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Abstract

When sending payments in the Bitcoin Lightning Network, sending nodes choose
their optimal payment delivery strategy to find a flow for the payment. The nega-
tive impact of choosing selfish strategies on the reliability of the payment network –
its ability to successfully deliver payments – can be expressed in the Price of Anar-
chy. We define the Price of Anarchy as the ratio of the failure rates of the optimal
selfish strategy for participants and the failure rate when participants follow a coop-
erative strategy. To ascertain the existence of a Price of Anarchy for such measure
and establish its value, we simulate non-cooperative as well as cooperative payment
delivery strategies in a model of the Lightning Network.

Our findings of the simulation show that depletion of channels, and thus payment
failure, happens faster with payment delivery strategies based on fees compared to
probability based payment delivery strategies, in particular multi-part payments.
The strategy with the lowest failure rate is when learning or sharing of information
about success or failure of payments is shared with a central coordinator or partic-
ipants. We conclude that a Price of Anarchy exists under the measure of payment
reliability, and we calculate the lowest possible Price of Anarchy with the results
of our simulation as 1.5456. Our findings show furthermore that the failure rate of
payments increases over time for selfish payment delivery strategies, and that be-
tweenness centrality in the Lightning Network has a significant impact on the failure
rate.
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1 Introduction

The Lightning Network is a decentralized system where payments are sent over a
network of micropayment channels. It is based on the bitcoin blockchain where the
consensus of the balances of bitcoins in wallets is agreed upon. Given its charac-
ter, the bitcoin blockchain cannot register an equally high number of payments per
second, as would a current payment network. Different possibilities exist that could
increase the maximum payment volume, like an increase in block size or more cen-
tralization. But for bitcoin to succeed, it needs to maintain its current advantages of
for example decentralization. Using a network of micropayment channels linked to
the bitcoin blockchain is a proposed suggestion to scale to billions of payments per
day.

1.1 Motivation

However, to be used as such a payment network the Lightning Network needs to fulfill
its promise to reliably send payments over its network of micropayment channels.
It needs a minimum degree of reliability to acquire enough acceptance so that it
can present itself as a viable alternative to current payment networks and electronic
payment systems. Reliability refers to a high degree of confidence that payments
between two counterparts don’t fail.

Unfortunately this is currently not the case. The Lightning Network at the moment
cannot provide the reliability needed to be regarded as an alternative to centralized
payment networks.

Its unreliability originates in nodes not being able to send or receive payments. The
main reasons for this state are nodes not being reachable and channels not being
able to forward the expected amount. While the availability of nodes is more of an
operational problem, providing enough liquidity to deliver a payment is generally a
question of distribution of channel balances, which can be dealt with on a protocol
level and on an implementation level of a lightning node.

When a payment is sent from sender/source to receiver/sink the sending node chooses
the payment flow, which is dissected into paths. The flow of the payment describes
the graph of lightning nodes and channels for the respective payment. Which flow is
chosen is determined by criteria implemented in the lightning node software. Several
strategies exist for flow selection.
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Each payment changes the state of channels in the lightning network. This is because
each successful payment changes the balances in channels and could deplete channels,
making them unavailable for a future payment flow between the two nodes. In
consequence, the path selection decision impacts the state of the Lightning Network
and its reliability.

The flow of the payment from sender to receiver is chosen by the sending node
according to the preferences implemented in the node software. These preferences
are for example to minimize cost or maximizie the payment success probability. They
are at the discretion of the sending node and generally don’t follow the payment
network’s best interest. The sender aims to optimize the choice of the payment flow
exclusively to its own interest. When routing payments through the network follows
the optimum with regards to the sender’s preference function, this is referred to as
selfish routing [Rou05].

Optimizing one’s payment delivery for an individual single payment is detrimental
to the network as a whole, because for example using the path with the lowest fees
promotes draining liquidity in the cheapest channels in the network. This will in
return lead to unusable channels and a cut in the network more frequently. Those
payment channels cannot relay the payment amount anymore and no path might
exist to pass the payment from sender to receiver.

Assuming other strategies exist, even though they might not be followed by network
participants, these might avoid such network deficiency and even create a higher
welfare for the network. The higher welfare originates in less channels being depleted
and thus the network being usable more broadly.

The existence of these strategies could allow for calculating the cost of selfish routing.
If a quantitative measure for the inefficiency can be derived, this measure is referred
to as the Price of Anarchy.

When the cost of the different strategies is measured as unreliability of the network,
the Price of Anarchy can represent a measure of reliability of the network, as it is
calculated as the relationship between cost from selfish routing and cost of the most
beneficial strategy for the network.

1.2 Contribution

This thesis gives an overview of existing payment delivery strategies of lightning
nodes and analyzes them in the context of how beneficial these strategies are for the
Lightning Network. One measure of how much worse failure rates are when par-
ticipants use strategies that they consider the most beneficial for themselves versus
what optimum could be achieved with different strategies, for example those that
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require cooperation, is the Price of Anarchy. We implement a model for the Light-
ning Network and possible strategies to empirically establish a Price of Anarchy as a
measure of how much welfare is lost by selfish strategies.

The Price of Anarchy has been discussed in flow networks in particular in the context
of network traffic and routing [Rou05], or in relation to topology and network cre-
ation games [AHWW19]. We extend the previous discussions by applying the idea
of a Price of Anarchy to a particular flow network, the Lightning Network, where
the participants don’t have enough information about liquidity constraints in net-
work channels. We test a model Lightning Network for different payment delivery
strategies and the existence of a Price of Anarchy.

We contribute the code, which has been developed for the implementation of the
probabilistic payment delivery in our simulation, to the open source library for Pick-
hardt Payments [Pic23].

1.3 Organization of this Thesis

This thesis analyzes the cost of selfish routing in the Lightning Network. Initially
we describe the Lightning Network and provide a formal model. We also examine
the payment flow construction and the delivery mechanism for the most common
strategy, optimizing for minimal fees, and an alternative probabilistic model. Sub-
sequently we describe the concept of the Price of Anarchy and how it applies to
payment delivery strategies in the Lightning Network. We investigate, if a Price of
Anarchy exists and how it can be defined and measured.

We then test the findings against a model of the Lightning Network, using a simulator
we developed. The results of this simulation will help us demonstrate the persistent
problems in the Lightning Network and to what extent the Price of Anarchy can be
a measure for the loss of welfare of the network.
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In this chapter we will outline the structure of the Lightning Network and formalize
the Lightning Network graph. We explain the requirements of a payment and that a
payment is a flow on the graph. We also show how the cost for uncertainty to success-
fully deliver a payment can be calculated. Finally we present the steps necessary to
send a payment from a sending node to the receiving node.

2.1 Bitcoin and the Lightning
Network

The bitcoin blockchain is a system for electronic transactions without relying on
trust [Nak09]. It is a gossip protocol whereby all state modifications to the ledger are
broadcast to all participants. It is through this “gossip protocol” that consensus of the
state, everyone’s balances, is agreed upon [PD16]. The bitcoin blockchain can serve
as a source of a universal truth as well as an arbiter when counterparties involved in
exchanging bitcoin for other goods are in disagreement.

The Lightning Network evolved in 2015 as a solution to transact more quickly and
allow for more capacity, because the number of payments registered in the bitcoin
blockchain would not be sufficient to establish bitcoin as a more broadly adopted
means of payment. The Lightning Network can be described in two ways: On the
one hand as a peer-to-peer network consisting of payment channels, which are imple-
mented as smart contracts on the bitcoin blockchain. On the other hand the Light-
ning Network can also be regarded as a communication protocol that defines how par-
ticipants set up and execute these smart contracts. [AOP21]

The payment channels are known as Poon-Dryja channels. One of the channel part-
ners opens a channel by funding the channel and sending an amount of bitcoin to a
2-of-2 multi signature address. This is called the funding transaction. The funding
transaction sets the financial capacity that is bound in the channels. This will be
referred to as the channel capacity.

The channels share the capacity of the initial funding transaction amongst each other.
Once some amount is sent from the sender to the receiver, the liquidity is reduced
at the sender’s side. This transmitted amount now can be used to send payments
from the receiver to the sender.
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Most lightning nodes implement pathfinding strategies that optimize purely for fee
rates. It is a popular opinion even amongst lightning developers that finding op-
timal flow in the Lightning Network should be guided by fee rates. This repre-
sents the belief in an efficient market where all participants instantaneously adjust
fees in correspondence to available liquidity in the channels they manage. As was
discussed on the lightning developer mailing list “feerates (. . . ) are always going
to be something that senders optimize for, because obviously senders will have a
maximum amount they will be willing to pay in fees” [Zmn22a] and following a
particular understanding of market mechanics “fees gets [sic] you basic economics
of supply and demand, and is a natural throttle in all markets, including liquidity
markets.” [Zmn22b].

Even though failure rates of payments are an obvious problem for Lightning Network
participants, this perception leads lightning node operators to sticking with solutions
by „better“ or „faster“ adjustment of fees, to avoid channels being unusable. This
practice has lead to a trial and error attitude when it comes to solving a quite fun-
damental deficiency, and has not yet been addressed from a research and systemic
perspective. Consequently, there has been very little research on the Lightning Net-
work flow problems in the past.

2.2 The Network - Defining the
Problem

The Lightning Network is a network of channels with the participating nodes V
and the payment channels as edges E. More precisely, the Lightning Network is a
directed multigraph with pairs of channels between nodes, one for each direction,
described by a directed graph G = (V,E). With two nodes vs and vt and a channel
pair es,t and et,s between the nodes, there exists a function l, assigning the liquidity
to each edge e in the graph.

l : E −→ N0

The liquidity is split up in a set of back and forth channels between two nodes. It
is constraint to the amount of the funding transaction, the channel capacity. The
relationship between the channel capacity cap and the liquidity l(es,t) = ls,t of edge
es,t can be defined as

liquidity split: ls,t = caps,t − lt,s = capt,s − lt,s

The channels share the capacity of the initial funding transaction amongst each
other. Once some amount is sent from the sender to the recipient, the liquidity is
reduced at the sender’s side and increased on the recipient’s side. This means that
the liquidity ls,t of the channel es,t is reduced by the amount m and liquidity lt,s in
the channel et,s is increased by the amount m.
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Because the sending node only knows the exact amount of liquidity in its own
outgoing and inbound channels, it has to guess liquidity in the rest of the net-
work. This leads to uncertainty where payment flows on channels can fail, be-
cause when constructing the flow the sending node might choose edges that do
not carry enough liquidity. Consequently, the Lightning Network is inherently un-
reliable. This creates uncertainty in the network and decreases its overall useful-
ness.

However, a payment can fail not only because of a sub-optimally chosen payment
flow. An at least equally grave problem arises when a set of payments is analyzed,
instead of one single payment. For the Lightning Network to operate as a payment
network it needs to be able to operate and execute a significantly larger number of
payments than just one. This means that it is not enough to find a solution for a
single payment to be delivered with high reliability, but it is also necessary to analyze
the effect and interaction of a large number of payments.

Sending nodes take decisions when structuring the payment onion and aim to suc-
cessfully execute their single payment. To what extent do their strategies deplete
liquidity along edges that are crucial to workings of the network and as a consequence
create a cut, which makes other payments fail?

2.3 Dynamics of a Payment

Every payment has a sending node (source) and a receiving node (destination) and
an amount m that is passed from source to destination.

2.3.1 Requirements

Looking at what constitutes a payment one can find that the source has an excess
supply of liquidity, the destination an excess demand. For each node along the flow
the liquidity into the node should equal the liquidity out of the node plus an amount
c as fees that the node retains.

For every node v ∈ V let bv ∈ Z denote its excess supply or demand. Typically bv
will be cv except for the source node s with supply (bs > 0) and the destination d
with demand (bd < 0).

Payments on the Lightning Network are flows on a finite graph. The flow is deter-
mined after solving an optimization problem, and is given by the function f , which
represents the change in liquidity on the edges of the network graph.

We call a function f : E −→ N0 a flow, if the following conditions hold:
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capacity constraint: For every edge e ∈ E and cap(e) the capacity of an edge we
have:

0 ≤ f(e) =: fe ≤ cape := cap(e)

and

conservation of flows: For every node vj ∈ V and the edges into the node (i, j) ∈ E
and edges out of the node (j, k) ∈ E we have:∑

(i,j)∈E

fij −
∑

(j,k)∈E

fjk = bj +
∑

(i,j)∈E

cij −
∑

(j,k)∈E

cjk.

with bj = 0 ∀ vj /∈ s, d with s being the source and d being the sink.

Therefore the difference between all flows into a node and all flows out of a node
is the balance plus costs. When a node is a source, meaning it sends money,
then it has a positive balance b, and as a destination it has a negative balance
b.

For payments from source to destination, the Lightning Network uses source routing
which means the source node is calculating the entire route, from source to destina-
tion.

Each payment can be defined as a flow, derived from a set of two nodes and its
amount. A payment P can be broken up into several payments. This is referred to
as a multi-part payment, MPP. A payment P is a set of MPPs, where each MPP is
an acyclic directed graph from s to t with amount fi

P = {MPP1,MPP2,MPP3, . . . | MPPi : fi(e)}

A flow can be one singular acyclic directed graph from source to destination or a set
of acyclic subgraphs for an amount fi where

∑
fi = m.

The information to construct the flow that is used for the payment – information on
all public payment channels and their capacities – is taken from the gossip proto-
col.

