</form>

An associative array is used to transform the POST action name to a name that will be
used by the view script. This is examined by the script as follows:

if ($Module->isCurrentAction('Confirm'))
{

/* Do something */
}

if ($Module->isCurrentAction('Cancel'))
{

/* Do something else */
}

post_actions
The post_actions variable offers flexibility with the naming of POST variables.
When the system sets the action for the module it first examines whether the POST
variable matches anything within single_post_actions. Failing that, it will look in
post_actions to find a match.

This allows the developer to avoid needing to explicitly declare actions within the
module configuration file.

<form method="post" action="/newModule/newview/">
<input class="button" type="submit" name="BrowseActionName"

value="MyNewAction" />
</form>

Note that the name of the input tag matches with the previously declared post_actions
value in the view definition. The value of the input tag is used as to set the current action
and is retrieved as earlier:

Chapter 5

159Chapter 5

159

if ($Module->isCurrentAction('MyNewAction'))
{

/* Do new action */
}

post_action_parameters
post_action_parameters are parameters for each action. These allow the script to
refine how the action will be processed.

In the above example, the post_action parameter is defined as an associative array, the
current action Confirm is used as the key, and its value is defined as another associative
array. The key for this second array is used as the name for the actions parameter,
ConfirmParameter, and the value, ConfirmValue, is taken from the input tag, as
shown by the following example:

<form method="post" action="/newModule/newview/">
<input type="submit" name="ConfirmButton" value="Confirm" />
<input type="hidden" name="ConfirmValue" value="Yes, confirm" />

</form>

This happens when processing the following code:
if ($Module->isCurrentAction('Confirm'))
{

if ($Module->hasActionParameter('ConfirmParameter'))
{

$test = $Module->actionParameter('ConfirmParameter');
}

}

In this example, the value of $test will be "Yes, confirm".

Normal Post Variables
Lastly, ordinary POST values can be checked for and used within the script without any
mention in the definition of the view. If the HTML code is as follows:

<form method="post" action="/newmodule/newview/">
<input type="submit" name="NewTestButton" value="Push me" />

</form>

the script could check for this POST variable as follows:
include_once('lib/ezutils/classes/ezhttptool.php');
$http =& eZHTTPTool::instance();
if ($http->hasPostVariable('NewTestButton'))

$testButtonValue = $http->postVariable('NewTestButton');

Here the eZ HTTP library is invoked to retrieve the POST variable.

View Navigation
Assigning a view navigation variable is a method eZ publish employs to structure the
administration interface. Each view is a member of a particular area, such as Set up or
Media, and is shown in the left-hand side navigation bar of the administration interface.

Extending eZ publish

Extending eZ publish

160

160

This allows the interface to perform some action such as highlighting the area tab when
the view is active.

To assign a navigation area to a view, set a default_navigation_part parameter to
the view definition as shown:

$ViewList["newview"] = array("script" => "newView.php",
"default_navigation_part" =>

'ezsetupnavigationpart');

An example of this in action is shown by the following screenshot, where the Set up tab
is highlighted:

Module Coding
Now that we've seen the module definitions and configuring the permissions and the
parameters we will require, we will move on to look at the details of coding the module.

Reading Module Input
In the previous section, the module definition file was shown to declare the expected
parameters a view takes as input. Parameters are passed to the view with the $Params
array. For example:

$Module =& $Params['Module'];
$NodeID = $Params['NodeID'];
$Offset = $Params['Offset'];

For parameters that are unordered and therefore either present or not, it is good practice
to check the input values and declare a default in case the variable is not present. For
example:

$Offset =
$Params['Offset']; if (!
is_numeric($Offset))

$Offset = 0;

Returning Information
The eZ publish system uses a template array variable called $module_result to hold
the output from a module view. For example, the output from the kernel/view
module view contains the following information in an array:

Extending eZ publish

160

module_result Array
Examples

Description

content Direct output from the module view held as a string

view_parameters Specifies the parameters used by the module

path Array of elements that describes the path to the current
element

title_path Similar to the path but without the root element

section_id Section identifier of the current node

node_id Identifier of the current node

navigation_part The navigation area to which the view is assigned

Not every view uses all of these parameters as part of the module result. The
recommended minimum is to use content and path. Others can be added depending
on what your template expects. For example,

File: extension/moduleExtension/modules/newModule/newView.php
$Result = array();
$Result['content'] = "Hello there! ";
$Result['path'] = array(array('url' => false,

'text' => 'New Module'),
array('url' => false,

'text' => 'New View'));

In this example, the content parameter is assigned a string value. The path is assigned a
simple list containing information about the module and its view—in practice, the path
will be more descriptive and would likely contain the current node_id and maybe other
information such as the URL alias of the node.

Processing a Template
The advantages of using a module view become apparent when templates are used to
customize the output in the view.

Before the template can be used, it must be initialized as shown:
File: extension/moduleExtension/modules/newModule/newView.php
include_once('kernel/common/template.php');
$tpl =& templateInit();

If the template requires input values to be present as parameters, these can be set:

Chapter 5

161

File: extension/moduleExtension/modules/newModule/newView.php
$tpl->setVariable('my_parameter', $myParameter);
$tpl->setVariable('my_other_parameter', $myOtherParameter);

This assigns the PHP variables $myParameter and $myOtherParameter to the
my_parameter and my_other_parameter template variables respectively. The template
code {$my_parameter} and {$my_other_parameter} will retrieve the values as
expected.

Assigning the value of $Result['content'] invokes the processing of the
template, as shown:

$Result = array();
$Result['content']=$tpl->fetch("design:newmodule/newview.tpl");

In this example, the template is retrieved from the appropriate design folder and
processed by the call to $tpl->fetch(). The content element will contain a string
representing the output from the processed template.

Redirecting a Module
Some modules and views act as wrappers for other modules and views. For example,
within the content module, there is the action view that redirects input according to
the value of POST variables.

eZ publish provides several routines to aid with redirection.

redirectTo
The simplest redirectTo() method takes a path as its parameter. This allows you to
move the processing from your view to another module, which will provide output in a
predetermined way. For example, you can redirect to the home page if something
irregular occurs, or as in the following example:

$Module->redirectTo('/content/view/full/2/');

redirect
A common use for redirect() is to invoke the processing abilities of another module
and view given parameters that have been determined from the current view. For
example, here the code invokes the edit view of the content module, with the object
ID, its current version, and the currently used language:

$Module->redirect('content', 'edit', array($contentObjectID, $version,

$language));

redirectToView
This method is a convenient method that assumes the view parameter to be within the
current module, with the final array parameter the same as before:

Extending eZ publish

162

$Module->redirectToView('edit', array($contentObjectID, $version,
$language));

redirectionURI
In some cases, you may need to add a parameter to the location in the
redirectTo() method, but first of all you will need the basic URI. This is where
redirectionURI() will help you:

$Module->redirectionURI('content', 'edit', array($contentObjectID,
$version,$language));

This method only creates a valid redirection URI, and does not perform the redirection.

Module Functions
Functions invoked by the template author use the fetch command. The aim is to perform
a check of some kind either from the present environment or to find values from the
database. eZ publish provides a large number of utility functions to make the task of a
function author relatively simple.

The remainder of this section will discuss how to create a function by showing how to
build one that returns information for the following example:

{let
my_function_output=fetch('newmodule','newfunction',hash(number,999))}
Output from function is: {$my_function_output}
{/let}

The function performs a simple calculation to compute the square of 999.

Registering a Function
Functions must be defined in a definition file called function_definition.php and
located in the same directory as module.php.

File:
extension/moduleExtension/modules/newModule/function_definition.php
$FunctionList = array();
$FunctionList['newfunction'] = array('name' => 'newfunction',

'operation_types' =>
array('read'),

array('include_file'
'call_method' =>

=>'extension/moduleExtension/modules/newModule/newModuleFunctionColle
ction.php',

'newModuleFunctionCollection',

));

'class' =>

'method' => 'fetchNumber'),
'parameter_type' => 'standard',
'parameters' => array(array(

'name' => 'number',
'type' => 'integer',
'required' => true)

Chapter 5

163

The name of your function should be the same as the key to the PHP array:
$FunctionList['newfunction'] = array('name' => 'newfunction',

The purpose of the operation_types function is to allow access to the function:
'operation_types' => array('read'),

The call method informs eZ of your script location, the class name, and the method inside
the class to be used when the function is invoked:

'call_method' => array('include_file' =>
'extension/moduleExtension/modules/

newModule/newModuleFunctionCollection.php',
'class' => 'NewModuleFunctionCollection',
'method' => 'fetchNumber')

In this example, the PHP file holding the function is kept within the module directory,
which is standard practice.

Finally, the function parameters must be defined. The type of parameter should be set as
standard. If you use different types, the type should be mixed.

At the moment, eZ publish does not check the type of function parameters. This may
change in the future.

'parameter_type' => 'standard',
'parameters' => array(

array('name' => 'number',
'type' => 'integer',
'required' => true)));

In this example, there is a single integer type parameter called number and it must be
included when the function is included. If it is not included, eZ publish will display an
error message.

Coding Functions
With the function defined and registered with eZ publish, all that remains to be written is
the function code itself:

File: extension/moduleextension/modules/newmodule/

newmodulefunctioncollection.php
class NewModuleFunctionCollection
{

function NewModuleFunctionCollection() {}
function &fetchNumber($object_id)

{
return array('result' => 'Square of found number '.$number.'

is '.$number*$number);
}

}

Extending eZ publish

164

Datatypes
The default datatypes with eZ publish 3.2 are comprehensive and sufficient for most
sites. When there is need for a new datatype, however, it is relatively easy to include.

The benefits of creating a new datatype balance the cost for its design, implementation,
and testing. The aim is to make the management of objects easier and less
time-consuming. If an existing datatype works but is difficult for the user to work with, it
is worthwhile thinking about a new datatype to resolve the issue.

In this section, we will show how to create new datatypes. To do this, we need to inherit
from the eZDataType.php base class and override a number of its functions, which
allows the datatype to perform our new actions when objects are viewed and edited.

In the next chapter, a detailed example of a complex datatype will be presented.

Datatype Settings
The datatype configuration file, content.ini.append, is where eZ is informed about the
datatype.

File: extension/datatypeExtension/settings/content.ini.append
[DataTypeSettings]
ExtensionDirectories[]=datatypeExtension
AvailableDataTypes[]=newDatatype

A difference here is the use of the AvailableDataTypes[] array. In addition to letting eZ
publish know about the datatype within the extension, the name of the datatype must be
explicitly declared.

As usual there will be designs for the datatype, and eZ publish must know of the design
directory:

File: extension/datatypeExtension/settings/design.ini.append
[ExtensionSettings]
DesignExtensions[]=datatypeExtension

Datatype Templates
When designing a new class, an attribute is created from a datatype representation. To
render this attribute within the class edit view, a template is required. Similarly when an
object is being viewed or edited, there must be a template for the attribute/datatype for it
to be shown.

For most situations a datatype can be declared within a class, with only its name and
identifier required to be entered—eZno—if it is allowed, in case the developer forgets to
fill in a value for each content object created from it.

165

Chapter 5

If a datatype requires options to be set that influence the choices that the developer will
have to make when creating the content object, an extra template is required. For
example, the ezselection datatype requires the developer to define the enumeration to
be used for the content object, and whether the selection will be a multiple choice or
single selection.

A special class edit template for the newDatatype datatype, which would likely contain
choices for the developer to select, can be found at:

extension/datatypeExtension/design/standard/templates/class/

datatype/edit/newDatatype.tpl

Once the class has been created, two different templates allow the datatype within that
new content object to be both viewed and edited:

extension/datatypeExtension/design/standard/templates/

content/datatype/edit/newDatatype.tpl

extension/datatypeExtension/design/standard/templates/

content/datatype/view/newDatatype.tpl

The Datatype Wizard
The datatype wizard allows the developer to create a generic PHP file that can be further
customized by the developer to create the datatype. This wizard is part of the RAD tools
found within the Set up section of the administration site.

The datatype wizard is found at http://<admin>/setup/datatype and consists of
the following steps:

1. The Introduction to datatypes welcome screen.
2. You are asked for the name of the datatype. This should be something

suitable as it will be used in your templates. If your datatype requires further
class edits, like the ezselection example described before, tick the
checkbox in Settings. This will allow for input at the class level instead of
the normal object level.

166

Extending eZ publish

3. From your responses, the information in the next screen is prefilled. Note
that your datatype name is now part of the PHP class name. Make sure you
do not put spaces in your operator, otherwise PHP will complain.

4. The following screenshot displays the remaining questions. Once finished,
click the Download button to save your datatype:

This information helps prefill the comment text within the PHP file, but does not help
with coding the datatype. Hence, the user will need to pursue this further. The wizard is
used for creating the generic datatype file ez<name>type.php, where <name> is the name
given to the datatype. Read on for details on how to make a useful datatype.

167

Chapter 5

Implementing the Datatype
Each datatype inherits from the base class eZDataType. The file name of the new
datatype must end with type.php, for example, newdatatypetype.php, for the system to
use the file. This file can be created manually or by using the datatype wizard:
extension/datatypeExtension/datatypes/newDatatype/newDatatypetype.php

Constructing a Datatype
The general skeleton code for a datatype is as follows:

<?php
include_once("kernel/classes/ezdatatype.php");
define("EZ_DATATYPESTRING_NEWDATATYPE", "newdatatype");

class newDataTypeType extends eZDataType
{

function newDataTypeType()
{

$this->eZDataType(EZ_DATATYPESTRING_NEWDATATYPE, "None");
}

}

eZDataType::register(EZ_DATATYPESTRING_NEWDATATYPE, "newdatatypetype"
);
?>

The newDataTypeType() constructor registers with the base class by passing the name of
the datatype to it. Notice that the datatype is registered with the system at the end of the
file using the same name.

eZDataType::register(EZ_DATATYPESTRING_NEWDATATYPE, "newdatatypetype"
);

Storing Datatype Information
For each datatype within the eZ publish system there are two types of attributes. Class
attributes store information about which class they are part of, the name of the attribute,
any default values the object attribute should have, and other custom information the
object attribute may find useful. Object attributes use the information from the class
attributes to store run-time information about the attribute. Any number of object
attributes can be created from the class attributes.

The attributes of an object examine the fields within the SQL database for its class
attributes during the creation of the object. For example, the class attribute for the
ezstring datatype stores default information within the SQL column data_text1,
which is read by the object attribute for ezstring, and stored within the SQL column
data_text. Similarly, a class attribute for ezinteger stores default information within
a column named data_int1, and the object attribute stores the result within data_int.
All

Extending eZ publish

168

datatypes work in the same way, and some may use more database fields to store
information.

It is worth examining the PHP class files responsible for class and object attributes to
better understand the relationship they have with the database. With this understanding in
place, it becomes easier to create complex datatypes. These files are:

kernel/classes/ezcontentclassattribute.php

kernel/classes/ezcontentobjectattribute.php

If you investigate existing datatypes, there are good examples of other SQL column
values being used in various situations.

Initializing with Default Values
For most datatypes, it is possible to assign a default value to be used when an object is
created from the class. In the absence of a user-defined default value, the developer can
make suitable provisions from the developing stage itself.

There are two function interfaces the developer can use to assign a default value.

Class Default Values
This interface allows the class attribute for the datatype to be assigned a value, which can
then be changed by the user and stored. For example:

function initializeClassAttribute(&$classAttribute)
{

if ($classAttribute->attribute('data_int1') == null)
{

$classAttribute->setAttribute('data_int1', 10);
}

$classAttribute->store();
}

Here the data_int1 parameter refers to a database column from the
ezcontentclass_attribute database table. It is queried to find whether it has a value
assigned to it; if not, a new value is stored. This function is used when the class is edited
and there is no value present. Depending upon the datatype, other SQL columns may be
used to store a default value, for example, data_float1 for floating-point numbers or
data_text1 for textual information.

Object Default Values
The second interface applies to the object attribute. It examines whether there is a default
value assigned to the class attribute, and uses it to set the default for the content object.

function initializeObjectAttribute(&$contentObjectAttribute,
$currentVersion,

)
{

if ($currentVersion != false)

&$originalContentObjectAttribute

Chapter 5

169

{
$dataInt = $originalContentObjectAttribute-

>attribute("data_int");
$contentObjectAttribute->setAttribute("data_int", $dataInt

);
}
else
{

$contentClassAttribute =& $contentObjectAttribute->
contentClassAttribute();

$default = $contentClassAttribute->attribute("data_int1");
if ($default !== 0)
{

$contentObjectAttribute->setAttribute("data_int", $default
);

}
}

}

With this example the concept of versions is used when initializing the object. If the
object being edited is at its current version then the default value used is the same as the
previous version. In the case of a new version, where the object is not at the current
version, then the default value from the class attribute is used instead (data_int1).

Working with Class Attributes
When the user wishes to alter the default value into something more suitable, the
following functions are used.

Reading Input Values
The fetchClassAttributeHTTPInput() function retrieves the values of the variable
from the POST variable that was submitted when the user stored the class.

function fetchClassAttributeHTTPInput(&$http, $base, &$classAttribute
)
{

$defaultName = $base."_NewDatatype_".$classAttribute-
>attribute('id');

if ($http->hasPostVariable($defaultName))
{

$defaultValue = $http->postVariable($defaultName);
if ($defaultValue == "")
{

$defaultValue = "0";
}
$classAttribute->setAttribute("data_int", $defaultValue);

}
return true;

}

The variable $defaultName is constructed using information from the class attribute
based on the knowledge that it is dealing with a class attribute.

Extending eZ publish

170

Input tags within web forms must be assigned names that eZ publish can recognize, and a
typical example of such a tag would be:

<input type="text" name="ContentClass_NewDatatype_20" value=""
size="8"

maxlength="20" />

The $base parameter, when used for class attributes, is always ContentClass. Hence,
$defaultName will be a valid POST variable than can be used to retrieve the value.

This method also stores the value of the POST variable. Normally, this is performed by
the storeClassAttribute() function, but almost all current eZ publish datatypes
store the value after it has been fetched from the web form.

Validating Datatype Input
Input that will be stored within the database should be validated before it is entered. The
validateClassAttributeHTTPInput() function performs this task and returns a
value indicating the result of the validation. In the following example, only the values
"0" and "1" are acceptable, with "1" being a special case—any other value is invalid.

function validateClassAttributeHTTPInput(&$http,
$base,
&$classAttribute)

{
$defaultName = $base . "_NewDatatype_" .

$classAttribute->attribute('id');
if ($http->hasPostVariable($defaultName))
{

$postValue = $http->postVariable($defaultName);

if (is_numeric($postValue)
{

if ($postValue == "0")
{

return EZ_INPUT_VALIDATOR_STATE_ACCEPTED;
}

else if($postValue == "1")
{

return EZ_INPUT_VALIDATOR_STATE_INTERMEDIATE;
}

}
}

return EZ_INPUT_VALIDATOR_STATE_INVALID;
}

If the result is invalid, the user is informed that the input was wrong, and if it is
acceptable, the input is stored. If, however, the returned value was
EZ_INPUT_VALIDATOR_STATE_INTERMEDIATE then the
fixupClassAttributeHTTPInput() function is called to repair the value.

Depending upon the nature of the datatype, a value can be reset to another. For instance,
if boundary conditions are not met, the value may be moved to the nearest boundary.
This

Chapter 5

171

feature exists to help the user make the right choice and ensure data integrity within the
database.

In the following example, the fix routine will set the POST variable to 0 if the input value
was 1.

function fixupClassAttributeHTTPInput(&$http, $base, &$classAttribute
)
{

$defaultName = $base . "_NewDatatype_" .
$classAttribute->attribute('id');

if ($http->hasPostVariable($defaultName))
{

$defaultValue = $http->postVariable($defaultName);
if ($defaultValue == "1")
{

$http->setPostVariable($defaultName, "0");
}

}
}

Working with Object Attributes
Object attributes work in a very similar manner to class attributes and therefore follow
the same reasoning. Instead of repeating examples that are almost identical to class
attribute examples, the object attribute APIs are presented for use in your own functions:

function validateObjectAttributeHTTPInput(&$http, $base,
&$contentObjectAttribute)

function fetchObjectAttributeHTTPInput(&$http, $base,
&$contentObjectAttribute)

function storeObjectAttribute(&$contentObjectattribute)

function fixupObjectAttributeHTTPInput(&$http, $base,
&$contentObjectAttribute)

The $base variable is defined as ContentObjectAttribute within the context of content
object attributes.

One of the main differences between class and object attributes is in the use of database
columns. With class attributes, there is a wide range of columns the user can use to
store various defaults and current states, whereas the content object attributes columns
store the values that will be displayed as part of a web page.

Other Datatype Functions
Apart from working with class and object attributes, the datatype can implement other
API functions that inform the system what this datatype is able to do.

• isIndexable(): Returns a boolean value to indicate whether the values of
this datatype should be used as search data:

Extending eZ publish

172

function isIndexable()
{

return true;
}

• isInformationCollector(): Returns a boolean value to indicate that the
datatype should be used as an information collector. If the boolean returns
true, this adds a checkbox in the administration class edit view to allow the
user to choose whether the datatype acts as an information collector. A value
of false prevents the checkbox from being shown.
function isInformationCollector()
{

return true;
}

• title(): Selects which part of the datatype to use for the title of
the datatype. This gives the datatype its name.
function title(&$contentObjectAttribute)
{

return $contentObjectAttribute->attribute('data_text');
}

• metaData(): Selects which text to use when storing search data.
function metaData(&$contentObjectAttribute)
{

return $contentObjectAttribute->attribute('data_text');
}

Template Design
Earlier it was stated that input tags within web forms need the correct name for the
datatype, otherwise the system will not recognize the input. Within the context of a class
or object attribute, it is possible to define the name of the input tag in a dynamic manner.

extension/datatypeExtension/design/standard/templates/class/datatype/
edit/newDatatype.tpl

{default name=concat("ContentClass_NewDatatype_",
$class_attribute.id)

value=$class_attribute.data_text1}
<input type="text" name="{$name}" value="{$value|wash}" size="30"
maxlength="60" />
{/default}

Class edit templates have the variable $class_attribute available:
extension/datatypeExtension/design/standard/templates/content/datatyp
e/edit/newDatatype.tpl

{default
name=concat("ContentObjectAttribute_NewDatatype_data_text_",

$attribute.id) value=$attribute.data_text}

Chapter 5

173

<input type="text" name="{$name}" value="{$value|wash(xhtml)}"
size="70" />

{/default}

Content object attributes, like class attributes, have the variable $attribute available to
templates:

extension/datatypeExtension/design/standard/templates/content/datatyp
e/view/newDatatype.tpl
{$attribute.data_text|wash(xhtml)}

This view example is very simple and displays only the textual string from the database
value. This value is washed before being rendered in case the string contains strange
values for the browser.

Complex Datatypes
Some datatypes, such as the object relation list and XML data field, are complex and
require further explanation. All complex datatypes also use the datatype API to provide
the connection with the system, but beyond this, they use complex data structures to
achieve their purpose.

In the next chapter, there will be an example of a complex datatype used for an e-
commerce system, the category datatype.

Template Operators
Template operators act like program functions; they take parameters and return a single
value. Thankfully, that single value may be an array, which allows you to return more
than one value!

Template operators can be handled like ordinary extensions, but in fact are not treated
like other extensions by eZ. There is no specific directory that eZ looks for when a
template directory is declared. However, this section will present examples of using
template operators within the extension environment to maintain consistency.

Adding a PHP Command
As of eZ publish 3.2, the ability to assign a simple PHP command as a template operator
has been made available. In most cases, this allows the use of a PHP command through to
the template level. It is activated by the declaration of the operator within the
template.ini configuration file.

File: settings/template.ini
[PHP]
PHPOperatorList[]

Extending eZ publish

174

PHPOperatorList[upcase]=strtoupper

In this example, the PHP function strtoupper() is referenced using the upcase()
template operator. To add your own command, a new item must be added to the
PHPOperatorList configuration array. For example:

PHPOperatorList[downcase]=strtolower

When active, such operators work as normal; for example, {"my string"|upcase}
produces "MY STRING".

There is one limitation to remember with eZ publish 3.2: the operator will not work as
expected with more than one parameter. No parameters or just one will be fine; others
will be ignored. You must therefore be careful when selecting the PHP operator you wish
to use. If you require more than one parameter in your operator then keep reading and
learn how to build your own.

The Template Operator Wizard
The template operator wizard allows you to create a generic PHP file that can be further
customized to create the required operator. This wizard is part of the RAD tools found
within the Set up section of the administration site, at
http://<admin>/setup/templateoperator.

The operation of the template operator wizard is the same as for the datatype.

1. A welcome screen provides an introduction to operator templates.
2. You are asked for the name of the operator. This should be something intuitive,

for it will be used in your templates. You are also asked whether the operator
should handle input, provide output, and handle parameters:

Chapter 5

175

3. Based on your responses in the previous screen, some information in this
screen is pre-filled. Note that your operator name is now part of the PHP
class name. Make sure you do not put spaces in your operator, otherwise
PHP will complain.

4. Once finished, click the Download button to save your PHP file.

The wizard creates a file similar in function to the one created by the datatype wizard.
When the download button is clicked, the generic operator file
(template<name>operator.php) is generated, where <name> is the name given to the
operator. As earlier, further coding of the operator including its setup, is left to the user.
Essentially, the wizard only creates the generic template operator file, and even with the
help of the operator wizard, much of the hard work for building an operator must still be
carried out.

Extending eZ publish

176

Writing an Operator
Writing your own operator gives the freedom to implement any functionality you
need. As mentioned earlier, operators act like program functions by accepting
parameters and returning a single value.

Registering the Operator
The site.ini file contains a setting that informs eZ about the location of template
operators. When the system looks for operators, it first looks in system directories
for a file called eztemplateautoload.php. This file contains the names of the
operators that can be used. For example:

File: settings/site.ini
[TemplateSettings]
AutoloadPath=lib/eztemplate/classes/kernel/common/

It is good coding practice not to add operators to existing files, and instead to create a
new eztemplateautoload.php file within the extension area.

To activate this, the configuration file should be modified to include the new
path, as follows:

settings/site.ini

[TemplateSettings]
AutoloadPath=lib/eztemplate/classes/kernel/common/extension/operatorE
xtension/

eZ now expects the file extension/operatorExtension/eztemplateautoload.php
to exist. Create this file and include within it the following code:

File: extension/operatorExtension/eztemplateautoload.php
<?php

$eZTemplateOperatorArray = array();

$eZTemplateOperatorArray[] = array('script' =>

'extension/operatorExtension/randomtemplateoperator.php',
'class' =>

'RandomTemplateOperator',

array('randomtemplateoperator'));

?>

'operator_names' =>

This code declares a new template operator named randomtemplateoperator. The
RandomTemplateOperator class within the file is used when a template invokes the
operator.

Chapter 5

177

Coding the Operator
Template operators are far simpler than other PHP classes described before. The
class does not need to inherit from any other class, and the constructor may
remain empty.

class RandomTemplateOperator
{

function RandomTemplateOperator()
{
}

}

Initializing the Operator
In order for eZ publish to register the operator, it must be declared. This is
accomplished by the operatorList() function:

function &operatorList()
{

return array('randomtemplateoperator');
}

The namedParameterList() function declares the parameters for the operator.
Each parameter has a type and can be optional. If the parameter is required and
not passed to the operator, eZ publish will log the problem.
For our template operator, this function is as follows:function namedParameterList()

{
return array('first_param' => array('type' => 'string','required' => false,

'default' => 'default
text')));
}

This declares the parameter as first_param and defines it as an optional string
with a default value.

Executing the Operator
The operator is executed by the modify() function using the information supplied
to it:

function modify(&$tpl, &$operatorName, &$operatorParameters,
&$rootNamespace,

&$currentNamespace, &$operatorValue,
&$namedParameters)
{

$firstParam = $namedParameters['first_param'];
switch ($operatorName)
{

case 'randomtemplateoperator':{
$operatorValue=rand(0, $firstParam);

Extending eZ publish

178

}
break;

}
}

In this instance, the simple rand() function is used along with the parameter, and
the $operatorValue variable is used to store the result. This is a simple example,
but you can use any PHP function to produce the results that you need.
It must be noted that there is no explicit return value because $operatorValue is
passed by reference, and any change to it will still exist once the function
completes execution.

Workflow Events and Triggers
Every CMS system requires a workflow engine to allow users to collaborate
effectively. eZ publish includes a workflow system with a selection of default
workflow events and triggers to activate events.
Common workflows include publishing and unpublishing articles. If, for
example, an author writes a document and publishes it, the workflow system will
not publish it until the editor has approved it. The editor would view the results
from the template event_ezapprove.tpl and possibly approve the document. If
approved, the event would perform the action of publishing the document.
This section discusses how to create and use your own workflow events and
triggers.

Workflow Settings
As with all extensions, the configuration file for workflows must declare to the
system that there is a new workflow within the extension.

File: extension/workflowextension/settings/workflow.ini.append
[EventSettings]
ExtensionDirectories[]= workflowExtension
AvailableEventTypes[]=event_newEvent

Included here is the declaration of the newevent event, which will be located
within:

extension/workflowextension/eventtypes/event/newevent/

If the workflow requires a template, then the design directory must also be
declared:

File: extension/workflowextension/settings/design.ini.append
[ExtensionSettings]
DesignExtensions[]=workflowExtension

Each event type must inherit from the eZWorkflowEventType workflow
parent class.

Chapter 5

179

As with datatypes, the name of the event is used to find the appropriate PHP file.
Each event name must end with type.php, for example:
extension/workflowextension/eventtypes/event/newevent/neweventtype.php
Template directories for workflow events are located in a different place. The
result directory is used instead of the regular view directory. With this
example, the template path would be:
extension/workflowextension/design/standard/templates/workflow/eventtype/
result/event_newevent.tpl

Workflow Events
The following example code contains the information required to create a basic
event class:

File:
extension/workflowextension/eventtypes/event/newevent/neweventtype.ph
p
define("EZ_WORKFLOW_TYPE_NEWEVENT", "newevent");
class newEventType extends eZWorkflowEventType
{

function newEventType()
{

$this->eZWorkflowEventType(EZ_WORKFLOW_TYPE_NEWEVENT, "None");
}
function execute(&$process, &$event) {}

}
eZWorkflowEventType::registerType(EZ_WORKFLOW_TYPE_NEWEVENT,
"neweventtype");

The constructor of the event has the same name as the class and calls the
constructor of the parent class by its name.
At the end of the event, it is registered with the eZ system as follows:

eZWorkflowEventType::registerType(EZ_WORKFLOW_TYPE_NEWEVENT,
"neweventtype");

The workflow event must implement the execute() function, which will decide
what to do about the workflow depending on its current state. For example:

function execute(&$process, &$event)
{

if ($http->hasPostVariable("FINISHED_WORKFLOW"))
{

return EZ_WORKFLOW_TYPE_STATUS_ACCEPTED;
}
else
{

Workflow Event Type Status Status Description

Extending eZ publish

180

$process->Template = array('templateName' => 'design:workflow/

eventtype/result/event_newevent.tpl',
'templateVars' =>

array('request_uri' =>

eZSys::requestUri()));
return EZ_WORKFLOW_TYPE_STATUS_FETCH_TEMPLATE_REPEAT;

}
}

The workflow in this example expects this function to return a value reflecting the
state of the workflow. If the workflow is finished, then the return value of
EZ_WORKFLOW_TYPE_STATUS_ACCEPTED should be used. Otherwise, the function loads
the template named event_newevent.tpl and indicates that the workflow should
repeat. For the user, each time the event is triggered, this event will repeat the
showing of the template until an exit condition is met allowing the template to
post the FINISHED_WORKFLOW POST variable.
This is a very simple example, but it illustrates that the nature of an event is to
examine whether this workflow is finished, or whether something else has still to
occur.
The following table presents the available status commands for the workflow.
When a new event type is created, it can use a single status or a combination to
determine what should occur next.

EZ_WORKFLOW_TYPE_STATUS_ACCEPTED The workflow event has finished.
EZ_WORKFLOW_TYPE_STATUS_WORKFLOW_DONE

EZ_WORKFLOW_TYPE_STATUS_REJECTED

EZ_WORKFLOW_TYPE_STATUS_WORKFLOW_
CANCELLED

EZ_WORKFLOW_TYPE_STATUS_DEFERRED_TO_
CRON
EZ_WORKFLOW_TYPE_STATUS_DEFERRED_TO_
CRON_REPEAT

EZ_WORKFLOW_TYPE_STATUS_FETCH_TEMPLATE
EZ_WORKFLOW_TYPE_STATUS_FETCH_TEMPLATE_
REPEAT

The workflow is rejected.

The workflow is cancelled.

The workflow is deferred to the cron
daemon.

The workflow points the user to a
template page and waits for the next
workflow call.

Chapter 5

181

EZ_WORKFLOW_TYPE_STATUS_REDIRECT
EZ_WORKFLOW_TYPE_STATUS_REDIRECT_REPEAT

The workflow redirects the user to
another view and waits for the next
workflow call.

EZ_WORKFLOW_TYPE_STATUS_NONE The default status, which does nothing
for now.

EZ_WORKFLOW_TYPE_STATUS_RUN_SUB_EVENT

EZ_WORKFLOW_TYPE_STATUS_WORKFLOW_RESET

The workflow runs another event if
there is one.

The workflow is reset for reuse.

Workflow Triggers
Workflow triggers enable an event type to run based on a user action. After the
creation of a workflow (http://<your-admin>/workflow/grouplist/) from
within the administration interface, a trigger should be assigned to it
(http://<your-
admin>/trigger/list/).
By default there are four triggers that come with eZ publish, each containing
a before and after connect type. A connect type is a method that allows a
workflow to be associated with a function. The following figure presents this
default list as shown by the administration interface:

For example, if you have declared your workflow to activate before content is
published, the workflow event code will be executed before content is published,

Workflow Event Type Status Status Description

Extending eZ publish

182

and vice versa when the connector is set to activate after the content is published.