2.3.2 Considerations Regarding Fees

In the Lightning Network nodes are compensated for relaying payments by having
the possibility to charge a fee. The fee is usually far less than one percent of the
payment amount. Usually the main factors to be taken into account when solving
the optimization problem to find the route for the package, fees paid are one factor.
Reliability of the network and the uncertainty cost in case of payment failure are
another. However, because there will be no fees if a payment fails and considering the
low amount of fees, the network’s reliability has a significantly higher weight in our
consideration regarding optimization than fees. Consequently we will not consider
fees as transaction costs for the following analysis.
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2.3.3 Constructing the Payment Package

When the sending node constructs the data for the network to initiate the flow,
it constructs one or more onion packages. A sequence of hops is put together,
linking channels from sender to receiver. The packet structure is defined in the
BOLT4 specification. BOLT4 defines the packet structure for payments to hold a
1300-byte hop_payload section consisting of multiple, variable length, hop_payload
payloads or up to 20 fixed sized legacy hop_data payloads. Thus, a singular acyclic
directed subgraph contains at most 21 edges, as can be derived from the proto-
col. [Tea23b]

When constructing the payment flow, the sender has to make assumptions about the
availability of a node and the liquidity of its edges.

Availability means the ability to reach the node at all times during the lifetime of
a payment and have it reply according to the protocol.

Liquidity refers to the available amount of satoshis in the inbound and outbound
edges. One satoshi (sat) is the 100 millionth of a bitcoin (BTC).

For the payment to be successful, the nodes along the flow need to be available and
provide enough liquidity to cover the payment amount including the fees.

Thus, in addition to the information on the graph provided by the gossip proto-
col, a “belief network” exists with the sending node, which carries the assumptions
on the availability of nodes and edges when constructing the onions for the pay-
ment.

2.3.4 Uncertainty Cost

A feasible flow of amount m needs to be found, so that the payment can be delivered.
A feasible flow is a flow along edges that carry a minimum liquidity le ≥ fe. Having
an unsuccessful payment leads to costs for the sender as well as for the network as a
whole. The sender is punished by not having the payment delivered and/or having
liquidity stuck in payment channels, until the hashed timelock contracts that serve
to reserve liquidity in the channel are unstuck.

Hashed timelock contracts, in short HTLCs, are part of the Lightning Network Spec-
ification (BOLT2). HTLCs are unconfirmed transactions that are created when a
node initiates a payment or forwards a payment to another node. The contract
guarantees the relaying node to receive the flow from the sending node in exchange
for the correct secret. Usually the incoming HTLC cannot be redeemed unless the
outgoing HTLC can be redeemed. This allows the sender to chain channels that
deliver the payment with the promise to pay them. This promise leads to the nodes
retaining the liquidity, so that they can push it to the other node once they receive
the payment preimage, which they can use to claim the inbound liquidity from the
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other node along the chain. So for as long as there are unresolved HTLCs, liquidity is
frozen in the network and cannot be provided to others.

Stuck liquidity creates opportunity costs that can be quantified on an individual level.
It also creates negative effects for the network, because channels do reserve liquidity
in the channel until the preimage is received. This liquidity cannot be provided to
others, which leads to the network suffering from less liquidity and in the worst case
from a cut in the network graph. In consequence, the uncertainty about a payment
to be delivered or not is a cost. This cost decreases with an increasing probability
to successfully settle the payment.

This uncertainty cost depends on the probability for a channel to successfully relay
an amount m from one node to the adjacent node and can be calculated. Uncer-
tainty costs decrease with the probability of le being larger than or equal to fe and
increase with the probability of failure, le being less than fe. Information about
the success probability can be stored and used when calculating the optimal flow
for a payment. This estimate about the current belief of the liquidity of each edge
is held in a belief network. In addition to the belief of the liquidity of each edge
it also holds a belief about the probability distribution of balances in the payment
network.

Because the flow can consist of more than one edge, requirement for a successful
payment is

le ≥ fe∀e ∈ E.

The payment fails if any of the edges’ liquidity is less than the payment amount and
a node cannot pass on the flow through the next edge and cannot relay the payment.
Consequently the probability of failure is 1 - the product of success probabilities of
all edges, assuming an independent distribution.

The probability Pe for a single channel e to successfully relay a payment of size fe
for a random variable Xe can be defined as

Pe(Xe ≥ fe)

and the probability for an edge e to carry a balance less than flow fe, the failure
probability, is

Pe(Xe < fe),

which for a uniform distribution leads to

P (X < f) =

f−1∑
x=0

P (X = x) =

f−1∑
x=0

1

cap+ 1
=

f

cap+ 1
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A successful payment on an edge e is a payment that doesn’t fail

Pe(Xe ≥ fe) = 1− Pe(Xe < fe) =
cape + 1− fe

cape + 1
. (2.1)

The success probability of the flow is then defined as

Pf =
∏
e∈E

P (Xe ≥ fe).

The goal to maximize the success probability can be translated into minimizing the
negative logarithm of this probability, because the logarithm is a group homomor-
phism from the multiplicative group of positive real numbers to the additive group
of real numbers:

−log
(∏

e∈E
P (Xe ≥ fe)

)
=

∑
e∈E

−log(P (Xe ≥ fe))

This sum of logarithms has the form of a separable cost function C for the flow f ,
which is a useful characteristic when regarding min-cost flows. We use this term to
define our Uncertainty Cost:

C(f) :=
∑
e∈E

−log(P (Xe ≥ fe)) (2.2)

(see [PTBN21]).

So that in the Lightning Network a payment flow can be found with the goal to min-
imize uncertainty costs, a node calculates the likelihood for an amount f to be deliv-
ered successfully. This can be achieved by assigning the negative logarithm of the suc-
cess probability as cost to the edges of the graph [PR21]).

The estimate of the success probability can be improved by retaining knowledge
about the liquidity of edges that have been probed by sending a successful payment
onion along this edge or from information about a failing onion. From a failing onion
one can learn – and update the belief network accordingly – that the liquidity balance
is less than the amount that was tried to channel along this edge. The difference
between the channel capacity and this amount then by definition has to be in the
return channel. From a successful delivery of the onion one can learn that the return
channel now carries at least this amount of liquidity, while the maximum amount
of liquidity in the channel itself is now the channel capacity minus the transferred
amount.
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2.3.5 Construction of the Flow

Taking a look at payments that are delivered on a purely fee-based strategy,
it becomes immediately clear that payments will fail at some point, because all
money is routed along the cheapest channels. They get saturated and become un-
available, if there are no payments offsetting this drain. Failure occurs at the first
edge along the flow when liquidity is lower than the amount. If the edges hap-
pen to carry higher liquidity, the payment is delivered with an optimal fee for the
sender.

If the payment, optimized for lowest fee, fails, then the next try is started with an
onion along the path with the second lowest fee. Again, this might fail at the edge
with liquidity lower than the amount.

In the Lightning Network protocol, there exists a feature called multi-part payments.
This allows for a large payment to be split, so that each individual partial payment
does not exceed the known capacity (or a fraction of it) of a channel, which might
have been the case previously. A lower partial amount increases the set of possible
edges that can be used for flow. But also, making use of different channels towards the
receiver can avoid creating a cut as described above. However, following the strategy
of the lowest fees, the chosen paths might always be the same for all participants and
all partial payments will route along the same lowest fees edges, with their liquidity
draining quickly.

When in contrast to the fee-optimizing strategy the payment is sent with success
probability of a payment as the objective function for the payment delivery
method, the multi-part payment flow with the highest success probability is looked
for. This means that for a payment the expected value is calculated, which is a
product of all probabilities of the channels in the flow.

This algorithm can be complemented by updating the probability distributions with
the information gained from both successful and unsuccessful paths on prior payment
tries. This leads to the payment with the most probable payment flow, based on the
belief network of the node.

For a payment delivery strategy to send a payment as one amount, popular al-
gorithms for finding a path in a graph are Dijkstra or A* (A star) algorithm, a
variation of the Dijkstra algorithm in that it uses heuristics to decide upon the next
best node.

For multi-part payments a minimum cost flow problem needs to be solved. This
is a common problem for flow networks, and under certain circumstances solving
the problem is not NP-hard and can thus be solved efficiently. This makes the use
of minimum cost flow solutions in the context of the Lightning Network possible.
Regarding the two preferences of minimum fee and maximum success probability,
solving the minimum cost flow problem with the negative logarithm of the success
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probability as a cost function is more often applied. It is commonly referred to as
pickhardt payments. The most basic version of pickhardt payments only considers
uncertainty costs for reliability, but it is possible to also consider routing costs (fee
rates) and optimize for both features to come up with reliable and cheap-ish multi-
part payments [PR21].

2.4 Payment Delivery

Delivering a payment in the Lightning Network is a sequence of the following steps.

1. Analyze the network graph. If possible refer to belief network for additional
information

2. Construct (multi-part payment) onion.

3. Send onions.

4. Successful payment or resending or payment partially stuck.

5. Update belief network.

The sending node looks up the information from the gossip protocol about the net-
work graph, which includes the nodes in the network, the channel capacities, fees,
but also the details and requirements of HTLCs for each channel. With this in-
formation, the node uses the flow finding algorithm to receive a sequence of chan-
nels. Using the sequence of channels that the flow finding algorithm returns and
the information about the fees on each channel, the sending node constructs an
onion along the nodes. When constructing the onion, the node takes into ac-
count the amount and the different fees along these hops and the payment hash,
a special 256-bit secret value, allowing the receiver to recognize the incoming pay-
ment [AOP21].

The sending node then sends the payment onion package to the first node, which
passes it on to the following nodes, until it arrives at the receiving node. Each
node unpacks the dedicated onion part and processes its layer of the onion before
forwarding. In more detail, the payment forwarding algorithm has the following
steps:

1. Decrypting the outer layer of the onion and perform an integrity check.

2. Confirm wether the node can fulfill the routing/forwarding, depending on the
fees and capacity it has with the outgoing channel.

3. Update channel state with the node from which it received the onion. This
means to confirm the HTLC for the inbound channel.

4. Because the node changed the length of the onion while deconstructing its
layer, the node adds padding to the end before passing it on to the next node.
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5. Forward the onion package to the outgoing payment channel and send an
update_add_htlc message with the payment hash and the onion.

6. After the onion arrived at the next node, it works with the next node to update
the channel state on its outgoing channel.

Along the way an error could return on one node, due to the unavailability of the
next hop or because liquidity in the outgoing channel is less than the amount in the
onion. The payment forwarding is then interrupted and aborted. The node where the
error is registered sends an error message wrapped in an onion back to the node from
which it received its update_add_htlc message. The error onion is passed on to the
sending node and along the path the nodes remove the pending HTLCs. When the
error onion successfully arrives at the sending node, the sender has confidence that
the payment failed and can then initiate another try.

Looking at the payment forwarding algorithm it is immediately clear that the worst
case is a failing onion not sending the error message. Especially when sending a multi-
part payment this means that the sending node has all partial payments outstanding,
even those that successfully arrived at the receiver, but cannot finish the payment
successfully, because the information about the state of one multi-part payment is
missing. This is a very expensive situation for the sender and for the network,
because liquidity is stuck, payments are locked and cannot be brought to use in
channels.



3 Price of Anarchy of Selfish Payment
Delivery

Participants in the Lightning Network use the network to send an amount of money
from a sender to a receiver. The Lightning Network is a graph and money is sent
through channels. When the money is passed on from one channel to another we
are facing a transport problem, in which participants compete for liquidity in the
channels. Each participant chooses its own payment delivery strategy considered
to be the optimal strategy. A lack of coordination leads to a loss of benefit to
the system. The question we want to ask is, how far away from the maximum
achievable welfare of the network is the result of participants with selfish strate-
gies?

3.1 Theory and Background

The payment is a flow. For a successful delivery, the payment amount needs to travel
from edge to edge. The sender has to find a set of nodes that receive the payment
amount via their inbound channels and they need to be able to move it on to the next
node through one of their outbound channels. The nodes need to have a high enough
amount of liquidity in a suitable outbound channel. The payment amount cannot
be simply pushed along like a cart on a road. This metaphorical cart is effectively
brought to a halt when reaching a node, and then a different cart, “different” satoshis,
are sent on their way to the next node. So luckily satoshis are fungible, but still the
satoshis sent onwards are not the same ones as the ones received. The main goal for
successful payment delivery is to find a flow where nodes can receive in one hand
and give in the other. This inability to pass on the identical satoshis makes relaying
nodes a possibly scarce resource.

3.1.1 Competition and Cooperation

Finding the optimal flow in the network depends on a participant’s preferences. A
payment flow can be split up in several paths, a multi-part payment. The participant
then tries to find its one optimal multi-part payment flow.
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Participants have a self interest in having payments routed in a way that they max-
imize their individual welfare. However, this could result in a conflict with other
participants, because they drain resources that others might wish to use as well.
Liquidity is subject to consumption rivalry, and one participant optimizing for its
own preference might reduce the welfare of one or more other participants. Partici-
pants compete for the scarce resource.

This immediately defines a game-theoretic framework, in which each participant has
as many strategies as there are paths from sink to destination, and the cost to a
participant needs to take into account the strategies of other agents, which lead to
the current liquidity distribution in the network [KP99]. It is not uncommon that
the pursuit of individually optimal strategies does not lead to an overall optimal
outcome. One such prominent case is the prisoner’s dilemma, a famous example in
game theory. In this example one person behaves selfishly and tries to optimize its
own outcome while reducing general welfare that could be achieved through cooper-
ation.

3.1.2 Prisoner’s Dilemma

The prisoner’s dilemma is an example of a game analyzed in game theory. Two
completely rational agents are forced into a dilemma:

Tanya and Cinque have been arrested for robbing the Hibernia
Savings Bank and placed in separate isolation cells. Both care
much more about their personal freedom than about the wel-
fare of their accomplice. A clever prosecutor makes the follow-
ing offer to each: “You may choose to confess or remain silent.
If you confess and your accomplice remains silent I will drop
all charges against you and use your testimony to ensure that
your accomplice does serious time. Likewise, if your accom-
plice confesses while you remain silent, they will go free while
you do the time. If you both confess I get two convictions, but
I’ll see to it that you both get early parole. If you both remain
silent, I’ll have to settle for token sentences on firearms pos-
session charges. If you wish to confess, you must leave a note
with the jailer before my return tomorrow morning.” [Kuh19]

This example shows, that an optimal outcome for both participants in the game is
possible with coordination and trust. However, due to a lack of cooperation both
participants most likely decide to confess and both are convicted, and consequently
the equilibrium is not as good as an outcome for the participants compared to if
they cooperated. It is a well-known fact that non-cooperative equilibria can be
inefficient. [Dub86]
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3.1.3 Braess’s paradox

Another example for the inefficiency of non-cooperative equilibria and closer to our
transport problem is Braess’s paradox. Braess describes a network of roads with a
known number of cars at each point. All participants will chose the cheapest possible
path. The cost for each edge is determined by the time of travel.

From a mathematical perspective, this can be seen as a directed graph. The problem
is different to a “classic” shortest path problem, in that not all travel times are
independent of the traffic throughput on each edge. Some cost functions are constant,
while others are determined by the number of cars choosing the respective edge. In
this example Braess shows that there exists a flow that is optimal for all travelers,
which maximizes the welfare of all participants. And he also shows that there exists
a flow that will materialize, if each participant decides to optimize its own path,
which deviates from this optimum.

In a simple four node graph he demonstrates that participants will believe to take
the optimal path but in fact a better path could be established if there was a general
flow control (see figure 3.1).

So let there be a directed graph G = (A,U) with a set of nodes A = {ai} and a set of
directed edges U = {uα}. φα is the flow on edge α, measured as cars per unit of time.
As usual in traffic planning problems, flow is nonnegative.

tα(φ) is the amount of time that is needed to pass edge uα, if there is a flow of
φ = φα on edge uα. The total amount of time needed for a participant to get from
ai to ak on path Uβ is T ik

β (Φ).

We are now looking for the highest cost on the graph. For this we look at all flows
and find the flow with the highest cost |T (Φ)|

|T (Φ)| = max{Tβ(Φ); Φβ ̸= 0}

The total flow in the graph Φ is optimal, if |T (Φ)| ≤ |T (Ψ)| for all Ψ with |Φ| =
|Ψ)|

Braess defines the graph as follows, numbers on the edges are for reference:
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Figure 3.1: Braess’s paradox, four node graph

In our example all cars want to drive from one source node a to one sink node
z.

The cost functions for the five edges are:

t1(ϕ) = t3(ϕ) = 10ϕ

t2(ϕ) = t4(ϕ) = 50 + ϕ

t5(ϕ) = 10 + ϕ

We find a unique solution for a flow of |Φ| = 2 from a to z by sending all flow through
abcz with maximum cost of 52.

Φabcz = 2, Φabz = Φacz = 0, |T (Φ)| = 52 (3.1)

We can also find unique solutions / equilibria for flows of |Φ| = 6 and |Φ| = 20 from
a to z:

Φabcz = 0, Φabz = Φacz = 3, |T (Φ)| = 83 (3.2)
Φabcz = 0, Φabz = Φacz = 10, |T (Φ)| = 160 (3.3)

Every participant tries to find its optimal route by calculating how long it would
take. In (3.1), following the route abcz is individually optimal with a cost for the
individual of 52, compared to for example abz, which would cost the participant
72. Total cost cannot be minimized, thus the flow of Φabcz = 2 is optimal with
|T (Φ)| = 52.

In (3.3), half the participants following the route abz and the other half acz is
optimal with a cost for the individual of 160. Choosing the route abcz would cost the
participant 480. Total cost cannot be minimized, thus the flow of Φabz = Φacz = 10
is optimal with |T (Φ)| = 160.

However, in (3.2) we find another situation. A flow of 3 on each of the routes
abz and acz is optimal, with cost for the individual being 83. But as participants
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gather experience, sooner or later one of the participants starting on abz will find
out taking the faster road abcz might be more beneficial. While indeed their cost
might decrease to Tabcz(Φ) = 81, the other flows get more costly, with Tabz(Φ) = 82
and Tacz(Φ) = 91 resulting in

|T (Φ)| = max{Tabcz(Φ), Tabz(Φ), Tacz(Φ)} = 91.

With the next participant choosing the cheaper flow of abcz, the overall benefit
decreases further, even on the previous shortcut: Tabcz(Φ) = 92, Tacz(Φ) = 103 and
Tabz(Φ) = 81, Leading to

|T (Φ)| = max{Tabcz(Φ), Tabz(Φ), Tacz(Φ)} = 103.

These examples are taken from [Bra68] and show that non-cooperation can lead to
decreasing welfare in a network.

Choosing an individually optimal strategy often prevents finding an optimal outcome
for all participants. Given that participants take rational decisions to achieve their
individually best result, this decrease in welfare could only be avoided by general
coordination or by changing circumstances such as their cost functions. This phe-
nomenon can be observed in a lot of other domains as well. It does for example
translate to network theory and routing. The term selfish routing was coined from
analyzing traffic in congested networks.

3.1.4 Equilibria

In the situation with n participants wanting to send money through the Lightning
Network, each of the n participants, or players or agents, as is the term in game
theory, can choose among a set of strategies Si = 1, . . . , n that leads to an intended
outcome. The intended outcome is the flow for the payment that maximizes the
player’s welfare or utility. To determine the players’ utility, there are functions
ui, i = 1, ..., n : S1 × · · · × Sn 7→ R which assign to each such combined choice a
utility for each player. The utility of a strategy of a player is mainly influenced by
the cost for each player. ci : S 7→ R is the cost function of player i ∈ N . In state
s ∈ S, player i has a cost of ci(s). ui and ci are generally inversely proportional,
because costs reduce welfare. Game theory then analyzes what choice of strategies
would be rational. One example of such concept of rationality is the Nash equilib-
rium.

Nash Equilibria

We denote by s−i = (s1, ..., si−1, si+1, ..., sn) a state s without the strategy si. This
notation allows us to define a unilateral deviation of a player. For i ∈ N , let s ∈ S
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and s′i ∈ Si, then (s′i,s−i) = (s1, ..., si−1, s
′
i, si+1, ..., sn). A strategy si is called a

best response for player i ∈ N against a collection of strategies s−i if ci(si, s−i) ≤
ci(s

′
i, s−i)∀s′i ∈ Si.

Given what all other players are doing, a strategy is the best response if and only if a
player cannot gain more utility from switching to a different strategy. And a state s ∈
S is called a pure Nash equilibrium if si is a best response against the other strategies
s−i for every player i ∈ N and thus ui(x1, ..., xi, ..., xn) ≥ ui(x1, ..., x

′
i, ..., xn) for all

i and x′i ∈ Si. This describes a situation from which no player has an incentive to
deviate. A game is in a Nash equilibrium if and only if all players are playing the
best response to what the other players are doing.

Incomplete Information and Types of Players

In a Nash equilibrium, each player is assumed to know the equilibrium strategies of
the other players. This is not the case in the Lightning Network, where routing nodes
don’t know which payment delivery strategies other nodes or participants follow and
thus their preferred channels for payment delivery.

Harsanyi developed a theory for analysis of games where “some or all of the play-
ers lack full information about the “rules” of the game, or equivalently about its
normal form (or about its extensive form). For example, they may lack full infor-
mation about other players’ or even their own payoff functions, about the physical
facilities and strategies available to other players or even to themselves, about the
amount of information the other players have about various aspects of the game
situation etc.”. [Har67]. Harsanyi described a game as having incomplete informa-
tion when the players are uncertain about each other’s types. A “type” is the belief
not only over other players’ actions, but also over these players’ other character-
istics. He developed a bayesian approach, where players will assign a subjective
joint probability distribution to the player’s type and then maximize the math-
ematical expectation of the player’s own payoff over a game with these types of
players.

Similar to the game with complete information we assume common knowledge about
the set of players and the possible actions that they can take. In addition to this,
we then have to refer to a probability distribution about the players’ types, that
determine their preferences/utility functions. While each player knows its own type,
the other player’s type is unknown. The probability distribution over the types,
however, is common knowledge.

There exists a pure strategy Bayesian Nash equilibrium for each player and each
realization of type ti ∈ Ti of player i’s type, when there is an action that is a
best response. The best response is the action that leads to an optimum expected
probability weighted utility.
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To translate this to the setting in the Lightning Network we can assume that the
player currently deciding about the payment delivery strategy for its payment has
another player doing the first move. This player can have two different types, type 1
having drained the channels that would be the preferred path for the player and type
2 having loaded the respective channels with liquidity. The best action for the sender
would then be choosing the flow that maximizes the sum of the probability of meeting
the type 1 player times the utility of failing on the payment and the probability of
meeting type 2 player times the utility of a reliable payment delivery. If this action
exists, then there is a Bayesian Nash equilibrium.

Berk-Nash Equilibria

In our game-theoretical setting of the Lightning Network we have a finite number of
players, but players don’t really know the strategies that the other agents are follow-
ing. The requirement for a Bayesian Nash equilibrium, that the type of another player
is unknown but the distribution of the types is known, is too strict. The participants
in the Lightning Network don’t know the distribution of payment delivery strategies
and the (liquidity) state of the network before they decide on their own payment
delivery. The standard assumption that people have a correctly-specified view of
their environment does not hold. Consequently, participants in the network might
build their subjective model, representing the own view of the environment they’re
acting in, before sending a payment, but their model might be misspecified. They
can however learn and improve their view over time.

This leads to each player following a strategy that is optimal given their beliefs.
Their beliefs are restricted to what they regard as the best fit among the set of
beliefs they consider possible. The equilibrium that is based on a strategy profile
such that, for each player, there exists a belief with support in the subjective model
is called a Berk-Nash equilibrium [EP19].

The difference between the Berk-Nash equilibrium and the Nash equilibrium is that
the players needn’t have correct beliefs about the strategies of the other players but
a belief that is sufficiently close to what they think the others would do. Berk-Nash
equilibria refer to games where participants make simultaneous moves.

While Esponda and Pouzo are hesitant to translate their findings to sequential
games [EP19], we find that Berk-Nash equilibria, such as simultaneous game consid-
erations, still relate to the situation in the Lightning Network. This is because the
outcome of previous players’ moves are hidden to the player when making a deci-
sion. A player only learns about other players moves, which might have drained the
liquidity in a channel that the player chose for the payment delivery, when actually
sending the payment.
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Finite Games and Infinite Games

The considerations regarding sequential games also lead to the question if the Light-
ning Network is to be treated like an infinite game. In fact one could see sending
payments in the Lightning Network as an infinite game, because an unknown number
of players sequentially sends unknown payments and change the state of the graph.
However, in the context of our empirical analysis we simplify the Lightning Network
to a finite game and consider this to be a sufficient approximation, a representative
of all subgames in the original game. This is useful because a finite non-cooperative
game always has at least one equilibrium point [NJ96] if the number of players and
the number of strategies is finite. (They might not be pure Nash equilibria but could
be mixed (strategy) Nash equilibria.)

Nonatomic Games, Anonymous Games

One could say that a player in the Lightning Network might only have an incremental
effect on the state of the graph and as such cannot really influence the outcome.
Consequently when other players choose their strategy, they would disregard the
other player’s behavior. This puts the focus on atomic and nonatomic games. In an
atomic game the strategy choice of a player has an immediate and measurable effect
on the outcome of the game for another player. In a nonatomic game “the single
player has no influence on the situation, but the agregative behavior of “large” sets
of players can change the payoffs.” [Sch73].

This often goes hand in hand with anonymous games. In anonymous games it is not
important for a player deciding on a strategy, who exactly the other player is (or play-
ers are), but how often a certain strategy is chosen. An example would be the ques-
tion about congestion in traffic – how many players choose one road over the other
– versus deciding about who to go to the movies with.

Cerreia-Vioglio et al. introduce a concept of approximate equilibrium for nonatomic
anonymous games, which they call ε-estimated equilibrium. Berk-Nash equilibrium
was developed for a finite game, finite-players framework and they extend this con-
cept to nonatomic games. They demonstrate that a Berk-Nash ε-equilibrium exists
for pure strategies for players when almost all players best-respond to their beliefs
(optimality) and the beliefs are ε-close to the set of probabilistic models which are
the best fit in the primitive set of the realized distribution (ε-fit) [CVMS20]. They
make the important remark that each player’s set of actions’ distributions does not
depend on the action played (but on the belief).

3.1.5 Price of Anarchy

“The question thus is, what happens if there is no central authority that designs,
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engineers and runs the Internet, but a master puppeteer, a benevolent dictator who,
for example, micromanaged its operation, allocating bandwidth to flows so as to
maximize total satisfaction? How much better would the Internet run? What is
the price of anarchy?”. This question was asked by Papadimitriou in relation to
the internet [Pap01], but the same applies to considerations regarding networks in
general and the Lightning Network in particular.

The extent to which the outcome of a competitive game with uncoordinated individ-
ual utility-maximizing decisions approximates the outcome of the same game with
cooperation or coordination can be measured. The relationship is referred to as the
Price of Anarchy and was analyzed in detail by Tim Roughgarden. He modeled clas-
sical multicommodity flow networks, described by the graph G = (V,E), with node
set V , edge set E and a set (s1, t1), . . ., (sk, tk) of source-sink node pairs [Rou05].

Roughgarden defines the Price of Anarchy of selfish routing in a network as the
ratio between the cost of an equilibrium flow and the cost of an optimal (minimum-
cost) flow, which is equivalent to putting the equilibrium with minimum cost or
maximum utility in the non-cooperative game in relation to the cost of the outcome
in a coordinated game. Roughgarden chooses the cost of an equilibrium flow in the
Wardrop equilibrium, because such equilibrium has minimum cost, even though more
than one equilibrium could exist. While this is appropriate for traffic and internet
routing in congested networks and cost as travel time, we are reluctant to follow the
definition for the Lightning Network. As we show above, there is a high degree of
complexity in the Lightning Network, which makes it difficult to compare payment
delivery to traffic routing, as we discuss in chapter 3.2. In our opinion an equilibrium
is difficult to find. It still needs to be shown what equilibria exist for selfish routing
in the Lightning Network.