Chapter 5

183

Defining Triggers
An additional file named operation_definition.php can be added to the module
directory to specify new triggers. Its composition is very similar to the file
function_definition.php, as shown:

$OperationList = array();
$OperationList['newtrigger'] =

array('name' => 'newtrigger',
'default_call_method' =>

array('include_file' =>
'extension/triggerExtension/modules/

newModule/newmoduleoperationcollection.php',
'class' => 'eZTriggerExtensionOperationCollection'),
'parameter_type' => 'standard',
'parameters' => array(array('name' => 'node_id',

'type' => 'integer',
'required' => true)
),

'keys' => array('node_id'),
'body' => array(array('type' => 'trigger',

'name' => 'pre_newtrigger',
'keys' => array('node_id')),

array('type' => 'method',
'name' => 'say-hello',
'frequency' => 'once',
'method' =>

'sayHello',)));

In this example, the trigger newtrigger is defined, and a single before connect
type declared as pre_newtrigger. There is no after connect type, so assigning a
workflow to this will not do anything.
The body item defines the order for the trigger to operate. The before connect type
will activate the pre_newtrigger and the workflow behind it. Once the workflow
completes, the methods within the body will run; in this example, this is the
sayHello() function. If there was a post_newtrigger designed, it would have
run the workflow assigned to the after connect type.
Functions in this example are defined within the
eztriggerextensionoperationcollection.php file.
The specified parameters are passed to every method and trigger defined within
the body. The keys are used to identify information during the workflow.
The final stage is to inform eZ publish about the new file. Unfortunately it does
not pick up this information automatically, requiring an addition
workflow.ini setting:

File: extension/triggerextension/settings/workflow.ini.append
[OperationSettings]
AvailableOperations=content_publish;content_read;shop_confirmorder;

shop_checkout;newModule_newtrigger

Extending eZ publish

184

This is similar to the original workflow.ini but with the mention of our new
trigger. eZ publish will look for the newModule module and then for the operations
file.
For further information on this aspect of workflows, read the documentation at:
http://pubsvn.ez.no/sdk/tutorials/view/workflows/

Actions
eZ publish relies upon the use of web forms to provide two-way communication
between a user and a database. Actions inform the system of the user's wishes
within a particular context and allow it respond appropriately. For example, there
are defined actions for events such as creating, editing, publishing, deleting,
adding items to shop baskets, and many more. An action extension is required
when you need to provide functionality that uses a different type of action.
At its simplest, an action is a redirection mechanism. For example, if the user
wishes to edit an object, the edit action will redirect the user to the edit module.
Besides simplifying the use of forms, implementing an action within your
extension also helps to remove coding dependencies. Your HTML will not
contain hard-coded URI paths to your module, and therefore, if the code within
the extension changes, you do not need to change your HTML.
The kernel/content/action.php kernel file defines the standard set of actions
and related responses. Any additions can be made within the actions subdirectory
of the extensions directory.
The new action list is registered by informing the system through the
content.ini.append.php configuration file:

File: extension/actionExtension/settings/content.ini.append.php
[ActionSettings]
ExtensionDirectories[]=actionExtension

eZ publish now expects the content_actionhandler.php file containing the
actions to exist, and it will be used for processing an action if the action is not
found within kernel/content/action.php. The path to the content handler file is
as follows:
extension/actionExtension/actions/content_actionhandler.php
Two example actions are:

File: extension/actionExtension/actions/content_actionhandler.php
function actionExtension_ContentActionHandler(&$module, &$http,
&$objectID)
{

if ($http->hasPostVariable("ActionDoSomething"))
{

echo "<p>Found ActionDoSomething</p>";
}

Chapter 5

185

else if ($http->hasPostVariable("ActionDoSomethingElse"))
{

echo "<p>Found ActionDoSomethingElse</p>";
}

return;
}

Both of these actions print out a simple line of text to indicate that an action is
being run.
The HTML required to activate this action would be:

<form method="post" method="post" action={"content/action"|ezurl}>
<input name="ActionDoSomething" type="submit" value="Do Something">
<input name="ActionDoSomethingElse" type="submit" value="Do

Something">
<input name="ContentObjectID" type="hidden" value="99">

</form>

The input tags are named after the actions we wish to use. The user can select
either action to invoke the correct routine.
It must be noted that for the action extension to activate a content object, a value
must included with the POST values; without these, the extension will fail to
activate.

Translations
Following on from all other extensions, translation extensions are activated by
including the presence of the new translation in the site.ini file:

File: extension/translationExtension/settings/site.ini.append.php
[RegionalSettings]
TranslationExtension[]=translationExtension

This setting informs eZ that the translation.ts translation file exists within the
following path:

extension/translationExtension/translations/

Note that we are assuming that the programs ezlupdate and Linquist have been
used to create the translation.ts file.
When the user performs a translation within a template, they must specify the
extension directory within which to activate translation. For example:

{"Translate this"|i18n("newExtension"}

There can only be a single translation file present for an extension.

Extending eZ publish

186

Overriding Translations
A translation extension has an additional benefit apart from providing new
translations. It is possible to override translations in the default eZ system with
new translations from your extension.
To do this, you use a translation file created from an existing locale, and edit it to
remove all entries apart from those you wish to override. Now use the Linquist
program to re-translate this file. If the translation is active within your extension,
your new values should now be used instead of the original values.

Notifications
eZ publish provides a configurable notification mechanism where users can be
informed that an event has occurred. Notification instances could be when
objects are updated or published, when workflows execute, and so on. Users can
choose to receive notifications in the form of a single e-mail or as a digest of
messages. Users can configure their notifications by browsing to http://<your-
site>/notifications/settings. This screen presents the current notification
settings and options to configure these.

Notification Events
The settings file settings/notification.ini controls which events a user can
configure, as shown:

File: settings/notification.ini
[NotificationEventTypeSettings]
RepositoryDirectories[]=kernel/classes/notification/event/
AvailableNotificationEventTypes[]=ezpublish
AvailableNotificationEventTypes[]=ezcurrenttime
AvailableNotificationEventTypes[]=ezcollaboration
[NotificationEventHandlerSettings]
RepositoryDirectories[]=kernel/classes/notification/handler/
AvailableNotificationEventTypes[]=ezgeneraldigest

rs that

AvailableNotificationEventTypes[]=ezcollaborationnotification
AvailableNotificationEventTypes[]=ezsubtree

This file defines the available notification event types and the event handle
will respond to an event.
A very simple event type is presented below:

define('EZ_NOTIFICATIONTYPESTRING_NEWNOTIFICATIONEVENT','newnotificationevent');
class NewNotificationEventType extends eZNotificationEventType
{ function NewNotificationEventType()

{

Extending eZ publish

186

$this->eZNotificationEventType(
EZ_NOTIFICATIONTYPESTRING_NEWNOTIFICATIONEVENT);

function initializeEvent(&$event, $params)
{

}
function eventContent(&$event)

return "hello";
}

eZNotificationEventType::register(
EZ_NOTIFICATIONTYPESTRING_NEWNOTIFICATIONEVENT,
'newnotificationeventtype');

In this example, the event type implements two important function interfaces,
initializeEvent() and eventContent(), used in other parts of the system. When
the event is first created, it will be initialized with content, and when the handler
runs, it will ask the event for this content. When anything causes an event, such as
an object being updated, the handler will execute the handle() function as shown:

class NewNotificationEventHandler extends eZNotificationEventHandler
{

....
function handle(&$event)
{

if ($event->attribute('event_type_string') ==
'newnotificationevent')

{
print "Event content is: ".$event->content();

}
}

....
}

Extensions can include new notifications. Shown below is an example
configuration file for notifications:

File: extension/newextension/settings/notification.ini.append
[NotificationEventTypeSettings]
ExtensionDirectories[]=notificationExtension
AvailableNotificationEventTypes[]= newnotificationevent

The system will now expect the event type to be located at:
extension/notificationExtension/notificationtypes/newnotificationevent/ne
wnotificationeventtype.php
Unfortunately, at the time of writing, there is no extension capability for event
handlers in eZ publish 3.2. The main configuration file (notification.ini)
must be used to specify new locations for event handlers if they are present in
your extension.

File: settings/notification.ini
[NotificationEventHandlerSettings]
RepositoryDirectories[]=kernel/classes/notification/handler/

Chapter 5

187

RepositoryDirectories[]=extension/notificationExtension/notificationh
andlers/
AvailableNotificationEventTypes[]=newnotificationevent

The system will now expect the event type to be located at:
extension/notificationExtension/notificationhandlers/newnotificationevent
/newnotificationeventhandler.php

Adding Collaborations
A collaboration is an extension of the notification system and provides
notifications from the workflow system. As shown below from the
settings/collaboration.ini file, the default option is to inform authorized
users when the approval notification runs:

File: settings/collaboration.ini
[HandlerSettings]
Extensions[]
Repositories[]=kernel/classes/collaborationhandlers
Active[]=ezapprove

This system works by utilizing collaboration handlers to notify subscribed users
when a workflow is used. Handlers can be written for each workflow event type,
but at present, the system only has one available for the ezapprove event.
Extensions can incorporate their own handler for new event types by declaring the
extension that the handler is part of:

File:
extension/collaborationExtension/settings/collaboration.ini.append
[HandlerSettings]
Extensions[]=newExtension
Active[]=newevent

The system will now expect the handler to be located at:
extension/collaborationExtension/collaboration/newevent/

neweventcollaborationhandler.php
It is left for the reader to implement their own handler.

SOAP Server
SOAP (Simple Object Access Protocol) is a protocol that enables you to
communicate with other systems and data sources using HTTP and XML without
having to know about the programming language or operating system.
SOAP works in a client-server pair to achieve its data transfer, with the client
being the requestor and the server taking the requests and passing back the
requested information. The good news is that eZ publish has an implementation of
both a client and server for SOAP communication. In this chapter, we will show

Extending eZ publish

188

how you can quickly set up a SOAP server and client to demonstrate SOAP
usage.
The example will do two things:

• Return a text string of our choice—in this case "example 1"
• Interact with eZ publish to return system information

To work with this example you will need a copy of the latest eZ publish installed. You
need to ensure that you can call both soapclient.php and soapserver.php. If you are
using virtual named hosts, you will need to set up two new URLs:

soapserver.example.com
soapclient.example.com

If you prefer to use http://localhost set up for this example, you will need to include the
name of the PHP file you are running in the URL. We have included the VirtualHost
setup as it is the one recommended by eZ.

This should be set up to point at soapserver.php and soapclient.php respectively.
Your Apache setup for the SOAP server may look something like:

<VirtualHost *:80>
<Directory /path/to/files>

Options FollowSymLinks Indexes ExecCGI
AllowOverride None

</Directory>
RewriteEngine On
RewriteRule !\.(gif|css|jpg|png|ico|js)$

/path/to/files/soapserver.php
DocumentRoot /path/to/files
ServerName soapserver.example.com

</VirtualHost>

Once you have set up your Apache configuration, you are ready to add the code
for the server in soapserver.php.
This first section includes routines that we need to work with in the example and creates
a new SOAP server object that will wait for incoming SOAP requests:

<?php
// Include the eZ soap server library
include_once("lib/ezsoap/classes/ezsoapserver.php");
include_once("lib/ezutils/classes/ezsys.php");
// Create a new server object
$server = new eZSOAPServer();

We now register the function that needs to be exposed and made available. In this
example, we have two, exampleName and systemInfo, that need to be registered.

// Register functions
$server->registerFunction("exampleName");
$server->registerFunction("systemInfo", array("infoType" => "integer"
));

We now process the incoming request using processRequest, which takes
the incoming POST variables and checks for the function that needs to be

Chapter 5

189

called.

190

190

Extending eZ publish

Extending eZ publish

$server->processRequest();

We have two functions in this example; the first is a simple return of a string:
// Example version name
function exampleName($noFiles)
{

$return = "example 1";
settype($return, "string");
return $return;

}

The second is a routine that takes the parameter passed by the SOAP client and
returns the required information. In this example, the SOAP client will be
requesting the operating system and hostname for the eZ publish server. Most of
the example is basic PHP except the settype() function. This enables you to set
the type of the data you are passing.

// System information
function systemInfo ($infoType)
{

switch ($infoType)
{

case "os":
{

$return = eZSys::osType();
} break;

case "hostname":
{

$return = eZSys::hostname();
} break;

}

settype($return, "string");
return $return;

}
?>

As of eZ publish v 3.3, the following datatypes are implemented for passing data via
SOAP:

• String
• Integer
• Float
• Boolean
• base64
• Array
• SOAPStruct

Now that the server is created, we need to create the client that will communicate
with the server. The client in this example is called soapclient.php.

Chapter 5

Chapter 5

191

191

The following table gives an outline of the major functions required for the SOAP
client connectivity:

eZSOAPClient() Prepares the SOAP client.

eZSOAPRequest() Prepares the request object ready for parameters.

addParameter() Fills the object with the request information.

send() Sends the request correctly formatted in XML over
HTTP to the SOAP server. The response from this
request is then placed in the $response variable for
you to query.

IsFault() Checks to see if an error occurred in the call.

As before, the first part of the code includes libraries that will be required; in this
case, the SOAP client and request. The SOAP client is also created here with the
location of the SOAP server we wish to call: in this case,
soapserver.example.com.

<?php
// Include the eZ soap client libraries
include_once("lib/ezsoap/classes/ezsoapclient.php");
include_once("lib/ezsoap/classes/ezsoaprequest.php");
// Create a new client object
$client = new eZSOAPClient("soapserver.example.com", "/");

?>

The first client example will call the exampleName() SOAP server function. This is
actioned by first creating a request object that will handle the request. The request
string is then placed in $request:

<h2> First SOAP example </h2>
<?php

// Create a new request to find the number of files
$request = new eZSOAPRequest("exampleName",

"http://soapserver.example.com");

The created request is then sent to the SOAP server:
// Send the request to the server and fetch the response
$response =& $client->send($request);

Code Description

192

Extending eZ publish

Extending eZ publish

192

Now $response contains the response from the SOAP server, and it is checked to
ensure that a fault has not occurred. If all is OK, then the response example1 is
displayed:

// Check for SOAP fault
if ($response->isFault())
{

// Print the SOAP fault informationt
print("SOAP fault: " . $response->faultCode(). " - " .

$response->faultString() . "");
}
else
{

// If everything is ok, print the result
print("Example name is : " . $response->value()
);

}
?>

The second example builds on the first by passing a parameter to the SOAP server
requesting information. You can change the returned information by changing the
value of $infoType from os to hostname.

<h2> Second SOAP example </h2>
<?php
// Create a new requet to list files
$request = new eZSOAPRequest("systemInfo",

"http://soapserver.int.visionwt.com");
// Add parameters
$infoType = "os";
$request->addParameter("infoType", $infoType);
// Send the request to the server and fetch the response
$response =& $client->send($request);
// Check for SOAP fault
if ($response->isFault())
{

// Print the SOAP fault information
print("SOAP fault: " . $response->faultCode(). " - " .

$response->faultString() . "");
}
else
{

// If everything is ok, print the result
print("System information : " . $response->value());

}
?>

To run these routines, you will need to open a browser and point it at the location
of your files. If you are using virtual hostnames for both server and client, you
will need to call soapclient.example.com.
If all has gone well, then your SOAP server and client should be able to
communicate. Of course, the eZ publish libraries protect you from working with
raw XML. For completeness, here are two examples that show the request from
the client and the response from the server. As you can see, the libraries are doing
a lot of the hard work for you.

Chapter 5

Chapter 5

193

193

Client XML request to server
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body xmlns:req="http://www.example.com">
<req:exampleName />

</SOAP-ENV:Body>
</SOAP-ENV:Envelope><?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body xmlns:req="http://www.example.com">
<req:systemInfo>

<infoType xsi:type="xsd:string">os</infoType>
</req:systemInfo>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

XML response from server
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<resp:exampleNameResponse xmlns:resp=" http://www.example.com ">

<return xsi:type="xsd:string">example 1</return>
</resp:exampleNameResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope><?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<resp:systemInfoResponse xmlns:resp=" http://www.example.com ">

<return xsi:type="xsd:string">unix</return>
</resp:systemInfoResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this example, we have demonstrated that with a few lines of code you are able
to create the SOAP client and server. You should be able to build on this to
interrogate other functions within eZ publish. It is advisable to review the security
arrangements of the SOAP server to ensure that the SOAP server does not provide
a back door into system functions. For this reason, eZ publish has implemented a
username/password system into the SOAP server.

Extending eZ publish

Extending eZ publish

194

194

In Chapter 7, we will discuss some of the ways in which you can use SOAP to
bridge to other data stores in a real-world example.

RSS (Really Simple Syndication)
RSS (Really Simple Syndication) is a technology that enables the sharing of
content from one server to another. You could say that this sounds like SOAP.
This is true; there are similarities between the two technologies. However, RSS
has been designed to fulfil a particular need whereas SOAP is more of a general-
purpose protocol. At the time of writing, eZ publish v3.3 is in beta stage and has a
full implementation of RSS 2.0. We will use this for our discussion.
The benefit of using an RSS import feed is that you can import the information
directly into an article or other eZ publish class of your choice. No additional
coding is required to implement this type of system using the eZ SOAP interface.
This means that you can update the feed once at night via a cron job and that
information will be available for your site visitors. This is a benefit when you
cannot guarantee that the external RSS server will be available when visitors view
your site.
RSS feeds are used to give freshness to a site and help generate an element of
"stickiness". This can be used in the traditional news format, where you get the
RSS feeds from a news provider, such as The Register, allowing your site to
benefit from the latest information and give it a fresh feel.

Chapter 5

Chapter 5

195

195

RSS is now simpler to set up via an RSS admin page in the Set up menu. This
enables you to create RSS 1.0 and RSS 2.0 exports from your site by selecting the
items you want to be shared. This means you can enable single or multiple RSS
exports without writing a single line of code.

196

Extending eZ publish

Extending eZ publish

196

The same process is followed for RSS imports, where you can choose the files
you want to import from the admin interface. This means you can import news
from an RSS feed directly to your news section. In this example, we have chosen
to take the RSS feed from The Register news feed from
http://www.theregister.co.uk/feeds/latest.rdf.

Chapter 5

Chapter 5

197

197

A growing use of RSS is in the area of content syndication, where it is used to
distribute information around an organization. One example of this would be
when you have both an Intranet and Internet server and want to distribute
information between the two. You could use the RSS protocol on the Intranet
server to pull relevant articles off the Internet server. The Internet server can use
the RSS export features that are configured to serve RSS feeds on a regular basis,
thereby preventing your editors needing to enter the information on both servers.
In some large organizations, this can represent a reasonable cost saving in time
and effort for editors.

198Extending eZ publish

Extending eZ publish

198

Data Interoperability
The import and export of information is a key component of any CMS. With its present
feature set and extensibility, eZ publish is an attractive package for centralizing
information from other systems and for providing it to others.

Version 3.3 of eZ publish has started to provide improved import/export
functionality, allowing the system to interoperate with other systems in a much
easier fashion. In addition to SOAP and RSS mentioned within this chapter, the
new functionality includes class and template import/export and PDF export.
Until now, it has been left to program developers to write additional code to move
information around.
This section will discuss some of the issues regarding importing, and give an
example of the code required to import information into an eZ publish object.
The export of information is not covered explicitly because the same methods and
eZ APIs are used for this. In addition, the previous sections on SOAP and RSS
have covered examples of data export in detail.

Importing Information
The new package format, introduced in eZ publish 3.2 and improved upon in 3.3,
allows for classes and templates to be imported and exported. Unfortunately,
content objects are not yet dealt with, but it is relatively simple to add your own
using the eZ publish API.
Importing information concerns setting values of attributes with the information
you want to import. For example, if you want to import text from a document,
you will need to import that text into the body attribute of an article. If you want
to store category information, then several folder-content objects will be required,
one for each category.
The following example will show how to create a simple folder-content object
and then publish it.

Publishing a Folder Object
This example uses parts of the complete file import.php that is present in the
download code for this chapter.
As with the administration interface, content objects are created from classes at
the code level. The following code will retrieve a class instance given a class
identifier as the parameter:

$contentClassID=1;

199Chapter 5

Chapter 5

199

$class =& eZContentClass::fetch($contentClassID);

The class identifier value can be found in the administration interface; for
example, a folder is always assigned the number 1 and an article is assigned the
number 2. To create a folder, assign the value of 1 to the $contentClassID
variable.

$sectionID=1;
$userID=14;

$contentObject =& $class->instantiate($userID, $sectionID);

Then, we create a content object from the class by instantiating it. This builds an
unpublished, empty content object. eZ attaches an object to a node and positions it
within a tree structure, which can be coded as follows:

$nodeAssignment =
& eZNodeAssignment::create(array(

'contentobject_id' => $contentObject-
>attribute('id'),

>attribute(

),

'contentobject_version' => $contentObject-

'current_version'

'parent_node' => 2,
'sort_field' => 2,
'sort_order' => 0,
'is_main' => 1));

$nodeAssignment->store();

This code inserts the object into a node and places it within the root directory of
the administration interface. The parent_node array key identifies the parent
nodes, and therefore the object's location within the tree; in this example, node 2
is the root node.
With the content object created and assigned to a node, its version information
should be updated. This allows eZ to display status information about this node.

$contentObjectVersion =& $contentObject->version($contentObject-
>attribute(

'current_version')
);
$contentObjectVersion->setAttribute('status', EZ_VERSION_STATUS_DRAFT
);
$contentObjectVersion->store();

The current version of the content object is retrieved and the status is set as a
draft. This status will be changed once the object is published.
The content object is now ready for information to be entered into its attributes.
When the object is created through the class instantiation function call, each
attribute is also created. At the moment these are empty:

200

Extending eZ publish

Extending eZ publish

200

$contentObjectAttributes =& $contentObjectVersion-
>contentObjectAttributes();

First, you need to retrieve a list of attributes from the current version of the object:

foreach (array_keys($contentObjectAttributes) as $key)
{

it.

$contentObjectAttribute =& $contentObjectAttributes[$key];
$contentClassAttribute =& $contentObjectAttribute->

contentClassAttribute();

// Each attribute has an attribute called 'name' that identifies

if ($contentClassAttribute->attribute("name") == "Name")
{

$contentObjectAttribute->setAttribute("data_text", "My new
folder");

$contentObjectAttribute->store();
}

}

If you know the precise attribute you need, you can reference it directly as you
would with any PHP array. However, for illustration purposes, this code loops
through all attributes looking for the single attribute called Name. This attribute is
a simple string, and the text My new folder is assigned to it. Other attributes will
require additional code to assign information.
Note that it is at this point that the import has occurred. The text assigned could
easily be the result of a function call to another routine, which has the information
ready to be stored.
The final stage is to publish the object, which is done by the following function
call:

$operationResult = eZOperationHandler::execute('content', 'publish',
array('object_id' => $contentObject-

>attribute('id'),

));

'version' => $contentObject->
attribute('current_version')

Login Handlers
You already use a login handler for eZ publish, the default one. This enables you
to gain access to your system and its content and features. However, there are
times when you may need to integrate your system with an environment that
already has a method of storing user details. If this is the case, you need to use a
different login handler. This section will demonstrate the current options available
to you.
Custom login handlers enable you to state that users are being managed
externally. In addition, each user of a system will need to be defined within the
eZ

201Chapter 5

You will need to open your firewall to allow the chosen LDAP communication
port; by default this is port 389. PHP will need to have LDAP enabled for this
method to work.

Chapter 5

201

publish system to enable access to the eZ publish system. This method allows you
to manage the updates and access status of the user.

LDAP (Lightweight Directory Access Protocol)
LDAP has been supported in eZ publish since version 3.2 and incorporates the
ability to customize the login handler such that it can use a LDAP server instead
of the information stored with the eZ publish SQL database.
By default, the login handler is set to the default or standard handler in site.ini:

LoginHandler[]=standard

To configure your system to use the login information in the ldap.ini
override file, you should change this to:

LoginHandler[]=LDAP

Sometimes, though, you may also want to allow the standard eZ publish logins to
work for users such as the administrator. To enable this, list both login methods
in the order you require them to be accessed in:

LoginHandler[]=standard
LoginHandler[]=LDAP

You will also need to override ldap.ini. You will need to contact the LDAP
administrator to get the information required to ensure that your system connects
to the LDAP system correctly. Once this information is set, the system will handle
logins by using the kernel/classes/datatypes/ezuser/ezldapuser.php file.
eZ publish integrates with LDAP by matching already existing user IDs in both
your local eZ publish system and the remote LDAP server. This information is
then updated from the LDAP server whenever the cron job
/cronjobs/ldapusermange.php is executed.
For the LDAP updates to work, initially you will need to add the user
information to both eZ publish and LDAP systems. Once this is completed, the
cron job will update the first name, last name, e-mail, user group, password, and
the enabled status from the LDAP source.
This means the LDAP handler removes the need to manage users' details on the
eZ publish system on a day-to-day basis, but you will still need to add new users
to both systems.

?ini charset="iso-8859-1"?

202

Extending eZ publish

Extending eZ publish

202

eZ publish configuration file for connection to LDAP server
#
[LDAPSettings]
Set to true if use LDAP server
LDAPEnabled=true
LDAP host
LDAPServer=
Port nr for LDAP, default is 389
LDAPPort=389
Specifies the base DN for the directory.
LDAPBaseDn=
Could be sub, one, base.
LDAPSearchScope=sub
Use the equla sign to replace "=" when specify LDAPBaseDn or
LDAPSearchFilters
LDAPEqualSign=--
Add extra search requirment. Uncomment it if you don't need
it. # Example LDAPSearchFilters[]=objectClass--inetOrgPerson
LDAPSearchFilters[]
LDAP attribute for login. Normally, uid
LDAPLoginAttribute=uid
Could be id or name
LDAPUserGroupType=id
Default place to store LDAP users. Could be content object id or
group name for LDAP user group,
depends on LDAPUserGroupType.
LDAPUserGroup=
LDAP attribute type for user group. Could be name or id
LDAPUserGroupAttributeType=name
LDAP attribute for user group. For example, employeetype. If
specified, LDAP users
will be saved under the same group as in LDAP server.
LDAPUserGroupAttribute=employeetype
LDAP attribute for First name. Normally, givenname
LDAPFirstNameAttribute=givenname
LDAP attribute for Last name. Normally, sn
LDAPLastNameAttribute=sn
LDAP attribute for e-mail. Normally, mail
LDAPEmailAttribute=mail

Text File Login
With the introduction of the login handler, you can have other methods of
authentication; one of the provided methods is to verify login by using a text file.
This is essentially the same as LDAP, but it uses a file to store login information,
and the eztextfileuser.php file as its login handler.
The layout for the text file handler can be found in textfile.ini in the settings
directory.

Chapter 5

203

203Chapter 5

Summary
It is clear that eZ publish is a complex system with myriad ways to extend it. We
have discussed many of these situations and given examples of how to begin
interaction with eZ publish on each of these levels. A very important part of this
discussion was to identify and separate each extension area to enable you, the
developer, to use the correct tools and extensions to build your application.
In the next chapter, we will move on to practical examples of extending eZ
publish using the methods introduced in this chapter.

Extending eZ publish

204

204

Extending eZ publish

6
Extension Development

In this chapter, we will look at some examples and concepts that put the contents of the
previous chapter into real-world contexts as we tackle the general problem of extension
development.

Two extensions are covered—one is a new e-commerce module for working with the
WorldPay payment engine, which will enable you to implement payment solutions from
your eZ publish site. The other is a category datatype—this helps to resolve the problem
of category lists in articles or products.

Finally, we will discuss integrating external applications with eZ publish, and the
problems and choices that you may have to deal with.

We begin with a brief summary of extension development practices in eZ publish.

Extension Development Practices
As with any development project, when creating an extension it is a good idea to have a
clear idea of what you want to achieve, so get out the pen and pad and start writing!

Designing Your Extension
The development issues can be broken down into the following areas:

• Goals and targets of the extension
• Preparing to test your extension
• Timescales
• Anticipating the learning curve

Extension Development

Bear in mind that around major eZ publish release times, free forum support can
be affected because eZ staff and developers are working on the latest release.

204

Goals and Targets of the Extension
You need to define what you want to achieve by identifying key areas that are required
for development. This allows you to understand the problem and build an outline of how
you intend to resolve it.

Having a good understanding of the goals of a project can help prevent later problems,
such as scope creep, which cost time and money in a project. This step lets you plan out
the individual elements of the extension and understand general issues related to it.

Preparing to Test Your Extension
Take the listed goals and from them build a brief plan of how each element is to be
tested. At the end of the project, this will help you confirm that you have created
exactly what you needed.

Timescales
Identifying time limits and time issues early on paper focuses the mind and helps you
figure out the 'nice to have' features as opposed to the mandatory elements of your
extension.

Key elements are client deadlines, the time available for development, and eZ publish
release schedules. These schedules, if late, could force you to deliver a project using beta
software, so always try to keep a month's buffer after the release date if you plan to roll
out an extension, as most first releases contain at least some bugs.

Bear in mind that you will be writing an extension with the eZ publish libraries, so you
will need to add a little extra time in the first couple of projects so you can learn the
libraries and the various integration methods.

Anticipate the Learning Curve
If you cannot resolve all the problems yourself, you may need help from others. Support
from the forums can take a while if you are not paying for it. Even in the basic paid
support package, issues normally take three days to solve, so plan carefully based on
your needs.

Software Requirements
If you use a feature in your extension that is only available in the latest version of eZ
publish, but the project uses a previous version, you will probably experience a problem.

Chapter 6

205

Remember that not all hosting environments support the latest version of PHP and
MySQL; always ensure that your development environment is the same as your
deployment platform.

It is always a good idea to test all new features on your deployment platform early, as this
prevents problems during testing.

Development Tools
Various tools can be used in the development of an extension. CVS (Code Versioning
System) and SVN (Software Version Number) are invaluable in tracking your code
changes and have been incorporated into many integrated development environments.
Some recommended open source IDEs that work well with eZ publish are Eclipse
(www.eclipse.org) and Quanta Plus (http://quanta.sourceforge.net).

If these two IDEs are not to your liking, it is worthwhile spending time looking for a tool
you feel comfortable with that works with HTML, PHP, SQL, and eZ publish template
files, as you will be regularly changing all these file types.

Sharing with the Community
eZ publish has a dual license that enables you to share or not share depending on whether
you pay eZ publish a development fee.

The eZ publish dual license gives you two options. If you are not paying eZ systems for a
developer license, you need to make your code public. See a copy of this on
http://www.gnu.org/copyleft/gpl.html. This means that any extensions you write
that use eZ publish libraries or functions must themselves become GPL. This involves
adding the GPL license information to each of the programs you wish to share. There are
several ways for sharing your extension:

• eZ publish contributions
• Public SVN
• SourceForge

The recommended choice is to contribute via the eZ publish site and add your
contribution (http://ez.no/community/contributions). We suggest you upload your
contribution here first. Once it is added, you can let people know by posting a message to
the developer forum saying that you have written an extension and providing a brief
description. Although this is not strictly necessary, it does start a thread for people to
discuss the extension. You will generally get good feedback from the community and
someone could help develop your contribution further.

Public SVN is a new location set up to enable community projects to be hosted centrally
in a change-controlled format (http://pubsvn.ez.no/community-development.html).
At the time of writing, this is a very new service, so try to visit the website.

Extension Development

206

SourceForge has many open source projects available for download and contribution and
is a good choice if you want to share and actively develop your extension without hosting
it yourself. However, move to SourceForge only after reviewing the first two options, so
that eZ publish developers can have a central source for all extensions.

Upgrading eZ publish
Future major releases of eZ publish could well take advantage of the new features
available in forthcoming versions of PHP and MySQL, so this is something worth
bearing in mind.

It is worth making a note of the major requirements of your extension so that you can
quickly check for any functionality changes with any new release of eZ publish.

When these updates do occur, there will be guidelines from eZ systems and from the
community to help developers.

Documentation
If you have ever gone back to review a project or extension after a period and not been
able to decipher how it works, or it has taken you a long time to figure out where a
problem is, then you are a prime candidate for documentation. This subject usually
evokes the greatest procrastination from developers! Unfortunately, documentation is
essential and you're going to have to do it. Some key areas for documentation include:

• Overview of the goals of the extension
• Requirements
• Installation instructions
• eZ publish version
• PHP version
• Database requirements and setup

A documentation tool has been integrated into eZ publish to help you document your
code. It is called Doxygen (http://doxygen.org). This is one of the many documenting
tools that are freely available and helps take the tedium out of documenting.

Creating the WorldPay Extension
In the previous chapter, we discussed all the elements of an extension. In this section we
will take these ideas and concepts and apply them to something virtually every e-
commerce site needs—a payment engine.

This example uses the WorldPay Direct account (http://www.worldpay.co.uk/sme/)
and will communicate with the WorldPay service using the WorldPay Junior integration
service (http://support.worldpay.com/integrations/jnr/index.html). Most

207

Directory Contents of the Directory

Chapter 6

payment services are similar so this forms a good base for all payment engines. Once you
have looked through the code you will be able to see where it can be modified to work
with other payment services. The WorldPay module requires that we use both events and
modules together to get the payment engine to work, as we need to integrate with the
checkout workflow from both a user and a remote-call perspective.

Creating the Environment
If you are recreating this example on your own machine, it is assumed that you have eZ
publish up and running on it. This step involves installing the latest eZ publish system,
running the setup, and following the wizard so you can see the site and administration
screens correctly. This is covered in Chapter 2 and will not be duplicated here.

Think of an extension as an application that uses the eZ publish environment, and for it
be effective, you should have all the files you need within your project directory. This
will ensure extension mobility—you will be able to take the written code and move it to
another project easily. If you take the directory structure as the starting point, your
directory will look like this:

The following table contains an example of the content required for each directory:

design All stylesheets, JavaScript, images, and eZ publish templates.

doc All the documentation required for someone to install and use
the extension.

eventtypes New custom events that you are creating.

modules New modules that the project uses.

settings Any new ini settings required by your project.

update Any updates to eZ publish that are required. This includes database
and code patches.

208

If you do not see the Worldpay item in the list, verify that you have declared
Worldpay as an extension in the site.ini files.

Extension Development

The main eZ publish environment needs to know that an extension is available and
should be made available to the site. For this, change the site.ini.append.php
file. Add the following settings to activate the extension:

File: settings/override/site.ini.append.php

[ExtensionSettings]
ExtensionDirectory=extension
ActiveExtensions[]=worldpay

This lets eZ publish know that you have an extension called worldpay that it needs to
know about. If you have ever used the ezdhtml extension for the online editor, you will
know that these settings are needed as you need to add similar commands for eZ publish
to see the editor.

eZ publish will now look into this directory for any overrides that the extension might
need.

Creating Workflow Events and Triggers
In the following example for a payment engine, we want the action to take place before
the checkout event has occurred and the items are all in the baskets ready for payment.
Before we can select a dropdown from the workflow list, a workflow needs to be created.

To create the Worldpay workflow:

1. Click on Workflows in the set-up menu. This will show you a list of existing
workflows. To this, add a new group called Worldpay.

2. Once this group has been created, click on the Worldpay group link to view
the available workflows. As this is a new group, there will be no
workflows, so you need to create one by selecting the New workflow button.

3. To name the workflow, add Worldpay to the Name field.
4. Select Event/Worldpay from the drop-down event list at the bottom of the

page and click the New button.

5. You do not need to enter a description for the event, so go ahead and click
Store to save the workflow.

In this extension, we are not using multiple languages, new datatypes, or actions,
so we do not need to include their directories.

Chapter 6

209

Now that the workflow event has been created, you need to come back to this screen by
selecting Setup | Triggers and select Worldpay next to shop | checkout | before.

6. Create the eventtype extension environment. As this workflow will be part of
a larger project, it will need to live somewhere. Create the extension
directory (if you don't already have one) in your project directory. Then
create a directory worldpay below it:

7. Create the Worldpay eventtype. The eventtypes directory contains the
program that gets executed when a trigger is activated. The name of the file
follows the format of nametype.php.

Overview
The Worldpay eventtype needs to take the current checkout information and create the
form screen that is required for input to the WorldPay system. This involves taking the
price and billing information from the basket and sending it to WorldPay as an HTML
form post.

Extension Development

210

PHP Implementation
Take a couple of moments to review the worldpaytype.php source file. As you can see,
there are various includes and definitions at the top, but the most important elements you
need have been stripped out and shown here:

<?php
define("EZ_WORKFLOW_TYPE_WORLDPAY_ID", "worldpay");
class WorldpayType extends eZWorkflowEventType
{

/*!
Constructor

*/
function WorldpayType()
{

$this->eZWorkflowEventType(EZ_WORKFLOW_TYPE_WORLDPAY_ID,
"Worldpay");

}
function execute(&$process, &$event)
{

......
}

}

You could just as well use a postgreSQL database, but this example has only
been tested on MySQL 4.0 and 4.1 (alpha).

Chapter 6

211

eZWorkflowEventType::registerType(EZ_WORKFLOW_TYPE_WORLDPAY_ID,
"worldpaytype");

?>

The WorldPay example is slightly more complicated than a normal event as it is called
two separate times—once by the customer when they click the checkout button and again
by the WorldPay servers in their callback routine that tells the eZ publish system that the
credit card has been accepted and the transaction is a success. As an extra check the
amount paid and other variables sent to WorldPay are also returned so the WorldPay
extension can confirm these details as well.

The new workflow routine does the following:

• Retrieves order information from the eZ basket or the HTTP POST.
• Uses the information retrieved from the previous bullet to interrogate the eZ

database to see if this order is new or old.
• If this requires a new order, creates an HTML form pre-filled with

information required by WorldPay for payment and processes workflow for
this event.

• If this is an existing order, checks whether the order has been approved by
the callback routine. If yes, the workflow is finalized and the order status
moved from 'in progress' to 'complete'.

In this example, there is an extra file called worldpaydb.php that handles all
communications with the persistent datastore, in this case a MySQL table. This is to
ensure that this module is consistent with the eZ publish object-orientated method of
database communication. It also ensures that all data manipulation functions are stored in
one place.

ini Settings
The WorldPay example has the standard set of overrides required for an extension to
work as discussed in previous chapters, but it also contains its own extension-specific ini
file (worldpay.ini.append.php) that stores information peculiar to this extension.

To enable callback within the WorldPay system, modify your WorldPay settings
in the CMS (WorldPay’s Customer Management System). Select the
configuration options page and enable Callback enabled and Use callback
response and add the URL to your site into the Callback URL:
www.example.com/worldpay/callback.

Extension Development

212

Problems
At the time of writing, there is a problem: the basket is cleared when the first checkout
routine is run. This is an issue if a customer does not complete the payment stage and
wants to return to their basket to continue shopping.

This problem occurs because the system uses the current session key for the operation
memento data key; this means that the basket will not be cleared upon checkout if the
operation is not continued from the browser session that added the items to the
basket. This is the case as the order is continued and completed from the WorldPay
servers.

A future fix for this would be to send the current session to the WorldPay server and
then get it back in the callback. When you get it back, you set it as the current session
using eZHTTPTool::getSessionKey() and run the operation as normal.

For now, the WorldPay routine uses an ini setting in site.ini that is required to
resolve this issue.

If you do not add this setting, then there is the problem with order clearing that enables
customers to add items to the basket after purchase, which will then appear in the order as
purchased. Not a very nice situation for the merchant!

[ShopSettings]
Whether to clear the basket on checkout or not
if disabled the basket will be cleared after the checkout is
complete
ClearBasketOnChEckout=enabled

WorldPay Module
Although modules are not necessary for some smaller projects, they are required for
doing anything extensive. Modules are powerful, and like eventtypes, they enable you to
interact with every part of eZ publish from templates to roles.

In this example, we will take the knowledge gained from the previous chapter and create
the callback feature for the WorldPay module. Callback is a well-used mechanism that
helps you ensure that your payment provider has approved the purchase and allows you
to check exactly what has been purchased. This is an added feature that helps prevent
fraud. Some payment mechanisms do not provide this feature and it is a simple matter
for a fraudulent user to change the amount required and get the goods at a reduced price.

Chapter 6

213

Both PayPal and WorldPay use this mechanism, but as this is a WorldPay module, we
will discuss how to enable this with WorldPay.

Creating the Module Extension Environment
As this module will be part of a larger project, it will need to live somewhere. So create
the extension directory (if you don't already have one) in your project directory. Then
create a directory called worldpay below it.

Creating the Module
This extension requires a page for WorldPay to call back to when the payment
transaction is finished. So, you need to define a page called callback so the WorldPay
servers can post information to www.myserver.com/worldpay/callback.

To create the callback page, the following files are required:

• Module definition file (module.php): This file informs the eZ publish system
what scripts are available in this module.
<?php

$Module = array("name" => "Worldpay",
"variable_params" => true,
"function" => array("script" =>
"callback.php"));

$ViewList = array();
?>

• Function collection file (worlpdayfunctioncollection.php): This is a
dummy file in the example, but normally it contains any functions that eZ
publish needs to know about.
<?php

// debug
include_once("lib/ezutils/classes/ezdebug.php");
// Order list
include_once("kernel/classes/ezorder.php"); are these

required?
include_once("kernel/classes/ezproductcollectionitem.php");
class WorldpayFunctionCollection
{

function WorldpayFunctionCollection()
{
}

}
?>

Extension Development

The callback.php file and workflow routine use additions to the standard
user class, so please read manual.txt in the extension for the latest
information before installation.

214

• Your module file (callback.php): This file contains the code that checks the
post from WorldPay and sends an HTML response, which WorldPay then
displays. This enables the end user to confirm that they have purchased
item(s) or tells them that an error has occurred and they need to speak to
customer service.

Throughout the module you will see eZDebug. This displays your debug messages if you
have DebugOutput=enabled in your site.ini. It is worth using instead of printf()
or other functions, as it will format the output and also display any variable you throw
at it.

As a general tip, to see what posted variables values are being sent to you, in this case by
the payment engine, you may find the following snippet useful:

#check calling parameters
$y="";
foreach ($_POST as $x)
{

$y=$y.", ".$x;
}
$tpl->setVariable("Params", $y);

You will need to pass this variable to callback.tpl so the result will be visible to you.

If you look at the source, you will see that the program starts by getting the variables
passed to it. This is handled by the eZHTTPTool eZ library routine, which is used to query
POST and GET variables. As shown in the following example, http is used to store
the HTTP variables, which are then sent to the functions for processing:

$ini =& eZINI::instance("worldpay.ini");
$http =& eZHTTPTool::instance();
$tpl =& templateInit();
$status=VWT_PAYMENT_FAILED;
if (!isWorldPayCall($ini, $http))

These variables are then passed to the check functions used for payment validation.

Note that the payment approved status ($status) is set to false at the beginning of

the
callback.php script and is only changed when all the checks have been completed and
the payment is shown to be acceptable.

We'll now look at some of the key functions in the extension that handle most of the
payment functionality:

• isWorldPayCall()

Chapter 6

215

• isAmountOK()
• isPaymentOK()

WorldPay has a range of servers that send responses, so a check needs to be made to
prove that the IP address comes from these servers. The IsWorldpayIPOK function
called from isWorldPayCall() uses the settings in the worldpay.ini.append.php file
to figure out the correct settings. You will need to check these with WorldPay and don't
forget to add your own development IP range here, else your routine will fail every time.
If you have debugging enabled, you will spot this problem early on. The other check
handled here is verifying that the installation ID is correct—this ensures that you are
working with the correct WorldPay installation. This is useful as the Junior service
consists of two installations and it is best not to get them mixed up.

The isAmountOK() function verifies that the payment approval matches the amount you
sent to the payment engine. This prevents people from falsifying the call from WorldPay
by changing the amount to a lower figure without your approval.

The problem with checking the price is that most of the time you will need to handle
more than one currency. This routine needs to:

• Check the exchange rate for the currency
• Convert it back to your site's pricing currency
• Ensure that the difference is within a defined limit

If the price difference is greater than the PriceDifference set in the
worldpay.ini.append.php file, the order will not be approved, but the money is still
taken from the credit card. In such a situation, it is likely that you will get a customer
service call from the customer, and you will need to resolve the situation manually.

This differential amount can be set by you in the worldpay.ini.append.php ini file as
follows:

#Price difference +/- allows when currency is converted
PriceDifference=1.00

The exchange rates used for this routine are available from WorldPay and if you have
access to a cron job, they can be retrieved and stored in an eZ publish directory using the
following routine:

>wget 'https://select.worldpay.com/wcc/info?op=rates&instId=99999'
-O /path/to/worldpay/module/xrate.ini.append.php

The isPaymentOK() function goes through the final checks in the module. It confirms
that the information stored earlier by the workflow eventtype matches the information
sent to you by the WorldPay servers. If the information is correct, the payment flag is set
to approved.

Extension Development

216

If the payment is deemed correct, the workflow needs to be marked as completed. This is
achieved by the following command that calls the workflow giving it the order ID from
the order. This will complete and clear the workflow from the system and create the
completed order information that is shown in the order list within the admin section of
the system:

$operationResult = eZOperationHandler::execute('shop', 'checkout',
array('order_id' => $order_id));

If the order is not approved or deemed incorrect, the module will return an error message
relating to the type of error. In this example an error is created after a customer hits
Cancel order in the WorldPay screens:

When the workflow runs, it marks the order as complete and fires off the order e-mails
you love if you run an online business! Finally, you need to let the customer know the
outcome of their transaction. This step is completed by sending a blank template
wp_pagelayout.tpl filled with the outcome and necessary details. WorldPay has a
surrounding menu structure so we need a new template file to ensure that just the
response is sent to WorldPay and not the menu and navigation:

$Result['pagelayout'] = 'wp_pagelayout.tpl';

Chapter 6

217

Reviewing the ini Settings
It is worth taking a moment to review the ini settings in the extension:

File Description

worldpay.ini.append.php Stores the password, installation settings, price
difference, and WorldPay server ranges

content.ini.append.php Contains the available extensions and datatypes

design.ini.append Specifies the design extensions used

layout.ini.append Specifies the page layout to be used in this
extension

module.ini.append Defines modules available in this extension

workflow.ini.append Lists the eventtypes used in this project

User Settings
The extension code uses a modified user class. To get the extension to work, you need to
make a couple of changes to the user class. The main change is using a matrix datatype
for storing the address, because you can never know how many lines an address will be,
especially if you consider country differences.

The worldpaytype.php file requires the user class to contain the correct attributes. These
are, in order:

Name Datatype
First name Text line

Last name Text line

User account User account

Company name Text line

Address Matrix

Telephone Number Text line

Country Country or Text Line

Extension Development

218

Once the class is changed, you need to ensure that the definition in worldpaytype.php is
set up. Here is an example:

File: eventtypes/event/worldpay/worldpay.php
define("VWT_FIRST_NAME", 0);
define("VWT_LAST_NAME", 1);
define("VWT_USER", 2);
define("VWT_COMPANY", 3);
define("VWT_ADDRESS", 4);
define("VWT_TEL", 5);
define("VWT_COUNTRY", 6);

Note that Country is an unpublished datatype but is based on the ezcountry datatype in
http://ez.no/community/contributions/datatypes/datatype_ezcountry. If you
do not want to use the Country datatype, you can use a text line for the country instead.

If you do not want to use the main user class and instead create a new class for shop
users, read the following online documentation:
http://ez.no/developer/ez_publish_3/documentation/incoming/

tutorial_using_userregister.

This document explains some of the issues surrounding users and registration.

Permissions
You need to give shop users access to the WorldPay extension via the roles
administration screen (http://www.example.com/role/list). This ensures that they
have access to the templates and PHP.

You also need to ensure that the WorldPay servers have permissions for callback. For this
you need to allow anonymous users access to the WorldPay extension.

Callback Testing
The one area that can be difficult to test is the callback element of the extension. This is
because you need a live URL for the WorldPay server to send back its response. For this
reason the wpcheck.html file is included to recreate the WorldPay server callback
HTTP POST.

You will need to set the URL to your test server and the Installation ID in the file. Then
for each test you carry out you will need to get the following information from your
checkout screen. Just remove setTimeout('document.worldpayForm.submit()',0);
from your event_worldpay.tpl and it should be a simple matter to cut and paste the
variable information into the wpcheck.html file to make it ready for use!

File: doc/wpcheck.html
<input type=hidden name="M_email" value="nospam@visionwt.com">
<input type=hidden name="M_PHPSESSID"

value="555rrc54442a048b6152444d38d8b">

219

Chapter 6

<input type=hidden name="M_USERID" value="147">
<input type=hidden name="M_ORDERCREATED" value="1067446530">

All you need to do now is run wpcheck.html from your browser once the checkout
workflow has been enabled and you have a quick and safe way of testing callback
without the risk of developing on a live URL.

Creating the Category Datatype
The need for a category datatype arose during the development of an e-commerce site
using the WorldPay module. In this project, each product belongs to a category that is
used for search results. The use of other datatypes such as enumerations and text lines
was considered but they have inherent problems. Existing datatypes require that category
name changes be made to the class. After publishing the change to the class, eZ publish
does not automatically update the affected objects with the new information—this must
be performed manually. With the e-commerce site, the number of products/objects was
(and still is) considerable and would have incurred a large amount of non-budgeted work
each time a category was altered.

The category datatype prevents this situation because the update of the category is moved
from the class to the object.

Category Datatype Design
This datatype addresses the main issue of allowing objects to add and remove categories
as they wish. The design of this datatype includes the use of a new SQL table and new
PHP classes that utilize eZ functions to communicate with the new table.

Setting Up the Extension Environment
The category datatype is actually a separate extension from WorldPay, but from the
systems point of view both extensions are active.

First we inform eZ publish that the extension is active, from the main configuration file:
File: settings/site.ini
[ExtensionSettings]
ActiveExtensions[]=category

Within the extension, the system must be told about the new datatype and the design
directory it uses. For the category include:

File: extension/category/settings/content.ini.append
[DataTypeSettings]
ExtensionDirectories[]=category
AvailableDataTypes[]=category

220

Extension Development

For the design directory, include:
File: extension/category/settings/design.ini.append
[ExtensionSettings]
DesignExtensions[]=category

The Category Database Table
This new database table will associate categories using the attribute ID, which belongs to
the object that the category datatype is part of. A content object attribute ID can be used
to find the content object itself, and within the context of the e-commerce system,
objects using this datatype are classed as products.

You need to create the table in the MySQL file using the provided SQL create
table script:

File: extension/category/update/mysql/category.sql
CREATE TABLE category_information
(

id integer NOT NULL auto_increment,
category varchar(255) NOT NULL,
objectattribute_id integer NOT NULL default '0',
PRIMARY KEY (id)

);

In this table the column id is set as the primary key, ensuring that each new row will
be unique. The category column is a string with a maximum length of 255 characters.
The final column, objectattribute_id, is used to record the identifier of the attribute
that corresponds with the datatype created, and the object it resides within.

When a category is added to this table, it exists as a row within the database. The
following table shows some sample content for this database table:

id Category objectattribute_id

53 Nature 159

54 Work 159

55 Miscellaneous 159

56 Miscellaneous 165

In this table there are three categories associated with attribute 159. Attribute 165
contains only one category, but it is the same as the previous attribute. This structure
allows each product to update the categories associated with it.

Please refer to your database documentation to learn how to add this table to your eZ
publish system.

Chapter 6

221

Database Communication
The eZ publish system defines a database object as a persistent object. Utility classes are
provided that perform the mechanics of communicating with the database at an abstract
level; this allows the user to ignore the type of database being used. By extending the
parent eZPersistentObject class it is possible to define variables that correspond to
columns in the category table on a one-to-one basis.

The category PHP file created for this purpose is very long and, for the purpose of this
discussion, only the function names will be shown. Please refer to the code download to
see the complete code.

File: extension/category/lib/category_db.php
class PersistentCategory extends eZPersistentObject
{

function PersistentCategory($row)
function &definition()
function &remove($id)
function &fetch($id, $asObject = true)
function &fetchByCategory($category, $asObject = true)
function &fetchByCategoryAndAttribute($category,

$objectattribute_id,
$asObject = true)

function &fetchByAttribute($objectattribute_id, $asObject = true)
function &fetchAllCategories($asObject = true)
function &create ($category, $objectAttributeID)
function hasAttribute($name)
function &attribute($name)
var $ID;
var $Category;
var $ObjectAttributeID;

}

The definition() function is the key to the database communication. Each
persistent object implementation must implement this with a definition that matches
variables to columns. With this in place, the fetch() functions can query the database.
For example, the fetchByCategoryAndAttribute() function will return a database
object that matches the category and attribute ID values that are passed in as
parameters.

The functions create() and remove() respectively create and delete a database row. The
attribute() function provides template access to the persistent object, which will be
discussed later. The variables $ID, $Category, and $ObjectAttributeID correspond
to the columns of the database tables.

Category Discussion
In addition to the regular Categorytype class for this datatype, there is an additional PHP
class named Category that is used to fetch and store category information from the
database. There will be no use of class attributes for this datatype, but if you feel a default
value is needed, then by all means add your own.

Extension Development

222

Normally the fetching and storing of user input is performed by accessing the content
object attribute or the content class attribute. Instead, here the content of the attribute is
set to the value of the instantiated category.php object. For example:

File: extension/category/datatypes/category/categorytype.php
function fetchObjectAttributeHTTPInput(&$http, $base,

&$contentObjectAttribute)
{

if ($http->hasPostVariable($base . "_Category_data_"
.$contentObjectAttribute->attribute("id")))

{
$data =& $http->postVariable($base . "_Category_data_"

.$contentObjectAttribute->attribute("id"));
$category = new Category();
// parse the input data into the category array
$categories = explode(",",$data);
// add categories to the category class for later storage
$category->initialiseCategory($categories);

// inform the content object of this content.
$contentObjectAttribute->setContent($category);
return true;

}
return false;

}

The information passed in from the template is first processed through the PHP
explode() function, so that multiple categories can be entered by means of a single
comma-delimited string. Thus, a string such as "nature, work, miscellaneous" will be
split into three different categories.

The Category class is initialized with this array and the content of the attribute is set with
this class. When the system invokes the storeObjectAttribute() function, the
categorytype will try to store the new information through the use of the new class:

File: extension/category/datatypes/category/categorytype.php
function storeObjectAttribute(&$contentObjectattribute)
{

$category =& $contentObjectattribute->content();
if (is_object($category))
{

$category->store($contentObjectattribute);
}

}

The category store() function performs a few simple checks before entering the
information into the database:

• If the category already exists for the attribute, there is no need to re-enter it.
• If the category is not present, it is entered as expected.
• If the database contains categories that are not part of the input list, they

are removed.

Chapter 6

223

File: extension/category/datatypes/category/category.php
function store(&$attribute)
{

// Assign the attribute id
$attributeId = $attribute->attribute('id');
// Get present categories for the attribute
$existingCategories =&

PersistentCategory::fetchByAttribute($attributeId);
// Find out which categories to remove, if any
foreach ($existingCategories as $existingCategory)
{

// Check whether the current category is part of the new
list if (!in_array($existingCategory->attribute('category'),

$this->CategoryArray))
{

PersistentCategory::remove($existingCategory-
>attribute('id'));

}
}
// Find which categories to add.
foreach ($this->CategoryArray as $newCategory)
{

$newCategoryObject =&

PersistentCategory::fetchByCategoryAndAttribute($newCategory,
$attributeId);

// Test if the present category exists. If not add it as
new. if (!is_object($newCategoryObject))

{
$createNewCategoryObject =&

PersistentCategory::create($newCategory,
$attributeId);

$createNewCategoryObject->store();
}

}
}

The use of the Category class for the content for the attribute also allows the template to
access it. This class implements the following API for attributes:

File: extension/category/datatypes/category/category.php
function hasAttribute($name)
function &attribute($name)

This associates attributes that a user has access to within a template to functions that
return the requested information. For the category class, the category_string
attribute returns a string listing the categories the attribute belongs to in a comma-
delimited fashion. It does this by querying the database for categories belonging to a
particular attribute ID using the function fetchByAttribute(). Once it has this list, it
uses the PHP implode() function to concatenate the list into a single, comma-delimited
string:

File: extension/category/datatypes/category/category.php
function &categoriesString()
{

return implode(', ', $this->CategoryArray);

224

Extension Development

Extension Development

224

}

225Chapter 6

Chapter 6

225

Category Templates
Two templates are required for this datatype. One is used to edit the datatype within a
content object:

File: extension/category/design/standard/templates/content/datatype/
edit/category.tpl

{let name=concat("ContentObjectAttribute_Category_data_",
$attribute.id)

value=$attribute.content.category_string}
<input class="box" type="text" size="70" name="{$name}" value="{$value|

wash(xhtml)}" />
{/let}

The other is used to display the categories as a simple string:
File: extension/category/design/standard/templates/content

/datatype/view/category.tpl
{$attribute.content.category_string|wash(xhtml)}

The Category Datatype in Action
Now that we've seen the construction of the Category datatype, let's have a quick look at
it in action before we move on. The following screenshots show how you can edit the
class and object, and then view the object.

Editing the Class

Editing the Object

Viewing the Object

226

Extension Development

Extension Development

226

Integrating Existing Code with eZ publish
One of the questions faced by developers is "Do I create a new application or hack an
existing one?" There are pros and cons for both, but since you're reading this book it is
assumed you prefer to use a solid base and then customize it, rather than working on an
entire system from scratch. This philosophy can continue into your extension writing as
you can use the skills gained in previous chapters to build links to other applications. If
you plan to do this, read on.

Bear in mind that when you link to another application, you immediately double the
complexity of your application and its support requirement. It is a lot of work to maintain
and update an eZ publish site with demanding customers; if you also have to update and
maintain other applications and any middleware between them, it could prove to be too
much!

When choosing to bridge to another application, ensure that it is not faster to write
routines or customize some of the native functionality in eZ publish than to link to a best-
of-breed package for features such as forums. This may be the case when choosing to
integrate an existing best-of-breed forum package like phpBB with eZ publish.

With eZ publish and PHP you can pretty much integrate with anything—after all eZ
publish is a development framework and as such perfectly extensible. As you will have
read in previous chapters, you can make individual datatypes, eventtypes, and modules,
and the WorldPay extension is an example of integrating a supplier's existing code with
eZ publish. This means you are well equipped to handle all that is thrown at you!

Making a Bridge to External Applications
External applications could include operating systems, PHP applications, compiled
applications—pretty much anything! If you can connect to the application from your
system, for example using TCP, UDP, Unix sockets, or named pipes, then you can bridge
to it using eZ publish. Some common examples for integration are:

• External systems via SOAP
• RSS feeds
• Databases: MySQL, dBase, Oracle
• Accounts systems
• Application service providers
• Legacy systems
• E-mail
• Open instant messaging systems, such as Jabber
• .NET integration

227

Chapter 6

227

Chapter 6

These are just a few examples of the types of systems you can integrate with. The biggest
problem you will face is that some systems do not want you to integrate with them. This
is because they have agreements with other proprietary systems or partners that want
money before you can integrate. They may require you buy their 'integration add-on'
before you can connect to their system. It is worth checking the costs of any add-ons you
may need before you start out, as you may find them prohibitively expensive. The good
news is that most of the add-ons for PHP are free so again it is worth staying with open
source solutions if you can.

Let's take a couple of the items from the list and explore the possibilities.

Strategies
You will come across several strategies when working with external systems—the good
news is that they are not restricted to eZ publish, and relate to all systems that need to get
information from an external source. If you have an application on your desktop that goes
to the Internet several times a day to collect your e-mail via POP3 you are using one.

With strategies, you have two basic choices:

• Import data to a local database
• Connect to external data for every request

The first choice is to take the external data and import it into your eZ publish database
environment. This is a good choice if the link to the external site is unreliable or slow, or
you are taking information from an external source that does not allow connection from
the Internet. One example of this could be a site that uses information from a legacy
system such as an ERP system. This would mean that you get the prices of products
updated each day via a text file upload. You would have a routine that would run once the
file is uploaded and perform the following functions:

• Check that the file has been uploaded
• Check the validity of the data
• Backup existing data prior to import
• Import the data into a special price table or update the product prices directly
• Update logs with the results of the job

As you can see from the fourth item in the list, there are two options. The first is to create
a new table and store the information in it. This would require you to write a new
datatype that would replace the current price field so that it would use the product ID in
the product class to find the correct price in the new table.

Alternatively, you could update the product prices directly when the file is imported. This
would involve a modification to the import routine so that it searches for the products and
replaces the prices with the prices from the new import file.

Your development budget should include security expenses. Don't take security
for granted just because other people may ignore it.

Extension Development

228

Extension Development228

Of course, you can increase this functionality by adding synchronization routines so you
only upload changed products, but synchronization is a subject beyond the scope of this
chapter.

Who Am I?
As part of your bridging extension, you will need to tell the external server who you are.
This can be done on a trusted server basis where the user ID and password are stored
within an ini file and used to authenticate you. Interestingly, this is how eZ publish works
when it uses authenticated SMTP and also when it talks to your database server. Review
site.ini to see the default settings.

Authentication
Before you read the authentication and security sections, bear in mind that millions of
people send their user IDs and passwords over the Internet every day when they connect
to e-mail servers via POP3 and don't give it a second thought.

These e-mail accounts probably contain just as sensitive information as that in accounting
systems, but it is a risk people are willing to take for convenience.

Note that if you only receive/send encrypted e-mail or use SSL to talk to your mail server
account, your connection is secure.

If you want to use your eZ publish system as the main authentication point, you need to
ensure that the external application can connect to eZ publish and check the status of the
user. The following code can be used in an eZ publish extension to create the current user
and session ID that can be passed to the external application:

// User id
$user =& eZUser::currentUser();
$user_id = $user->attribute("contentobject_id");
// Session ID
$mysessionid=eZHTTPTool::getSessionKey();

This information could then be used by the external application to get the user-relevant
information for that user and either log in or pre-fill information.

Placing the eZ publish server into an existing environment means there is likely to be an
existing, central method for managing user information. This method may be LDAP,
Kerberos, Microsoft Windows domain controller, or another method.

To enable greater interoperability, eZ publish has opened up the login handler so you are
able to write your own custom handlers. As mentioned at the end of the previous chapter,

229

Chapter 6

229

Chapter 6

these can work as a central update mechanism such as LDAP or a login replacement such
as text file handlers. In either case, you will still need the user set up in the eZ publish
system.

The issue here is that any authentication you perform must work and be secure and
reliable. Now depending on the information you are securing, it can be less stringent in
its checking but must still be reliable. For this reason you can use a token-based system
such as Kerberos (http://web.mit.edu/kerberos/www/#what_is). Unfortunately,
Kerberos integration with eZ publish is not yet available so it is probably better to go
for a shared authentication point such as an LDAP file.

LDAP and eZ publish login methods are great, but they only allow users to log into a
single system. They do not allow a user to move from system to system without having to
login again. This is a problem if you have many systems that a user needs to access.

Single Sign-On
With this sign-on mechanism, upon successful authentication with eZ publish, the user's
browser is presented with a cookie for the eZ publish site. Along with the cookie, the
user's browser is redirected to an authentication application on the external server. This
application validates the URL details sent by the user's browser and assigns the user an
appropriate external single sign-on cookie, then redirects the user's browser to the eZ
publish site.

The advantage of this method is that users are unaware that they have been authenticated
over multiple servers, and see only a single login event.

The disadvantages of this approach are:

• Application code has to be written on the external server to provide an
authenticator class to accept and validate URLs sent during redirection.

• If existing authentication methods on the external server are required to
continue operating, the authenticator class must exist as a separate
application and be configured to use its single sign-on facility.

• It requires cookies to be enabled on the client browser, which cannot always
be guaranteed.

• A mechanism is required to synchronize the user database between eZ
publish and external servers.

Variations
If a variation of the sign-on method is needed, this could take the shape of a form that is
presented to the user from the external server in the following steps:

• You present a login form on your eZ publish site.
• The user submits their user ID and password on the form.

230

Extension Development

Extension Development

230

• The form posts to the external server using a form-based external
authenticator.

• On success, the external application gives the users a normal external session
authentication cookie. They're redirected back to eZ publish with some
authentication token on the URL, which you use to initiate an eZ publish
session.

• On failure, you bounce back to an eZ publish failure page.

So, there are various ways to handle authentication. In the end it is a choice that needs to
be made on a project-by-project basis.

Sharing Information
When it comes to sharing information, you want to ensure that enough information is
stored within your object (article, file, or even video clip) to enable it to be traced, should
the system you are sharing with have a request from a user for updated or more
information. An example of this is when you write a document about a particular version
of software, and a reader wants to know if you have updated it for the latest version.

Fortunately, this work has already been completed by a group called the Dublin Core
Metadata Initiative (http://www.dublincore.org/). They have a common set of items
that are used by governments and companies alike to help identify the information they
store. The UK Government currently uses the simple Dublin Core as the basis of its
metadata standards (http://www.e-envoy.gov.uk/Resources/Guidelines/fs/en).

The metadata used by the UK government falls into the following sets:

Item Usage

Creator, Date, Subject.Category, Title Mandatory

Accessibility, Identifier, Publisher Mandatory if applicable

Coverage, Language Recommended

The definitions of items can be seen on the e-envoy website. Notice that all the
information is either available by default, such as Date and Title, or can be added into
the class definition by the developer. This shows that eZ publish can quite happily live in
the public sector and fulfill the requirements that governments have for data definition.

This information could be made available via a SOAP interface and in the HTML meta
tags at the top of the document. This enables you to correctly mark up information to be
shared with other systems.

Chapter 6

In order to use the following Google-based example, you will need to get your
API key from http://www.google.com/apis/.

Chapter 6

231

231

Communicating with Google
SOAP is a protocol that provides a standard method of communicating between
applications regardless of what they are written in. This makes it perfect for us as we can
communicate with anyone using the pre-built and ready-to-use tools within eZ publish.

The following example builds on the examples in the previous chapter to get information
from a search engine, Google. You will use the eZ publish SOAP client to communicate
with Google and retrieve the results to the search and display them in the browser.

The following example uses the eZ libraries
lib/ezsoap/classes/ezsoapclient.php and lib/ezsoap/classes/ezsoaprequest.php to
communicate with the Google search engine.

To see our example in action you need to have eZ publish installed and working, and then
add a new virtual host to your setup, which should resemble something like this:

<VirtualHost *:80>
<Directory /my/path/to/ez>

Options FollowSymLinks Indexes ExecCGI
AllowOverride None

</Directory>

RewriteEngine On
RewriteRule !\.(gif|css|jpg|png|ico|js)$ /my/path/to/ez/google.php

ServerAdmin admin@mysite.com
DocumentRoot /my/path/to/ez
ServerName mysite.myserver.com

</VirtualHost>

This example gives you that "instant fix" that you need to see something working well
and is immediately useful. Save the following example as google.php in your project
root directory.

The first few lines just create the HTML required to gather and display the request from
Google.

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>My Google search</title>
</head>
<body>
<h2>Google SOAP search</h2>
<form method="get">

<input type="text" size="40" name="q" value="<? print($q); ?>" />
<input type="submit" value="Search" />

</form>

Extension Development

Extension Development232

232

Next, we include the required eZ libraries for working with SOAP:
<?php
include_once("lib/ezsoap/classes/ezsoapclient.php");
include_once("lib/ezsoap/classes/ezsoaprequest.php");

The first real coding step is to create the eZ SOAP object and the eZ SOAP response
object. This is to prepare the client and request object so they are ready to receive
the parameters and send the request to Google:

// Instantiate a client object for communication with Google
$client = new eZSOAPClient("api.google.com",

"/search/beta2");
// Create a new request object
$request = new eZSOAPRequest("doGoogleSearch",

"urn:GoogleSearch");

Now we retrieve the query text, and provided our query is non-empty, we can begin to
create our request. We load our request object with the parameters that Google needs for
its search API. You can find more information on the parameters used here on the Google
API website.

// Fetch the query text from HTTP GET
$q = $_GET['q'];
// Check for a non-empty
query if ($q != "")
{

// Add parameter, key. You can get your own key from Google
$request->addParameter("key",

"add your key here from http://www.google.com/apis/");
// Send the query text as a parameter
$request->addParameter("q", $q);
// Show the first results
$request->addParameter("start", 0);
// Show maximum 10 results at the time
$request->addParameter("maxResults", 10);
// Send misc. default parameters
$request->addParameter("filter", true);
$request->addParameter("restrict", "");
$request->addParameter("safesearch", false);
$request->addParameter("lr", "");
$request->addParameter("ie", "latin1");
$request->addParameter("oe", "latin1");

The next step is to send the request. The eZ SOAP libraries will take the information you
have given through the addParamter() function and create an XML request that is then
sent via HTTP to the Google servers:

// Send the request to Google
$response =& $client->send($request);

If the SOAP server returns a fault, it will be picked up here and the fault code displayed:

233

Chapter 6

Chapter 6

233

// Check for SOAP fault
if ($response->isFault())
{

// Print the fault
print("SOAP fault: " . $response->faultCode(). " - " .

$response->faultString() . "");
}
else
{

If the POST to the SOAP server is a success, we will set $value to the results returned
by Google:

// All went ok, fetch the value from google.
$value =& $response->value();

This information is stored as an array and will need to be broken apart to display the
results. This information is then formatted so that a page of human-readable HTML can
be displayed.

// Print number of pages found
print("<p>Pages found: " .

$value["estimatedTotalResultsCount"] .
".</p>");

// Print all search results
$searchResult = $value["resultElements"];
foreach ($searchResult as $item)
{

$snippet = $item["snippet"];
$size = $item["cachedSize"];
print("" . $item["title"] .