We follow the definition of the Price of Anarchy in its original intention as the price
of uncoordinated individual utility-maximizing decisions. The main prerequisite for
the Lightning Network to be useful as a payment delivery network is its reliability.
Consequently we can measure the overall utility of the network using the failure
rate of payments, defined as the ratio of failing payments to the total amount of
payments attempted. Selfish behaviour that reduces the networks reliability and in-
creases failure rate, creates a cost for the network. Cost of selfish routing exist, are
observable and can be measured using the failure rate of payment delivery strategies.
They can be compared to the reliability rate in a network state micromanaged by a
“benevolent dictator (. . . ) maximizing total satisfaction”, as explained by Papadim-
itriou [Pap01].

3.2 Anarchy in the Lightning Network

The protocol of the Lightning Network implements source-based onion routing. This
means that the sender of a payment decides on the flow of the payment. As a
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consequence, there is significant room for selfish behavior in payment delivery. This
is amplified by the fact that the Lightning Network is built as a network where
no trust is needed and no cooperation is necessary. Another aspect is that every
participant can set up its own node and then has full discretion on establishing a
channel with someone else, when the other node agrees. In consequence, there is no
control over the network topology.

The Lightning Network can be described as a flow network, with Nodes V and edges
E, node capacities B and fees C, see chapter 2.2. Roughgarden established the Price
of Anarchy for flow networks, having car traffic and network traffic in mind. However,
the Lightning Network cannot be compared to a traffic network, even though simi-
larities exist. A payment in the network is a flow, with constraints in liquidity along
the edges. But it is different from a traffic network, because of its cost functions. In
a traffic network, the main cost is travel time, which can for example be a fixed time
or relative to the amount of traffic. In the Lightning Network, the utility is its relia-
bility, the capacity to successfully send a payment. Consequently the dominant cost
is unreliability, the failure rate when sending payments.

In the Lightning Network, nodes can charge a fee for using an edge, but if an edge does
not carry liquidity, then no flow exists. Effectively the edge needs to be eliminated
from the graph when solving for the optimal flow, but knowledge about effective
liquidity does not exist for most edges. Thus, the lack of liquidity cannot explicitly
be taken into account when constructing the intended flow, only assumptions about
liquidity and thus the outcome of a payment delivery can be made. One such as-
sumption, or belief, could be derived from the fees charged for a channel. Fees could
be a signal for the liquidity and ability to relay a payment. With this signal the prob-
ability distribution that the sender builds over the available liquidity balances can
be adjusted. Another cost function could be based on the probability distribution
of liquidity balances gained from the channel capacity and the amount being sent.
Both approaches require a different cost function for the Lightning Network when
analyzing the Price of Anarchy than the cost functions for travel time in network
problems as analyzed by Roughgarden [Rou05].

Similar to traffic analysis, in the Lightning Network there are instructive examples
demonstrating that competitive behavior leads to a less optimal outcome compared
to cooperative or coordinated behavior. The analysis to find the optimal strategy is
more difficult compared to the traffic network case, because the participants decide
on a strategy while the underlying network graph, given by nodes, edges and liq-
uidity balances, is unknown. Thus, they form their own expectations and beliefs of
the network graph, which is incorporated in the decision function on their optimal
payment flow.

As pointed out above, we follow the definition of the Price of Anarchy ρ as the
ratio between the cost of uncoordinated individual utility-maximizing behavior mea-
sured by its failure rate and reliability in a network managed by an omniscient
router maximizing total satisfaction. This can also be seen as the ratio of the
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cost for the network of competitive strategies in relation to cooperative strate-
gies.

ρ =
failure rate of uncoordinated individual utility-maximizing behavior

failure rate of a network managed by an omniscient router

3.3 Optimal Decisions and Strategies

Because the Price of Anarchy is defined as the ratio of the cost of uncoordinated indi-
vidual utility-maximizing behavior and the cost in the cooperative utility-maximizing
strategy, it heavily depends on the definition of these optimal strategies. We de-
scribe what makes an optimal strategy for the participants in the Lightning Net-
work.

3.3.1 Available Information for Finding an Optimal
Solution

The gossip protocol provides information about the nodes in the network, the cur-
rently active channels, their capacity, the fees and further information like the max-
imum amount for HTLCs, that can be set in the channel. The sender of a pay-
ment knows the amount of the flow to be sent, the node address of the receiver
of the payment and it also knows the liquidity that is in its own outbound chan-
nels.

The sender can also decide to not build one single payment onion but to split it up in
several partial payments, called a multi-part payment.

The sender does not have any information on other payments that have been executed
or that are currently being executed in the Lightning Network, which means that
there are possibly other nodes updating HTLCs in the network. And because it is
possible that flows of two or more payments are not disjoint, conflicts might arise.
Consequently the sequence of payments plays a significant role when it comes to
available liquidity in the selected flow, but this is completely hidden from the sender.
The sender only knows its own flows.

Besides the information from the gossip graph, the node can manage its own belief
about the network, for example trying to retain information about liquidity on the
edges learnt from successful or failing payments. Another possible information is
a score for the nodes to reflect experience of unavailability of nodes. There is no
constraint to what a node decides to learn and include in its optimization strat-
egy.
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Apart from these constraints in information, the nodes are subject to further techni-
cal constraints with regards to bandwidth and processing power of a node.

With this information it can derive a flow that best matches the optimum of the
sender’s cost function. Based on this flow it can construct an onion and initiate the
payment delivery.

3.3.2 What Makes an Optimal Solution

When the sender tries to find the optimal payment delivery, it first has to decide
on its preference function. What is considered to be suitable and then optimal is
different from participant to participant. After deciding about what is most impor-
tant, a cost function needs to be found, that reflects this preference and the trade-off
amongst different goals. The choice of cost function is at the discretion of the per-
son running the sending node. It can range from using the default cost function of
the chosen software implementation of the lightning node distribution up to some
complex custom made variant.

Some senders might aim for a fast delivery, others might prefer to have as little hops
on the network as possible, and then again others might have a strong preference for
reliability of the network, just to mention a few optimization goals. Regarding pos-
sible costs for the sender, such goals can for example be

• Low fees: The sender has to pay a fee to the nodes along the way, which can
either be a fixed fee, or a fee dependent on the amount on the channel, or a
combination of both.

• Speed: Every lightning node in the internet has some latency when relaying a
payment. This is due to the time to be reached the internet transport protocol
and also from unpacking and packing the payment onion. Thus, speedy delivery
can be aimed to achieve by choosing a delivery with as little hops as possible.

• Reliability: Because failing payments, especially in a multi-part payment,
cause delays of the confirmation of the payment, choosing reliability might
lead to less tries to settle a payment and thus have quicker confirmation about
successful delivery of the payment.

• Liquidity management: Filling up channels where liquidity has been drained
can be another goal. As a consequence there are particular requirements re-
garding the channels along the flow and the amount of liquidity, rather than
fees or speed.

The cost function can reference one or more of these payment delivery goals. For
example they can be combined linearly or exponentially. The choice of the cost
function represents the preference of the sender regarding the payment delivery and
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has an impact on the possibility to solve the optimization problem on the graph in
a limited and feasible amount of time.

Sending a payment means to send an amount from source s to sink t, which is
a flow f with function f : E −→ N0 and the flow fe being the flow f on edge
e ∈ E.

The flow needs to be a feasible flow, which means that it needs to fulfill the re-
quirements of capacity constraint and conservation of flows as described in chapter
2.3.1.

C is a set of diverse cost functions. The cost of sending this flow along the edge euv is
cuv(feuv) with c ∈ C and feuv the amount of flow on the edge.

The problem for the sender then is to minimize the total cost of the flow over all
edges

C(f) =
∑

euv∈E
cuv(feuv).

subject to

0 ≤ fe ≤ cape (capacity constraint)∑
(u,v)∈V

feuv −
∑

(u,v)∈V

fevu = bv (conservation of flows)

for G = (V,E) being a directed graph with nodes v ∈ V and edges e ∈ E, f being a
feasible flow and

∑
v∈V bv = 0 ∀ v /∈ {s, d}.

3.3.3 Algorithms to Find the Optimal Solution

To map the problem of finding the optimal payment flow to the preference func-
tion of the sender, a suitable optimization function needs to be found. The most
common algorithms are the algorithms to solve the minimum-cost flow problem and
Dijkstra.

MinCostFlow

The minimum-cost flow (MinCostFlow) problem describes the problem to find a
feasible flow for a given value m in a flow network with minimum cost. In a directed
graph with nodes V and edges E all edges have a cost and a capacity while the
nodes have a balance representing supply and demand. The minimum-cost flow
problem can be seen as a generalization of the shortest path and maximum flow
problems.
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There are several algorithms trying to solve the minimum-cost flow problem, for
example the successive shortest path algorithm, the cycle canceling algorithm, and
the network simplex algorihtm. To illustrate one possible process, we present the
successive shortest path algorithm.

In the setup phase, the algorithm adds for all edges in the directed graph a reverse
edge with liquidity 0, and the cost of the reverse edge is the negative of the cost of the
original edge. A residual network is defined for a fixed flow F as the network contain-
ing only unsaturated edges and the residual liquidity R of each such edge is the pre-
vious liquidity minus the flow on this edge in the graph.

At each iteration of the algorithm we find the shortest path in the residual graph
from s to t with the shortest path defined as the lowest cost of the path. If no path
exists anymore, then the algorithm terminates, and the stream F is the resulting
flow.

If a path is found, the flow along this path is increased as much as possible, i.e. the
minimal residual liquidity R of the path is found and flow on this edge is increased
accordingly. The reverse edges are reduced by the same amount. If at some point the
flow reaches the value m, then the algorithm stops. Of course, in the last iteration
of the algorithm the flow is only increased by an amount such that the total flow is
m.

Dijkstra

The Dijkstra algorithm is an algorithm that can find the shortest path between
the sending node and the receiving node in the lightning graph. Its name stems
from computer scientist Edgar Dijkstra who published the algorithm. The Dijkstra
algorithm belongs to the class of greedy algorithms, which stepwise choose the next
solution promising the highest gain.

Dijkstra calculates the shortest path on the cost graph. For this, the edges get
assigned weights which reflect the costs. Because the amount of the flow on the
edge is known when running the algorithm, a defined fixed cost can be assigned to
the edges. Costs on the edges cannot be negative in a Dijkstra algorithm, otherwise
a switch to Bellman-Ford-algorithm is advisable. For example when running the
Dijkstra algorithm on the cost graph with the fees as cost, the algorithm will find
the path with the lowest fees.

Starting at the sending node, the algorithm compares the cost of the neighboring
nodes. It then chooses as the next node for its comparison the node with the cheap-
est cost along the edges and compares the costs of the neighboring nodes of the
current node. When progressing through the network and the first path arrives at
the receiving node of the payment, all more expensive paths are dropped. For all
paths where so far the costs are lower than the path that arrived at the receiving
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node, their neighboring nodes are explored as described above, and costs along the
path are compared to the solution already found. Whenever a cheaper solution is
found, the most recent one is dropped and the new solution treated as the optimal
solution.

The Dijkstra algorithm is a speedy algorithm when applied to a graph with constant
weights.

3.4 Example of Detrimental Selfish
Routing

It is safe to assume that the most important criterion for the Lightning Network is
its reliability, because with a high proportion of payments failing, its overall use as
a payment network is sharply reduced. The following instructive example1 demon-
strates that a Price of Anarchy exists in the Lightning Network. In order to simplify
the example, we ignore fees and channel reserves and optimize for success prob-
ability. We assume a uniform probability distribution for liquidity in the chan-
nel.

A graph with three nodes A, B, C represents a subgraph of the Lightning Net-
work. The edges eAB, eAC and eCB carry the capacities of 2, 3 and 3 respec-
tively.

A

C

B
2

3 3

Figure 3.2: Example subgraph of Lightning Network

3.4.1 Selfish Routing

Let there be two payments of 1 each from s to t, passing the above subgraph.

The selfish senders would follow this decision process:

As shown in chapter 2.3.4, the probability that there is a successful payment from
A to B along the edge eAB with flow feAB = 1 is

PeAB (XeAB ≥ feAB ) =
capeAB + 1− feAB

capeAB + 1
=

2 + 1− 1

2 + 1
=

2

3
. (3.4)

1This example is taken from a discussion in fall 2022 with my mentor René Pickhardt on flow and
game theory in the Lightning Network.
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For sending the payment of 1 from A to B along the edges eAC and eCB the sender
calculates:

PeAC (XeAC ≥ feAC ) =
capeAC + 1− feAC

capeAC + 1
=

3

4
(3.5)

PeCB (XeCB ≥ feCB ) =
capeCB + 1− feCB

capeCB + 1
=

3

4
(3.6)

The success probability of the flow from A to B along the edges eAC and eCB follows
as:

Pf =
∏
e∈E

P (Xe ≥ fe) =
3

4
∗ 3

4
=

9

16
. (3.7)

Using a probabilistic payment delivery the sending node will try to route the payment
along the path AB, because 2

3 > 9
16 .

The same will be the case for the other participant, who would take the same decision.
Consequently there will be a flow of feAB = 2. The probability for both payments to
be successfully delivered via edge eAB now decreases.

For a flow of 2 from A to B along the edge eAB, the success probability is

PeAB (XeAB ≥ feAB ) =
capeAB + 1− feAB

capeAB + 1
=

2 + 1− 2

2 + 1

=
1

3
.

3.4.2 Global Coordination

How would a global coordinator solve the flow of the two payments of 1 each in the
subgraph? A global coordinator could achieve a better solution by sending the two
payments of 1 each along different paths, fAB = 1 and fABC = 1. The probabilities
are:

PAB(XAB ≥ fAB) =
capeAB + 1− fAB

capeAB + 1
=

2 + 1− 1

2 + 1

=
2

3
.