"
");
print("$snippet
");
$url = $item["URL"];
print("$url $size

");

}
}

}
?>
</body>
</html>

If all has gone well with your example, the following page will be served:

Extension Development

Extension Development234

234

Modifying Existing Code
You can truly integrate eZ publish with your application by making your application a
native eZ publish extension. This means that it will need to be in PHP, but it is the best
way to go and even better if it is a new project. You can use all the wrapper features of
eZ publish such as authentication, content management, caching and so on, so all you do
is concentrate on the core functionality of your application itself.

Summary
In this chapter, we looked at various methods of extending eZ publish. You can increase
functionality via routines your have written yourself. You can integrate into the very core
of eZ publish, enabling you to make your eZ publish site everything you want it to be.

The world is changing and not every site can offer the services and requirements for all
users. For this reason, integrating seamlessly with external applications is a must. This
ability is given to us via the SOAP. Using eZ publish, you can communicate with anyone
using a common SOAP interface. We showed eZ credentials in the Google example
where you are able to retrieve search results and use them as you wish. However, this is
just the beginning, as more and more services come online you will be able to increase
the functionality of your site in ways that were previously impossible. One example of
this is to look at the number of retailers on the web that are starting to open up their
environment to other sites so that all may benefit. One example of this is Amazon, which
is opening up its services via a SOAP interface. Using eZ publish you are well placed to
benefit from these technologies as they mature.

235

Chapter 6

Chapter 6

235

Unforeseen problems occurring at deployment equate directly to increased costs
in your project.

7
Deploying eZ publish

In this chapter, we will look at some of the strategies and techniques useful for
deploying eZ publish projects. This chapter is not designed to explain how to install a
server, but instead focuses on what eZ publish needs in order to work well in your
deployment environment. Installing a server is a large subject in its own right and cannot
be covered here in one chapter.

Although eZ publish runs quite well on *BSD, Macintosh, and MS Windows
environments, it is most widely deployed in its Linux flavor. For this reason, we will
focus on deploying eZ publish to a Linux environment.

This chapter will explain how to modify your server environment for it to work well with
eZ publish 3 and greater.

Define Your Hosting Requirements
Before you deploy an eZ publish solution, make a note of all the hosting requirements. It
is worth spending a little time at the start of development to ensure that problems do not
occur at the deployment stage.

Described below are a number of areas that need to be reviewed to ensure that you have a
good picture of the deployment needs, prior to parting with your money for a hosting
environment.

Number of Visitors
How many users will be visiting your site? You need to examine your current statistics or
marketing plan to get a rough idea of whether hundreds, thousands, or millions of unique
visitors will be visiting your site every month. At the very least, you need to make an

Deploying eZ publish

236

educated guess at this number, as the power required of the hosting server depends on
this, and will indeed decide whether you need more than one machine to support your
user base.

The next task is to find out how often they will be visiting—whether they visit once an
hour, day, week, or month. It is good practice to overestimate this figure to ensure that
your site visitors get a good quality of service. Remember that traffic will not always be
evenly distributed, and is likely to peak to match the site's marketing initiatives.

User requirements

Users per hour

Concurrent users

Total users

This information will be useful if you intend to enable user accounts. The more users you
have, the more disk space you will need to store their information. eZ publish 3 test
installations take around 70MB of file system space and 2MB of database space. Add to
this the amount of space you will need for caching page and image files and the required
space soon adds up!

System requirements

File system size

Database size

Bandwidth
requirements

The price of bandwidth can be a real variable with ISPs, and cannot be avoided! You
could ask your ISPs to fix the bandwidth available to your site, but then you risk
disappointing your visitors. So, you will need to get a sympathetic ISP that will allow you
to burst traffic to your site to allow for the occasions where lots of visitors come to your
site at once. It is worth getting a firm idea of the costs that this extra bandwidth will cost
you, ahead of time, to help plan for these additional costs.

Chapter 7

The more sensitive the information stored, the more secure you need to make it.

237

Security Needs
You should review the information that you will store on the site and decide on what
level of security is required to protect this information. Generally, the more security you
require, the more the system will cost to install and maintain.

In an ideal world, you could ensure that your site is secured to the best of the ISP's or
your ability. In the real world, budgets dictate the security levels on a site. The more
money you have, the better is the system administrator and time made available to you.

The good thing is that you can choose the level of security according the type of content
you are going to host.

The following content types are listed according to their typical level of importance:

1. Credit-card/Medical details
2. Personal details
3. Articles
4. News

Credit-card details usually constitute the most valuable content, but this is not necessarily
true. For example, the news section could contain news for a product launch that is
confidential, and if released could cause serious problems. For this reason, you need to
evaluate each type of content from a company perspective to protect yourself adequately,
and then budget according to that level of the risk.

There may already be guidelines on the level of security you need to implement. Take the
time to review the requirements of your country so you do not break any local laws.

Once you have decided on the security mechanism, you need to review the type of access
required to the system. In this area, there are generally three types:

• Internet: Open to all
• Extranet: Open to authenticated users via the Internet
• Intranet (Closed system): Open only to internal local users

As the phenomenon of individuals working from home and remote offices is now
widespread, few business applications can be seen as truly Intranet-only applications,
so we are actually talking about authentication and authorization for our sites.

For unprotected files, you only need to ensure that the information is valid and only
updated by authorized editors.

238

Deploying eZ publish

For protected information, you need to ensure that only authorized users can edit and see
the files. For this you need to use the eZ publish authentication system by assigning roles
for people to edit and view the information.

To increase the level of security within eZ publish:

• Ensure that the information sent to the server cannot be read by a third party.
This is normally achieved using Secure Socket Layer (SSL).

• Ensure that the users are who they say they are. The user name and password
are already set up, but if this is not sufficient, you need to implement a digital
identity system such as a Public Key Infrastructure (PKI) that will help
identify a user wishing to log in to the eZ system.

• Implement MD5 or SHA security to transmit the password when logging in
to the eZ publish site. This will make it harder for an intruder to sniff
passwords.

Reporting Requirements
Decide on the level of reporting you want from the server. Fortunately, eZ publish
provides you with information about the content searches that have been made on your
site. For any further information, you need to use third-party tools provided by your web
server or ISP.

The following information is usually required:

• Web statistics: Number of users
• Server performance: Speed of machine, number of concurrent users
• Bandwidth usage: Amount of bandwidth your site uses

Web statistics are probably the most common and widespread requirement for reports, as
these enable you to gather information about how many times your pages are being
accessed, and by whom. As the usability of the reports created varies from package to
package, it is worth reviewing the package used to create the statistics to ensure that it
meets your needs.

Some common open source web access analyzer packages are:

• Awstats (http://awstats.sourceforge.net)
• Webalizer (http://www.mrunix.net/webalizer)
• Analog (http://analog.sourceforge.net)

Chapter 7

239

Budget
You will probably have a good idea of the budget available for hosting, but the general
rule is that the more you want, the more you pay. Although the hardware and support
costs will be fixed, it is unlikely that the bandwidth costs will be. Always reserve a
portion of your budget for bandwidth costs as they can rocket on a highly popular site.

Time Limits
Define the amount of time you have to prepare the deployment environment and the
amount of time you have to deploy the finished system. You can use the following table:

Time

Live date

Time to deploy

Deployment
environment ready date

Shared or Dedicated
Once you have defined your needs, you need to figure out whether they will be best
fulfilled by a dedicated server environment or a shared one. There is a large price
difference between a shared and a dedicated hosting service; a shared environment is
much more economical.

Whether you use a shared or dedicated environment, you will need to ensure that the
environment has the correct software available. The general rule of thumb is that if your
deployment environment has Apache/IIS, PHP, and MySQL/PostgreSQL running on it
already, you will probably be able to run eZ publish 3 without problems. That said, some
shared environments have peculiar setups that have been created to provide extra
security; these can sometimes include routines that interfere with eZ publish's smooth
running. In this situation you may find that eZ publish does not run properly.

It is worth running a check on the shared server before parting with your hard earned
money to be safe. You can use the eZ publish Setup Wizard that we saw in the first
chapter to run a quick test. The Setup Wizard will take you through the whole process of
getting a test eZ publish site ready.

Deploying eZ publish

240

If the setup screen does not appear, you will need to change the site.ini setting.
[SiteAccessSettings]
CheckValidity=true

This will cause eZ to run the setup test the next time you point your browser at it. You
can test most functions of eZ publish by choosing one of the inbuilt demo sites.

From an eZ publish point of view, you generally only need a web interface to complete
all of the operations needed. This means you can survive with a shared service that does
not give you command-line access via SSH, as long as you have FTP and HTTP access.
The following is a quick checklist for a shared service:

• Speed of service
• Number of sites you share the server with
• Cost of extra bandwidth

eZ publish can take its toll on a server, so ensure that the shared server has enough power
for all the eZ publish sites it is hosting.

Is My Server Powerful Enough?
Whether you go for a dedicated or a shared server, you need to ensure that the server is
powerful enough for your needs. Generally, eZ publish is heavy on CPU and memory
usage, so it is worth ensuring your server has enough memory and CPU power for the
number of users you envisage visiting your site.

You can test the system by running tests based on the number of users and the amount of
information you will be storing as described in the Define Your Hosting Requirements
section.

Even if you choose a dedicated solution, some ISPs will dictate the type of server you are
able to use. If they do, ensure that they give you statistics for the server, including a test
of how it works under load, running an eZ publish site. Ask your hardware provider the
following questions:

• Model name: What server are they selling? Is it a known brand? If not,
details about spares and repairs.

• Hard disk: What is the size of the disks; what RAID do they use? What is
the space available for the database and for data? How fast are the disks?

• CPU: How many CPUs does the server use and what are their speeds?
• UPS: What is the battery life? Will the UPS be pre-configured for you?
• Operating system: Is this configured so you can gain SSH access?
• Upgrade paths: What are the options and prices, if you need to increase the

number of machines or machine power for your site?

If you are testing on a live site, this will completely disrupt your stats for the site.
It may be worth changing your statistics log location for this test.

Find out more about Siege from http://www.joedog.org/siege/index.php.

Chapter 7

241

One way to measure the server's capabilities is to run tests. A good testing tool is Siege,
which enables you to run speed tests for concurrent users. Try loading up a test site and
run Siege increasing the number of current users until the server slows to a crawl. You
will then be able to find the limits of your server.

Using Siege is straightforward; the following example simulates two users hitting a
dummy site for an hour:

>siege -uhttp://www.example.com -v -c2 -t1h -l

This example tests the server for 25 concurrent users:
>siege -uhttp://www.example.com -v -c25 -t1h -l

To ensure that the siege tests run correctly, you will need to run the test from a box on the
same LAN, otherwise you will be limited by the bandwidth available on your Internet
connection.

Information about eZ publish tests can be found at:
http://ez.no/community/news/ez_publish_3_enterprise_setup_test

Documentation
Ensure that you have full and up-to-date documentation for the server, so that you have
all the information you need to maintain or recover information in case of a disaster.

We will now discuss some of the areas to cover in your documentation.

How and When to Update the Documentation
This document will be a living document, so a guide on how to update it and where it is
stored is a must. This information ensures that everybody who needs to update the
documentation understands their responsibilities.

Contact Details
In the event of a problem, you will need to know who to contact, so that valuable minutes
are not lost trying to find the number and the name of the right person at your ISP or
support company.

Deploying eZ publish

242

Details should include whom you need to contact for each part of the system: your ISP,
hardware supplier, and support personnel.

Location
This is the address and physical location of your where your hardware is located. It
can be useful to take a photograph of your server too, for easy identification should
the need arise.

Hardware
This is a complete specification of the hardware, CPU, memory, and hard disk
configuration. You will need this during replacements and upgrades.

Operating System
This is the operating system your server is running, and its version.

Software
This is a complete list of the software installed on your server, with the license details.
You should also note the location of any CDs or required installation media.

Patching Process
A log of the patches with the name of the administrator who applied them should be kept.
This will help you rebuild the server (in the event of a failure), or troubleshoot (should
things not work), as you can identify the last patch applied to the server. Some
distribution providers, such as RedHat, provide tools that keep this information for you.

DNS Information
This is a list of the URLs used by the site with their expiry or renewal dates. It is worth
keeping any IP mapping from DNS to IP in this section as well.

TCP/IP Information
Keep a log of all the IP addresses used by the machine. You can retrieve some of this
information by running the ifconfig command as root. It is worth asking your ISP or
administrator for a network map of your environment so you can see how their
environment fits together.

Chapter 7

For more information on available Linux distributions, take a look at the
Distrowatch website at http://www.distrowatch.com/.

Although these installers will get your test environment going, do not use
them for deploying your live site: they are not designed for this and will give
you problems.

243

Access Control
A list of all the authorized users for your system, along with their system privileges
should be kept. This should be reviewed at regular intervals, especially when there are
personnel changes.

Upgrade Roadmap
If you hate surprises, you should create scenarios where traffic to your site grows and you
require extra bandwidth, CPU power, or memory. Use these projections to plan your
upgrade path and agree on prices with your ISP. This way, you will get a better price than
if you wait until you have no time to negotiate!

Disaster Recovery
Create a detailed plan of how you will recover the server or service should there be a
problem. This plan should be printed out and stored at your current location and at an
off-site location. Inform the people responsible for it of its location and keep it updated.

Preparing the Linux Environment
Installing eZ publish on Linux is like cooking a good pizza. If the base is firm and well
formed, you are unlikely to get many problems. For this reason, it is worth spending
time to choose the flavor of *NIX you should work on.

eZ publish is supported on the Linux, Solaris, HP-UX, and FreeBSD UNIX systems.
Other *NIX systems may work as well. In addition, eZ publish has been tested by the
community on Mandrake 9.x and RedHat ES U1.

eZ publish comes with complete install solutions for RedHat 7.3, 8.0, 9.0, and FreeBSD
to get your test environment up and running.

If you currently use one of the full system installers, you should review all of the security
and installation settings for the packages it installs, to ensure they will run efficiently and
securely.

For more information on the PHP and Apache 2 situation, take a look at
http://www.php.net/manual/en/install.apache2.php.

Deploying eZ publish

244

If in doubt, don't go live.

Given that eZ publish runs on most Linux bases, it is worth finding a good base that
fulfils your needs and will be supported for patches and security fixes. You will not want
to be changing the environment every six months unless you have plenty of time and
money on your hands. This is relevant, as RedHat is removing support for RedHat 7, 8,
and 9, so these are not good choices unless you want to pay for its enterprise systems.

It is worth configuring eZ publish locally before you roll out to a live deployment box.
This will let you know before you part with any money if you have the correct skills to
deploy a live server.

There is one simple rule when installing and configuring deployment servers:

Installing on an Internet-accessible box is very different from installing on a local area
network box, as the Internet box will get compromised extremely quickly. There are lots
of *NIX security books available to help you, but you may want to run some local tests
such as Tripwire or root kit checkers
(http://www.chkrootkit.org/#related_links) to help achieve some peace of
mind.

If you have a distribution that has all the components you need supplied as packages, you
will not need to compile any packages. However, if you are working from a distribution
that does not meet all your needs, you may need to compile one or all of your packages.
Compiling does have its advantages, and enables you to ensure the application is tuned
for your environment.

In this section we will walk through the main parts of the environment, and see how to
configure them appropriately for a production eZ environment.

Apache
Apache is the web server of choice for the Linux platform and is at the time of writing
going through a transition from version 1 to version 2. We will deal with version 1 as
version 2 has not yet been approved for production purposes by the PHP development
team. There are reports of eZ publish working well with Apache 2, but until it is off the
experimental list from PHP, it is a risk.

If your distribution does not have the version of Apache you need, you can compile from
source. This can be done in two ways. In either case you should uninstall the current

Chapter 7

You will need to configure your httpd.conf file to ensure that Apache is set up
to view the file. This is not covered here. For more information on installing
Apache, visit http://httpd.apache.org/docs/install.html.

245

version of Apache before you continue. The first and long winded way is to define each
of the modules you need:

./configure --sysconfdir=/etc/httpd/conf –prefix=/usr/lib/apache --
enable-module=env --enable-shared=env --enable-module=userdir --
enable-shared=userdir --enable-module=usertrack --enable-
shared=usertrack --enable-module=auth_anon --enable-shared=auth_anon
--enable-module=auth --enable-shared=auth --enable-module=alias --
enable-shared=alias --enable-module=vhost_alias --enable-
shared=vhost_alias --enable-module=rewrite --enable-shared=rewrite --
enable-module=speling --enable-shared=speling --enable-
module=log_config --enable-shared=log_config --enable-
module=log_agent --enable-shared=log_agent --enable-
module=log_referer --enable-shared=log_referer --enable-module=dir --
enable-shared=dir --enable-module=access --enable-shared=access --
enable-module=so --enable-module=ssl --enable-shared=ssl --enable-
rule=EAPI

The second and shorter way is to compile all of them:
./configure --sysconfdir=/etc/httpd/conf --prefix=/usr/lib/apache --
enable-module=all --enable-shared=max--enable-rule=EAPI

Once you have run the configure command, you need to compile and install the package
using the following commands:

make
make install

Now that the package is installed, it is a good idea to check the installation with a simple
HTML (not PHP) page. Once you have confirmed that Apache works, you are ready to
install PHP.

PHP
You may well need to compile PHP, as problems have been reported using eZ publish
with PHP versions below 4.2.3. The good news is that compiling PHP is very simple.
The following configure command contains the features you will need for most eZ
publish sites:

./configure --with-apxs=/usr/lib/apache/bin/apxs --with-
mysql=shared,/usr --with-ttf --with-gd -enable-gd-native-ttf --
enable-trans-sid --enable-inline-optimization --includedir=/usr --
with-zlib=/usr --with-layout=GNU --prefix=/usr --exec-prefix=/usr --
bindir=/usr/bin --with-openssl --with-xml --with-config-file-
path=/etc --with-layout=GNU --enable-mbstring --with-jpeg-dir

Deploying eZ publish

246

Once the configure command has successfully run, you need to reissue the
following commands:

>make
>make install

The configure string contains all the options required for your standard eZ publish site.
If you require more, you can, of course, modify the compilation.

If you are compiling PHP, consider joining the QA program (http://qa.php.net/),
as this will not only help the PHP project but also help you find out if there are any
problems with your environment. It will also help you fix any bugs you may encounter.
Visit http://uk.php.net/manual/en/installation.php for more information on
installing PHP.

Database (MySQL/PostgreSQL)
eZ publish works with both MySQL and PostgreSQL. If you need to compile from
source, you can find more information on how to do so on their sites. However, it is
preferable to use the RPMs provided by these providers.

In this section we will review how to set up the most commonly used database for eZ
publish: MySQL.

The first step is to install MySQL from source or via the RPMs from the MySQL site.
Once MySQL is installed, you can create an empty MySQL database via the following
command:

>mysqladmin -uroot -p create test

Then access the MySQL database and grant access:
>mysql -uroot -p
mysql>grant all on test.* to myuser@localhost identified by 'xxxxx';

Now that the environment is ready, you can restore the data from your backup:
>mysql -umyuser -p test < test-backup.sql

It is tempting to store the password on the command line: mysql -uroot -pgod—don't
do this. If you do, all your passwords will be faithfully stored in .bash_history, and
any user with access could run:

>sudo cat /home/myuser/.bash_history > /home/baduser/myusers-history

to gain access to the root MySQL password, or run:
>history | grep mysqladmin

if your machine is left unattended.

247

Chapter 7

If you require your site to be UTF-8 (UNICODE) compatible, you will need to convert
the character set used by the MyISAM files. To do this, you need to shut down the
MySQL database and run:

>myisamchk -r -q --set-character-set=utf-8
/path/to/mysql_data_files/mydatabase/ez*.MYI

This database is now ready for UTF-8 data when you install the eZ publish data.

For more information on MySQL and PostgreSQL, visit http://www.mysql.com/ and
http://www.postgresql.com/ respectively.

Two graphics engines can be used in eZ publish: GD and ImageMagick. These have been
covered in Chapter 1.

GD Graphics library
The advantage of using GD is that since PHP 4.3.0, GD has been packaged directly into
the PHP source code, making it always available. For more information on GD, visit
http://www.boutell.com/gd/.

ImageMagick
ImageMagick is a command-line graphics engine to manipulate images. It can normally
be found as part of the big Linux distributions and is available on Windows. For more
information on ImageMagick, visit http://www.imagemagick.com/.

Cron Jobs
eZ publish 3 has a variety of jobs that need to be run outside of normal operations.

These include:

• Workflow
• Notification
• Linkcheck
• Unpublish
• RSS import

Although these routines can be run from the admin interface, it is usually more
convenient to run them via a cron job.

Before you let the cron job loose, it's worth checking the job first from the command line.
>cd /path/to/ez/project
>php -C runcronjobs.php

248

Some cache engines have been known to fail when you have tens of thousands of
cached files, so test with a fully laden site or sites.

Deploying eZ publish

This will let you know that the routine runs correctly. If it does, you will now need to
automate the process using a script run from your cron engine. For most distributions this
is in /etc/cron.daily/. You will need to create a script following the conventions of
your Linux distribution. In our example, we will use S99_ezpublish_cron.sh as we
want this task to be one of the last tasks run in the daily routine.

#!/bin/sh
cd /path/to/ez/project/;
php -C runcronjobs.php 1>/log/ez/ez_cron

This will work, but it runs the eZ routine as root, so it is advised that you run as another
user with less permissions. In this example we have created a user called ezuser.

#!/bin/sh
su -l --command='cd /path/to/ez/project/; php -C runcronjobs.php
1>/log/ez/ez_cron' ezuser

Running the eZ routine as this user lessens its authority and reduces the security risk of
having maliciously modified code having root access to your system. You could also
create a user cron file and store the jobs to run in /var/spool/cron/crontabs/<user>.

SMTP
If you want to send e-mail from the server rather than via a remote SMTP server, you will
need to install a Message Transfer Agent (MTA) such as Sendmail or Postfix to ensure
that eZ publish can send its e-mails. To test if this is working, run:

mail myemail@example.com
Subject: test for eZ
testing eZ publish mail
.
Cc:

If you receive this mail, the mail functionality will work with eZ publish.

PHP Accelerators
eZ publish has been designed to utilize PHP accelerators to speed up its execution. By
using an accelerator, you will see as much as a 60%-80% speed increase over a non-
accelerated site.

It does seem like a no-brainer, but it is worth picking your accelerator carefully. You
may find that some do not work fully with your entire site with eZ publish extensions or
may have an upper limit to the number of pages they can successfully cache.

Chapter 7

249

Several accelerators work with eZ publish:

• Turck MMCache (http://turck-mmcache.sourceforge.net/)
• ionCube accelerator (http://www.phpaccelerator.co.uk/)
• APC Alternative PHP Cache (http://apc.communityconnect.com/)
• Zend performance Suite (http://www.zend.com/store/products/zend-

performance-suite.php)

Installation instructions for each of these packages are provided on their respective
websites.

Deploying
Now that the production environment is up and running, it is time to move your project
from your local development and testing environment to the deployment site.

It is worth going through the checklist presented later to see if you are ready. It is an
example of the general items needed. There are a few things you need to change when
moving from development to deployment, so it's worth having a list so you don't miss
any. After all, you don't want live orders going to your test mailbox, do you?

It is a common misconception that the binary installation packages supplied with the eZ
publish Setup Wizard are ready to go from a deployment point of view—this is simply
not the case. These installers are only meant as an example of use and require tweaking if
they are to be used in a live environment.

Ensure that all the default settings match your needs. Check all the .ini files and
templates for areas that could give your site problems from an embarrassment or security
point of view.

Run through the following deployment checklist:

• URL mapping: If you are using map as your HostMatchType, you will need
to change these for the production values.

• E-mail addresses: Review your .ini files and classes for any test e-
mail addresses that have been used and change them to the
production ones.

• ImageMagick convert location: Ensure that the convert binary location is
set for the deployment box in your image.ini override.

• File permissions: Ensure that you set the file permissions to prevent
world-access to your files.

• Users and roles: Ensure that no test user names and passwords are still
present. Also ensure that any default passwords/permissions are changed to

Deploying eZ publish

250

the production settings. In particular, ensure that the admin password is no
longer publish.

• Debug settings: Make sure this is turned off or set to an IP-specific location.
• Cache settings: Ensure that this is turned on.
• Images: If you have changed the database and uploaded new images, grab a

copy of var/storage and place it on the server. If you have not done this, eZ
publish will try to display images that are not in your deployment file
system.

• Database: Grab a snapshot of the prepared database ready for the
deployment box.

Once you have gone through this checklist, you are ready to upload the project to the
production environment.

New Project Deployment
It is easier to deploy a new project than it is to update an old one. With a new project, you
only need to take a copy of the entire project base with its database, and upload it to the
deployment environment.

Updating Project Deployment
When updating a project, when you are dealing with existing data, you need to ensure the
previous site is running right up until the point of your new release.

First, decide whether your update requires changes to the database and how extensive
they are. If you deem it necessary, you could freeze content changes for a period of time
before your update, to give yourself a chance to make updates to the system.

Of course your project may be different, especially if bringing the database to your
location is not an option. In this case you will need to make other plans. The following
example gives a general outline of the tasks involved.

Here is a quick script for changing permissions on an eZ publish directory:
#!/bin/sh
Prepare project directory after update for current directory
ldir="./"
cd $ldir
echo "start"
Check to see if we are in the right
directory if [-d kernel]; then

echo "directory exists"
else

echo "directory does not exists, ending"
pwd

exit

To automate this project, you could use a great backup tool called REOBACK at
http://sourceforge.net/projects/reoback/, or DrakBackup, which comes
with the Mandrake 9.2 Linux distribution.

Chapter 7

251

fi
echo "clean up
permissions" chown -R
apache.ezpublish * chown -
R apache.apache var

ensure that apache user "apache" does not have write access to the
files
ensure group has full access to files
chmod -R 570 *
chmod -R 770 var
echo "complete"

Backups
To ensure that your system is backed up, you will need to back up the change data and
file locations. This entails backing up the var directory tree in your project directory and
the database.

This can be achieved via a cron job, by running a tarball for the changing files daily:
>tar cvzf /backup/myproject-daily-ddmmyyyy.tgz
/path/to/my/project/var

or monthly:
>tar cvzf /backup/myproject-full-ddmmyyyy.tgz /path/to/my/project

and a dump for the database:
>mysqldump -umybackup -ppassword --add-drop-table --lock-tables

–complete-insert mydb >/backup/mysql/mydb-ddmmyy .sql

No backup is complete until it has been tested, so download the files and try to recreate
the system using your backups on your local box.

Ports
eZ publish in its basic form only needs to have port 80 available, so unless you need to
run SSL (port 443), you should lock external access to port 80. You need to ensure that
your server works with DNS, e-mail, and so on, so you will need to review their
requirements.

To ensure that only the correct ports are open, you can use a port scanning tool. One such
widely used tool is nmap (http://www.insecure.org/nmap/).

252

Deploying eZ publish

Summary
In this chapter we reviewed the main elements of deploying a site, from the analysis and
requirements, to hosting, testing, and deployment. Hopefully, this will have given you an
insight into what is involved in deploying your own eZ publish site.

The process of deployment and the live environment are possibly two of the highest-risk
elements in any project. In an ideal world, deployment should be painless, be on time
with the environment being secure and reliable, and meet the users needs for
functionality, speed and flexibility.

These are high ideals, and most deployments will have some (if only minor) problems.
For this reason, your deployment needs the most careful planning and execution. The
goal is to be prepared and practiced in a safe environment beforehand. If you have
created your plan, tested it, and followed it, most problems will be reduced to only minor
issues. However, remember that your site is going into a place where not all are nice and
friendly. Plan for the worst that can happen and you will not go far wrong.

Finally, some people say that running a web site is like bringing up a child. Well, if that
is the case, then by deploying it correctly you have given it the best start in life. The task
now is to ensure that the site receives regular attention to ensure that its growth is secure
and sustained.

8
Center for Design at RMIT

Case Study

So far in the book we have covered almost every aspect of eZ publish. We started with
installation and configuration, moved on to adding content and understanding content
types, working with templates, and understanding the core framework.The later chapters
discussed how to extend the functionality of eZ publish, develop our own modules, and
finally how to deploy and optimize our installation.

In this chapter, we will take an in-depth look at the implementation of an eZ publish site.
This case study will take you through an entire project, from conception to deployment,
explaining all the stages of the project, along with the various problems encountered at
each stage and their resolution. We begin with a discussion of the client.

The Client
The Centre for Design promotes environmental sustainability through a directed program
of research, consulting, professional development, and knowledge sharing. It is
recognized internationally as a leader in the development of design methods and tools
that support sustainable product design. Its programs focus on sustainability and
eco-efficiency as a source of innovation and responsible development.

The organization is supported by the Royal Melbourne Institute of Technology (RMIT)
but must make its full budget through commercial commissioned consulting work. It is
based in the Faculty of the Constructed Environment at RMIT's city campus in
Melbourne. RMIT is one of Australia's largest and most respected technical and design
universities. The integrity of their consulting service comes from their university-based
research and yet they have to be commercially realistic to survive and grow. Their
revenue is from research and consulting services, training, and publishing reference
material in three areas of design: sustainable products and product systems, sustainable
buildings, and life cycle assessment.

Center for Design at RMIT Case Study

254

By way of example, here is some of the work they have done and are doing:

• A pilot stewardship project—Beyond the Dead TV: Managing end-of-life
consumer electronics in Victoria. The aim of the project was to develop
sustainable solutions that helped reduce and ultimately eliminate hazardous
materials from end-of-life electronics (e-waste) entering landfill and
presenting ecological or human health problems. More than 3,500 TVs,
computer monitors, and VCRs were diverted from landfill during the project.
Every year, a large number of discarded electrical and electronic products
enter the waste stream. There are significant opportunities to recover and
reuse much of the metal, plastics, glass, and other materials. Barriers to
collection, as well as expected costs for collection and disassembly
operations, were studied.

• The EcoHome: A new model project home (the EcoHome) was built in Deer
Park, in outer western Melbourne. This research project investigated the
sustainability outcomes possible in outer suburban project homes using
current building and design technologies, and the barriers to the uptake of
these technologies more broadly in outer suburban project homes. The
outcomes included a critically needed decision support tool to help the
industry meet regulatory requirements for more sustainable housing.

• Centre for Education and Research in Environmental Strategies: RMIT
is working with CERES (Centre for Education and Research in
Environmental Strategies) through the Centre for Design to assist in
developing an urban water conservation demonstration and research facility.

Being a cross between a commercial organization and a University's research division,
the Centre for Design is treading a fine path of commercial promotion and a reference
authority. This project was essentially a challenge to deliver a site that met both
objectives with integrity.

Being the centre for design and the national leading authority on design issues for
environmental sustainability, the site needed to reflect this positioning in its information
structure, navigation, and visual design.

This organization's value lies in its information—the value of the information is in its
depth of non-commercial research. Sharing information increases the reputation and
value of the organization. A website is the perfect place to transfer knowledge globally.

As environmental design is the way of the future, the Centre and its public presentation
materials had to project the intention, depth, value, and professionalism of the
organization.

Chapter 8

255

The Existing Site
The first website was built in 1996. At that time, most websites were built with HTML
and simple graphics. This site was no exception. The navigation was implemented using
a series of icons that allowed the user to click through to each section of the site. While
clever, the icons had little intrinsic meaning and no text to explain where you would end
up if you clicked them. However, most pages had regular hyperlinks that gave the user a
better idea of what the site contained.

What was interesting about the existing site was how it had grown over time. The site
was updated fairly regularly over a seven-year period by many people with varying levels
of technical skill. The result was an extremely difficult-to-navigate website with a
remarkable amount of content. Updating sections of the site became the responsibility of
the managers that ran those areas within the business. One of the larger sections of the
site, Life Cycle Assessment (LCA), was maintained by the Manager of LCA for the
Centre for Design. This section of the site had internal consistency as one person was in
charge of its content and maintenance. However, the structure of the content in the LCA
section differed from other parts of the website. The colors, navigation, and structure
were all unique to this section.

Over seven years, the existing site had become so fragmented and disjointed that even
staff within the CFD had trouble finding content. A copy of the existing site was archived
before deploying the new site using the eZ publish CMS to ensure that content would not
be lost.

The Project
Initially, the requirements were to provide a consistent look and feel to the existing
information as well as the ability to update certain sections. The focus was purely on the
content and its presentation. As the need for content management was limited to only
some of the sections, we initially proposed a custom-built CMS. However, we also stated
that the needs of content management could go beyond expectations, so a full content
management system would be a better long-term option. This proposal was presented in
November 2002.

When we discussed the proposal with the client, it became clear that the needs of the new
website could not be fulfilled with a simple custom-built CMS. The depth and scope of
content was far too wide. A custom-built CMS might have provided an acceptable
short-term solution, but considering the life span of the previous site (seven years) we
knew that this site had a minimum two year life span and an expected life span of five
years. Based on this, we went back to the client in December 2002 to establish the
detailed requirements of the site.

Center for Design at RMIT Case Study

256

The Process

257

Chapter 8

Requirements
Requirements gathering was conducted over several meetings and finalized in January
2003. The requirements covered the following areas:

Key Objectives
• Promote the organization and its services
• Clearly define what CFD are about
• Create a knowledge base
• Publish information in order to change current practices

Creative
• Present CFD as they wished to be seen
• Show an understanding of the target market
• Recognize local & international considerations

Functionality
• All content to be managed in-house without needing technical skills
• Intuitive and easy-to-use browser-based administration interface
• Multiple users with different permission levels (namely author, editor, and

publisher)
• Consistent presentation for all content
• Site search facility (including searching Word documents & PDFs)
• Complex publication rules (for example, content added to one section can

automatically appear in other sections)
• Accommodate different types of content
• Workflow for creation, review, and publication of content
• Version tracking
• Ability to update look and feel without rebuilding the entire site

258

Center for Design at RMIT Case Study

Content
• Review existing content
• Establish patterns
• Establish ideal structure

Hosting Environment
Sorting out the hardware was straightforward. We already had a server configured that
hosted other eZ publish sites. The client agreed that we would host the new site.

Hardware
• Hewlett Packard LC 2000R
• Dual PIII 1GHz processors
• 1Gb Ram
• 3 x 9Gb SCSI Hot Swappable Hard Drives
• RAID 5 Array
• DAT tape back up facility with daily tape rotation
• Dual Redundant Power Supply

Software
• Red Hat Linux
• Apache web server
• Tomcat 4 servlet container
• PHP 4
• MySQL 3

Selecting a CMS
What made this project unique was the combination of the number of authors, the number
of content types, and the rules for how content was to be displayed. Individually, these
requirements weren't difficult, but combined, they became far more complex.

We had previously evaluated CMS solutions and found that eZ publish could
immediately satisfy the majority of the requirements at face value. The only requirement
not covered was searching Word and PDF documents, but this was on the roadmap for

Chapter 8

259

implementation within the next 12 months. Our experience with eZ publish gave us
confidence that it was the right solution for this project.

Once the requirements had been established and eZ publish had been selected as the CMS
solution, we had to work out the requirements to be implemented as a part of Stage 1.
The aim was to have the site live by the end of May 2002. Given this timeframe and the
budget, we knew that it would not be possible to deliver all the requirements. We
discussed priorities with the client to establish what had to be in Stage 1 and what could
wait until later stages.

The priority was to get the site up, as the Centre was not keeping up with best practices in
their field; this was having an impact on their reputation both nationally and
internationally. Another priority was making sure the content was properly structured and
presented. It was agreed that the implementation of workflow with multiple levels of
permissions could wait until Stage 2.

Specifications
Now that we were clear what to achieve, and by when, we needed to specify exactly how
we planned to make it happen. We did this by creating an information architect document
that contained the following sections:

• User View
• Admin View
• Content Model
• Display Templates
• Content Types

User View
Most of the work for this was done in the initial audit. We started by defining a tree
structure of what the main sections of the site were, and then defined sub-sections as well
as the dynamic content.

Home

About the Centre

Article A

Article B, etc.

Sustainable Products

Article A etc.

Center for Design at RMIT Case Study

260

Client A

Client B etc.

Publication A

Publication B etc.

Link A

Link B, etc.

Project A

Project B, etc.

Training A

Research & Consulting

Article A

Article B

Publications

Publication A

Publication B

Sustainable Products

Publication A, B, etc.

Sustainable Buildings

Publication A, B, etc.

Life Cycle Assessment

Publication A, B, etc.

Note: Items in italics were added by the client.

Most of the structure was straightforward. There were a number of sections, and in each
section, different types of content could be stored. The complexity arose when content
placed in one section was to also appear in another section. For example, a publication
appearing in the main section Sustainable Products would also appear under the main
section Publications in the Sustainable Products sub-section.

Although the tree structure accurately captured how the user was to view the site, we
found that it was difficult for the client to visualize how this would translate into a
website. It also did not clearly show that a publication shown in different sections was in
fact the same content (just one key feature of a CMS). In later implementations, we

Content Type Appears In

Chapter 8

261

replaced the tree view with a simple sitemap, which has proved to be far more effective.
To show the rules of where content was to appear, we used a content model.

Admin View
The Admin view is how people managing the content see the site. However, this is not
necessarily how the user sees the site—from a display perspective as well as the
structuring of information. As mentioned earlier, a user view is best represented by a
sitemap; for the Admin view we found the tree structure to work well. The Admin view is
about where to add, edit, and delete content. It's like a file server where the content is
organized in a logical manner for easy access. How that content is viewed by the user is a
different thing altogether. The purpose of the Admin view is to make things easier for the
people creating and managing the content. The Admin view became a working area, a
repository of information that needed to be structured appropriately.

As content entered in one area was to appear in other areas, we initially proposed that the
admin section be structured according to the content types. Thus when logging into the
admin section, rather than getting a list of sections as defined in the user view, we
proposed providing a list of content types:

Publications Sustainable Products

Sustainable Buildings

Life Cycle Assessment

Publications

Projects Sustainable Products

Sustainable Buildings

Life Cycle Assessment

Training Sustainable Products

Sustainable Buildings

Life Cycle Assessment

Training

Although on the surface this made sense to both us and the client, the implementation did
not prove to be intuitive from a usability perspective. The end decision was to implement
a hybrid approach. We listed the main sections as per the user view, also listing content
types that didn't have their own dedicated section, for example, Links.

Center for Design at RMIT Case Study

262

The admin page would contain the following sections:
• Sustainable Products
• Sustainable Buildings
• Life Cycle Assessment (LCA)
• Training
• Research & Consulting
• Publications
• Links
• News
• Misc

Most of these sections worked in a straightforward manner: you simply clicked on the
section and added content. Where content should appear was defined within the system,
so the administrator didn't have to worry about adding the content in more than one
place. The exceptions to this were Links and Misc.

Chapter 8

263

Links
In the existing site, links had great importance as a part of the knowledge base and were
of great value to people using the existing site as a research tool. It was important that the
new site allow for the links to have the same level of importance and to be presented in a
similar way. To allow for this, we extended the directory-style approach, categorizing
them into different sections and then sub-sections.

A link was either local or international, and would fall into one of the following sub-
sections:

• Case Studies
• Centre for Design
• Documents/Guides
• Government
• Industry
• Journal/Conference
• Other
• University/Research Groups

Center for Design at RMIT Case Study

264

Miscellaneous
This covered all the single pages within the site that are better described as utilities
("Don't Make Me Think", Steve Krug, New Riders). In Misc, we put content for things
such as the copyright message, disclaimer, sitemap, credits, and so on.

Chapter 8

265

It was a repository for anything that was information about the site or the centre, rather
than the information that CFD provided. Links to these items appeared in the footer on
each page of the site.

In recent implementations, we have found it useful to add another section, Library. In it,
we store files (such as Word documents or PDFs) or images that are used in more than
one place on the site. It is especially handy for reusing graphics. We've found that some
clients use the library a bit like a file server and create sub-directories to help structure
the content. The inclusion of a Media view in the admin templates of the version 3.2 of
eZ publish makes the management of a library of images much more user-friendly.

Content Model
Having defined the way users would see the site and how administrators would work
with the content, we had to define the business rules that would control not only what the
user saw in each section, but also what the administrators would be able to add in each
section. In the user view we used a sitemap and in the Admin view we used a tree
structure, but neither of these approaches was effective in capturing the business rules of
what content could go where. It was important to capture the rules in a manner that had
enough detail for the developer to work with but was also easy enough for the client and
designer to understand.

Traditionally, sites with a database are displayed using a sitemap and a line to a database.
The details of the database are defined separately in a schema, which in itself has
different views: for example, table definition and relationship diagram. We needed to
combine the sitemap with the content types and show the relationship between them and
other parts of the site.

After several attempts at trying to combine the sitemap with database schema type
diagrams, we decided to adopt a different approach that started with the content rather
than where the content went. Adding to this, we borrowed from Peter Coad's approach to
object modeling in color (Java Modeling in Color with UML, Peter Coad, Eric Lefebvre,
Jeff De Luca, Prentice Hall). The end result is what we call a content model.

To create the content model, we start by representing each content type at the top of the
page, each with a different color. We then represent each of the main sections of the site
underneath. The next step is to draw a line between the content type and each section that
the content type can appear in. This establishes the rules of what can go where.

Once the main rules are defined, we look to capturing when content should be published
in two places simultaneously. In the following diagram, a news article stored in the
speeches section is also published on the home page. A publication stored in the LCA
section is also published in Publication under the LCA sub-section.

Center for Design at RMIT Case Study

266

Original Content Model

Final Content Model

Get the content model right and everything else will fall into place.

Chapter 8

267

This approach proved to be quite powerful. It was easy for the client to understand the
relationship between the content and the site. At the same time, the developer was
provided with a high-level view of the relationships that would be implemented within
the CMS.

In the same way that an object model captures the objects within a business domain and
how they work together, the content model brought together the content, the site, and the
business rules in a single effective representation. Because the content model brings so
many elements together, it is the most important part of the specification to get right.

Display Templates
Having captured the high-level user view and the content model, the next step was to
work out the details of how the navigation was to work and how content was to be
displayed. We created a series of display templates (or wireframes) and documented all
the elements that would be displayed on that page; in other words, the presentation logic.

We started with the global template and then moved on to each section and sub-section
until we had captured how any and every page on the site would be displayed. The
following template defines the elements that appear on all pages:

Center for Design at RMIT Case Study

268

The various sections of this template were:

• Header: Displays logo & search window
• Primary Navigation: Displays all primary navigation items
• Footer: Displays feedback, copyright link, disclaimer, and sitemap

Once we had defined the global elements, we looked at each section to define what
content was to appear in it, the sub-navigation, and the specific rules that defined how
and where the content would be displayed on the page.

Sustainable Products, Sustainable Buildings, and LCA
Template
This template was for the main sections of the site. All the global elements are displayed.
The sub-navigation is displayed as links under the type of content that they link to: for
example, links to Project A and Project B under the heading Projects:

The sections of this template are:

• Global Elements: Display all
• Secondary Navigation: Display all secondary navigation items under

category headings and titles as links to full content

Chapter 8

Adding an example at this definition stage is a simple but effective way of
checking that you are on the right track.

269

• Content Area (Sustainable Products / Sustainable Buildings / LCA):
Display selected primary navigation title, selected primary navigation
overview article, and article title as link to full article

Content Types
Defining all the content types proved to be one of the bigger challenges. It was difficult
to identify patterns in the existing site to use as a basis to accommodate all of the content.
For example, not all training courses had the same information; some had a breakdown
of the content, others didn't. It took a number of revisions to be able to consolidate all of
the content into eight content types that would allow CFD to port everything on the
existing site to the new site.

The content types were as follows:

• Overview Article
• Article
• Project
• Training Course
• Publication
• Link
• Client
• News

The next step was to define each content type in more depth. Borrowing from database
definition and OO terminology, we defined each content type in terms of attributes and
datatypes.

An attribute represented each element of a content type: for example, heading and
description. The datatype represented how the information was to be stored, for example,
rich text, plain text, or numeric.

We also provided an example of each attribute as a part of the definition to ensure that
the name of the attribute was meaningful and the datatype was appropriate. This was a
very important step.

In a previous implementation, we found that although the content type definition made
sense during the specification stage, the definition no longer worked when it came to
adding the actual content, and changes had to be made.

Attribute Type Example:

Center for Design at RMIT Case Study

270

The end result was a table for each content type. Here is the table for the Publication
content type:

Title* Text line Design + Environment: A global guide
to designing greener goods

Author* XML text Field Helen Lewis & John Gertsakis with
Tim Grant, Nicola Morelli & Andrew
Sweatman

Date of
Publication* DateTime No example

Publisher Text Line Greenleaf Publishing Limited, 2001,
Sheffield UK

Image Image Image of front cover of publication

Description of
Contents* XML text Field There is a scarcity of good, practical

resources for those interested in
minimizing the environmental impacts of
products. A new book, called Design +
Environment from Greenleaf Publishing,
has been specifically written to address
this paucity. The authors—Helen Lewis
and John Gertsakis with Tim Grant,
Nicola Morelli and Andrew Sweatman -
have all been involved in
EcoReDesign(TM), the innovative
program developed by the Centre for
Design at RMIT. The aim of
EcoReDesign(TM) is to collaborate with
Australian companies to improve the
environmental performance of their
products by following design for
environment (DfE) principles.
Download order form as a PDF file.

Cost XML text Field A$50

Attachment
(order form
pdf)

Attachment
Description

File

Text Line Download order form

Chapter 8

271

The final step in defining the content types was to work out how the information was to
be displayed. To do this, we created a sample display template for each content type that
would show each attribute. This was an important step, as in some cases seeing the
information laid out suggested changes to the definition of the content type that produced
a better end result. It was far easier and quicker to make changes to the definition or
display template at this point than after the site was built.

Center for Design at RMIT Case Study

272

The process of creating the information architecture document was long and difficult.
The document went through several revisions and reviews with the client. During these
reviews, we went through every element of the specification until we were sure that we
had captured everything correctly. After each revision, we made sure both the designer
and developer also had a chance to give their input from an implementation perspective.

Overall, this process took approximately two months from start to finish; it took time to
organize the reviews and coordinate getting all the right people together at the same time.

Although it was a very difficult and complex process, it proved to be a wise investment;
the end result required very few changes from what was contained in the information
architecture document.

Interface Design
As the client had such an outstanding reputation with world thinkers in the environment
design sector, it was imperative that the site looked and felt like it was a unique
individual with best-practice design sensibilities and an inspirational interface.

Visual Design
Earlier, the Centre for Design had a terrible logo – very 90's, hard, and academic. The
first job was to talk the Centre into getting a good visual device, i.e. a logo, to associate
their name with. We recommended a logo designer and with the brief he came up with a
logo the Centre is very happy with. We then moved on to navigation.

Once we sorted the exact number, type, and informational priority of navigation items, it
became easy to display them in an innovative, yet clear and logical manner.

The home page design needed to have a real personality and the secondary pages needed
to draw on that personality to surround the internal content without intrusion:

• The site had to say: we are modern, eco-sensitive, unique, dramatic, and
'we are where design is at'

• It had to be: non-threatening, classic, timeless, and easy to navigate
• It had to have: the Centre's purpose clearly displayed, and the navigation near

that area

Our initial concepts are shown in the following screenshots:

273

Chapter 8

The winner (shown below) was only selected after it was repeatedly put forward by us as
we felt it had all the answers. The Centre grew to love it too.

274

Center for Design at RMIT Case Study

All the Centre's print background material of graduated blue was incorporated, but
without dominating the site. This way all the Centre's presentation material design was
aligned with the site being the pinnacle of their offering.

We proposed that the secondary page should look like the following, reflecting elements
from the home page:

HTML Prototype
For every template defined in the information architecture, we created an HTML page
that combined the information design with the interface design. These pages were then
linked together to create an HTML prototype of how the site would work once
implemented.

The HTML prototype is like a static hand-built version of what the end site look like.
Every path and navigation option is displayed, and style issues, such as how and where
headers and images are displayed are addressed. The HTML prototype becomes the style
guide for the site. The actual HTML is then used as the basis for the templates created in
the CMS.

Chapter 8

275

This step is important for two reasons:

• Client review: After many months of meetings to gather requirements and
work out specifications, the HTML prototype is the first tangible result that
the client gets that is not a document. They can look and interact with the
HTML prototype. They can comment on how it works, how it looks, whether
it meets their expectations, and so on. It's much easier to comment on
something that you can interact with, rather than a document you just read.

• Testing: The HTML prototype also provides an excellent opportunity to test
the information and interface design as well as the actual HTML in various
browser/OS combinations. Once applied to the CMS, it takes a lot more work
to make changes, which may also flow on effects. As the implementation has
only started, this gives us the chance to fine tune and update without having
to rewrite code, which is easier and far more cost effective.

In the case of the CFD site, the HTML prototype raised a number of issues.

The Home Page
The home page looked fine as a design presented in .jpg format, but when constructed,
we encountered problems with browser compatibility and scalability. The design was
optimized for 800 x 600 resolution, so for screens with greater resolution we needed to
ensure the background extended gracefully. This was easy to fix in the more popular
browsers but was a bit trickier in older browsers such as Netscape 4.

Section Pages
Most of the section pages were straightforward, with the main navigation on the left of
the screen, sub-navigation down the right, and content in the center column, i.e. the
classic three-column layout. This was easy to scale for different resolutions on the
common browsers. The only issue we found on most section pages was making sure the
sub-navigation allowed for long link names, for example, "Process of delivering
Sustainable Buildings and CM education". Our previous experience taught us that clients
have a habit of having very long titles, which the CMS uses as the link to that content.

The section page that proved more difficult was Publications. On this section page, the
content was split into three columns and there was no right-hand sub-navigation.

It took us several iterations to balance getting the code to work, making the page look
good, and keeping it flexible enough for the content.

Center for Design at RMIT Case Study

276

Publications Section

Research Section

Chapter 8

277

Sustainable Buildings Section

Content Pages
For every content type, we had to create an HTML page that displayed every element
within each content type. Browser compatibility was not a problem as these pages reused
the structure of the three-column sections pages. The challenge was in setting the styles
for the different elements for each content type as well as accommodating the formatting
that the client would add through the online editor. We started by applying a standard
style for the headings and content for the description of each element. Then we reviewed
the examples of each content type to see if the style worked well or if there were certain
elements within a content type that should be presented differently, for example,
Introduction, Abstract, and Credits.

As an approach to test and refine our websites, we have found building HTML
prototypes to be extremely valuable.

Center for Design at RMIT Case Study

278

Project Content Page (Introduction shaded differently)

Development
The development phase started at the same time as the HTML prototype. We were able to
do the initial setup and configuration while the prototype was being built.

Install eZ publish
For this project, the first release of eZ publish 3.0 (3.0-1) was used initially, and later
upgraded to a bug fix release 3.0-2. Since then, there have been another two major
releases that have introduced a much-improved configuration process.

Installation of the eZ publish system is a relatively simple process. We incorporated the
setup of an eZ publish site into our existing development environment setup.

Chapter 8

279

As a matter of policy, we use a regular site for the web server and a secure site for the
admin section. For example:

http://projectname.devserver/ Regular site

https://admin.projectname.devserver/ Admin site

The main steps in the installation of eZ publish are:

1. Set up virtual servers (regular and secure) as normal.
2. Create a MySQL database and database user.
3. Uncompress the eZ publish distribution in the site DOCROOTT.
4. Change permissions and ownership on the var and settings directories

to allow the web server to write to these.
5. Visit the site URL and process through the eZ publish configuration screens.
6. Manually modify the eZ publish configuration files to match our setup. (This

involves changing the default way the regular site is distinguished from the
admin site. By default, eZ publish uses the "URL" method, but we used port
numbers. This part of the process is now included in the setup process via
web pages).

7. Setup and configure design directories for the admin and regular sites.

The CMS is now ready for configuration.

Define Content Classes and Sections
Because of the time spent in getting the information architecture correct, the setup of the
content type was a simple process. We used the existing content types Folder and Article,
with the Article type requiring the addition of a number of attributes. The other content
types were added using the Admin pages.

Configure Roles and Permissions
Due to the workflow requirements being left for a future production stage, the roles
required for this project were limited to three—the default Administrator and Anonymous
roles, and the additional Editor role for data entry.

While the eZ publish initial configuration process has improved
remarkably in subsequent releases, the installation process remains largely
similar to the first version.

It is a common mistake not to give the Anonymous role read access to newly
created content types. If you cannot view data in the site, check to see if the
Anonymous role has read permission for that particular content type.

Center for Design at RMIT Case Study

280

The Administrator role has access to all functionality, including the creation,
modification, and removal of content, and the ability to modify configuration of the CMS
itself. We did not need to modify this role in any way.

The Editor role has access to create content where it is appropriate (this is based on the
Content model outlined earlier), and to modify and delete this content. Items in the misc
folder may only be edited, as these are statically linked in the templates and would break
links if removed. Similarly, adding content to this folder would be of no advantage.
Access to the configuration aspects of the CMS is not permitted by this role.

The Anonymous role, like that of the Administrator, is an existing role. The only
modification required to this role is to grant read access to the newly created content
objects.

Each role was assigned to a corresponding user group, and a number of Editor users were
created for the client for the content population staff.

Apply Display Logic and Templates
All page types (home, primary, secondary, tertiary), content types (article, folder, etc.),
and sectional summary pages are defined in the Information Architecture document and
created in a HTML prototype. This allows for the associated templates to be created
directly from the HTML prototype. Also, this process becomes a simple copying of the
core HTML and replacement of the sample data with the appropriate eZ publish template
code.

Templates in the eZ publish system are divided into two main types: page layout and
content templates. We will now see how these templates were created, along with the
templates for navigation and summaries of content.

Specifically, we will look at how the templates were created for:

• Page layout
• Navigation
• Summarized content
• Content

Chapter 8

281

Create Page Layout Templates
The first step in applying the templates is to create the page layout template. This
template determines the layout of the page. This site has different page layouts for the
home page and all secondary pages and this process is performed for both.

All external files (images, stylesheets, and JavaScript) are copied to the design directory
on the eZ publish server. The HTML prototype is copied to pagelayout.tpl and all
references to external files (images, stylesheets, and JavaScript) are converted to use the
ezdesign and ezimage functions.

For example, the following HTML to include a JavaScript file:
<script language="JavaScript"

src="script/common.js"
type="text/JavaScript">

</script>

becomes:
<script language="JavaScript"

src={"script/common.js" |ezdesign}
type="text/JavaScript">

</script>

The following HTML to include a stylesheet:
<link rel="stylesheet" href="stylesheets/style.css"

type="text/css">

becomes:
<link rel="stylesheet" href={"stylesheets/style.css"|ezdesign}

type="text/css">

The following HTML to include an image:
<img src="images/nv_0202_montage.jpg" width="675" height="96"

alt="Welcome to the Centre for Design">

becomes:
<img src={"nv_0202_montage.jpg"|ezimage}

width="675" height="96"
alt="Welcome to the Centre for Design">

This tells the template system where to find the external files.

The main content area is then replaced with {module-result.content}. This is
substituted by the template system with the content for a specific page.

Center for Design at RMIT Case Study

282

Navigation
The next stage is for the navigation to be programmed. This process requires the CMS to
be populated with sample content. It is always good to use real content if possible for this
process as this gives a real sense of how the system will eventually work.

Primary Navigation on Home Page

Primary Navigation on Secondary & Content Pages

The CFD site has the following top-level content

areas

• Research and Consulting
• Training and Professional Development
• Publications
• Sustainable Products and Product Systems
• Sustainable Buildings
• Life Cycle Assessment
• Links
• News

These sections are created via the admin interface under the root node using the Section
Overview content type.

Chapter 8

283

With most websites, there is usually content associated with the site that describes the site
or the content. A folder is created and called misc (short for Miscellaneous) and the
following articles are created in this folder:

• More about the Centre
• Copyright
• Disclaimer
• Sitemap
• Site credits
• Register for newsletter

(The "Register for newsletter" item is a different content type used to collect e-mail
addresses for the mailing list)

This provides us with a skeletal site into which the navigation can be programmed.

Footer on Home Page

Footer on All Other Pages

Setting Up
As the navigation differs for various sections of the site, the first step is to detect which
section the current node belongs to and to set some variables. This is done by including
an initialization (design/cfs/templates/common/initialization.tpl) file in the
page layout template.

The initialization file detects which section of the site the user is currently in and stores
the following items in variables:

• section_top_node_id: The node ID of the top node of this section
• section_img: The section banner image
• section_alt: The alt attribute for the banner image
• sec_nav: The secondary navigation for this section

The first step of the initialization is the setup of arrays that hold the information for each
section. The first array holds the banner image and all text for items in the misc folder.
These objects have individual banner images that we directly relate to their node ID;
hence the key to the array is the node ID of each object in this folder.

This code creates and initializes variables that are used in this file:

Center for Design at RMIT Case Study

284

{let section_hash=false()
misc_node_hash=false()
section_top_node=false()

}

The misc items information array is as follows:
{set misc_node_hash=hash(

31,hash('image','images/hdr_moreabout.gif',
'image_alt','more about the centre',

),
32,hash('image','images/hdr_copyright.gif',

'image_alt','copyright',
),

33,hash('image','images/hdr_disclaimer.gif',
'image_alt','disclaimer',

),
59,hash('image','images/hdr_sitecredits.gif',

'image_alt','site credits',
),

65,hash('image','images/hdr_sitemap.gif',
'image_alt','sitemap',
),

81,hash('image','images/hdr_register.gif',
'image_alt','register for
newsletter',

),
)

}

The following array stores the section information. In addition to the banner information,
the name of the file used for generating the secondary navigation for the section is added.
The key for this array is the section top node ID.

{set section_hash=hash(
16,hash('section_img','images/hdr_susproducts.gif',

'section_alt','Sustainable Products & Product Systems',
'sec_nav','program_navigation.tpl',

),
17,hash('section_img','images/hdr_susbuildings.gif',

'section_alt','Sustainable Buildings',
'sec_nav','program_navigation.tpl',

),
18,hash('section_img','images/hdr_lifecycle.gif',

'section_alt','Life Cycle Assessment',
'sec_nav','program_navigation.tpl',

),
21,hash('section_img','images/hdr_publications.gif',

'section_alt','Publications',
'sec_nav','publication_navigation.tpl',

),
20,hash('section_img','images/hdr_research.gif',

'section_alt','Research & Consulting',
'sec_nav','research_navigation.tpl',

),
19,hash('section_img','images/hdr_training.gif',

'section_alt','Training & Professional Development',
'sec_nav','training_navigation.tpl',

),
22,hash('section_img','images/hdr_links.gif',

'section_alt','Links',
'sec_nav','link_navigation.tpl',

),
23,hash('section_img','images/hdr_news.gif',

'section_alt','News',
'sec_nav',false(),

),

Chapter 8

285

'Search',hash('section_img','images/hdr_search_results.gif',
'section_alt','Search results',
'sec_nav',false(),

),
24,hash('section_img',$misc_node_hash[$module_result.node_id]['image'],

'section_alt',$misc_node_hash[$module_result.node_id]['image_alt'],
'sec_nav',false(),

),
)

Of note in this array are the elements with the keys Search and 24. The Search entry is
for search results pages. The element with key 24 is for items in the misc folder. The
banner information is set using the misc_node_hash array and the current node ID.

The code to determine the top node ID of the current section follows:
{section show=eq($module_result.path[0].text,'Search')}

{set section_top_node='Search'}
{section-else}

{section show=$DesignKeys:used.depth|gt(2)}
{set section_top_node=$module_result.path[1].node_id}

{section-else}
{set section_top_node=$module_result.node_id}

{/section}
{/section}

We check if the current page is a search results page. If this is not the case, the depth of
the current node is tested to see if we are not currently on one of the section top nodes
(depth less than or equal to 2). If this is the case, we retrieve the section top node ID from
the node path; otherwise we use the current node ID. The last step in this process is to
assign values to the variables so they can be used in the pagelayout.tpl file.

{set-block variable=section_top_node_id}
{$section_top_node}

{/set-block}
{set-block variable=section_img}

{$section_hash[$section_top_node]['section_img']}
{/set-block}
{set-block variable=section_alt}

{$section_hash[$section_top_node]['section_alt']}
{/set-block}

These lines set the banner information and the section top node ID (used in primary navigation
—see below):

{set-block variable=sec_nav}
{section show=$section_hash[$section_top_node]['sec_nav']}

{section show=array('publication','extended')|
contains($DesignKeys:used.viewmode)}

{set-block variable=section_top_node_id}21{/set-block}
{include uri="design:common/publication_navigation.tpl"}

{section-else}
{section show=ne($module_result.node_id,21)}

{include uri=concat(
"design:common/",$section_hash[$section_top_node]['sec_nav'])
section_top_node_id=$section_top_node}

{/section}
{/section}

{/section}
{/set-block}
{/let}

The new URL Translator feature allows you to bypass this issue and will be
implemented in Stage 2.

Center for Design at RMIT Case Study

286

This code block sets the sec_nav variable. For some sections there is no secondary
navigation and this variable is empty. Apart from the publication section, this process is
simply a matter of including the correct file to generate the navigation.

The following code from the pagepayout.tpl file displays the section banner:
<img src={$section_img|ezdesign} alt="{$section_alt}"

width="370" height="26" border="0">

The secondary navigation is simply added in the correct place in the template. The use of
the section_top_node_id variable is detailed in the next section.

Primary Navigation: Navigation Highlighted by Border

All of the primary navigation items are hard-coded in to the page layout template using
their unique node IDs. We initially used the URL alias feature but found that when a
content editor changed the title of an object the URL alias also changed, breaking the
hard-coded link.

287

Chapter 8

The node IDs of the items in the misc folder are recorded and the links in the
pagelayout.tpl are configured using the ezurl template function.

Each primary navigation link has 'on', 'off', and 'active' states. The on and off states are
controlled by JavaScript using the onmouseover and onmouseout link attributes. The
active and non-active states are controlled by the template logic.

The following code fragment shows how this is implemented for the More About the
Centre link (node ID 31):

<a href={"content/view/full/31"|ezurl}
onMouseOver="imgOn('nv_moreabout')">

{section show=eq($module_result.node_id,31)}
onMouseOut="imgActive('nv_moreabout')">
<img src={"nv_moreabout_active.gif"|ezimage}

{section-else}

onMouseOut="imgOff('nv_moreabout')">
<img src={"nv_moreabout_off.gif"|ezimage}

{/section}

width="175" height="20" border="0"
alt="more about the centre"
name="nv_moreabout">

This code fragment is repeated for all the miscellaneous primary navigation items.

The logic for displaying the navigation for the main primary navigation items is slightly
different as these parts of the site have depth and it is not enough to check to see if the
current node ID matches. In these cases we need to check if the current node is either the
given node or is an ancestor of the given node.

The following code fragment shows how this is implemented for the Sustainable
Products and Product Systems link (node ID 16):

<a href={"content/view/full/16"|ezurl}
onMouseOver="imgOn('nv_susproducts')">

{section show=eq($section_top_node_id,16)}
"onMouseOut="imgActive('nv_susproducts')">
<img src={"nv_susproducts_active.gif"|ezimage}

{section-else}

"onMouseOut="imgOff('nv_susproducts')">
<img src={"nv_susproducts_off.gif"|ezimage}

{/section}
width="175" height="33" border="0"
alt="sustainable products & product systems"
name="nv_susproducts">

The variable $section_top_node_id is set in initialization.tpl.

288

Center for Design at RMIT Case Study

Secondary Navigation for Life Cycle Assessment (Highlighted by Border)
The secondary navigation varies for the different sections of the site. First we'll examine
the secondary navigation for the Programs (Sustainable Products & Product Systems,
Sustainable Buildings, and Life Cycle Assessment) and Training & Professional
Development.

Each program is created in the system as a folder and may contain objects of type Project,
Publication, Training, Client, Articles, and Links. The secondary navigation displays all
items grouped by their type.

The following code is used to produce the secondary navigation for each program's
sections:

{let program_subsections=hash('Projects', 7,
'Publications',9,
'Training',8,
'Clients',11,
'Articles',2,
'Links',10,
)

}
<!-- 2nd navigation -->
<td valign="top">
<div class="sec_nav_column">

{section loop=$program_subsections}
{$:key}

{let item_list=fetch(content,list,
hash(parent_node_id,$section_top_node_id,

class_filter_type,include,
class_filter_array,array($:item)))

Chapter 8

289

}

{section show=$item_list}
{section loop=$item_list}

{$:item.name}
{/section}

{section-else}
No Items

{/section}

{/let}
{/section}

</div></td>
<!-- end 2nd navigation -->
{/let}

First we define an array of headings and their corresponding class IDs. This array is then
looped and for each class type:

• The heading is outputted.
• All objects of that type that belong to the current program area

($section_top_node_id) are retrieved.
• Links to the objects are outputted.

If no objects of a particular type exist, the text No Items is outputted.

The content model allows for training objects to be optionally associated with one of the
Programs. Additional training objects as well as any articles about training are placed in
the Training folder. The secondary navigation for the training section displays the
training objects grouped by their program plus any additional training objects and
training articles.

Secondary Navigation for Training (Highlighted with a Border)

Center for Design at RMIT Case Study

290

The following code is used to produce the secondary navigation for the Training section:
{

let programs=hash(
'Sustainable Products & Product Systems', 16,
'Sustainable Buildings',17,
'Life Cycle Assessment',18,
'Other',19
)

}

<!-- 2nd navigation -->
<td valign="top">
<div class="sec_nav_column">
{* list training *}

{section loop=$programs}
{$:key}

{

}

let item_list=fetch(content,list,
hash(parent_node_id,$:item,

class_filter_type,include,
class_filter_array,array(8)))

{section loop=$item_list show=$item_list}

{$:item.name}

{section-else} {* no matching content *}
No Items

{/section}

{/let}
{/section}

{* list articles *}
{

let articles=fetch(content,list,
hash(parent_node_id,$section_top_node_id,

class_filter_type,include,
class_filter_array,array(2)))

}

Articles

{section show=$articles}
{section loop=$articles}

{$:item.name}
{/section}

{section-else}
No Items

{/section}

{/let}
</div></td>
<!-- end 2nd navigation -->
{/let}

Chapter 8

Chapter 8

291

291

Similar to the Programs navigation, the first thing we do is define an array of items we
want to display. In this case, the array contains program names and the associated
node_id, as well as the Training node_id. This array is looped, and for each element of
the array all Training objects (class_id = 8) are retrieved. Links to these are then
displayed. If no training objects exist for a program then No Items is displayed.

The second part of the code retrieves and displays any articles that exist under the
training folder. Again, if no objects exists then No items is displayed.

Summary Pages
Secondary pages usually provide a summary of information from a particular section or
an alternative view of data from other parts of the site. These pages are programmed
based on the Information Architecture document, which defines the source, type, order,
and number of items displayed on the page.

The Publications page provides a summary of the publications associated with each
program. Summaries of the three most recent publications from each program are
displayed. Links to the full listing of all publications for each program and an
alphabetical listing of all publications are also displayed.

Center for Design at RMIT Case Study

Center for Design at RMIT Case Study

292

292

As Publication content types are located under each of the program folders, this page
template must retrieve the three most recent publications from each of the program
folders.

A publications folder is created at the top level to provide a point at which the user can
access this information. The node ID of the publications folder is 21.

The template override system is used to call the publications template
(publications.tpl).

The following entry in /settings/siteaccess/cfd/override.ini indicates that the
publications.tpl template should be used instead of the default full.tpl template
for node ID 21:

[publications]
Source=node/view/full.tpl
MatchFile=publications.tpl
Subdir=templates
Match[node]=21

The following code (/design/cfd/override/templates/publications.tpl) provides
the required functionality:

{* Publication Main Template *}
{let programs=hash('Sustainable Products', 16,

'Sustainable Buildings',17,
'Life Cycle Assessment',18,

)
publication_limit=3

}

Chapter 8

Chapter 8

293

293

We begin by creating an array of the program types and their node IDs along with a
publication_limit variable. The publication_limit variable allows us to
easily change the number of publications displayed.

Next, the programs array is looped through. For each program, we retrieve the three most
recent (sort_by,array(published,false())) publication objects (class_filter_type,
include, class_filter_array,array(9)) that are children of the current program
(parent_node_id,$:item).

<div style="width: 100%;">
<table border="0" cellpadding="0" cellspacing="0" align="left" width="100%">

<tr>
{section loop=$programs}

<td valign="top" width="33%">
<div class="heading_2">{$:key}</div>

{* Display 3 most recent items *}
{let publications=fetch(content,list, hash(parent_node_id,

$:item,
class_filter_type,include,
class_filter_array,array(9),
sort_by,array(published,false()), limit,
$publication_limit

)
)

}

A summary of each of the retrieved publications is displayed using the
node_view_gui function with the line view mode. (The use of alternative view modes
will be examined in detail in the next section.)

{section name=Publication loop=$publications}
{node_view_gui view=line content_node=$Publication:item}

{/section}
{/let}
{delimiter}

</td>
<td><img src={"images/spacer.gif"|ezdesign} alt="" width="30"

height="1" border="0"></td>
{/delimiter}

{/section} {* programs *}
</tr>
<tr>

<td colspan="5"> </td>
</tr>
<tr>

This process is repeated for all programs defined in the programs array. The
{delimiter} option of the section loop is used to close table data tags and place a
spacer cell between the program columns.