PACB(XACB ≥ fACB) = PeAC (XeAC ≥ fAC) ∗ PeAC (XeAC ≥ fAC)

=
3 + 1− 1

3 + 1
∗ 3 + 1− 1

3 + 1
=

3

4
∗ 3

4

=
9

16
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The success probability of the split payment is the product of the success probabilities
of both partial payments:

Pf =
∏
e∈E

P (Xe ≥ fe) =
2

3
∗ 9

16
=

3

8
,

which is better than the success probability with selfish routing of 1
3 .

3.4.3 Price of Anarchy in the Example

Regarding the failure probabilities of the payments as the cost of the payments, we
see that the selfish payment flow will incur a cost of 1 − 1

3 = 2
3 while the cost of

the coordinated payment flow is 5
8 . The loss of welfare to the network from selfish

routing on this subgraph is thus 1
24 .

Calculating the Price of Anarchy as the ratio between the failure probability for
selfish routing and the optimal, coordinated flow, the Price of Anarchy ρ can be
calculated as:

ρ =
2
3
5
8

=
16

15

This demonstrates that the choice of the singular payment, selfishly routed, incurs a
higher cost, than the coordinated routing.

It is a point of discussion, if improving the payment delivery mechanism for the
selfish router’s single payment could lead to a payment with less cost. Because any
selfish participant would constantly try to reduce cost. One such possibility would
be to try to replicate a similar approach by splitting payments. And indeed, this
describes what is being done in the pickhardt payment approach. However, this only
works, if all (partial) payments are known.

It is useful to consider the practical impact of the selfish payments. While we assume
a uniform distribution of liquidity regarding the probability of having enough liquid-
ity in the channels, one can see that routing along AB seems a dominant strategy
for selfish routers. While when constructing the onion, the sending node can only
guess the success probability a priori, it is highly likely that the actual liquidity has
already been drained. This can be assumed, because having two paths from A to B,
the cheaper one is likely to be chosen more often and thus the channel is more likely
to be saturated.





4 Implementation of a Simulator of
the Lightning Network

To analyze if a Price of Anarchy exists in the Lightning Network, we simulate the
payment delivery strategies, non-cooperative as well as cooperative, in a model of the
Lightning Network. The model is a directed multigraph with the vertices representing
lightning nodes and the edges representing Poon-Dryja channels. The code used to
implement the model can be found in the code repository [Als23].

When initializing our model of the Lightning Network we eliminate channels with no
return channels as described below, and randomly assign liquidity balances to the
channels. To allow for replication, we define a seed value, so that all experiments are
based on the same randomly assigned liquidity balances.

For our analyzes we generate a set of 10,000 payments, triples consisting of a sending
node, a receiving node, and a given amount. We decide to randomly assign payment
amounts between 10,000 and 1,000,000 satoshis.

The topology of the Lightning Network is given by the gossip graph as of January
14th, 2023. The graph consists of 133,626 edges and 14,839 nodes. We remove
57,212 edges and 1,688 nodes because we ignore channels with a base fee to make
solving for optimal multi-part payments a linear min-cost flow problem and not an
NP-hard problem, as has been discussed in [PR21]. We then eliminate edges that
have no return channel. This leads to a network of 37,074 edges or channels and
3,299 nodes.

4.1 Description of the Model

To imitate the Lightning Network in our model so that we can run our simula-
tions, we model participants, functions and behavior of nodes in the network. We
simulate a node that is capable of generating a path along which it wants to send
its payment to the receiver. As described above, path generation follows different
strategies. We execute a payment, which means that channels with flows deplete
and the balances of the return channels are adjusted appropriately. We maintain the
state of the Lightning Network, so that we can decide if payments are successful or
not.
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Additionally we create a framework that allows us to initialize the model with appro-
priate data, so it matches the real world Lightning Network as much as possible and
we use methods that allow us to generate and execute the payments in the context of
the simulation. From previous research about pickhardt payments, or probabilistic
multi-part payments, a python library exists that models the Lightning Network and
parts of the necessary functions [Pic23]. We use this library as a base and extend it
appropriately.

4.1.1 Channel Graph

The Lightning Network is a set of nodes and channels with properties such as liquid-
ity, capacity, fees and more. Information about the channel states is shared through
the gossip protocol. A node implementation that follows the lightning protocol lis-
tens to the gossip in the network and establishes a list of peers, i.e. other nodes,
and channels as well as information about other nodes. From any standard node im-
plementation the knowledge about the channels in the network can be exported, for
example with the listchannels call in core lightning.

A drawback from a simulation perspective is the missing information about the
liquidity in the channels, which is in fact a privacy feature of the Lightning Net-
work.

Calling listchannels on a node implementing core lightning, we get a json file
that holds all publicly available information about the channels of the lightning
network:

{
"source": "0325bb9b . . . 0bb12ffb",
"destination": "032e6032 . . . 28ccb483",
"short_channel_id": "759263x1025x0",
"public": true,
"satoshis": 11590756,
"amount_msat": "11590756000msat",
"message_flags": 1,
"channel_flags": 0,
"active": true,
"last_update": 1673565300,
"base_fee_millisatoshi": 0,
"fee_per_millionth": 500,
"delay": 60,
"htlc_minimum_msat": "1000msat",
"htlc_maximum_msat": "11590756000msat",
"features": ""

},
{

"source": "032e6032 . . . 28ccb483",
"destination": "0325bb9b . . . 0bb12ffb",
"short_channel_id": "759263x1025x0",
"public": true,
"satoshis": 11590756,
"amount_msat": "11590756000msat",
"message_flags": 1,
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"channel_flags": 1,
"active": true,
"last_update": 1673066753,
"base_fee_millisatoshi": 0,
"fee_per_millionth": 0,
"delay": 34,
"htlc_minimum_msat": "1msat",
"htlc_maximum_msat": "11474849000msat",
"features": ""

},

Listing 4.1: Excerpt of the listchannels json file with the announced channels in the
Lightning Network.

To implement a graph of the Lightning Network we refer to the implementation of the
ChannelGraph Class in the pickhardt payment library.

The ChannelGraph is a directed graph with parallel edges. We generate the channel
graph by creating a network graph form the networkx library [HSSC08] and adding
the edges that are given by the listchannel.json file and their nodes. After ini-
tialization of the ChannelGraph, the ChannelGraph instance represents the known
state of the Lightning Network as seen by a node.

We simulate effects on the graph after payments have been executed. To prop-
erly assign liquidity after the settlement of a payment, we allocate liquidity in the
channel corresponding to the flow from sending to receiving node, and also in the
return channel. For this to work, we eliminate all channels from the ChannelGraph
that don’t have a return channel announced, because otherwise the reallocation of
liquidity will fail. A corresponding helper function is available in the simulation
framework.

In our simulation we use the information from the gossip graph as of January 14th,
2023.

4.1.2 Oracle Lightning Network

While the ChannelGraph instance reflects all publicly available information about
the Lightning Network channels, it does not provide information about the liquidity
balances in the channels. To initialize a state of the graph that does provide liquidity
balances and also carries the liquidity balances during our simulations, we use the
OracleLightningNetwork Class.

The OracleLightningNetwork Class of the pickhardtpayment library inherits from
ChannelGraph. The OracleLightningNetwork is a graph of OracleChannels.

At instantiation the OracleLightningNetwork instance adds the ChannelGraph’s chan-
nels to the OracleLightingNetwork graph as OracleChannels. In this loop, the Ora-
cleChannels get a liquidity balance randomly assigned, with the values ranging from
zero to the channel’s announced capacity. The nodes don’t have any knowledge
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about the balances in the oracle network other than about their own inbound and
outbound channels. They can only learn about balances in other channels when they
attempt to send a payment onion with payment information. For this a sendonion
method exists on the OracleLightningNetwork instance. The sendonion call returns
true, if the payment amount could be delivered along the given list of channels. If
the onion fails, than the method returns false and the channel id of the channel
that could not relay the payment is returned as well.

From a failing payment onion the node can learn that the liquidity in the respective
channel is less then the amount sent, and the return channel carries at least an
amount of liquidity equal to the capacity less the payment amount. If the payment
onion succeeds, then it knows that originally the channel did carry at least this
amount of liquidity. But when settled, this liquidity is available in the return channel.
Additionally the node knows that the remaining liquidity is at most the capacity of
the channel less the sent amount.

When originally assigning balances we choose a random number generator with uni-
formly distributed values between x = 0 and x = 1. The balance in the channel is
then x ∗ channel capacity. If a liquidity balance has been assigned, the liquidity in
the return channel is determined as well.

4.1.3 Uncertainty Network

In the Lighting Network the source decides on the channels used for payment delivery.
This means that the nodes can utilize a strategy of their liking to generate the set
of channels for the flow. To optimize the outcome, which will usually depend on the
likelihood to settle successfully and/or with lowest possible fees, the nodes have to
make assumptions on liquidity.

This is not a trivial task, however, because no operation exists to easily request
this information. One can immediately see that liquidity is in a range between zero
and the channel’s capacity. When nodes send or relay payments, they receive a
response from the method sending the onions, which they can compile. They then
adjust their knowledge about the probed channels accordingly. Knowledge about the
channels’ minimum and maximum liquidity can be gained, retained and taken into
consideration when generating the paths. The UncertaintyNetwork represents the
belief network mentioned in chapter 2.3.3.

4.1.4 Payment

The Payment Class in the pickhardtpayment library contains all properties and nec-
essary methods for a payment to be sent from sender to receiver. It provides methods
to generate the flows for the given amount and registers them as one or, in case of
a multi-part payment, several Attempts. An attempt is a collection of channels for
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a particular flow in the network. Each attempt can then be recorded as planned,
failed, inflight or settled, depending on the result when calling sendonion. At first a
flow is planned after being generated by an algorithm like Dijkstra or MinCostFlow.
When the flow has been tested with sendonion and the result is that the amount
can be forwarded, then the attempt is registered as inflight. If the amount for this
attempt cannot be passed on, then it receives the failed flag. After all attempts
have been tried with sendonion and the total flow of the payment can be delivered
successfully, then settlement is initiated and the attempts that settled successfully
receive the status of being settled.

The Payment Class given by the pickhardtpayment library contains a method to
generate the flow for the payment with a MinCostFlow solver. This is used when
generating paths for multi-part payments.

Because we also simulate non-multi-part payments, we add a method for finding
the shortest path with the Dijkstra algorithm. In this method we pass a string to
determine the weight for the Dijkstra search. This weight can be fees or probabilities
and the corresponding cost will be used.

def get_dijkstra_path(self, graph, weight: str):
try:

node_path = nx.dijkstra_path(graph, self.sender,
self.receiver, weight=weight)

except:
logging.error("no path found")
raise DijkstraSolverError("Cannot determine path with Dijkstra.")

else:
logging.debug(f"shortest path: {node_path}")
path = self.convert_node_path_to_attempt_path(graph, node_path)
self.attempts.append(Attempt(path, self._total_amount))
return path

Listing 4.2: Method for generating the shortest path for a payment flow using
Dijkstra in the Payment Class.

4.2 Simulation Framework

To conduct experiments in the simulation framework, we define helper methods. One
helper method cleans the ChannelGraph as described above, so that only channel
pairs exist. Another helper method generates payment triples by sampling two nodes
from the graph and a random amount, so that all experiments run on the same set
of payments.

A method for executing multi-part payments exists in the pickhardtpay library
(pickhardt_pay method). The method can be called with a linear combination
of success probability and fees as a cost function. This provides the functionality for
testing payment delivery based on fees but also a probability based solution. This
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method also implements a payment loop so that several rounds of attempts can be
tried. We restrict this loop however to only one payment try.

We complement the method for payment of multi-part payments with a method
that replicates the payment delivery with the Dijkstra algorithm. We also im-
plement a payment loop but restrict it to only one round. This is for consis-
tency reasons when contributing the method to the pickhardtpay open source li-
brary.

def dijkstra_pay(self, src, dest, amt=1, criteria="fee", base=DEFAULT_BASE_THRESHOLD,
loglevel="debug") -> int:

payment = Payment(self.uncertainty_network, self.oracle_network, src, dest, amt, 1, base)
_round = 0
success = False

G = nx.MultiDiGraph()
for edge in self.uncertainty_network.network.edges(data="channel", keys=True):

if edge[3].capacity > amt:
prob = -math.log(1 - amt / edge[3].capacity)
G.add_edge(edge[0], edge[1], fee=edge[3].ppm, probability=prob, capacity=edge[3].

capacity,
short_id=edge[2])

while payment.residual_amount > 0 and _round < 1 and not success:
_round += 1
logging.debug(f"round: {_round}")
try:

path = payment.get_dijkstra_path(G, criteria)
except DijkstraSolverError as err:

logging.warning(err)
logging.warning("Payment failed. No path found.")
return -1

else:
attempt = payment.attempts[len(payment.attempts) - 1]
logging.debug("attempt: {}".format(attempt))
success = True
for channel in attempt.path:

ch = self.oracle_network.get_channel(channel.src, channel.dest, channel.
short_channel_id)

liqui = ch.actual_liquidity
if attempt.amount >= liqui:

success = False
logging.debug(f"Failing channel: {ch}")
G.remove_edge(channel.src, channel.dest)

logging.debug("- channel {}-{} with capacity {:,.0f}, liquidity {:,.0f} and
fees {:,.0f}"

.format(channel.src[0:4], channel.dest[0:4], channel.capacity,
liqui, channel.ppm))

payment.attempt_payments()

if payment.residual_amount:
return payment.residual_amount

else:
payment.execute()

return 0

Listing 4.3: Method for execution of payments using Dijkstra for finding the payment
flow.
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The simulation framework provides methods for executing payments with a given
payment delivery strategy. The simulations are similar in structure but depending on
the payment delivery strategy differ by the payment method they call.