The programs array is then looped again to produce the links to the full listing of
publications for each program:

{section loop=$programs}
<td colspan="2">

Full Listing</td>

{/section}
</tr>
<tr>

294Center for Design at RMIT Case Study

Center for Design at RMIT Case Study

294

<td colspan="5"> </td>
</tr>
<tr>

<td colspan="5"><a href={concat("content/view/allpublications
/",$node.node_id)|ezurl}>See all publications listed
alphabetically</td>

</tr>
</table>

{/let}
</div>

Alternative View Modes
This page uses three additional view modes, one for the summary (line) view of the
publications, one for showing all publications for a specific program (publications),
and one for the full alphabetical view of all publications (allpublications).

As with the Publications page, the template used for each of these cases needs to be
overridden.

In the case of the publication summary (line) view, a combination of the view mode
and the content class ID (9 for publications) is used to determine the template for
displaying the information:

[publication_line]
Source=node/view/line.tpl
MatchFile=publication_line.tpl
Subdir=templates
Match[class]=9

295Chapter 8

Chapter 8

295

This results in the file design/cfd/override/templates/publication_line.tpl
being used when publications are displayed with the line view mode.

The link that displays a full listing of publications for a specific program will look like
/content/view/publication/16. The system interprets this to display node ID 16
using the publication view mode.

There is no need to create an override.ini setting for this view mode. It is simply a
matter of creating the design/cfd/templates/node/view/publications.tpl file.
The same applies to the template to display all publications
(design/cfd/templates/node/view/allpublications.tpl).

Content Templates
Finally, the content templates are programmed. These templates determine how each
content type is displayed. They are based on the prototype and are usually a simple
cut-and-paste of the HTML for the mock-up, where the content is replaced with the
appropriate content type attribute variable.

Let's look at the process of creating the template for the Publication content type.

The publication object attributes are defined in the Information Architecture document
and required attributes are marked with an asterisk (*). Refer to the table discussing the
Publication content type, earlier in this chapter.

Admin View of the Publication Content Class

296

Center for Design at RMIT Case Study

296

Center for Design at RMIT Case Study

The override system is used to specify the particular template to use when displaying
publication content objects. The following entry tells the system to use the template file
design/cfd/override/templates/publication.tpl when displaying publication
content objects (class_id = 9):

[publication]
Source=node/view/full.tpl
MatchFile=publication.tpl
Subdir=templates
Match[class]=9

The first step is to take the HTML from the prototype and replace the static content with
the appropriate template variables. The HTML from the prototype follows:

<div class="heading_2">Design + Environment: A global guide to designing
greener goods</div>
<div class="heading_3">by Helen Lewis & John Gertsakis with Tim Grant, Nicola
Morelli & Andrew Sweatman</div>
<div class="heading_3">Greenleaf Publishing Limited, Sheffield UK</div>
<div class="heading_3">May 2003</div>
<div class="heading_3">$A50.00</div>
<div class="heading_3">Download order form as PDF file</div>
<p><img src="images/sample_publication.gif" alt="" width="175" height="215"
border="0" align="left" hspace="5"></p>
<p>There is a scarcity of good, practical resources for those interested in
minimising the environmental impacts of products. A new book called, Design +
Environment from Greenleaf Publishing, has been specifically written to
address this paucity. The authors - Helen Lewis and John Gertsakis with Tim
Grant, Nicola Morelli and Andrew Sweatman - have all been involved in
EcoReDesign(TM), the innovative program developed by the Centre for Design at
RMIT. The aim of EcoReDesign(TM) is to collaborate with Australian companies

Chapter 8

Chapter 8

297

297

to improve the environmental performance of their products by following design
for environment (DfE) principles. </p>
<p>This clear and informative work will prove to be invaluable to practising
designers, to course directors and their students in need of a core teaching
and reference text and to all those interested in learning about the tools and
trends influencing green product design. The book first provides background
information to assists the reader understand how and why DfE has become so
critical to design. Then, a step-by-step guide is presented on how to design a
product that meets requirements for quality, cost, manufacturability and
consumer appeal, while at the same time minimising environmental impacts.
Environmental assessment tools and strategies are also discussed in detail as
are some of the links between the major environmental problems and the
everyday products we consume. </p>
<p>Four further chapters provide detailed strategies and case studies for
packaging, textiles, furniture, and electrical and electronic products.
Finally, Design + Environment takes a look at some of the emerging trends in
DfE that offer opportunities to significantly reduce environmental impacts.
</p>
<p>Design + Environment is available from the Centre for Design at RMIT.</p>

After replacing the sample content with the appropriate template variables, we end up
with the following code in /design/cfd/override/templates/publication.tpl:

{default content_object=$node.object
content_version=$node.contentobject_version_object}

<div class="heading_2">
{attribute_view_gui attribute=$content_version.data_map.title}
</div>
<div class="heading_3">by
{attribute_view_gui attribute=$content_version.data_map.author}
</div>
<div class="heading_3">
{attribute_view_gui attribute=$content_version.data_map.publisher}
</div>
<div class="heading_3">
{attribute_view_gui attribute=$content_version.data_map.cost}
</div>
<div class="heading_3">{$content_version.data_map.date.data_int|
datetime(custom,"F
%Y")}</div>
<div class="heading_3">
<a href={concat("content/download/",

$content_version.data_map.order_form.contentobject_id,
"/",
$content_version.data_map.order_form.id,
"/file/",
$content_version.data_map.order_form.content.original_filename)|ezurl}>

Download order form as PDF file</div>
<p>{attribute_view_gui attribute=$content_object.data_map.image alignment=left
hspace=5 vspace=0 image_class=medium}</p>

{attribute_view_gui attribute=$content_version.data_map.description}
{/default}

The next step is to add some code so that any non-mandatory attributes (and associated
static information such as a label) are not displayed. Mandatory attributes are indicated
with an * in the content type table (refer back to the Content Types section). In this case
only the title, author, and description of content attributes are mandatory. The final
code follows:

{default content_object=$node.object
content_version=$node.contentobject_version_object}

<div class="heading_2">{attribute_view_gui
attribute=$content_version.data_map.title}</div>

Center for Design at RMIT Case Study

Center for Design at RMIT Case Study

298

298

<div class="heading_3">by {attribute_view_gui
attribute=$content_version.data_map.author}</div>
{section show=$content_version.data_map.publisher.content}
<div class="heading_3">{attribute_view_gui
attribute=$content_version.data_map.publisher}</div>{/section}
{section show=$content_version.data_map.cost.content}
<div class="heading_3">{attribute_view_gui
attribute=$content_version.data_map.cost}</div>{/section}
<div class="heading_3">{$content_version.data_map.date.data_int|
datetime(custom,"F
%Y")}</div>
{section show=$content_version.data_map.order_form.content}
<div class="heading_3"><a href={concat("content/download/",
$content_version.data_map.order_form.contento bject_id,"/",
$content_version.data_map.order_form.id,"/file/",$content_version
.data_map.order_form.content.original_filename)|ezurl}>

{section show=$content_version.data_map.order_form_description.content}
{attribute_view_ gui
attribute=$content_version.data_map.order_form_description}

{section-else}
Download order form as PDF file

{/section}
</div>
{/section}
{section show=$content_object.data_map.image.content}<p>{attribute_view_gui
attribute=$content_object.data_map.image alignment=left hspace=5 vspace=0
image_class=medium}</p>{/section}
{attribute_view_gui attribute=$content_version.data_map.description}
{/default}

The order form is a binary file datatype. This code checks whether an order form has
been uploaded as part of the object by checking if there is data in
$content_version.data_map.order_form_description.content. If yes, the
appropriate link is generated. If a description of the binary file is present then the link is
displayed, otherwise the text Download order form as PDF file is displayed:

{section show=$content_version.data_map.order_form_description.content}
{attribute_view_ gui
attribute=$content_version.data_map.order_form_description}

{section-else}
Download order form as PDF file

{/section}

Testing whether an attribute is empty is relatively straightforward (and is much easier
now with the introduction of the is_empty function in the current version of eZ publish).
For most attributes, if there is no associated content, the value content (such as
$content_object.data_map.publication.content) is set to false.

Testing
Leaving testing until the end of the project is usually a bad idea, because making changes
at that stage is far more time consuming and expensive. We perform testing as a part of
each stage of the project to minimize the chance of things going wrong later.

Chapter 8

Chapter 8

299

299

Requirements
We tested the requirements by reviewing them with the client and then with other staff
within the organization that published content on the existing site. Different people may
have different issues that their manager might not be aware of. Talking to more than one
person gave us a more rounded and complete view.

We then thoroughly analyzed the existing site to ensure that the functionality set out in
the requirements would cover all of the content the client currently published.

Specifications
Normally a specification document is quite technical and difficult for clients to review.
We ensured that the specification document had the visual representations such as
wireframes as well as technical details, so that the client was able to understand and
provide meaningful feedback. We also got examples of real content and used them as a
part of the specification. Using dummy data or made-up examples increases risk. With
real examples we were able to pick up issues such as long titles for content and made sure
that the datatypes we applied were correct.

Implementation
The majority of the testing was done with the HTML prototype to ensure that it not only
accommodated the information design, but also worked in the required browsers and
operating systems for the specified screen resolutions (discussed in the HTML Prototype
section).

Functional Testing
Once the site was finished, it was simply a matter of going through every element of the
site entering several examples of each content type into the system and cross checking
against the HTML prototype to make sure that the CMS produced exactly what the
client expected. As the HTML used to create the prototype was the same HTML used to
create the templates in the CMS and that had already been tested, we minimized the risk
of errors.

Content Population
This is the final test of correctness and functionality. After the training sessions, we
provided the client with access to the site for content population. During this phase, we
used a web-based issue tracking system (Mantis) so that the client could record any
issues that arose during content population. Before putting the site live, we ensured that
all the issues were resolved.

300Center for Design at RMIT Case Study

Center for Design at RMIT Case Study

300

Deployment
Deployment involves the configuration of the live web server to mirror the configuration
of the development server and the copying of the entire eZ publish directory to the live
server.

With the CFD project, we were able to run the new site in parallel with the existing site
and simply reconfigure the DNS to point to the new site once the client gave approval.

Our experience with CMS-based sites is that the client must start content population
before the entire site is finished. Before the site is opened to the client to start content
population it is important to ensure that the underlying structures are sound; once content
population starts changes in the underlying content types may result in data having to be
input again.

Maintenance and Support
During the development of this site, a maintenance release of the eZ publish CMS system
was released. The upgrade proved to be a painless process and fixed a number of issues
that were not affecting this project.

The site has been live for 5 months and has required minimal maintenance. There is a
formal support package being drafted to cover helpdesk-type issues and to manage
upgrades to new versions of eZ publish. When notified by eZ systems of any security
patches that need to be applied, they are applied immediately to all installations.

Training
Even though the eZ publish admin interface is simple and easy to use, we knew from
previous implementations that training was very important on two levels. Firstly, we
found it was useful for people using the CMS to understand how it worked, how a CMS
wasn't just a normal website, and to think of content as separate from how it was
presented on the website. Secondly, it was important to familiarize people with the main
functions provided by the admin screens.

We conducted two training sessions based on a training manual we had written for a
previous project, which we then customized for this project. The training manual was
broken down into five main areas:

• What is a CMS: The key message for this section was to explain that a CMS
is made up of different layers that combine to produce the site. These layers,
the content, the display templates, and the rules for how the content and
templates combine, together create the website.

301Chapter 8

Chapter 8

301

• General functions: The purpose of this section was to help familiarize
people with the main areas of the eZ publish admin interface and how to
navigate.

• Folders: This part of the manual talked about how the content was structured
in the same way that files are stored in folders on computer. It also explained
that there were rules that meant only certain content types could be put in
certain folders.

• Managing content: This was the largest part of the manual and covered all
of the functions that people would need to enter, preview, and manage
content, including reverting to a previous version of an article.

• Formatting: Most of the formatting was covered by the templates but
formatting could be applied to some areas. This part of the manual explained
how to use the online editor or to use the standard formatting tags allowed by
the CMS.

Project Assessment
The entire project took just under eight months. However, when you look at the
breakdown of the project, you can see that the actual development was less than a quarter
of the time of the entire project. In fact, the bulk of the time taken was in the gathering of
requirements and specification phases of the project.

• Requirements – 2 months (elapsed)
• Specification – 2 months (elapsed)
• Development – 1.5 months (full time)
• Testing – 1 week
• Content Population & Review – 1.5 months (elapsed time)

Requirements and Specification Phases
The requirements and specification phases did not have a set timeframe. Both of these
phases included discovery, which took longer than expected. Given the nature of
gathering requirements, the need to review and analyze, it is hard and potentially
dangerous to put a set timeframe on this phase.

With the specification phase, the difficulty of getting everyone together and facilitating
feedback impacted the completion time. Had there been a set deadline, these phases could
have been shortened.

302

Center for Design at RMIT Case Study

Center for Design at RMIT Case Study

302

Development Phase
Development was planned out in detail and was to cover four weeks.

Week One
• Commence build of interface templates
• Install eZ publish
• Configure content classes and sections

Week Two
• Complete build of interface templates
• Configure roles and permissions
• Apply logic display and template framework

Week Three
• Apply interface templates to eZ publish
• Implement site search
• Implement sitemap

Week Four
• Test and review functionality

In reality, the development took six weeks to complete. The main cause for delay was the
review and update of the interface templates. The actual development time was close to
what we had planned but we did not allow enough time for client reviews, which pushed
the timeframe out.

This was the third site we completed with the eZ publish CMS, and while it was quite
straightforward, we found that the lack of documentation meant that a significant amount
of time was spent in research, trial and error, and code review of the CMS system itself.

With each new eZ publish site we complete, our knowledge of the system increases, and
accordingly the quality of the implementation. It must be noted that the amount and
quality of documentation has increased dramatically since the completion of this project.

Chapter 8

Chapter 8

303

303

Content Population and Review Phase
Given the amount of content and time pressure on the client, we allowed three weeks for
content population. From previous experience, we knew that although we had fully tested
all functionality, certain potential issues wouldn't arise until the site was populated with
content.

After three weeks, the site was still not fully populated. We had underestimated the
amount of work required to take content from the existing site and shape it to fit the
structure of the content types in the CMS. There were also some policy issues that arose
during this phase. The client decided to push back the deadline by two weeks to allow for
these issues to be resolved.

On this, as well as other implementations, we found that unless the content is well
prepared ahead of time, content population will always extend to the full time allowed
and often take longer. A bit like a gas, it extends to fill the space allowed. This is big risk
if there is a set deadline and it's important to ensure that the client understands how much
work is involved in populating a site. Implementing the CMS is like setting the structure
for a book; someone still has to write the content, and this is a significant task that should
be planned for. In every implementation we have done, content population has taken
longer than development.

Extending the Site
Before development commenced, we knew that we would have to address workflow as a
part of Stage 2. During the testing and content population phases, other improvements
were identified that would also form a part of Stage 2. We advised the client that we
should note down all these requests to review after the site had gone live. In previous
implementations, we found that what we thought should be added as a priority in Stage 2
hasn't always turned out to be the case. What we think we need and what proves to be
valuable aren't always the same.

Three months after the site went live, we met with the client to review how things were
going with the management of the site and how the public were reacting. What we found
was the design and structure of the site was received well and didn't need any revision.
We also found that the functionality was more than adequate.

Workflow
Although it was seen as important early on in the project, the need for workflow wasn't
that important. The creation and review of content was being handled well as a manual
system. The cost and effort for implementing workflow outweighed the benefits that it
would bring.

Center for Design at RMIT Case Study

304

Center for Design at RMIT Case Study304

Archiving
Before the site went live, we had identified that the way the sub-navigation was
displayed would become unwieldy if there was a lot of content. We discussed possible
solutions, the main one being the ability to put content into an archive so only the most
recent or most important content would be displayed as a part of the sub-navigation in
the section pages. It was agreed that an archive facility would be added as part of Stage
2.

Integration with CRM
What wasn't important earlier but became a priority was the ability to automate the
registration for newsletters from the site into the CRM software used by the client. This
project is to be scoped out in more depth soon.

Summary
This was our third implementation using eZ publish and was done at a time when the
product was rapidly evolving and there was lack of important documentation. Very few
details existed on how to best implement the system and we had to work out things along
the way both in terms of process and implementation. We learned some valuable lessons
that made future implementations much easier.

The most important lesson we learned was the value of receiving all of the content
upfront. The requirements contained some complex rules for publishing content in
different areas. This meant the specification became more complex, in particular the
content model and display templates, which also made development harder. Having more
of the content upfront, we could have better tested the validity of the requirements and
simplified some of the rules, which would have made the specification and development
phases easier without affecting the quality of the end result.

Another lesson learned was with our approach to building the HTML prototype. We used
traditional layout techniques, i.e. heavy use of tables. We have since found that using an
XHTML/CSS approach (i.e. all layout and styling defined in the CSS) we can
dramatically reduce the amount of time it takes to convert the HTML prototype to eZ
publish templates. It also reduces the page size, and increases accessibility and
performance. This method fits in well with the modular approach to content that eZ
publish dictates and has been very successful in subsequent projects. We are now
converting the CFD site to XHTML/CSS to make any further changes easier to manage.

On the whole, we've found that the more time spent upfront, analyzing requirements,
understanding the client, their needs, and their content leads to a much smoother
implementation and a better end result. The better we understand the client's domain and
their content, the better the solution we can come up with. In subsequent projects,

305

Chapter 8

Chapter 8305

although the time spent in the requirements and specification phases has slightly
increased, the time taken in the development phases has decreased significantly.

Finally, the task of creating, entering, and shaping content should not be underestimated.
No matter how well structured the information architecture, how efficient the
implementation, how elegant the design, or impressive the use of XHTML/CSS, it all
becomes meaningless without quality content. The result of all this hard work is merely a
system for managing content—and the system is only as good as the content itself.

9
Creating a Standards-

Compliant eZ publish Site

In this case study chapter, we will look at the design and development of an XHTML and
CSS-compliant eZ publish site. The intention of this case study is not to be an in-depth
exploration of standards-based design, but to show the thought process behind designing
and building such a site, and how the technology we use influences this process.

We will begin with an overview of web standards and the benefits they offer to web
developers and the end users of the site, and then move on to discuss the specifics of the
case study.

The site in question was created for the Department of Geomatic Engineering at
University College London (UCL). It was built to replace an existing site that had grown
unmanageable and to bring it in line with the new design guidelines set out by the
university. The new eZ publish implementation can be seen at
http://www.ge.ucl.ac.uk.

In this case study, we will look at:

• The client requirements
• Planning and preparation—site structure, choosing and defining the content

types
• Designing and creating the page templates and CSS rules
• Designing and creating the content types, their templates, and CSS rules

What Are Web Standards?
The web began very simply; web pages consisted of just text and contained a very basic
structure. As the web became more popular, however, designers began needing (or
wanting) more control over the outcome of their designs and very quickly ran into the
limitations of the medium. Basic HTML is very good at giving meaning to content on a

308

The W3C provides both an XHTML and a CSS code validation service at
http://www.w3.org.

Creating a Standards-Compliant eZ publish Site

page; a header is a header, a paragraph is a paragraph, and so on. But when it comes to
positioning elements on a page, it is very limited. Designers soon began to discover ways
of subverting the markup to make the web do what they wanted it to do. The prime
means of doing this was table-based design. Tables became the de facto standard for
laying out a website, and despite the complexity they introduced to the markup of the
document, they helped achieve a good layout for a web page as per a designer's
requirements.

In his book, Designing with Web Standards (ISBN 0-7357-1201-8, New Riders Press),
Jeffrey Zeldman likens this phase of web design to a time when it was acceptable to
throw rubbish from your car window. These habits have both, fortunately, come to be
seen as bad practice. We are entering a new era of web design that shuns the bad habits
that web designers have become used to and promotes the new virtues of standards
compliance and semantics.

But why should we do this if a table-based layout system has worked for us so far? Well,
for a start, the markup of the design is hugely simplified, which allows us to make
changes far more easily. This, combined with the ability to use an external stylesheet to
define styles for an entire site, massively reduces the headaches associated with the
maintenance of any large web design project.

XHTML and CSS are the most common standards used in this new design method, and
they both work extremely well with eZ publish for reasons that will become clear in this
case study. But first, we will go through a quick refresher of the core technologies. If you
haven't come across these before, you will need more information—see some of the
reference sites and books in the Resources section.

XHTML
If you know HTML, XHTML will be no big leap for you; it is essentially the same
except that it is XML compliant. This simple factor implies that you can validate your
code and ensure that it will be interpreted the same way in all compliant browsers.

Modern browsers are very forgiving about badly formed markup and this has led to some
extremely sloppy coding over the years. This also introduces an element of uncertainty
over how each browser handles these errors.

By using valid XHTML, it is possible to eliminate these uncertainties because the errors
that cause them will then not exist. From the web page of the group responsible for
developing the standards we use, the W3C, XHTML is described as the successor to
HTML. It is a means of introducing the rigor associated with XML to HTML. Well-

Chapter 9

Chapter 9

309

309

formed, semantically correct XHTML is the cornerstone of an easily maintainable

310Creating a Standards-Compliant eZ publish Site

A good example of the use of CSS is the CSS Zen Garden
(http://www.csszengarden.com/), which set the challenge of redesigning a site
by changing only the CSS and not the markup.

Creating a Standards-Compliant eZ publish Site

310

website. It allows us to define a logical document structure that is independent of
presentation and can be visually formatted as necessary using CSS.

When we talk about semantically correct markup, what we really mean is that each
element in the page is marked according to what it is. For example, if you have a series
of paragraphs on a page, do not use the
 tag to separate them and use the <p> tag
instead because that is what it is for. This applies to items such as lists (use or
and), headers (use <h1>, <h2>, and so on), and other such items that you will need
to put on a web page. This practice aids the separation of the presentation of the
document from its content, one of the core tenets of standards-compliant design.

CSS
Cascading Style Sheets (CSS) are one of the driving forces behind the web standards
movement. They allow web designers to have a great deal of control over the style and
layout of a website and are extremely powerful when used appropriately. They work very
simply; you can define a style for an element in the markup of a document and exercise a
good degree of deal of control over its appearance. Visual attributes such as background
color, border style, padding, spacing, font styling, and even the position of an element on
a page accurate to the pixel can be controlled very accurately using CSS.

By using an external stylesheet for the entire site, a radical change in appearance can be
achieved by editing just one file. By using CSS for the layout of the site, we can remove
the need for the bandwidth-heavy, table-based designs that we have come to rely upon.
This has the added effect of making the site more accessible to text-based browsers and
screen readers. It has, however, taken some time since CSS was first introduced for it to
be a feasible means of building a website.

Although advanced CSS layouts may not render correctly in a browser such as IE 4 or
Netscape Navigator 4.x, the usage of these browsers is so low that it is possible to
remove them from the list of target browsers. Many people feel that it is a good thing not
to support version 4 browsers, because this will push people on to using more recent
standard-compliant browsers. Of course, if a large proportion of a site uses an older
browser, it may be necessary to design accordingly, but this can still be done in a
standards-compliant manner. Have a look at the Designing with Web Standards book for
a good transitional approach to web page design.

311Chapter 9

Chapter 9

311

Web Standards: Real-World Scenario
It is all very well when you are just talking about the virtues of XHTML and CSS, but
unless you are able to sell some of their effects, often a client will want to stick with the
old favorite of table-based design. Here are some good reasons to make the move to
standards-based web design.

Accessibility
Websites that use a combination of XHTML and CSS are much easier to bring to
accessibility standards such as the Section 508 guidelines (http://section508.gov) or
the Web Accessibility Initiative guidelines (http://www.w3.org/wai). It is not only
good practice to make your site accessible to visually impaired users; in many cases it is
a legal requirement. A well-formed, semantically marked up XHTML document is much
easier for a screen reader to make sense of than a table-based soup of HTML. An added
benefit of using accessible design is that, because the underlying structure of the site
makes sense, search engines can also make more sense of it. This often results in a higher
placement in search results.

Bandwidth
Sites using XHTML and CSS for their layout and styling will often reduce the size of the
files used by one third (or more in extreme cases). The reduced bandwidth has a number
of benefits, mainly reduced bandwidth costs and faster-loading sites. Often, fewer images
are used in the site (such as spacer gifs and text substitutes), which again results in less
calls to the server and a more responsive site. The CSS file is usually cached by the
browser, which means that it does not need downloading from the server every time a site
loads.

Future Proofing
Because the site is designed using standards, it is easier to be certain that future browsers
will continue to interpret our code in the same way as we had intended. By sticking to
standards, we create a common ground that reduces inconsistencies in web page display.

Ease of Maintenance
Because all the styling for a site is held in one place (if an external stylesheet is used), it
is possible to make changes to this one file that will affect the entire site. By separating
the content from the presentation, the template files need never be altered because all
visual styling takes place in the stylesheet.

312

Creating a Standards-Compliant eZ publish Site

Creating a Standards-Compliant eZ publish Site

312

eZ publish and Web Standards
It may seem that all of this evangelism is unrelated to the use of the eZ publish Content
Management System, but this is far from being the case. Two of the major benefits of
developing with eZ publish are:

• Separation of presentation logic from the application code through the use of
templates

• Modularity and reusability of the content structures that are set up

These benefits have parallels in the design of the actual pages using XHTML and CSS;
there is a clean separation between content and presentation, and we can use a modular
approach to designing the site in terms of its content. It makes sense to aim for a
consistency between the internal data structures of the CMS and their external
representation on the web page. This makes for a far more manageable site, while at the
same time continuing the underlying application logic on to the web page. It is this
technique that we will be looking at in further depth in this chapter.

The Client Requirements
The client for the project that we will study in this chapter was the Department of
Geomatic Engineering at UCL. The client needed a website providing information about
the department, such as course details, news, and contact info, as well as showing past
and present projects. They already had an existing website that had been developed in-
house. It was built with static pages that were made up of images that had been sliced in
a program such as Adobe ImageReady.

The limitations of such a system quickly became apparent; it was difficult to update, and
the knowledge of web design required to modify or add pages implied that only a couple
of people were able to edit the site. The client needed a system that was easily editable
by any member of staff, yet flexible enough to deal with the specific requirements that
had been developed based on the usage of the existing site. The following screenshot
shows the previous design for the Department of Geomatics website:

313Chapter 9

Chapter 9

313

The site was earlier being hosted in-house on a relatively low-powered server, but to
upgrade the site to one that was dynamically generated, it was necessary to upgrade the
server. A dual 500MHz Pentium III machine with 512Mb of RAM was used. The design
requirements for the site were that it should use the style guidelines set out by the main
university website. This brought about an interesting issue; the templates were table
based and did not use semantic markup. So the challenge was to match the design while
using CSS for layout.

It was decided that the existing structure of the website should be used as a guide for the
new website. The structure was as follows:

314

Creating a Standards-Compliant eZ publish Site

Creating a Standards-Compliant eZ publish Site

314

315

Information Overview of the Geomatic Engineering Department

Page Type of Content

Chapter 9

315

Chapter 9

Planning and Preparation
After carefully considering the existing layout, it was clear that there was some
redundancy and room for optimization. The structure shown in the following tables was
determined to be more optimal. The parts of the site that would require custom content
classes have been indicated.

Front page Different menu system
Latest News Story
What is Geomatics?
Featured Projects
Next 5 News Articles
Quick Links

Directions Simple page with a map

What Is Geomatic
Engineering? Simple page, but will also appear on front page

Data Class: Simple Page

Publications Needs to have a list of publications grouped by year
Data Class: Publication

Vacancies Needs to show all vacancies for PhD, Research, and
others
Data Class: Vacancy

Research Areas with
Projects

Simple page for each research area. Projects to be added
under each area.
Data Class: Project

Projects Collection of projects from the research areas.
Grouped by area.

Opportunities Shows all of the research vacancies.

Research Simple Page Summarizing All Research Areas

316

Commercial Activities Simple Page Describing This Section

Ability to add News stories and vacancies to this
section.
Data Class: News Story

News

List of Categories of People
Ability to Add People to Different Categories
Data Class: Person

People

Creating a Standards-Compliant eZ publish Site

Creating a Standards-Compliant eZ publish Site

316

Undergraduate Degrees Collection of pages describing the undergraduate
degree.

MSc Taught Degrees Collection of pages for the areas of the MSc degrees.
Each area has student projects in it.

PhD Research Degrees Simple page outlining PhD research degrees.

Undergraduate Service
Teaching Simple page outlining undergraduate service teaching.

Staff Categorized list of staff.

Students Categorized list of students.

Spin-off Companies Need to be able to add links to different spin-off
companies.
Data Class: Link

Industry Simple page.

Employers Simple page with a list of employers.

Services and Consultancy Need to be able to add simple pages under this node.

The changes in structure were as follows:

• The Publications and the Vacancies pages were added to the Information
section.

• The Spin-Off Companies and Services and Consultancy pages were merged
with the Industry section to become part of the Commercial Activities
section.

• The News section was simplified.

Courses Simple Page with a Summary of Each Course

Chapter 9

Chapter 9

317

317

All other sections remained mostly the same. By analyzing the site in this way and
streamlining it, it is easier to work out any custom classes that may be necessary. In more
detail, the specifics of each class are as follows:

Simple Page Publication Vacancy
Title Authors' names Title

Content Title of paper Intro

Image Place published Body

Optional PDF Thumbnail

Valid

Project Person News Article

Title Name Title

Start Date Title Intro

End Date E-mail Body

Summary Phone Number Thumbnail

Description Fax Number Valid

Image Website

Description

Image

Link

Link Name

URL

Description

Template Design
The design of the site matches the design guidelines set down by UCL. There are two
main styles for this site:

• The front page, which has more color and elements such as the latest news
stories and featured projects

• The rest of the site, which is much plainer and has static navigation

Creating a Standards-Compliant eZ publish Site

318

Creating a Standards-Compliant eZ publish Site318

Because the elements on the front page are used only once, there is no need to use
individual templates for each of these elements, as no gains will be made due to caching.
For the rest of the site, there are some key elements that remain the same throughout:

• Date Bar: Shows the current date as well as the accessibility, privacy, and
disclaimer links

• Logo and search bar: Displays the UCL logo, the Geomatics title, and a
search box

• Breadcrumbs: Provides a navigational aid throughout the site—a "You are
here" function

• Left-hand menu: A two-level navigation that expands to show the current
section

• Content: Displayed within the other elements
• Right-hand image: Displays a default image; if a node has an attached

image, that is used instead
• Footer: Displays relevant information about the department and the site,

such as address, copyright, and credits

At this point it is useful to understand a little more about CSS, as this will aid us in
creating the document structure. There are two key points of difference between IDs and
classes and the use of selectors. IDs are used as follows:

<div id="myID">hello world</div>

#myID {
background-color:red;

}

Chapter 9

Chapter 9

319

319

They are used to identify elements in the document to which we want to apply styles. The
key aspect of using IDs is that they should only appear once in the entire document. This
makes them useful for applying to these base elements as we have just described.

CSS classes can be used as many times as desired in a document, which makes them
extremely useful for applying to repeating elements. They have the following syntax:

<div class="myClass">hello world</div>

.myClass {
background-color:red;

}

By using a number of IDs for the base elements of our document, it is possible to
streamline the code needed to achieve our design through the efficient use of selectors.
The main selector is the descendant selector that allows us to specify an element that is a
descendant of another, for example:

#navigation a {
text-decoration:none;

}

This will select all of the <a> elements that are defined in the #navigation ID. This
allows us to be more efficient because we can define a general style for all of the <a> tags
in the document, and then override that rule with a more specific rule, such as the one
illustrated earlier. For more information and a great tutorial on selectors, see
http://css.maxdesign.com.au.

The basic XHTML structure for the elements we defined earlier would be:
<html>
<head><title>template outline</title></head>
<body>

<div id="date">date goes here</div>
<div id="logo">logo goes here</div>
<div id="breadcrumbs">breadcrumbs go here</div>
<div id="navigation">Navigation goes here</div>
<div id="content">Content goes here</div>
<div id="image">image goes here</div>
<div id="footer">footer goes here</div>

</body>
</html>

Now that we have our basic structure defined, we can begin to deal with each element
and add the functionality defined earlier. I have used a number of include files to make
the functions of each element clear and self-contained. The basic template file looks like:

{*?template charset=latin1?*}
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

{include uri="design:page_head.tpl"}
</head>
<body>

Creating a Standards-Compliant eZ publish Site

Creating a Standards-Compliant eZ publish Site

320

320

{include uri="design:header.tpl"}
{include uri="design:navigation.tpl"}
<div id="content">

{$module_result.content}
</div>
{include uri="design:image.tpl"}
{include uri="design:footer.tpl"}

</body>
</html>

This has five files included in it, each providing a different and clear function, as well as
the template call that will insert the content view into the document. The more expanded
HTML tag as well as the DOCTYPE declaration are necessary if we are to use valid
XHTML. These serve the purpose of informing the browser about the markup language
that a document was written in as well as the international language that the document is
written in.

We will now go through each of these templates and examine how they are put together.

page_head.tpl
Some of the following code is taken from the default template that comes with eZ publish
and is used to give the page a title. The only addition we have made is a link to the
stylesheet that will be used to style the site; note that we have added extra formatting to
the code here for easier reading:

{*?template charset=latin1?*}
{default enable_glossary=true()

enable_help=true()}
{set-block variable=site_title}

{section show=is_set($module_result.title_path)}
{$site.title|wash} -

{section name=Path loop=$module_result.title_path}
{$:item.text|wash}
{delimiter} ::
{/delimiter}

{/section}
{section-else}

{$site.title|wash} -
{section name=Path loop=$module_result.path}{$:item.text|

wash}
{delimiter} ::
{/delimiter}

{/section}
{/section}

{/set-block}
<link rel="stylesheet" type="text/css" href={"stylesheets/main.css"|

ezdesign} />
{/default}
<title>{$site_title}</title>

321

Chapter 9

321

Chapter 9

header.tpl
We can see the three parts of this include file, which make up the three parts of the
header we defined earlier: the date, logo, and breadcrumbs.

{*?template charset=latin1?*}
<div id="date">

<div class="align-right">
<a href="http://www.ucl.ac.uk/disclaimer/"

title="Disclaimer">Disclaimer |
<a href="http://www.ucl.ac.uk/accessibility/"

title="Accessibility">Accessibility |
Privacy

</div>
{currentdate()|datetime(custom,"%l %d %F %Y")}

</div>

<div id="logo">
<form name="google_search" id="google-search" method="get"

action="http://www.google.com/univ/ucl">
<img src="/design/geomatics/images/search_white.gif" height="12"

width="113" alt="Search Geomatics" />
<label for="q">Enter Search Text:</label>
<input type="text" size="15" maxlength="255" name="q" id="q"

value=""
tabindex="1" />

<label for="sa"></label>
<input type="submit" name="sa" id="sa" value="Go" tabindex="2"

/>
<input type="hidden" name="sitesearch" id="sitesearch"

value="ge.ucl.ac.uk" />
</form>

<img class="ucl-logo"

src="/design/geomatics/images/ucl_logo_white.gif"
width="39" height="49" alt="ucl logo" />

<img class="ucl-geo-logo"
src="/design/geomatics/images/ucl_geo_logo_white.gif"
width="165" height="49" alt="ucl geomatics logo" />

</div>

<div id="breadcrumbs">

{section name=Path loop=$module_result.path}
{section show=$Path:item.url}

{$Path:item.text|wash}
››

{section-else}

{$Path:item.text|wash}
{/section}

{/section}

</div>

322

Creating a Standards-Compliant eZ publish Site322

Creating a Standards-Compliant eZ publish Site

The reason why the breadcrumbs are placed in an unordered list () is because,
effectively, they are a list of the elements in the path that defines the current location on
the site. This is generally considered good practice and is more semantically correct than
if each one were placed in a span or a div container. For the search box we use a label;
this is considered a good practice when building accessible sites.

navigation.tpl
By using nested unordered lists, we can define a logical structure for the menu. This
makes an enormous difference when viewed in a text browser, because the structure is
much clearer than if we had used div or plain href tags.

It also allows us to use CSS styling to visually design the navigation. The li
selector applies to all elements in the list, whether they are top level or in the sub-
level. The selector li li will only apply to the sub-level, allowing us in this case to
indent the links to demonstrate their structure in the navigation. This kind of navigation
would have required some cunning using a table-based layout, probably using some
invisible spacer GIFs or the like. Using CSS, we have a lean markup that can be
transformed using some simple CSS to manipulate the layout as we please:

<div id="navigation">
{let folder_list=fetch(content, list, hash(parent_node_id, 2,

sort_by,
array(array(priority))))}

{section name=top_level loop=$folder_list}

{$folder2:item.name|wash}
{section show=$top_level:item.node_id|

eq($module_result.path[1].node_id)}
{let sub_folder_list=fetch(content, list, hash(parent_node_id,

$module_result.path[1].node_id,
sort_by, array(array(priority))))}

{section name=sub_level loop=$top_level:sub_folder_list}

<a href={concat("/",$top_level:
sub_level:item.url_alias)|ezroot}>{$top_level:
sub_level:item.name|wash}

{/section}

{/let}
{/section}

{/section}

{/let}

</div>

The following screenshot shows the breadcrumbs and navigation bar viewed in the Lynx
text browser. You can see the clear navigational structure achieved as a result of using
lists:

323

This website was created using eZ publish 3.1, but in version 3.3, the mechanism
for showing images has changed quite dramatically.

Chapter 9

323

Chapter 9

image.tpl
This template is slightly more complicated because of the variables that are available for
use in the different templates. In templates like this one that are manually included (and
not related to a particular node), the $node variable is not available. Instead, we have to
use the $module_result variable if it is necessary to access data for the current node.

In our case it is necessary to use the image for the node, so we quickly fetch the object
for that node and check if it has an image. If it does not have an image, the default image
is used.

<div id="image">
{let mynode=fetch('content', 'node', hash(node_id,

$module_result.node_id))}
{section show=$mynode.object.data_map.image.content}
{attribute_view_gui

attribute=$mynode.object.data_map.image.content[side]}
{section-else}
{let default-side=fetch('content', 'node', hash(node_id, 605))}
{attribute_view_gui attribute=$default-

side.data_map.image.content[side]}
{/let}
{/section}

{/let}
</div>

324

Creating a Standards-Compliant eZ publish Site

324

Creating a Standards-Compliant eZ publish Site

footer.tpl
Again in this file, because we do not have the $node variable, we must fetch the object
for the node to reference the time it was last modified. The only other template code in
this include file is the one that shows the current year, which passes the currentdate()
function into the datetime() formatting function. Everything else in here is regular
XHTML:

{let mynode=fetch('content', 'node', hash(node_id,

$module_result.node_id))}

<div id="footer">
Department of Geomatic Engineering - University College London

Gower Street, London, WC1E 6BT | Tel: +44 (0)20 7679 2740 | Fax:

+44 (0)20
7380 0453

Copyright © 1999-{currentdate()|datetime(custom,"%Y")} UCL |
Last modified: {$mynode.object.modified|datetime(custom,"%d %F

%Y")} |
www-

admin@ge.ucl.ac.uk

search by google |
powered by eZ publish |
CSS |
XHTML

</div>

{/let}

Now that we have defined these basic template features, we can apply the CSS rules to
the document to put it in shape. The following images show the difference between the
site with and without the stylesheet.

Chapter 9

325

Chapter 9325

This image shows the unstyled page—you can see that the information on the unstyled
page still makes sense because a logical structure was used for the XHTML. The
following image shows the document with the stylesheet applied:

Creating a Standards-Compliant eZ publish Site

326

326Creating a Standards-Compliant eZ publish Site

CSS Rules
The rules that were used to perform this transformation are as follows:

body {
margin:0px;
padding: 0px;
background-color: #FFF !important;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size:70%;

}

This rule sets the margin and padding for the document to zero and ensures that the
background stays white with the !important declaration. This is a good place to specify
the font used in the document as it will cascade down into all of the other elements and
eliminate redundant style declarations. The font-size declaration is a little trick found at
http://www.thenoodleincident.com/tutorials/typography/ and is used to get
around the problem associated with specifying font sizes and accessibility in Windows
Internet Explorer.

The problem is this—accessibility rules suggest that the user should be able to resize the
text on a page using the browser's built-in text-resizing feature. This presents a problem
in IE when you specify the text size in pixels—the text will not resize. The other problem
is that if you specify a font-size of say 0.7em, it will actually come out extremely small
and not 70% of the user's default font size.

By specifying the font size as a percentage, we can leave the default text size alone, and
scale down the font size of the whole document. Now we can resize the text in IE, while
maintaining consistency across browsers.

The following rules for the date ID simply set background colors and float the relevant
text to the right:

#date {
padding-left:5px;
background-color:#1C1C73;
color: white;

}

#date .align-right {
float:right;
display:inline;
margin-right:5px;

}

#date .align-right a {
color: white;
text-decoration: none;

}

The following rules lay out the logos and the Google search box in the correct places on
the page:

Chapter 9

Chapter 9

327

327

#logo {
background-color:#FFF;
height:49px;
border-bottom:1px solid #AAA;
border-top:1px solid #1C1C73;

}
#logo a img.ucl-logo {

margin-left:7px;
display:inline;
border:none;

}
#top-logo a img.ucl-geo-logo {

margin-left:94px;
display:inline;
border:none;

}
#logo #google-search {

position:absolute;
right:0;
display:inline;
float:right;
height:35px;

}
#logo #google-search input {

margin-top:16px;
}
#logo #google-search img {

padding-top:10px;
}

The following rules lay out breadcrumb elements and tell the browser to display the list
elements as inline, which means that they will all flow on the same line as we want for
our breadcrumbs:

#breadcrumbs {
padding:2px 5px 2px 0;
margin:0;
width:100%;
background-color:#FFF;
border-bottom:1px solid #AAA;

}

#breadcrumbs ul {
display:inline;
padding:0;
margin:0;

}

#breadcrumbs li {
display:inline;
padding:0;
margin:0;

}

The set of rules outlined here positions the navigation on the page, and then, using
multiple selectors, styles the menu items in a way that makes sense with the structure of
the navigation:

328Creating a Standards-Compliant eZ publish Site

Creating a Standards-Compliant eZ publish Site

328

#navigation {
float:left;
left:0;
padding-top:13px;
width:140px;

}

#navigation ul {
list-style-type:none;
margin:0;
padding:0;

}

#navigation ul ul {
margin-top:6px;

}

#navigation li {
padding-left:6px;
margin:0 0 5px 0;
display:block;

}

#navigation li li
{ margin-
left:13px;
padding:0;
display:block;

}

#navigation a {
margin:0;
padding:0;
display:inline;

}

Because we have floated the navigation to the left-hand side, we set a left margin on the
main content to cover this distance, effectively creating two columns. We do the same
on the right-hand side to create the third column for the image. By adding borders we
can delineate between these three columns.

#content {
padding:13px 5px 0;
margin-right:0 132px 0 140px;
border-left:dotted 1px #AAA;
border-right:dotted 1px #AAA;

}

#image {
float:right;
width:110px;
padding: 0 7px 7px 0;
margin-right:6px;

}

The image is floated right and overlaps the margin we set in the #content div tag.

Earlier, we mentioned bandwidth as a reason for using XHTML and CSS instead of
table-based design. Because the template used by UCL utilizes tables, we are in a

329Chapter 9

Chapter 9

329

position to make a direct comparison between the two techniques. The two bare
templates were compared:

File Size (in bytes)
UCL table-based template 9,842

XHTML template 4,769

CSS file 4,986

XHTML + CSS file 9,755

Well, a saving of 87 bytes, over a day that might even add up to 1KB of bandwidth
savings. But that is not the whole story. First, the CSS file contains the styling for the
entire site, and so only needs loading once. Secondly, it is also cached, which means that
on subsequent page loads it will not need downloading again. This means that if a user
looks at, say 20 pages, they will be using only 51% of what they would if they were
downloading the table-based version. If a transitional approach were used, where tables
were used for layout and stylesheets for the rest of the styling, we could expect to see
bandwidth usage somewhere between these two scenarios.

This section has shown the planning that went into building the framework into which the
content of the site is placed. The link between planning the parts of the layout, the
structure of the templates, and the design of the CSS should be clear. By breaking the
design of the site down into logical parts and using these to define our CSS, we can
achieve a clear and consistent approach to the design of the site. We will take this one
step further when we design the content that fits into the template we have just put
together.

Designing the Content
The building block of our standards-compliant eZ publish site is the div tag. By
encapsulating all of our objects into div tags with suitably named classes, we can gain a
large degree of consistency between the internal structure of eZ publish and the external
structure of the document. In the previous section of this case study, we saw how we can
create a highly modular document structure through the use of div tags with IDs. In this
section, we will continue this by aligning the classes of data types in eZ publish with the
classes we create in the stylesheet.

We will look at one of the content classes to illustrate the way this process works and
ensure consistency in all areas of the application.

Creating a Standards-Compliant eZ publish Site

330

330Creating a Standards-Compliant eZ publish Site

The News Article Class
There are three parts to creating a new class:

• Defining the data class using eZ publish, where we decide upon the datatypes
that the class should contain.

• Creating the templates for eZ publish to use when displaying the page. There
may be multiple templates for each class, depending upon the different views
of the data.

• Creating corresponding CSS rules to style the output.

The Data Class Definition
We saw the fields that were necessary for this class earlier, but here we will go into a
little more detail:

Data Field Datatype Description
Title Text Line (Required) The title of the article

Intro Text Line The introduction to the article

Body XML Text Field The full story of the article

Valid Checkbox Whether the article is still valid or not

Once we have defined the data class using eZ publish, we can then look at creating the
templates to output this information.

Class Templates
Overrides are one of the most powerful features of the eZ publish templating system. The
main files that we will be overriding are /node/view/full.tpl and
/node/view/line.tpl. These templates provide the two main views of our classes,
and both are used when we use the templating function node_view_gui(). If you recall,
the full template is normally used when we want to show a view of only one node, and
the line template is used when we want to show a list of nodes on one page. Both
templates show different views of the same information. In this case, the site only has
the News Article class in one section so we can define a site-wide override for this class.
If we wanted to show a News Article class with different formatting in different parts of
the site, it would be necessary to define sections in eZ publish, and then to create
overrides for the different sections.

For our site, we define the following overrides:

Chapter 9

Chapter 9

331

331

File: override.ini.append.php
[news_full]
Source=node/view/full.tpl
MatchFile=news_full.tpl
Subdir=templates
Match[class]=20
[news_line]
Source=node/view/line.tpl
MatchFile=news_line.tpl
Subdir=templates
Match[class]=20

These tell eZ publish to use the files person_full.tpl and person_line.tpl for the
full and line views respectively.

news_full.tpl
This is a very simple view of the data that simply presents the title of the story as the
header and emphasizes the introduction. The styles that will be applied to this are the
same styles that are defined for the rest of the website. This illustrates one of the strong
points of CSS; the ability to redefine existing HTML elements such as the and <h1>
tags. By defining overall styles for the site, a great degree of consistency can be achieved
with very little effort. It also shows that not everything needs wrapping in a <div> tag.

<h1>{$node.name}</h1>
{attribute_view_gui attribute=$node.object.data_map.intro}
{attribute_view_gui attribute=$node.object.data_map.body}
{attribute_view_gui a attribute=$node.object.data_map.valid}

news_line.tpl
This template just shows the title of the story, which acts as a link to the full story. It is all
enclosed in one <div> so that we can style a surrounding box.

<div class="news-line">

{$node.data_map.title.data_text|wash}

<p>

{attribute_view_gui attribute=$node.data_map.intro}
</p>

</div>

CSS Rules
Now that we have the classes defined, we can create the CSS rules to style them.

.story
{

border:solid 1px #CCC;
background-color:#EFEFEF;
margin-bottom:5px;

}
.story a
{

display:block;

Creating a Standards-Compliant eZ publish Site

332

Creating a Standards-Compliant eZ publish Site332

padding:1px 5px;
border-bottom:solid 1px #CCC;

}
.story p
{

display:block;
padding:1px 5px;
margin:0;

}

These will style the line view of the story so that there is a grey box around it as shown in
the following image. The full view of the news story uses the global CSS rules for these
elements.

The following image shows the line view of the News class:

Chapter 9

Chapter 9

333

333

And here we can see the full view of the News Class:

Performance
While the default settings for eZ publish are good for development, they are unsuitable
for production use. To increase the performance of eZ publish, there are a number of
things we can do:

• Enable view caching
• Enable template compiling
• Enable template caching
• Use cache blocks in the templates
• Install a PHP accelerator

334Creating a Standards-Compliant eZ publish Site

Creating a Standards-Compliant eZ publish Site

334

View Caching
View caching takes the content of the override templates you have created and caches
them so that all eZ publish needs to do is insert the correct data into the right places in the
template. It is best to disable this during development because any changes you make to
the templates will not be seen on the site until you flush the cache. View caching can be
enabled with the following setting:

File: site.ini.append.php
[ContentSettings]
ViewCaching=enabled

Template Compiling
Template compiling involves compiling templates that use the templating language used
by eZ publish into templates that use native PHP. This obviously speeds up the lengthy
templating process quite considerably. Without this option enabled, the templating
process takes up a large majority of the time it takes to output a page. To enable this
setting, use the following configuration:

File: site.ini.append.php
[TemplateSettings]
TemplateCompile=enabled

Template Cache Blocks
View caching and template compiling will improve the performance of eZ publish with a
relatively small amount of effort. Using cache blocks, however, takes a bit more effort
but can also have the greatest rewards. Cache blocks are a way of caching the output of
dynamic content in a template into a plain HTML file, which is then simply included in
the output. In its simplest form, the cache block statement works as follows:

{cache-block}
Lots of dynamic code here

{/cache-block}

However, if we want to apply this to something like our menu system or the
breadcrumbs, this would be of no use because every page would be given the same menu
or breadcrumbs. To get around this, we can use the keys parameter, which gives a unique
identifier to each state of the cache block. For example, if we had some code that was
different on every page, we could use a variable that is unique on each page, such as
$uri_string, which would give us:

{cache-block keys=$uri_string}
Lots of code here which is different on every page

{/cache-block}

335Chapter 9

Chapter 9

335

Alternatively, if we have a site that changes very regularly, we can specify an expiry time
in seconds like so:

{cache-block expiry=180}
Lots of code here which expires every 3 minutes

{/cache-block}

So if we apply this knowledge to our main pagelayout.tpl template, we get the
following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

{cache-block}
{include uri="design:page_head.tpl"}

{/cache-block}
</head>
<body>

{include uri="design:header.tpl"}
{cache-block keys=$module_result.path[1].node_id}

{include uri="design:navigation.tpl"}
{/cache-block}
<div id="content">

{$module_result.content}
</div>
{cache-block keys=$module_result.node_id}
{include uri="design:image.tpl"}
{include uri="design:footer.tpl"}
{/cache-block}

</body>
</html>

This template caches in the following ways:

• page_head.tpl will be cached the same for every page.
• The navigation will be cached for two levels of navigation from the path

variable.
• The image and footer will be different for every page.

Furthermore, within header.tpl, we would tell eZ publish to cache the date bar
according to the current date, the logo and search box for every page, and the
breadcrumbs according to the individual node.

PHP Accelerators
It is always a good idea to install a PHP accelerator if it is possible on your server. It
often speeds the site up by a factor of 2. There are several accelerators that work well
with eZ publish:

336

Creating a Standards-Compliant eZ publish Site

Creating a Standards-Compliant eZ publish Site

336

Alternative PHP Cache http://apc.communityconnect.com/

IonCube PHP Accelerator http://www.phpaccelerator.co.uk/

Turck MMCache http://turck-mmcache.sourceforge.net/

Of these, I have used both the IonCube PHP Accelerator (on the UCL site) and Turck
MMCache with success. See individual sites for instructions on how to install these
extensions to PHP.

Benchmarking
Benchmarking is a very good idea if you want to understand the effects your performance
tweaks have had on the server. The simplest technique for measuring performance is a
utility that comes with the Apache web server called ab.

ab
ab stands for the Apache Benchmarking tool and is used to test a server for the number of
requests it can deal with in a period of time. It is used as follows:

ab -n 100 -c 4 www.ge.ucl.ac.uk/

This command means that it will make 100 requests (-n) with a concurrency of 4 (-c),
and will report back with results that look like:

Server Software: Apache/2.0.40
Server Hostname: www.ge.ucl.ac.uk
Server Port: 80
Document Path: /
Document Length: 6375 bytes
Concurrency Level: 4
Time taken for tests: 14.216923 seconds
Complete requests: 100
Failed requests: 0
Write errors: 0
Total transferred: 687000 bytes
HTML transferred: 637500 bytes
Requests per second: 7.03 [#/sec]
(mean) Time per request: 568.677 [ms] (mean)
Time per request: 142.169 [ms] (mean, across all concurrent
requests)
Transfer rate: 47.13 [Kbytes/sec] received
Connection Times (ms)

min mean[+/-sd] median max

Percentage of the requests served within a certain time (ms)
50% 467

Connect: 0 0 0.0 0 0
Processing: 278 559 309.6 467 1955
Waiting: 223 535 311.0 462 1955
Total: 278 559 309.6 467 1955

Cache URL

Chapter 9

Chapter 9

337

337

66% 578
75% 678
80% 709
90% 953
95% 1226
98% 1629
99% 1955

100% 1955 (longest request)

From this output we can see that this setup can serve 7 pages per second with this level of
concurrency. This is suitable for a site that is not extremely busy and the loading time of
approximately half a second is small enough to make the site feel quite responsive. With
less concurrency, the response time becomes faster as shown here:

Concurrency 1 2 3 4
Requests per Second 3.58 6.88 6.98 7.04

Time per Request (mean) 279.547ms 290.838ms 429.864ms 567.885ms

Time per Request (mean, all
requests)

279.547ms 145.419ms 143.288ms 141.971ms

Effects of Optimization
Having covered various ways of improving the performance of your eZ publish
installation and then looking at how to measure them, you can now see their effects, as
measured by ab, in the following graph:

Creating a Standards-Compliant eZ publish Site

338Creating a Standards-Compliant eZ publish Site

338

Resources

Designing with Web Standards –
Jeffrey Zeldman

ISBN: 0-7357-1201-8

CSS: The Definitive Guide – Eric Meyer ISBN: 1-56592-622-6

Eric Meyer on CSS ISBN: 0-7357-1245-X

CSS Discussion list on Incutio http://css-discuss.incutio.com

Glish resources on CSS http://www.glish.com/css/

Maxdesign CSS tutorials http://css.maxdesign.com.au/index.htm

A List Apart http://www.alistapart.com/

The W3C http://www.w3.org

Summary
In this chapter, we began with a brief introduction to web standards and their real-world
benefits. We then looked at the design of a site; beginning with the data classes that are
needed and their CSS class counterparts.

We saw the design decisions behind the layout of the overall site template and the eZ
publish components that are behind it. We then looked at maintaining a consistency
between standards-based design and the underlying structure of eZ publish. Using one of
the data classes as an example, we followed the design process from defining the data
class to writing the CSS classes for its display.

After building the site, we went on to examine ways of speeding it up using various
optimizations, such as PHP accelerators and caching, and their settings in eZ publish.
Through the use of benchmarking, we were able to test the performance of our site and
determine the effect these optimizations had. You should now understand the thought
process behind the design of this site and hopefully be able to apply this to future sites of
your own.

Resource Where to find it

339

Chapter 9

339Chapter 9

A
Template Operators and

Functions

Operators
Operators are used to modify the content for presentation or to perform other useful
manipulations. The coming sections discuss the available functions and operators
in detail, per category. The categories are:

• String operators
• Array operators
• Mathematical operators
• Localization operators
• Miscellaneous

Operators modify content by using the '|', much like UNIX pipes. For example:
{"Hello"|count} {*results in 5 *}

Operators can take one or more optional parameters, which are put in parentheses and
separated with a comma.

String Operators
A general note for Unicode-enabled sites: consult the documentation on
http://www.php.net regarding mb_string and the configuration options in php.ini.
This allows for Unicode-safe operations for most (but not all) of the string functions
mentioned here. Note that the operators upcase, downcase, upfirst, and upword
require the server or PHP set to the correct locale to work properly. eZ publish
doesn't support proper Unicode case mapping yet, so you may get strange results with
a wrong locale.

The following table gives an alphabetical overview of string operators and their
functions:

Template Operators and Functions

340

Operator Purpose
append Appends element(s) to a string.
begins_with Checks if a string starts with a specific element/sequence.
break Replaces newlines with XHTML line breaks (same as nl2br).
chr Creates a string based on an array of ASCII/Unicode values.
compare Compares the contents of two strings.
concat Concatenates values to one string.
contains Checks if a string contains a specific element.
count_chars Counts and returns the number of characters (string length).
count_words Counts and returns the number of words within a string.
crc32 Calculates the CRC32 polynomial of a string.
downcase Converts all alphabetical characters to lowercase.
ends_with Checks if a string ends with a specific element/sequence.
explode Splits a string into an array of substrings.
extract Extracts a portion from a string.
extract_left Extracts a portion from the start of a string.
extract_right Extracts a portion from the end of a string.
indent Indents a string by inserting characters at its start.
insert Inserts stuff at specified position in a string.
md5 Calculate the md5 hash of a string.
mimetype_icon Converts a mimetype string into an icon. (from version 3.4)
nl2br Converts newlines to HTML
 (see also the break operator)
ord Returns characters in a desired sequence.
pad Makes sure a string is at least n characters long.
prepend Prepends a custom sequence to a string.
remove Removes element(s) from a string.
repeat Repeats the contents of a string.
reverse Reverses the contents of a string.
rot13 Performs a rot13 transform on a string.

Appendix A

341

Appendix A341

Operator Purpose
shorten Shortens a string to a few characters and adds trailing sequence.
simplify Transforms multiple consecutive characters into one.
trim Strips whitespace from the beginning and/or end of a string.
upcase Converts all alphabetical characters to uppercase.
upfirst Converts the first character to uppercase.
upword Converts the first character of all words to uppercase.
wash General text wash. Translates potentially bogus strings to

friendly ones.
wordtoimage Replaces special sequences of text with images.
wrap Wraps text to lines at a specified length.

String Transformations
The majority of these operators actually transform strings in one way or another.

Changing the Case of Characters
The following examples illustrate the changing of case:

{"Making me shout!"|upcase}

This returns the string "MAKING ME SHOUT!"
{"STOP MAKING ME SHOUT!"|downcase}

This returns the string "stop making me shout!"
{'you are invited to my party!'|upfirst}

This returns the string "You are invited to my party!"
{'commodore amiga user'|upword}

This returns the string "Commodore Amiga User"

Inserting Breaks, Shortening, Padding, or Trimming Text
For display purposes, text can be transformed using the break (or nl2br), trim, wash,
simplify, wrap, and shorten operators. For example:

{"The next summer
conference will take
place in June "|
break}

This returns "The next summer
conference will take
place in June
"

Stripping whitespace from the start and end of a string is done using the trim operator.

Template Operators and Functions

342

For example:
{" I want you to want me "|trim(' ')}

This returns the string "I want you to want me".

For reducing spaces inside strings, use the simplify operator. You can also reduce
duplication of characters within strings. For example:

{"aabcaabcaaaabc"|simplify('a')}

This returns the string "abcabcabc". Duplicate instances of the letter 'a' have been
trimmed to one.

To wrap text to limit the width of text blocks, you need to use the wrap operator. The
wrap operator needs three parameters, as in wrap(width, break_sequence, cut). By
inserting the break_sequence characters into $string, the wrap operator wraps given
text at a specified width. All parameters are required (version 3.3-2). The
break_sequence parameter specifies a string containing the desired break sequence to
use; the default is \n (newline). The cut parameter specifies whether the string should be
wrapped at the specified width. In other words, if you have a word that is larger than the
given width, it is broken apart. For example:

{"Good morning fellow eZ publish user withalongname"|wrap(8,'-
',true())}}

This returns the string "Good-morning-fellow-eZ-publish-user-withalon-gname".

Now consider:
{"Good morning fellow eZ publish user withalongname"|wrap(8,'-
',false())}

This returns "Good-morning-fellow-eZ-publish-user-withalongname".

wash is a general character/string washing operator. The washtype parameter specifies
the washing type: e-mail, PDF, or XHTML (default). If you have a string that contains
bogus characters (or sequences) that could alter the intended result, you should 'wash' it
before outputting it. For example:

{"A nasty string with a
"|wash}

This returns "bogus string
".
{"bf@ez.no"|wash("email")}

This returns "bf[at]ez[dot]no".

In spite of what the online docs say, you have to provide an argument like
whitespace (tested eZ publish 3.3-3), when using this operator.

The conversion of e-mail characters is controlled by the ini file settings
[WashSettings] in template.ini(.append)

Appendix A

343

The shorten operator shortens string to maxlength characters and adds a trailing
ellipsis sequence. Note that maxlength also includes the length of the trailing
sequence. If the input string is shorter than maxlength, it will not be shortened. For
example:

{"This string is too long and needs to be shortened!"|shorten(17)}

This returns the string "This string is...".

The pad operator makes sure that the input string is at least length characters long
by inserting extra characters at the end (padding). It is possible to specify what character
to use with the pad_char parameter. The default pad character is a space. For
example:

{"Too short!"|pad(16)}

This returns the string "Too short! "
{"Too short!"|pad(16,"-")}

This returns the string "Too short!------"

Joining, Extracting, and Further Manipulation of Text Portions
The concat operator can be used to join an arbitrary number of strings (or any other
values that are implicitly converted to strings). For example:

{concat("Good "," morning" , " Norway"}

This returns the string "Good morning Norway".

You can also use the implode operator (actually an array operator) to join words, as
explained further in Chapter 3. This also concatenates strings with an optional separator.

The append and prepend operators are useful alternatives when you need to add text to
the beginning or end of a string. The repeat operator is used to repeat text patterns, for
example:

{"My way"|append ("… ")| repeat (2)}

This returns "My way… My way…"

The extract, extract_left, and extract_right operators extract text portions from
a given string. The returned portion is defined by the offset and length parameters.
If length is omitted, the rest of the string from the offset will be returned. For
example:

{"A new car"|extract(2,7)}

This returns the string "new car".

Template Operators and Functions

Template Operators and Functions

344

344

{"Hello sun!|extract_left(5)}

This returns the string "Hello".

Appendix A

345

Counting and Comparing Strings
The count_words operator simply counts and returns the number of words that are found
within the inputted string. For example:

{"How many times did you try to install eZ publish"|count_words}

This returns an integer with its value set to 10.

The count_chars operator counts and returns the number of characters (string length).
For example:

{"General protection fault!"|count_chars}

This returns an integer with its value set to 25.

You can also use the general count operator, which behaves exactly as the count_chars
operator for strings.

In general, strings can be compared using the standard boolean operators, but the eZ
publish template engine provides a few additional ones. The begins_with and
ends_with operators check for the existence of a substring at the beginning and end of
strings. For example:

{'Linux is great!'|ends_with('great!')}

This returns true().
{'Linux is great!'|begins_with('great')}

This returns false().

The contains operator can be used as a substring match operator, for example:
{'A nice phrase'|contains('nice')}

This returns true().
{'A long phrase is to avoid'|contains('short')}

This returns false().

Array Operators
The array constructors array and hash are not repeated here. The following table lists the
available array functions:

Operator Purpose

append Appends element(s) to an array.

array Builds an array using specified elements.

begins_with Checks if an array starts with a specific element/sequence.

Template Operators and Functions

346

Operator Purpose

compare Compares the contents of two arrays.

contains Checks if an array contains a specific element.

counts Counts the number of array elements

ends_with Checks if an array ends with a specific element/sequence.

explode Splits an array into an array of sub-arrays.

extract Extracts a portion from an array.

extract_left Extracts a portion from the start of an array.

extract_right Extracts a portion from the end of an array.

hash Creates a hash (associative array).

implode Joins array elements with strings (see previous section).

insert Inserts an element/sequence at specified position in array.

merge Merges input and passed arrays into one array.

prepend Adds element(s) to start of an array.

remove Removes element(s) from an array.

repeat Repeats the contents of an array.

reverse Reverses the contents of an array.

array_sum Calculates the sum of values in an array.

unique Removes duplicate values from an array.

The merge operator will merge the $input_array variable with two or more arrays
passed as parameters into a single array (the values of an array are appended to the end
of the previous array). It returns the resulting array. For example:

{array(7,2)|array_merge(array(6,3),array(5,4))}

This returns an array with content: (7,2,6,3,5,4).

The unique operator removes duplicate elements from an array, for example:
{array(1,1,1,3,4,4,5)|unique}

This returns the following array: (1,3,4,5).

The array_sum operator calculates the sum of values in an array and returns the value
(integer or float), for example:

Appendix A

347

{array(13,4,8)|sum}

Template Operators and Functions

348

This returns an integer with its value set to 25.

The implode operator returns a string containing a string representation of all the
array elements (from the inputted array) in the same order, with the separator string
between each element, for example

{array('tree','flower')|implode(' | ')}

This returns the string "tree | flower".

With arrays, the explode operator expects the parameter to be an integer offset,
specifying where to split the array in two. It will return an array containing the two
resulting arrays, for example:

{array('f','g','g','th','e')|explode(3)}

This returns the following array: (array('f','g','g'), array('th','e')).

The extract operator will return a part of an input array. The returned portion is
defined by the offset and length parameters. If length is omitted, the rest of the
array from the offset (remember array indices start at 0) will be returned. For
example:

{array(a,b,c,e)|extract(2)}

This returns the array (e).
{array(1,2,3,4,5,6,7)|extract(3,3)}

This returns the array (4,5,6).

The extract_left operator extracts a portion from the start of an array or a string. The
length parameter defines the desired portion:

{array(1,2,3,4,5,6,7)|extract_left(3)}

This returns the array (1,2,3).

The extract_right operator extracts a portion from the end of an array; the length
parameter defines the desired portion.

For example:
{array(a,b,c,d,e)|extract_right(3)}

This returns the array (c,d,e).

The begins_with operator checks if the array begins with a specified element/sub-array.
It returns true() or false().

For example:
{array(1,2,3,4,5,6,7)|begins_with(1,2,3)}

This returns true().
{array(1,2,3,4,5,6,7)|begins_with(2,3,4)}

347

Appendix A

This returns false().

The ends_with operator checks if the input array ends with a specified element/. It
returns true() or false().

For example:
{array(1,2,3,4,5,6,7)|ends_with(5,6,7)}

This returns true().
{array(1,2,3,4,5,6,7)|ends_with(4,5,6)}

This returns false().

The repeat operator returns a repeated version of an array. The times parameter
defines the number of times the array should be repeated. The result returned is the
array. For example:

{array(a,b)|repeat(2)}

This returns the array (a,b,a,b).

The reverse operator simply returns a reversed version of an inputted array. For
example:

{array(1,2,3)|reverse}

This returns the array (3,2,1).

This operator insert inserts a sequence of elements at a specified position in an array. The
position is counted from 0 for arrays and 1 for strings. For example:

{array(1,2,3,6,7)|insert(3,4,5)}

This returns the array (1,2,3,4,5,6,7).
{array(a,b,c,d)|insert(2,array(g,h))}

This returns the array (a,b,array(g,h),c,d).

The remove operator simply removes element(s) from an array or string and returns the
chopped version of the array. The offset parameter defines the start of the portion to be
removed while the length parameter defines the length of the portion. Note that
position is counted from 0 for arrays and 1 for strings. For example:

{array(a,b,c,d,e,f)|remove(3,3)}

This returns the array (a,b,c).

The append and prepend operators add element(s) to the end or beginning of arrays, as
shown in the following examples:

{array(a,b)|append(c,d)}

This returns the array (a,b,c,d).

348

Template Operators and Functions

{array(c,d)|prepend(a,b)}

This returns the array (a,b,c,d).

The compare operator simply compares the contents of two arrays and returns true() if
they are the same or false() if they are not the same.

For example:
{array(a,b)|compare(array(c,d))}

This returns false().
{array(a,b,c)|compare(array(a,b,c))}

This returns true().

Mathematical Functions
The available mathematical functions are briefly described in this section.

sum and sub
sum returns the sum of all parameters, including the input parameter (if used), while sub
subtracts all extra parameters from the first parameter. For example:

sum($a, $b, $c, $d) results in $a + $b + $c+ $d;

$a|sum($b, $c, $d) results in $a + $b + $c +

$d; sub($a, $b, $c) results in $a - $b - $c.

If an input parameter is supplied, it will be considered the first element and the
parameters the subtractors. For example,

$a|sub($b, $c, $d) results in $a - $b - $c - $d.

inc and dec
Increases or decreases either the input value or the first parameter by one. For example:

{set i=0|inc} will set $i to 1

and

{set i=dec($i)} if used after the previous {set} will decrement $i to 0 again.

div
Divides the first parameter by all extra parameters. For example:

div($a, $b, $c) results in $a / $b / $c.