The function receives the set of payments as well as the ChannelGraph as parameters.
Then the UncertaintyNetwork, the OracleLightningNetwork and a PaymentSession
(an instance of the SyncSimulatedPaymentSession Class in the pickhardtpayment
library) are instantiated, together with parameters for collecting the results of the
simulation.
def dijkstra_probability(_payment_set, _graph):

_uncertainty_network = UncertaintyNetwork(_graph)
_oracle_lightning_network = OracleLightningNetwork(_graph)
_sim_session = SyncSimulatedPaymentSession(_oracle_lightning_network, _uncertainty_network

, prune_network=False)
c = 0
_all_payments = []
sent_amount = 0
failed_amount = 0
total_amount = 0

for payment in _payment_set:
c += 1
_sim_session.forget_information()
ret = _sim_session.dijkstra_pay(payment["sender"], payment["receiver"],

payment["amount"], "probability", loglevel=‘‘warning)
total_amount += payment["amount"]
payment["delivery_method"] = "dijkstra_probabilities"

if ret == 0:
payment[’success’] = "success"
payment["residual_amount"] = 0
sent_amount += payment["amount"]
logging.debug("Payment {} was successful.".format(c))

elif ret == -1:
payment[’success’] = "no_path_found"
payment["residual_amount"] = payment["amount"]
failed_amount += payment["amount"]
logging.debug("Payment {} failed.".format(c))

elif ret > 0:
payment[’success’] = "delivery_failure"
payment["residual_amount"] = ret
failed_amount += payment["residual_amount"]
logging.debug("Payment {} failed.".format(c))

_all_payments.append(payment)

# write all payments to file
ndjson.dump(_all_payments, open("data/dijkstra_probability.ndjson", "w"))

Listing 4.4: Example for a method that executes the simulation for a payment
delivery strategy, here Dijkstra, on the probability graph.

The method at first resets the state in the uncertainty network when the simula-
tion does not model a general retention of information from successful or failing
payments. Then it loops through all payments in the payment set and calls the
corresponding pay method. If the method fails, because no path could be found for
payment delivery, then it returns -1. In this case the result of no_path_found is
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registered with the payment list item and the residual amount outstanding is the
total amount of the payment. Otherwise the payment method returns the residual
amount of the payment that could not be delivered. If this value is 0, then the total
amount could be delivered and the payment was executed successfully. If the return
amount is positive, then the payment could not be delivered completely, which is
the case if a single or partial payment failed, because of a lack of liquidity in the
channels.

4.3 Payment Delivery Strategies

The sending node chooses a payment delivery method, for example to send a single
payment or multi-part payment and to optimize for low fees or high payment delivery
success probability. It then needs to solve the corresponding optimization problem
to find the most suitable feasible flow for the payment.

4.3.1 Single Payment with Fees as Cost
Function

The Lightning Network, similar to the bitcoin project, balances people’s hedonistic
and self-centered interests through mechanics of game theory. As such, participants
tend to behave in a self-optimizing manner. The fees paid for delivering a payment is
in this context an important criterion for participants, because it leads to low individ-
ual money cost, but more importantly fees can include a signal regarding the avail-
ability of liquidity, as has been discussed in chapter 1.2. In consequence the sender
applies a cost function that is centered around fee expenses. The sender wants to send
one single payment with as little fees paid as possible.

Because in our simulation we only perform one payment round, we emulate the
fee based single payment cost function with a Dijkstra algorithm and look for the
shortest path on the fee graph. We demonstrate the implementation in listing 4.3 in
chapter 4.2.

4.3.2 Single Payment with Probability as Cost
Function

While this view is still quite common, more and more participants and particularly
node operators and Lightning Service Providers (LSPs) realize that fees paid (or
fee income) cannot be the sole driver of payment delivery strategies, because the
prediction quality is far from perfect. There is a rivalry in the Lightning Network,
because participants compete for channel liquidity. And with more participants
joining via LSPs, centrality in the Lightning Network increases, moving the graph
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further away from being a complete graph, leading to some channels being used
more often, potentially creating bottlenecks. Thus, finding a flow that has a high
probability of not running into liquidity problems gains in importance. This leads to
considering the probability of a failed payment delivery as a cost in the optimization
problem, as we discussed in chapter 2.3.4.

In our model we emulate the use of this cost function with a Dijkstra algorithm and
look for the shortest path on the probability graph, with the probability being the
negative logarithm of the probability for an amount to succeed on a particular chan-
nel, given the channel’s capacity and the payment amount.

4.3.3 Multi-Part Payments

Because the Lightning Network protocol allows for multi-part payments, the cost
functions are not restricted to considering one singular path of channels for delivery
and for calculating costs on this path. Multi-part payments provide for the possibility
to split payments and combine several payments of smaller amounts. This can be
used to find a new optimum with regards to the same cost functions as previously
used for a single payment.

For a cost function on fees, this allows for a combination of flows that make use of
channels with low fees that have previously been unavailable when the amount was
to be sent in one sum. This happens for example when the capacity of a channel is
lower than the total amount to be paid. These channels have previously not been
in the set of possible payment channels, but for a lower partial amount they could
become part of a feasible flow.

The same is the case when using the failure rate as a cost function. Multi-part pay-
ments allow for a linear combination of more paths with a higher success probability
each, as for example shown in chapter 3.4.2. Both functions are convex functions
and thus can be used for finding an optimal flow in a MinCostFlow solver in an
acceptable amount of time.
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We conduct experiments to observe a Price of Anarchy for payment delivery in the
Lightning Network. Network participants use different strategies. We observe the
state of the network and the failure rates for payments when the respective strategies
are applied. We assume that the individually optimal strategy, the selfish strategy,
can be found within this set of possible payment delivery strategies. From this we
can infer the reliability of the network in a competitive setting. The optimal strategy
is defined as the available strategy with the highest benefit, the lowest failure rate
for payments.

Following these experiments, we assume the existence of an omniscient participant
who can decide on the flow of the payments with a preference to maximize the welfare
in the network and minimize the failure rate of payments. These experiments repre-
sent the state of the network if participants were cooperating.

5.1 Methodology

For our analysis we generate a network graph that resembles the Lightning Network
as observed on January 14th 2023, using the output of the listchannels method
of the core lightning node implementation [Tea23a]. To achieve this, we use the
pickhardt payments library [Pic23] (see chapter 4.1.1). Because no information is
available about the liquidity balances in the payment channels between nodes, we
create an initial Lightning Network model graph, our base graph, by assigning liq-
uidity balances randomly (see chapter 4.1.2).

Based on this graph, we create a set of 10,000 payments, consisting of a sending node,
a receiving node and a payment amount. The nodes are drawn randomly from the
graph. We execute all 10,000 payments with each of the four selfish strategies im-
plemented in our simulator as well as the cooperative strategy, multi-part payments
based on success probabilities with learning, also known as pickhardt payments. For
each executed payment we observe the result, one of three states: no path was found,
payment failed, payment settled. From this we establish the failure rate for the given
strategy on the graph. The failure rate is calculated as the number of failed pay-
ments divided by the number of payment attempts made with a given strategy. We
run this experiment of the 10,000 payments on the five strategies 20 times, using
different randomly assigned liquidity balances.
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We monitor the payment attempts and what payment channels were used for the
multi-part payment strategy with success probabilities as a cost function in the base
graph. With this data we analyse the multiple use of payment channels and examine
the possibilities for aggregation to reduce payment failure rates.

To avoid skewed results, we then follow up with further experiments to validate our
findings regarding different payment sets and a different underlying graph topology.
Using our base case Lightning Network model graph, we create five random sets of
10,000 payments and execute two payment delivery strategies to analyse for outliers
in the failure rates of strategies because of an unfortunate choice of payment set.
We manipulate centrality in the Lightning Network model graph by eliminating the
100, 200, and 300 most central nodes and execute on each of these graphs the 10,000
payments for each of the five strategies. We also construct five random graphs and
execute the 10,000 payments for each of the five strategies to validate the results
based on the Lightning Network model graph.

5.2 Creating Payment Triples

To analyze failure rates of payments in our Lightning Network model graph, besides
a graph we need payments that we can execute. Because payments by network
participants are hidden information in the Lightning Network, we need to generate
payments ourself.

The Lightning Network is a payment network. The total number of non-cash pay-
ments in the euro area, comprising all types of payment services in 2021 is 114.2
billion payments [Ban22]. VISA is by far the most common credit card issuer with
a market share of 52.8% of cards in circulation [For23]. Their payment volume for
the 12 months ended June 30, 2022 is 255.4 billion payments [VIS22]. The amount
of 10,000 payments is approximately the number of payments processed within three
seconds in the euro area or by VISA in one second. We recognize that currently the
overall payment volume in the Lightning Network is not near these values, however
given the ambition to match this payment volume we decide to take such comparable
payment sample. 10,000 payments thus are an appropriate number of payments to
test in our Lightning Network model.

In each experiment we test the delivery of 10,000 payments from a randomly chosen
sender to a randomly chosen receiver of the payment for a randomly chosen amount
of satoshis (sats). One satoshi is a 100 millionth of a Bitcoin. The sending node and
the receiving node are drawn from the Oracle Lightning Network (see chapter 4.1.2)
and have to be two distinct nodes.

Regarding the payment amount, we choose a minimum amount of 10,000 satoshis.
10,000 satoshis is currently equivalent to approximately 2.30 USD or 2.10 EUR
(March 7th, 2023). Even though smaller amounts can be sent, we consider this to be
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a reasonable lower bound for the payments, because otherwise the base fee for relay-
ing payments in the Lightning Network will become more meaningful and a standard
shopping event will rarely produce a lower amount to pay than this amount. We set
the upper bound of the random payments at 1,000,000 satoshis, which is equivalent
to approximately 230 USD or 210 EUR. We assume that the majority of general
household payments lies within this range and for amounts higher than this people
might consider paying on the bitcoin main chain to avoid settlement risks or not hold
a considerable amount of liquidity in payment channels.

def create_payments(_graph, _number_of_payments, min_amount, max_amount):
random.seed(1337)
if (len(_graph.network.nodes())) < 3:

logging.warning("graph has less than two nodes")
exit(-1)

_payments = []
while len(_payments) < _number_of_payments:

_random_nodes = random.sample(list(_graph.network.nodes), 2)
src_exists = _random_nodes[0] in _graph.network.nodes()
dest_exists = _random_nodes[1] in _graph.network.nodes()
amount = random.randint(min_amount, max_amount)
if src_exists and dest_exists:

p = {"sender": _random_nodes[0], "receiver": _random_nodes[1],
"amount": amount}

_payments.append(p)
# write payments to file

ndjson.dump(_payments, open(initial_payments_file_name, "w"))

Listing 5.1: Method that generates the 10,000 payment triples for the simulation.

The method produces 10,000 payments and writes the data to a file for future
use.

5.3 Finding a Feasible Flow

For the Lightning Network the most important criterion is to be able to deliver a
payment amount reliably, while not locking liquidity in the network unnecessarily.
When a payment delivery method generates a path from sender to receiver it may
fail to find a feasible flow, because the payment amount is larger than the capacity.
When the algorithm fails to find a feasible flow because of such cut in the network
graph it returns no_path_found. When no path can be found, the sending node
will not try to send the payment. We analyze how often the payment could not
be delivered, because the payment delivery method could not establish a feasible
flow.

We use “D” to describe the Dijkstra algorithm for finding the flow, and “MCF” for
the MinCostFlow path finding. The term “fees” describes the fee-based cost function,
whereas “prob” describes the probability based cost function. “MCF(prob, learning)”
describes the experiment where we retain knowledge about the success and failure
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of sent payments in the Uncertainty Network, when we apply learning to multi-part
payments based on success probability as a cost function.

Figure 5.1: Proportion of undeliverable payments, N=10,000 per payment delivery
strategy

Figure 5.1 shows that for slightly more than one third of the payments in the pay-
ment set, no path can be found for the given graph. This is not surprising, because
payment nodes are sampled randomly, no social relationship for payments is taken
into account, neither direct nor indirect, which usually is the case when conducting
payments in real life and establishing payment channels. We consider this infeasi-
bility of payments a structural problem. We hold this assumption because opening
a channel usually follows some prior contact, be it through personal relationship or
an economic motive.

When it can be determined that sending a payment is impossible, sending failing pay-
ments can be avoided. We don’t consider this to be a lack of reliability, because there
is no uncertainty about the payment being settled successfully or not. Consequently
we disregard all cases in our analyzes, where it is possible to tell before sending a
payment that the amount could not be delivered.

We recognize that the ratio of not finding a path between the two nodes in the pay-
ment set is highest in the experiment with MinCostFlow payment delivery method
that retains knowledge about the liquidity balances in the network. Learning leads to
sending a payment less often. This can only be the case, because the solver trying to
find optimal flow refers to the information in the Uncertainty Network and receives
the signal of missing liquidity, where initially this information would not have been
available (and payments failed after trying to send the payment). Thus, learning
provides more knowledge about cuts in the network.

In the Lightning Network it is possible for every participant to engage into opening a
channel to another node, to mitigate the risk of cuts because of missing edges. With
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this knowledge of infeasible flows for payments, participants in the network can make
a more meaningful decision about opening a channel with a channel partner. They
can evaluate the reason for the cut, because having a cut might not (only) be due to a
missing channel in general, but it can also stem from a lack of liquidity. This provides
more opportunities for remediation. One can decide to renew a channel (close and
open) with more liquidity or to engage into regular swaps that redistribute liquidity
between two nodes to avoid drained channels.

5.4 Payment Delivery Strategies

We look at four different strategies for payment delivery that are available to partici-
pants given the information from the gossip graph and one payment delivery strategy
that requires hidden information. This can be realized for example by participants
sharing private information or establishing an omniscient router.