If an input parameter is supplied, it will be considered the dividend, and the parameters
the divisors. For example:

Appendix A

349

$a|div($b, $c, $d) equals $a / $b / $c / $d.

mod
Returns the modulus of the first input parameter divided by the second, for example:

mod(5, 3) returns 2.

mul
Multiplies all parameters and returns the result. If an input parameter is supplied, it will
be included in the multiplication, for example mul($a, $b, $c) results in $a * $b *
$c and $a|mul($b, $c) results in $a * $b * $c.

Max and min
Returns the largest or smallest value of all numeric parameters. Strings are evaluated as 0.
For example:

{max(1, 'tree', 'four', 5,' a long string')} returns 5;

{min(1, 'tree', 'four', 5,' a long string')} returns 0;

{min(-3,3,5)} returns -3.

abs
Returns a positive value of either the input value or the first parameter. Strings are
evaluated as 0 but quotes may be used around a legitimate number. For example:

{abs(-3)} and {abs('-3')} and {abs('-three')} results in "3 and 3 and 0".

ceil and floor
ceil returns the next highest or lowest integer value by rounding up the input value, if
necessary. For example, {ceil(3.14)} results in 4.

floor returns the next lowest integer value by rounding down the input value, if
necessary. For example, {floor(3.14)} results in 3.

round
Returns the rounded value of the input value. For example, {round(3.14)} results in 3
and {round(8.8)} results in 9.

Localization and Translation Operators
Localization operators and translation operators are useful for multilingual sites as well
as for transforming certain values into the appropriate output format.

In previous versions of eZ publish, there used to be a x18n operator. Don't use it
anymore: it is deprecated.

Template Operators and Functions

350

datetime is used for converting date or datetime values to an output format that
you desire. You can define and use presets from datetime.ini or specify a custom
format inline by using the special custom keyword.

The l10n operator can also be used for dates and times, and can also format numbers and
currencies. The currently supported parameters are:

• time
• shorttime
• date
• shortdate
• datetime
• shortdatetime
• currency
• clean_currency
• number

The l18n operator is used to mark strings for translation. The translation can be in
different languages and character sets. Optional arguments are the context in which the
translation occurs, a more descriptive comment of what the string actually means (this
helps translators) and a hash, which contains entries for substitutions that are needed in
the translation of a string.

For example:
{let email='myname@mycompany.com'}

{"Please contact %email about this"|l18n(
'design/standard/footers', '', hash('%nemail', $email))}

{/let}

The strings marked for translation can be translated by a tool called Qt Linguist. See the
eZ systems website for more.

The si operator handles unit display of certain values, mostly technical and scientific
units. It expects a unit parameter and an optional prefix. The available unit types are
meter, gram, second, ampere, kelvin, mole, candela, byte, and bit. The
available prefixes are binary, decimal, none, and auto. Other units and prefixes can be
specified in units.ini(.append.php).

For example,
{12|si(meter, milli)}

This returns "12,000.00 mm".

Appendix A

351

Logical Operators

ne
Returns true if one or more of the input parameters does not match. Matching is casual,
meaning that an integer of value 0 will match a boolean of type false.

lt
Returns true if the input value is less than the first parameter. For example:

{1|lt(2)}

This returns true.

gt
Returns true if the input value is greater than the first parameter. For example:

{2|gt(1)}

This returns true.

le
Returns true if the input value is less than or equal to the first parameter. For example:

{1|le(1)}

and

{1|le(2)}

Both return true.

ge
Returns true if the input value is greater than or equal to the first parameter. For
example:

{1|ge(1)}

and

{2|ge(1)}

Both return true.

eq
Returns true if the input value is equal to the first parameter. If no input value is
available, it returns true if all parameters are equal. For example:

{1|eq(1)}

Template Operators and Functions

352

This returns true.
{eq(1,true(),false()|not,0|inc)}

This returns true.

null
Returns true if the input value is null, which is not the same as 0. For example:

{0|null()}

This returns false.

not
Returns true if the input value is false. For example:

{false()|not()}

This returns true.

true
Creates a true boolean. Remember to use brackets, for example {true()}.

false
Creates a false boolean. Remember to use brackets, for example {false()}.

or
Evaluates all parameter values until one is found to be true, and then returns that
value. The remaining parameters are not evaluated. If there are no parameters or all
elements are false, it returns false. For example:

{or(false(),false(),true(),false())}

This returns true.

You can also use other values than just true() or false() in the parameter list. For
example:

{let count1=false() count2=5 count3=0}
{or($count1, $count2, $count3)}
{/let}

This will return 5 ($count2).

and
Evaluates all parameter values until one is found to be false, and then returns that value.
The remaining parameters are not evaluated at all. If there are no parameters, it returns
false, and if no elements were false, it returns the last parameter value. For

353Appendix A

Appendix A

353

example:

354Template Operators and Functions

Template Operators and Functions

354

{and(false(),false(),true(),false())}

This returns false.

choose
Uses the input count to pick one of the parameter elements. The input count equals the
parameter index. For example:

{0|choose("a","b","c")}

This returns "a".

contains
Returns true if the first parameter value is found in the input value, which must be an
array.

Type Checking
These operators generally correspond to the PHP functions of the same name, where they
exist.

Operator Description

is_array Returns true if the input or the first parameter is an array. If both
input and parameter are supplied, the parameter will be used.

is_boolean Returns true if the input or the first parameter is a boolean (true
or false). If both input and parameter are supplied, the parameter
will be used.

is_integer Returns true if the input or the first parameter is an integer. If both
input and parameter are supplied, the parameter will be used.

is_float Returns true if the input or the first parameter is a floating-point
number. If both input and parameter are supplied, the parameter will
be used.

is_numeric Returns true if the input or the first parameter is a number or a
numeric string (a string consisting of numbers). If both input and
parameter are supplied, the parameter will be used.

is_string Returns true if the input or the first parameter is a string. If both
input and parameter are supplied, the parameter will be used.

Appendix A

Appendix A

355

355

is_object Returns true if the input or the first parameter is an object (as
opposed to a simple type like integer or float). If both input and
parameter are supplied, the parameter will be used.

is_class Returns true if the input or the first parameter is a class. If both
input and parameter are supplied, the parameter will be used.

is_null Returns true if the input or the first parameter is null. Warning:
null is not the same as the integer 0.

is_set Returns true if the first parameter is true. is_set does not
take an input.

is_unset Returns true if the first parameter is false. is_unset does not
take an input.

get_type Returns the type of the input or the first parameter as a string. If
both input and parameter are supplied, the parameter will be used.
If the data is an object, then the string "object" and the class name
will be returned. If the data is an array, then the string "array" and
the array count will be returned. If the data is a string, then the
string "string" and the string length will be returned. This function is
mainly used for debugging and should not be used for comparisons.

get_class Returns the class of the input or the first parameter as a string. If
both input and parameter are supplied, the parameter will be used.
If the data is not an object, false will be returned.

Image Handling
The template engine of eZ publish includes a powerful image sub-system. You can
manipulate existing images for special effects or even create new images based on sets of
existing images and images generated from text strings.

The image operators depend on an external image system, either ImageMagick or GD.
This image system has to be installed and made available for eZ publish. Currently, three
template operators are available for generating, manipulating, and displaying images. The
imagefile and the texttoimage operators are used to generate images. The
imagefile operator simply loads an image from the file system. The texttoimage
operator creates an image of some text using a TrueType font. Both these operators
return an image layer.

Operator Description

356Template Operators and Functions

Template Operators and Functions

Parameter Description

356

The layers generated by these two operators can be merged in various ways using the
image operator, which returns the actual image object.

image
This operator creates and returns an image object. The operator basically flattens
(merges) the image layers that were specified as parameters of the image operator.
However, a parameter can be something else than an image layer. A parameter to this
operator can be one of the following:

• A string
• An image layer
• An array

If a parameter is a string, the contents of the string will be used as the alternative image
text for the image object that is returned by the operator (the alt XHTML tag).

If a parameter is an image layer, the layer will simply be merged into the image object
that is to be returned by the operator.

If a parameter is an array, the operator will assume that the first array element (element
zero) is the image itself (an image layer created by either the imagefile or the
texttoimage operator), and that the second element is a hash (associative array)
containing parameters for that layer. The following parameters can be used:

transparency Float value ranging from 0 to 1.0 (0 = 0% and 1 = 100%)
halign Horizontal alignment; use left, right, or center
valign Vertical alignment; use top, bottom, or center
x Absolute placement (works with left and right align)
y Absolute placement (works with top and bottom align)
xrel Relative placement; float value ranging from 0 to 1.0 (works

with left and right align)
yrel Relative placement; float value ranging from 0 to 1.0 (works

with top and bottom align)

The x and xrel parameters cannot be used at the same time. The same goes for the y
and the yrel parameters.

When right or bottom alignment is used, the coordinate system will shift to accommodate
the alignment. This is useful for alignment and placement, since the placement is relative
to the current coordinate system. Right alignment will start the axis at the right (0) and go
on to the left (width).

357Appendix A

Appendix A

357

Bottom alignment will start the axis at the bottom (0) and go on to the top (height).

If the operator is called directly, the /design/standard/templates/image/
imageobject.tpl template will be used to display the image object that is returned by
the operator. It is possible to override this template using the template override system.

The following code merges two images into one:
{image(imagefile('image1.png'|ezimage),

imagefile('image2.png'|ezimage))}

What happens here is that image1.png and image2.png are acted upon by the
ezimage operator. This is simply done in order to prepend a valid path to the filenames.
The imagefile operator is used to load the images (now with the correct path) from the file
system. This operator returns an image layer. Finally, the image operator is used to merge
these images (layers) together into one single image. The image operator will return an
image object. In this case, the template system will insert the /design/standard/
templates/image/imageobject.tpl template in order to display the image (you can
use override templates for the default template as explained further in Chapter 3).

The following template code will create an image object with 70% transparent text,
aligned in the bottom right corner of the church image fetched from the var directory.
The alternative image text is set to airplane.

{image("airplane",
imagefile('var/cache/texttoimage/airplane.jpg'),

array('Let's fly'|texttoimage,
hash(transparency, 0.7,

halign, right,
valign, bottom)))}

imagefile
This operator simply loads an image from the file system and returns it as an image layer.
The layer can be used as a parameter to the image operator, which basically takes care of
merging images.

For each image layer, the following information can be retrieved:

Attribute Type
filepath string

filename string

width integer

height integer

alternative_text string

imagepath string

has_size boolean

358Template Operators and Functions

Template Operators and Functions

358

If the has_size parameter is set to false, the width and height parameters will
contain the value false instead of zero-valued integers.

If the operator is called directly, the specified image will be displayed using a template
associated with the image layer. This is the /design/standard/image/layer.tpl
template. It is possible to override this template using the template override system.

Finally, an example of the default (eZ publish 3.3) definitions for image variations:
{'eZ publish rocks! archtura'|texttoimage('archtura')}

{'eZ publish rocks! gallery'|texttoimage('gallery')}

{'eZ publish rocks! object_text'|texttoimage('object_text')}

{'eZ publish rocks! arial' |texttoimage('arial')}

{'eZ publish rocks! 1942'|texttoimage('1942')}

{'eZ publish rocks! a_d_mono'|texttoimage('a_d_mono')}

{'eZ publish rocks! sketchy'|texttoimage('sketchy')}

{'eZ publish rocks! smartie'|texttoimage('smartie')}

This produces the following result:

Other Template Operators
Let's now move on to other operators for the template.

count
Returns the "count" of the input value. The result depends on the type of the input value.
The following table summarizes its effect.

You are not limited to the standard eZ publish ini files. You could also create
your own site specific ini files and sections to store design and layout
parameters. This is handy if you need such parameters in different templates.

Template Operators and Functions

358

Input type Result of count

array the number of elements in the array

object the number of object attributes

string the string length

numeric the value of the numerical

boolean 0 for false(), 1 for true()

other 0

Examples:

{array(1, 3, 5, 7)|count} returns 4;

{'The quick brown fox'|count} returns 19.

Accessing Variables in the ini Files
ini variables can be read with the ezini operator. It takes three arguments:

• A section in the ini file (as put between [] brackets)
• The variable itself
• Optional: the ini file, if other than site.ini

{ezini('[section]','[variable]','[optional ini file]')}

For example:
{ezini('SiteAccessSettings','AnonymousAccessList')}

This returns an array of the modules and functions that do not require a real user
logged in.

cond
The cond operator expects an array with pairs of a condition and a value that will
returned upon a matching value of true.

Appendix A

359

For example:
{cond(false(),'red', true(),'blue')}

This returns the string "blue"

first_set
The first_set operator expects an array of values and/or variables and will return the
first that is set.

For example:
{let $rootnode=2}
{first_set($myvar, $rootnode)}
{/set}

This returns $rootnode with a value of 2 unless $myvar is an existing variable and has a
value assigned.

eZ publish Kernel Operators

ezurl
Makes sure that the URL works for both virtual hosts and non-virtual host setups.
For the latter, this means the inclusion of index.php in the URL, together with
hostname and siteaccess.

ezroot
This is the same as ezurl, but will omit the index.php from the url, regardless of
your server configuration mode.

choose
Uses the input as an index to pick an element from the array parameter. For example:

{1|choose('america', 'russia', 'china')} returns "russia".

contains
Returns true if the first parameter value is found in the input value, which must be
an array. Currently it works the same way as the PHP function in_array(). For
example:

{array(1,3,5,7)|contains(4)} returns false().

currentdate
The currentdate operator returns the current timestamp. For display purposes, you
can feed this value through the datetime operator:

Template Operators and Functions

360

{currentdate()| datetime('custom','%Y-%m-%d %H:%m')}

This returns the current date and time.

For custom displays, you can use the following format characters:

Format Character Description

%a Lowercase Ante meridiem and Post meridiem

%A Uppercase Ante meridiem and Post meridiem

%B Swatch Internet time

%d Day of the month, 2 digits with leading zeros

%D A textual representation of a day, three letters

%F A full textual representation of a month, such as January or March

%g 12-hour format of an hour without leading zeros

%G 24-hour format of an hour without leading zeros

%h 12-hour format of an hour with leading zeros

%H 24-hour format of an hour with leading zeros

%i Minutes with leading zeros

%I Whether or not the date is in daylight savings time

%j Day of the month without leading zeros

%l A full textual representation of the day of the week

%L Whether it's a leap year

%m Numeric representation of a month, with leading zeros

%M A short textual representation of a month; three letters

%n Numeric representation of a month, without leading zeros

%O Difference to Greenwich time (GMT) in hours

%r RFC 2822 formatted date

%s Seconds, with leading zeros

%S English ordinal suffix for the day of the month; 2 characters

Appendix A

361

%t Number of days in the given month

%T Timezone setting of this machine

%U Seconds since the Unix Epoch (January 1 1970 00:00:00 GMT)

%w Numeric representation of the day of the week

%W ISO-8601 week number of year, weeks starting on Monday (added
in PHP 4.1.0)

%Y A full numeric representation of a year; 4 digits

%y A two digit representation of a year

%z The day of the year (starting from 0)

%Z Timezone offset in seconds. The offset for timezones west of UTC is
always negative, and for those east of UTC is always positive.

treemenu
The treemenu operator can be used to build tree-like menu structures. It expects the
following arguments:

Parameter Type Default Required Description

path array false() yes An array of node IDs which form
the path to the current node

node_id integer false() yes The current node ID

class_filter array if
false(),
actually
array(1,8)

no An array of class IDs to include,
as in the content/list function

depth_skip int false() no The start depth in the node tree
where you want your menu
structure to start from the root
level

max_level int false() no The maximum depth your menu
should have

Format Character Description

Template Operators and Functions

362

The returned array consists of sub-arrays containing:

• $tmpNodeID: The node ID
• level: The depth level relative from the root level
• url_alias: The URL alias for this item
• url: The normal URL for this item
• text: The node name
• is_selected: A boolean to determine if the item is on the current node path

The following example illustrates the use for a top-level menu consisting of just one
level. Here we don't want the "tree" functionality, but rather the element that is "active"
for highlighting.

{let menuLevel1=treemenu($module_result.path,
$module_result.node_id,
array('folder'),
0,
1)}

{* loop over the menus and build the menu structure *}
{section name=Menu loop=$menuLevel1}

{section show=$Menu:item.is_selected}

{$Menu:item.text}

{section-else}

{$Menu:item.text}
{/section}
{delimiter} | {/delimiter}

{/section}
{/let}

GNU Free Documentation
License

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. https://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The "Document", below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

364

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work's title, preceding the beginning of the body of the
text.
The "publisher" means any person or entity that distributes copies of the Document to the
public.
A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a section "Entitled
XYZ" according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

• O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25

366

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover text
for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts may
be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that
a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor
Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus
published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by
that same organization.
"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.
An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.
ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
 Copyright (C) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

368

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with …
Texts." line with this:
 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Index

A
ab, 335
access control limitations, 32
accessibility standards, 310
action extension, 183
actions, 183
add an extension, 150
adding content

create content classes, 37
admin view, case study, 261
administrator functions, 61
advanced keywords, 122
anonymous user submissions, 146
Apache Benchmarking tool, 335
Apache virtualhost, 7
APC Alternative PHP Cache, 249
array matching, 99
array operators, 344-348
array_sum operator, 344
attribute() function, 130, 221
attribute templates, 82
authentication methods

external, 227
internal, 227
Kerberos, 227
LDAP, 227
Microsoft Windows domain controller, 227
single sign-on, 228

authorization, 31
Awstats, 238

B
backup, 251
bandwidth, 236
begins_with operator, 344
benchmarking, 335
benefits of eZ publish, 311
blog site package, 17
breadcrumb navigation, 115

C
cache administration, 64
cache block parameters

expiry, 110
keys, 110

cache blocks, 333
cache blocks, 109
callback

about, 212
creating callback, example, 213-214
enabling callback, 212
passing variables, 214
permissions, 218
testing, 218
user settings, 217

cascading templates, 112
case

mandatory attributes, 299
case study 1

archiving, 305
client, 253- 254
client requirements, 257
client training, 301
CMS selection, 258
content areas, 282
content model, 265
content model, final, 266
content model, original, 266
content population, review, 304
CRM integration, 305
deployment, 301
development lifecycle, 303
development, display logic, 280
development, installation, 278
development, navigation, 282
development, roles and permissions, 279
development, sections, 279
development, templates, 281
existing site, 255
extending the site, 304

364

HTML prototype, 274
interface design, 272
maintenance, 301
process flowchart, 256

comparing strings, 344
configuration file extensions, 10
content classes

about, 28, 132
project assessment, 302 attributes, 134
project requirements, 255 create, 132-133
sections, admin view, 261 how to create, 133

sections, links, 263 identifier, 132
sections, miscellaneous, 264 states, 132
sections, user view, 259
site specifications, 259
support, 301
template design, 267
testing, 300

content management system, 25
content model, 265
content module functions, 101-104
content object classes, 127
content object versions, 29

workflow, need for, 305 content objects
case study 2 about, 27-28, 135

client, 311 attributes, 137
content design, 328-331 create, 48, 136
CSS rules, 328 editing, 50
existing design, 311 related content, 53
existing structure, 312 states, 136
optimization effects, 336 translations, 51
performance, 332 content sources, 84
planning, 314 content types, case study 1
resources, 337 Article, 269
structural changes, 315 client, 269
template design, 316-323 links, 269

changing case, 341 news, 269
class templates, 329 Overview Article, 269
classes publication, 269

Categorytype, 221 training course, 269
eZContentClass, 128-132 content view, 30, 81
eZContentClassAttribute, 134 contentless nodes, 119
ezContentObject, 135
eZContentObject, 128
ezContentObjectAttribute, 138
eZPersistentObject, 128, 221
eZSearch, 146

corporate site package, 17
count operator, 357
create() function, 221
creating a new class, 329
creator, showing, 122

coding functions, 163 cron jobs
coding operators, 177 about, 247
comment button, adding, 117 runcronjobs.php script, 9
commenting files, 84 crontab, 9
comments, 84 cross-template variables, 93
community sharing CSS, 309

eZ publish contributions, 205 custom content type, publication
public SVN, 205 attachment, 270
SourceForge, 206 attachment, description, 270

365

author, 270 time limits, 239
cost, 270
date, 270
description of contents, 270
publisher, 270
title, 270

custom operators, 176
custom threaded forum template, 124
custom-built CMS, 255

design folder, 6, 12
directories, 207
disable a module/function, 36
displaying date, 117
documentation

access control, 243
contact details, 241
disaster recovery, 243
DNS information, 242

D extension, 206

data import/export, 187-190
data interoperability, 196
datatype extension, 152
datatype functions

fetchClassAttributeHTTPInput(), 169
fixupClassAttributeHTTPInput(), 170
metaData(), 172
storeClassAttribute(), 170
title(), 172
validateClassAttributeHTTPInput(), 170

datatype wizard, 165
datatypes, 164

class attributes, working with, 169

hardware, 242
how to update, 241
location, 242
operating system, 242
patches, 242
software, 242
TCP/IP information, 242
upgrading, 243

download eZ publish, 5
Doxygen, 153
dummy nodes, 119

E
complex datatypes, 173 e-commerce module extension, category
construction, 167 datatype
datatype wizard, 165-166 activation, 219
default class values, 168 database table, 220default object values, 168 database, communication, 221
implementation, 167 editing the class, 224
initialization, 168 editing the object, 224
object attributes, working with, 171 templates, 224settings, 164 viewing the object, 224
storing information, 167 working, 221-223templates, 164 e-commerce module extension, WorldPay
types of, 38-45 create workflows, 208

date tasks, 117 eventtype directory, 209
dedicated hosting, 239 extension directory, 209, 213
definition() function, 129, 221 how it works, 215-216deploying eZ publish ini settings, 211-217

budget, 239 key functions, 214
deployment checklist, 249 known issues, 212hosting requirements, 5 module, creating, 213-214
number of visitors, 236 overview, 209reporting, 238 PHP source code, 210
security needs, 237 requirements, 207
system requirements, 236

366

workflow routine, 211
WorldPay module, 212

extract operator, 343-346
extract_left operator, 343

edit functions, 116 extract_right operator, 343
edit link, adding, 117 ezauthor datatype, 38
edit template variables, 92 ezbinaryfile datatype, 38
edit templates, 82 ezboolean datatype, 38
ends_with operator, 344 ezdate datatype, 38
error codes, 128 ezdatetime datatype, 38
example site ezdesign integration, 281

activities calender, 71 ezemail datatype, 39
create basic classes, 69 ezenum datatype, 39
discussion forums, 71 ezfloat datatype, 40
document types, 70 eZHTTPTool eZ library routine, 214
images, 70 ezidentifier datatype, 40
members, 77 ezimage datatype, 40
personalization, 72 ezimage integration, 281
role assignments, 76 ezinisetting datatype, 41
roles, 74 ezinteger datatype, 40
sections setup, 74 ezisbn datatype, 41
user groups, 75 ezkeyword datatype, 41
visitors, 77 ezlink attribute, 62

execute() function, 179 ezmatrix datatype, 42
executing operators, 177 ezmedia datatype, 42
expiry, cache blocks, 110 eZModuleOperationInfo() function, 140
explode() function, 222 ezobjectrelation datatype, 42, 54
extension development, practices ezobjectrelationlist datatype, 43, 54

defining goals, 204 eZOperationHandler() function, 140
development tools, 205 ezoption datatype, 43
documentation, 206 ezpackage datatype, 43
sharing, 205 eZPersistentObject class, functions
software requirements, 204 fetching data, 131
support forums, 204 hasAttribute(), 131
testing, 204 other functions, 132
timescales, 204 storing data, 131
upgrades/updates, 206 ezpreference system, 93

extensions ezprice datatype, 43
actions, 183 eZSearchEngine plug-in, 146
add an extension, 150 searching, 65
category datatype, 219 available filters, 148
designing an extension, 203-206 description, 146
documentation, 153 module views, 148
e-commerce module, example, 206 setup, 147
locate an extension, 151 ezselection datatype, 44, 165
subdirectories, 151 ezstring datatype, 44
template operators, 173 ezsubtreesubscription datatype, 44
third party extensions, 68 eZ systems, 1
translations, 184 eztext datatype, 44

367

eztime datatype, 38 remove(), 221
ezurl datatype, 45 setAttribute(), 130
ezuser datatype, 45 store(), 222
ezxmltext attribute, 62 storeObjectAttribute(), 222
ezxmltext datatype strtoupper(), 174

about, 45 tree(), 105
custom tags, 48 upcase(), 174
headings, 46 validateClassAttributeHTTPInput(), 170
hyperlinks, 47 version_list(), 108
lists, 46
objects, 47
tables, 47

view(), 31

G
text emphasis, 47

gallery site package, 17
unformatted text, 47 GD, 8, 11Google integration, 230-232

F
fetch() function, 104, 221 H
fetchByAttribute() function, 223

hasAccessTo() function, 127fetchByCategoryAndAttribute() function, 221
hasAttribute() function, 131fetchClassAttributeHTTPInput() function, 169
hosting, choosingfetch parameters, 105-106 time limits, 239fetching a single node, 104 hostname site access type, 18

fetching node lists, 105 htaccess, 7, 20fetching the current user, 108
filtering classes, 106
folder object, publishing, 197
folders, 6
forum site package, 17
forum template, custom, 124
functions

attribute(), 130, 221
attributes(), 131
create(), 221
definition(), 129, 221
execute(), 179
explode(), 222
eZModuleOperationInfo(), 140
eZOperationHandler(), 140
fetch(), 104, 221
fetchByAttribute(), 223
fetchByCategoryAndAttribute(), 221
fetchClassAttributeHTTPInput(), 169
hasAccessTo(), 127
hasAttribute(), 131
implode(), 223
list(), 105
redirect(), 161

image operator, 355
image optmization,

about, 8, 354
GD, 8, 247
image operator, 355
ImageMagick, 8, 247

image.ini, 10
imagefile operator, 356
ImageMagick, 8, 11
implode() function, 223
implode operator, 346
information array, 284
information collector

about, 48
policies, 146
setting up, 145
types, 145

ini files
browse.ini, 54
collect.ini, 145
content.ini, 29

I

visual design, 272

368

content.ini.append.php, 183, 217
design.ini.append, 217
i18n.ini, 10
image.ini, 10
layout.ini.append, 217

K
kernel

classes, 5
folder, 10

ldap.ini, 200
module.ini.append, 217
override.ini, 10
override.ini.append.php, 112
site.ini, 10
template.ini, 173
workflow.ini.append, 217

module functions, 101
operators, 359

keys, cache blocks, 110
keywords, advanced, 122
keywords, listing, 122

L
worldpay.ini.append.php, 217 l10n operator, 350

initialization files, example, 283 l18n.ini, 10
initializing operators, 177 lib folder, 6
installation libraries

Apache setup, 244 lib/ezsoap/classes/ezsoapclient.php, 230
Apache virtual host settings, 7 lib/ezsoap/classes/ezsoaprequest.php, 230
database setup, 246 limitation checks, 127
e-mail setup, 248 links, case study, 263
Image settings, 8 list() function, 105
Initialize the database, 6 listing keywords, 122
linux environment, 243 logical operators, 351-353
PHP accelerators, 248 login handlers
PHP setup, 245 LDAP, 199
Setup Wizard, 10-22 text file, 201
troubleshooting, 22
Unpack files, 5 Mintegration, 225

mathematical functions, 348-349
authentication, 227

media tab, 66bridging external applications, 225
menuscommunicate with Google, 230

breadcrumb navigation, 115identification, 227
top level, 114modifying existing code, 233
tree, 115SOAP, 230

metadata standards, 229strategies, 226
missing users sections, 67

interface design, case study
mod_rewrite, 7HTML prototype, 274
modifier, showing, 122

intranet site package, 17
ionCube accelerator, 249

J
joining strings, 343

module extension, 152
module functions, 162

coding a function, 163
registering a function, 162

modules
about, 153
coding, 159

modularization, 82

369

defining a module, 154 processing, 140
module functions, 162 statuses, 140
processing a template, 160
reading input, 159
redirecting a module, 161
registering a module, 153
returning information, 159
using templates, 160
view actions, 156
view parameters, 155
view permissions, 155

OpenFTS plug-in, 146
operators

choose, 359
coding, 177
contains, 359
count, 357
count_chars, 344
creating, 176
currentdate, 359

multi-language support, 16 executing, 177
extract, 343

N ezini, 358

nameless sections, 100
navigation menus, 114
newDatatype datatype, 165, 167
news site package, 17
nice urls, 81
nmap, 251
node tree, 26
nodes

counting, 107
fetching, 104
filtering, 106
sorting, 107

nodes without content, 119
nodes, counting, 107
normal post variables, 158
notification events, 142, 185

collaborations, 187
event handlers, 143
notification system, 68
publish operation, 143
statuses, 145
subtree notification, 143

ezroot, 359
ezurl, 359
image, 355
imagefile, 356
initializing, 177
kernel, 359
localization, 349
logical operators, 351
registering, 176
shorten, 118
striptags, 118
translation operators, 349
treemenu, 361
type checking operators, 353-354
wrap, 342

override folder, 9
override.ini, 10
override.ini.append.php, syntax, 112
overrides, 329
overriding templates, 112

P
notification handlers, 144 packages, 68

pad operators, 343
O page layout template, case study 1

object model, 5
objects

attributes, 128
persistent object model, 128
removing/restoring, 61

operation, 139
definition, 139

determine top node ID of section, 285
development lifecycle, 281
information array, 284
initialization files, 283
initialize variables, 283
primary navigation, 286
secondary navigation, 288

370

secondary
navigation
, code, 290

370

variables, assign values, 285 redirect() function, 161
page layout view, 30 redirecting modules, 161
PDF export, 67 registering functions, 162
performance, improving, 109 registering operators, 176
permissions, related content, 53

about, 5, 57 related objects panel, 53
folder permissions, 12 relationships
identifying users, 127 content objects and notification system, 143
setting up, 126 eZContentObject class and tables, 135

persistent object model, 128 objects and eZSearchEngine plug-in, 147
personal tab, 68 objects, roles, permissions, and limitations,
PHP accelerators 126

about, 234, 248 workflows and triggers, 139
Alternative PHP Cache, 335
IonCube PHP Accelerator, 335
Turck MMCache, 335

phpMyAdmin, 7
plain site package, 17
plug-ins, 146
policies, 5, 31
policy limitations, types, 126
port scanning, 251
port site access type, 18
ports, 251

remove button, adding, 117
remove() function, 221
restrictions. See permissions
reusing template code, 82
role system, 35
roles, 5, 31
RSS, 62, 193,
RSS admin page, 194
RSS import, 195

S
post variables, 156

sample site, create, 69
post_action_parameters variable, 157 scalar matching, 99post_actions variable, 157

searching, See eZSearchEngine plug-inPostgreSQL, 14
section function, 94-98

pre_publish trigger, 140
section parameters, 94problems
sections, 27, 66, 88memory limits, 22
Secure Socket Layer (SSL), 238

PHP running as CGI, 23
securityprocessing an operation, 140

htaccess, 20project reqirements. See typical project
requirements

Public Key Infrastructure (PKI), 238
publication content type, See custom content

levels, 237
requirements, 237
virtualhost mode, 7, 20

type, publication security, requirements, 237
publish operation, 143-144
publishing date, showing, 122

Q

semantically correct markup, 309
sendmail, 13
seperation, content and application logic, 30
server, choosing, 240
setAttribute() function, 130

Qt Linguist, 350 settings folder, 6, 9, 12
Setup Wizard, 10-22

R shared hosting
RAD, 68 time limits, 239

Shop tab, 69

371

shorten, 343 system information, 65
shorten operator, 118
single sign-on, 228 Tsite access types

template compiling, 333Hostname, 18
template functionsPort, 18

{append-block}, 86URL, 18
{default}, 85

site packages, 17
{let}, 85site statistics
{section}, 94-97

reporting, 238
site structure

content class attributes, 28
content classes, 28
content object, 28
node tree, 26
sections, 27

site.ini, 10
siteaccess folder, 9
SOAP, 149, 187-197, 225-233

example, 188
required functions, 190
XML client request, 192
XML server response, 192

SOAP example, 230-232
standards. See accessibility standards

accessibility, 310
Section 508 guidelines, 310
web, 307
Web Accessibility Initiative, 310

standards, advantages, 310
store() function, 222
storeObjectAttribute() function, 222
string conversion, automatic, 119
string manipulation

automatic linking, 119
comparing strings, 343
counting strings, 344
extracting strings, 343
joining strings, 343
limiting text output, 118
matching, 341

string operators, 339-341
striptags operator, 118
structuring content, 26
supported systems, 243
SVN code repository, 150
switch function, 98

{switch}, 98
template operator wizard, 174
template operators, 173
template operators, adding your own, 111
template output

controlling flow, 94
template override system, 111
template parameters

match, 113
matchfile, 113
source, 113
subdir, 113

template tasks, 114
templates, 59, 319-323
templates, edit functionality, 116
testing, case study 1

content population, 301
functional testing, 300
implementing, 300
requirements, 300
specifications, 300

text file login, 201
translation extension, 184

overriding, 185
URL translation, 61

tree() function, 105
tree menus, 115
triggers, 54, 138

return statuses, 141
troubleshooting, see problems
Turck MMCache, 249
type checking operators, 353-354
typical project requirements, 257-258

{set}, 85
{set-block}, 100

372

upcase() function, 174
U view templates, 81

virtualhost, 7, 20

URL site access type, 18
URL translation, 61
user groups, show, 120
user panel, creating, 119
user preferences function, 120
user roles, show, 120
user view, case study, 259

V
validateClassAttributeHTTPInput() function,

170

Web Accessibility Initiative, 310
web standards, 307

CSS, 309
XHTML, 308

Webalizer, 238
webshop site package, 17
wireframes, 267
wizards

datatype wizard, 165
template operator wizard, 174var folder, 6, 12 workflow, 54, 138

var parameter, section function, 101 operation, 140
variable scope, 85-86 parent class, 179variables settings, 178

$attribute, 173 triggers, 138, 181
$class_attribute, 172 workflow events, 55$FunctionList, 154 workflow eventtype extension, 152
$Module, 154 WorldPay extension. See e-commerce module
$module_result, 89, 159 extension, WorldPay
$module_result.content_info, 89 wrap operator, 342
$node, 90
$node.object, 92
$ViewList, 154
changing variables outside a loop, 100
content view variables, 90
definition, 85
edit template variables, 92
ini variables, 358

XHTML, 307-334
XHTML compliance, 307
XML tags, 47-48

Z
namespaces, 88, 99 Zend performance Suite, 249
pagelayout template variables, 89
predefined variables, 88
setting and modifying, 85
type creators, 87
types, 87

version history audit trail, showing, 121
version information, displaying, 108
version_list() function, 108
version, content objects, 29
view() function, 31
view actions, 156
view caching, 333
view navigation, 158
view parameters, types, 156

X

W