5.4.1 Single Payment Optimized for Fees

We replicate the standard payment strategy in the Lightning Network to find a
payment path that incurs the least fees possible for delivering the payment amount.
We use Dijkstra’s algorithm to find the shortest path for a payment in one sum and
use the fees for the payment amount on the path as the cost function. With this
experiment we create a baseline for network reliability, given its current popularity
with participants in the Lightning Network.

During execution of the 10,000 payments, we don’t adjust the fees after each payment
to signal the new liquidity balance. Node implementations only allow a certain
number of updates in a specified interval. For the core lightning implementation
this is up to four times a day. This rate limiting mechanism serves to avoid an
extensive load on the gossip network. Thus, we assume that during the execution
of the 10,000 payments no fee update would be propagated. Additionally, if a fee
update is sent immediately after a change in liquidity that requires signaling, it might
- in the worst case - take more than 10 minutes for a message to reach all nodes in
the network [GRT22].

5.4.2 Single Payment Optimized for Success
Probabilities

We replicate a probabilistic payment delivery strategy. For this we calculate the
success probability of a payment with respect to a uniform liquidity distribution in
the channel and treat the negative logarithm of this probability as the cost for the
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edge on the graph (see formula 2.2). Then we use the Dijkstra algorithm to find the
shortest path on this success probability graph.

We expect to see better results than when using the Dijkstra algorithm with fees
as a cost function, because after a few payments have been processed, the cheap
channels should be depleted first and a fee based delivery method should always
run into the same cheap channels, leading to failing payments, because of a lack
of liquidity. This is in contrast to the success probability based Dijkstra algorithm
for path finding, which prefers large channels, because they return a higher success
probability for the payment along this edge. This signals a potentially higher liquidity
balance and allows for more payments before liquidity is depleted by the payments
processed.

However, over time the same problem will arise as with using a fee based algorithm.
The cheapest channels are chosen and depleted, just that this time it is on the lowest
probability, given by the payment amount and the channel’s capacity, and not the
lowest fee.

5.4.3 Multi-Part Payments Optimized for Fees

We model multi-part payments on the fee graph, optimizing the minimum cost flow
problem. This properly represents multi-part payments, where the total amount
can be split into several separate payment onions, which we call attempts. This
demonstrates that a payment in the Lightning Network is a flow. We chose the
fees for the flow on the edge as the cost, which resembles the experiment using
Dijkstra’s algorithm. The MinCostFlow solver now can implement the strategy to
split up payments and use channels with a low fee but with a capacity lower than
the payment amount, which have been excluded before.

We use the pickhardt payment library for this, in particular the pickhardt_pay
method, where we set the parameter mu=1000. This parameter controls the balance
between uncertainty cost and fees in the solver, with a high value giving preference
to the fees.

Compared to the single payment method for fee based delivery, we expect a lower
failure rate for the payments, because the underlying graph provides more feasible
flow. More edges can potentially carry the flow.

5.4.4 Multi-Part Payments Optimized for Success
Probabilities

Similarly, we model multi-part payments on the success probability graph. The
optimization is more complex, because of the interdependence between the higher
success probability for a split flow, but the joint probability of all flows reducing
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the overall probability. Splitting the payment in flow with a lower amount increases
the success probability while at the same time the overall success probability for the
complete payment to not fail is reduced with every flow with a success probability
less than 100 percent. The expected value – the product of all probabilities for all
channels – can be solved for as long as the cost function is convex. This is the case
in our model.

We use the pickhardt payment library for this, in particular the pickhardt_pay
method, where we set the parameter mu=0. This parameter controls the balance
between uncertainty cost and fees in the solver, with a value of 0 using the uncertainty
cost.

We expect better results than in the single payment method for the success proba-
bility based payment delivery, because the underlying graph provides more oppor-
tunities for an optimal flow, because more edges can potentially carry the flow. We
also expect better results than with the fee-based multi-part payment delivery, be-
cause the flow will be split to use channels with a higher overall probability, which
makes a reliable payment more likely. This means that channels will be preferred
with a higher capacity and in consequence potentially higher liquidity, which leads
to slower depletion of a channel, compared to a method that ignores channels’ ca-
pacities.

5.4.5 Learning about Liquidity in the Network

How could payment delivery look like, if there was complete information about the
liquidity balances in the channels? Or if such knowledge could be gained by cooper-
ation? Can this be achieved for example through one omniscient router that learns
about all payment onions sent, and with this knowledge establishes a belief about liq-
uidity balances in the network? If this knowledge was applied to routing, how would
this influence failure rates in the Lightning Network?

We simulate the knowledge that an observer of the network gains from monitoring all
send_onion method calls over the course of our set of 10,000 payments. We achieve
this by introducing and maintaining a belief network, the Uncertainty Network,
which learns during executing the payment sample and correspondingly adjusts the
payment flows. This belief network is implemented in the pickhardt payment library
as the Uncertainty Network, see chapter 4.1.3.

We execute the payment delivery method of multi-part payments with the Min-
CostFlow strategy on the success probabilities as a cost function, better known as
pickhardt payments [PR21]. From every payment delivered or failed we adjust the
estimate of minimum and maximum liquidity in the two channels between the two
nodes. When solving for the optimal feasible flow for a payment amount we calcu-
late the conditional probability for an edge based on our belief of the minimum and
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maximum available amount of liquidity, in contrast to building the probability based
on the total capacity given from the gossip graph.

Instead of resetting the Uncertainty Network before each method call for a payment
delivery, we now maintain this Uncertainty Network for the session of all 10,000
payments and feed all results from payment tries into the learning process to improve
our belief of the liquidity distribution.

Because we assume that probability based payment delivery is better than fee based
delivery with regards to channel depletion in the network, we conduct the experiment
with the probability cost function.

5.4.6 Aggregation of Payment Flow

In this experiment an omniscient observer acts as an intermediary and collects all
successful payment flows in the network. This omniscient observer aggregates all
payment amounts on the used edges. For this analysis, a flow describes a pay-
ment amount that is sent across one edge between to adjacent nodes in a payment
onion.

We monitor the edges that the successful payments in our payment sample travel.
Given the sufficiently large sample of 10,000 payments we expect payment flows to
use some edges multiple times. We record the number of times that an edge is used
and the corresponding payment amount, and calculate one aggregate flow amount
on this particular edge.

In the next step we analyze, if for an edge between two adjacent nodes there is a
flow in the opposite direction. If this is the case, then these two aggregate flow
amounts are offset against each other, and one net flow on one of the two edges
remains. We then compare the sum of all net flow amounts after this netting pro-
cedure to the previous sum of all aggregate flow amounts. For our analysis we take
the most successful selfish strategy, multi-part payments with success probability as
a cost.

5.5 Generalization of Results

To validate our findings we conduct further experiments. We test the failure rates on
different liquidity balances, payment sets and topologies.
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5.5.1 Randomization of Liquidity Balances

In the course of Lightning Network model graph generation, we have to make an as-
sumption about the liquidity distribution in the channels. To generalize our findings
we conduct our experiments on 20 different liquidity distributions on the Lightning
Network model graph.

When generating the Oracle Lightning Network (see chapter 4.1.2), we assign liq-
uidity balances to the channels. We randomly draw values between 0 and 1 from
a uniform distribution that represent the split of the capacity in the two channels
between adjacent nodes and the corresponding liquidity balances. Based on this
liquidity distribution we execute the 10,000 payments in the set with each of the
payment delivery strategies. We repeat this process for a total of 20 different ran-
dom liquidity distributions.

5.5.2 Randomization of the Payment Set

We analyze the results for different sets of payments. We take a sample of five dif-
ferent payment sets of randomly selected 10,000 payments each and test them with
the strategies D(fees) and MCF(prob) against our base case Lightning Model graph.
These two strategies are structurally the most distinct, because one is using the Dijk-
stra algorithm, the other MinCostFlow, and one is using a fee-based payment delivery
method, the other a probability based payment method.

We generate the payment sets following the process described in chapter 5.2. From
an Oracle Lightning Network (see chapter 4.1.2) we sample two nodes, one being the
sender, the other one being the receiver, and draw a payment amount between 10,000
satoshis and 1,000,000 satoshis from a uniform distribution.

5.5.3 Centrality

When sending payments from sender to receiver the sender tries to find a feasible
flow to send the payment amount. This means that the channels need to signal a
high enough capacity. If for capacity reasons no path can be established, then further
questions regarding the possible liquidity along the channels need not be considered.
Thus, the topology plays an important role, in particular the connectedness of the
nodes and the available liquidity in the most connected nodes.

We look at how the failure rate changes for the cases where a path exists between
sender and receiver after we eliminated the most central nodes. For all nodes in
the Oracle Lightning Network graph we measure the betweenness centrality. From
our base graph we then in three steps delete the 100 most central nodes, the 200
most central nodes and the 300 most central nodes. For each of these three graphs,
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in addition to our base graph, we execute 10,000 payments with each of the five
payment delivery strategies and observe the failure rates

5.5.4 General Graphs

We construct a random graph to analyze, if our findings can be replicated and trans-
lated to potentially any existing graph, not just the Lightning Network model we de-
rived from listchannels. We take an Erdős-Rényi random graph G(n,M), an undi-
rected graph with n nodes and m edges picked uniformly at random [ER60]. We add
a parallel edge in the return direction if necessary. The result of choosing an Erdős-
Rényi graph is a stochastically random graph and all graphs with the respective
number of nodes and edges are equally likely. To avoid unwanted effects from com-
paring too different graphs, we choose the same number of nodes (3,299) and edges
(18,537 channel pairs) as is in our Lightning Network model graph. We assign the ca-
pacities randomly by sampling channel capacities from the Lightning Network model
graph, and we follow the same process with the fees.

As with our Lightning Network model, we randomly draw 10,000 payment triples
(sender, receiver, amount) from the nodes in the network and execute each of these
10,000 payments with each payment delivery strategy on a random graph. We repeat
this process for five different random graphs.
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To analyze if a Price of Anarchy exists, we run a set of experiments and compare the
failure rates of payments for different payment delivery strategies. We manipulate
parameters such as the liquidity balances in the model graph, the payment sets and
the topology of the graph and re-test to validate our results and analyze, if our
findings can be generalized.

6.1 Payments

We test for payment delivery of 10,000 payments with a particular payment delivery
strategy on our model graph with 3,299 nodes and 37,074 edges.

The payment amount for the 10,000 payments is uniformly distributed. The mean
payment amount is 501,068 sats, roughly equivalent to 115 USD or 105 EUR.

Table 6.1: The payment amount for the 10,000 payments is uniformly distributed.

amount

count 10,000
mean 501,068
std 285,366.28
min 10,013.00
25% 254,692.75
50% 497,127.50
75% 744,401.50
max 999,962.00

Sending a payment leads to one of three results:

1. Based on existing knowledge, no path can be established between sender and
receiver.

2. The total amount has been delivered successfully.

3. A path was found, but the delivery fails, because the assumed liquidity is not
available in one or more of the channels.
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6.2 Selfish Payment Delivery

Based on the Lightning Network graph as of January 14th we allocate liquidity
balances randomly in the channels. Given this liquidity state we execute 10,000
payments with each of the payment delivery strategies. We calculate the fail-
ure rate of the payments by dividing the number of failed payments by the num-
ber of payments where a path was found from sender to receiver, assuming max-
imum possible liquidity. We repeat this process for in total 20 different liquidity
states.

6.2.1 Failure Rates

In this section we analyze a set of payment delivery strategies, which we assume
to include the optimal and selfish strategy for a participant. Focusing on the cases
where it seems possible to find a feasible flow from sender to receiver, we measure the
proportion of payments effectively succeeding or failing.

The results displayed in figure 6.1 show a clear distinction between the cost functions
when it comes to payment delivery failure rates.

Figure 6.1: Failure rates for selfish payment delivery strategies; means for a sample
of 20 graphs with random liquidity balances and 10,000 payments for
each strategy on each graph.

6.2.2 Failure Rates over Time

If there is a liquidity drain in channels over time, then this would show up in our
sample of 10,000 payments. And indeed, we can verify this by looking at the failure
rates after processing blocks of 2,500 payments. Failure rates of fee based payment
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delivery strategies rise significantly over time, up to around 80% in the example setup
(see figure 6.2).

Probability based payment delivery strategies have increasing failure rates as well,
however slower and the rate of failing payments remains below 40%.

Figure 6.2: Failure rates for selfish payment delivery strategies over time, split in
bins of 2,500 payments each.

Figure 6.3 displays the change in failure rate from one bin of 2,500 payments to the
next. For example in the payment delivery strategy D(fees) the failure rate for 2,500
payments increased by 13.97%-points from the first set of 2,500 payments to the next
set of 2,500 payments.

Figure 6.3: Change in failure rates from one bin of 2,500 payments to the following
bin.
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6.3 Beneficial Payment Delivery
Strategies

We also test how failure rates could be kept low through beneficial payment delivery
strategies. We assume an omniscient router exists, who knows all payments sent and
their outcome. First we analyze the failure rates when the belief about payment
balances is adjusted according to the outcome of payments attempted. Then we
analyze if netting can be applied and if failure rates in the Lightning Network model
graph can be improved.

6.3.1 Payment Delivery Strategy with Learning

Failure rates for payment delivery strategies show lowest values for multi-part pay-
ments based on success probabilities with learning.

Figure 6.4: Failure rates for non-cooperative and cooperative payment delivery
strategies.

Comparing the failure rate of the payment strategy with learning to the selfish strate-
gies in figure 6.4, we recognize a significant drop in the failure rate of payments by
35% or 11 percentage points from 32.0% to 20.7% compared to the most beneficial
selfish payment delivery strategy. Next, we analyze if there is a significant differ-
ence in the non-cooperative and selfish strategies compared to the strategy with
learning.
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Figure 6.5: Difference in failure rates for non-cooperative payment delivery methods
compared to pickhardt payments with learning, standard deviation rep-
resented by error bar.

For each difference in failure rates between the selfish payment delivery strategy
and pickhardt payment with learning we calculate mean, min, max and standard
deviation after 20 runs with different liquidity balances and 10,000 payments for
each payment delivery strategy.

Table 6.2: Failure rates are significantly lower when using pickhardt payments with
learning. 20 runs with random liquidity balances and 10,000 payments
each.

Payment Delivery Method N M min max SD

D(fees) 20 56.10% 45.61% 59.48% 3.89%
D(prob) 20 19.85% 15.46% 29.06% 3.50%
MCF(fees) 20 48.67% 38.55% 53.31% 3.90%
MCF(prob) 20 11.31% 9.44% 15.01% 1.74%

The selfish payment delivery strategies demonstrate significantly higher failure rates
than the most beneficial strategy.
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Table 6.3: Two-sided t-tests show with high confidence that selfish payment delivery
strategies are less reliable than the cooperative strategy of pickhardt pay-
ments with learning.

∆ non-cooperative
and cooperative strategy t df p M SD

D(fees) 64.51 19 p < .001 56.10% 3.89%
D(prob) 25.39 19 p < .001 19.85% 3.50%
MCF(fees) 55.83 19 p < .001 48.67% 3.90%
MCF(prob) 29.09 19 p < .001 11.31% 1.74%

These two-sided t-tests reveal a significant difference in mean failure rates from pick-
hardt payments with learning, with a probability p < .001 for each selfish payment
delivery method (N = 20, see table 6.3).

6.3.2 Failure Rates over Time for Payment Delivery Strategy with
Learning

When starting our simulation, the omniscient router has no prior knowledge and
learns over time, beginning with the first payment. Figure 6.6 displays the failure
rates of the payment delivery strategies over time.

Figure 6.6: Failure rates for sets of 2,500 payments for non-cooperative and cooper-
ative payment delivery strategies.

While the failure rates of payments delivered with selfish strategies increase over time,
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the failure rate decreases for the omniscient observer from 15.9% to 12.2%.

This also shows in the change in failure rates of payment delivery strategies from bin
to bin in steps of 2,500 payments as depicted in figure 6.7. The increase in failure
rate decreases over time for the D(fees) strategy, from an increase of 13.97%-points to
an increase of 3.55%-points. For the strategy MCF(prob, learning) there is an initial
slight increase from the first 2,500 payments to the next 2,500 payments followed
by a decrease in failure rates of 1.79%-points and 1.91%-points for the remaining
payments.

Figure 6.7: Change in failure rates from one set of 2,500 payments to the next in %-
points for non-cooperative and cooperative payment delivery strategies

6.3.3 Payment Delivery Strategy with Netting

We simulate an omniscient observer that acts as an intermediary and collects all
successful payment flows in the network from the most successful selfish strategy,
multi-part payments with success probabilities as a cost function. This omniscient
observer aggregates the payment amounts on the used edges as described in chap-
ter 5.4.6 and builds a net flow amount on the edges as a remainder. We investi-
gate, if it is possible to further increase the probability of successful payment deliv-
ery.

In the course of the 10,000 multi-part payments we tried 51,636 edges to send the pay-
ment from the senders to the receivers. To successfully settle the payment amounts,
they were passed across 33,235 edges. The total payment amount in motion is equiv-
alent to the payment amounts times the used edges of the respective payment. This
equals a gross amount of 10,148,920,560 satoshis.
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In the first step of collecting all multiple uses of an edge and sum it into one aggregate
payment amount for this edge, we find that these payments have travelled along 7,065
distinct edges out of the total of 37,074 edges in the Lightning Network model graph.
Progressing to the main idea of the experiment, netting flows in opposite channel
pairs between to nodes, we generate one composite edge from both these edges in a
channel pair.

With this, we reduce the number of flows and join 2,824 edges that originally had
bi-directional flows. The remaining number of distinct edges used is now 4,241 for
the successfully settled 4,939 payments.

Figure 6.8: Number of used edges and total payment amount in motion for successful
payments.

We net the amounts in the channel pair. Following this, we are left with only one
of the two edges carrying the remainder of the two payment amounts. The sum
of these remaining amounts on the edges is the net flow amount in motion. This
net flow amount in motion decreases from 10,148,920,560 satoshis to 2,631,277,546
satoshis. Aggregating the payment amount on the edges and offsetting the payment
flows on opposite edges of successful flows before settlement thus reduces the amount
of money travelling in the network by 74.07%.

6.4 Price of Anarchy

We established that a Price of Anarchy exists under the assumption that welfare
in the network can be measured as its reliability with which a payment can be
successfully delivered. We also assume that participants reflect this goal when finding
their best possible move in optimizing their a priori estimate of the success probability
for the payment.

We found that among the analyzed strategies the effective payment reliability is
in the range of the reliability achieved with strategy D(fees) in the worst case and
MCF(probability) in the best case. We constituted that under the assumed pref-
erence function players shift their strategies towards the payment delivery method
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MCF(probability), and as such this is the best strategy for a sender. However, other
preference functions might include a consideration of fees to reflect the transaction
cost of the payment itself. In this case, multi-part payments are still the best op-
tion amongst the strategies proposed for fee-based payment delivery, and a mixed
strategy of MCF(probability) with MCF(fees) might be the payment method that
matches the optimum of such preference function.

For our calculation of the Price of Anarchy we refer to the reliability of MCF(probabi-
lity) as the best strategy for the sender. We also calculate the ratio with the
MCF(fee) strategy to show an upper bound with the optimal fee-based payment
delivery method. Thus, the reliability rates we use for our calculations are 32.04%
for MCF(probability) and 69.39% for MCF(fee).

We demonstrated that strategies that increase the welfare for the network exist, but
cannot be achieved by players without cooperation. We also showed that the strategy
with netting does not give us a quantifiable result. For this reason we resort to the
strategy MCF(prob, learning), pickhardt payment with learning, for our estimate of
the reliability of payments in the Lightning Network in a cooperative strategy. The
reliability rate in this case is 20.73%,

We calculate the Price of Anarchy ρ to quantify the inefficiency of the equilibrium
of selfish strategies as we showed in chapter 3.2 and adopt the measured reliability
rate as the outcome of the objective function. Following the result of our simulation
for the ratio with the best selfish strategy we find

ρ =
32.04%

20.73%
= 1.5456

Taking into account that other preference functions might exist that show a prefer-
ence for fee based payment delivery over probability based payment delivery, we also
calculate the Price of Anarchy for MCF(fee) as

ρMCF (fee) =
69.39%

20.73%
= 3.34732

6.5 Generalization of Results

We validate our findings with regards to other random samples of payments and ran-
domly distributed liquidity balances to allow for generalization of our results.
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6.5.1 Randomization of Liquidity Balances

As we can see in table 6.4, in particular the differences between the payment delivery
strategies have a rather low standard deviation. We find the results to be highly
significant, the liquidity distribution does not have an impact on the relative ranking
of the overall failure rate.

Table 6.4: Confidence intervals of payment delivery strategies and difference between
strategies calculated on the sampled liquidity balances.

Payment Delivery Method N M 99% CI SD

D(fees) 20 76.83% [73.93%, 79.73%] 4.53%
D(prob) 20 40.58% [33.48%, 47.63%] 11.10%
MCF(fees) 20 69.39% [66.19%, 72.59%] 5.00%
MCF(prob) 20 32.04% [25.73%, 38.35%] 9.86%
MCF(prob, learning) 20 20.73% [15.40%, 26.05%] 8.32%

∆ D(fees) 20 56.10% [53.61%, 58.59%] 3.89%
∆ D(prob) 20 19.85% [17.62%, 22.09%] 3.50%
∆ MCF(fees) 20 48.67% [46.17%, 51.16%] 3.90%
∆ MCF(prob) 20 11.31% [10.20%, 12.41%] 1.74%

6.5.2 Randomization of the Payment Set

The base case has a mean value for the failure rate of the D(fees) strategy of 73.57%.
The 99%-confidence interval for the failure rate of D(fees) for a variation in the
payment set is [71.39%, 74.49%].

The base case has a mean value for the failure rate of the MCF(prob) strategy of
24.27%. The 99%-confidence interval for the failure rate of D(fees) for a variation in
the payment set is [23.86%, 25.20%].

Base case describes the initial liquidity distribution of the Lightning Network model
graph.

Table 6.5: Confidence intervals of example payment delivery strategies tested against
different payment sets with the base case liquidity balance distribution.

Payment Delivery Method N M 99% CI SD

D(fees) 5 76.83% [71.39%, 74.49%] 4.53%
MCF(prob) 5 32.04% [23.86%, 25.20%] 9.86%
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In the context of the results for the difference in failure rates for the strategies
compared to the most beneficial strategy for the Lightning Network, we consider the
impact on the results from a change in the sample of the 10,000 payments to be
negligible.

6.5.3 Centrality

Figure 6.9: Number of payments where no path could be found for payment delivery
strategies by number of most central nodes deleted

When the most central nodes are eliminated from the graph, we find that the number
of cases where there is a cut in the network and no paths were found increases signif-
icantly, see figure 6.9. Eliminating the 200 most central nodes in our Lightning Net-
work model doubles the number of impossible payments.
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Figure 6.10: Failure rates for payment delivery strategies by number of most central
nodes deleted

While generally the number of payments that can be sent through the Lightning Net-
work drastically decreases, the failure rate of the payments for the fee-based payment
delivery strategies are stable or decrease slightly (table 6.6).

Table 6.6: Failure rates for the payment delivery strategies after eliminating the 0,
100, 200 and 300 most central nodes from the Lightning Network model
graph.

most central nodes deleted

Payment Delivery Method 0 100 200 300

D(fees) 73.57% 93.33% 92.82% 91.97%
D(prob) 31.98% 36.58% 42.30% 49.94%
MCF(fees) 67.22% 79.98% 77.06% 73.35%
MCF(prob) 24.27% 28.79% 31.39% 35.84%
MCF(prob, learning) 14.49% 15.87% 17.05% 19.08%

For the probability based payment delivery strategies we find that payment failure
rates increase when the most central nodes are removed from the graph.

6.5.4 General Graphs

We find that the resulting failure rates for the different graphs are more pronounced
than with the Lightning Network model, see figure 6.11. While the fee-based strategy
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Figure 6.11: Failure rates for payment delivery methods in random Erdős-Rényi
graphs, N=5

Table 6.7: The means for failure rates for the random graph are different to the
Lightning Network model graph. Differences between the strategies are
more pronounced.

Payment Delivery Method N M min max SD

D(fees) 5 97.98% 97.79% 98.25 % 0.2052%
D(prob) 5 5.54% 5.20% 5.79% 0.2881%
MCF(fees) 5 36.23% 35.32% 37.18% 0.7555%
MCF(prob) 5 4.95% 4.49% 5.28% 0.3674%
MCF(prob, learning) 5 0.22% 0.13% 0.32% 0.0876%

with the single payment fails in 97.98% of the payment tries, the fee-based strategy
for multi-part payments has less than half the failure rate compared to the Lightning
Network model, 36.23%. However, this is still significantly worse than the probability
based strategies. Regarding the single payment delivered with a probability based
payment delivery strategy, the failure rate is only 5.54%.

Despite this already low failure rate, the multi-part payment strategy based on
successful payment probability still performs better, with 4.95%. The coopera-
tive strategy of multi-part payments with learning from previous payment tries
clearly outperforms the failure rates with only 0.22% of payments failing (see ta-
ble 6.7).

The data shows, the differences in the failure rates of the selfish payment strategies
compared to the cooperative strategy, the multi-part payment delivery strategy with
learning, are directionally the same as with our Lightning Network model graph, see
figure 6.12.
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Figure 6.12: Difference in failure rates for non-cooperative payment delivery methods
compared to pickhardt payments with learning.

The analyzes were conducted on five different random graphs, however the standard
deviation is very low. For a graph with random properties, the payment delivery
strategies perform with equal results as for the Lightning Network model.

Table 6.8: Differences in failure rates for non-cooperative payment delivery methods
compared to pickhardt payments with learning are more pronounced on
all five random graphs than on the Lightning Network model graph.

Payment Delivery Method N M min max SD

D(fees) 5 97.76% 97.47% 98.01% 0.2275%
D(prob) 5 5.31% 4.88% 5.54% 0.2991%
MCF(fees) 5 36.01% 35.07% 36.90% 0.7112%
MCF(prob) 5 4.73% 4.30% 5.15% 0.3779%
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In this work we define the reliability of the Lightning Network as a necessary re-
quirement for its usefulness. We chose the failure rate of payments as a measure for
unreliability and as the central driver of the participants’ utility. Under this measure
we calculate the Price of Anarchy.

We analyze payment delivery strategies such as reducing the amount of fees paid for
a single payment or multi-part payment, and increasing the success probability for
a single or multi-part payment. These strategies belong to a set of strategies that
reflect the individual preference of network participants. We treat them as selfish
strategies, because while optimizing individual preferences, they don’t achieve the
maximum possible welfare for the Lightning Network defined as minimal failure rate
of payments sent. They represent competitive strategies, because the participants
compete for liquidity in the payment channels.

We investigate the reliability of the Lightning Network when participants apply such
competitive strategies, measured by the rate of failing payments. We also ana-
lyze if other strategies are more beneficial for the network and achieve a higher
welfare by reducing the rate of failing payments. We look at how this reliability
changes over time, when more beneficial strategies are used, strategies that require
general knowledge about the graph or information that only the participants pos-
sess.

7.1 Selfish Payment Delivery
Strategies

Our results for selfish payment strategies show that there is a significantly higher
proportion of failing payments when following a payment delivery strategy that min-
imizes fees, than when maximizing successful payment delivery probability (see fig-
ure 6.1). While Dijkstra on fees as a cost function has a mean failure rate of 76.83%
and MinCostFlow on fees as a cost function has a mean failure rate of 69.39%, the
probability driven delivery methods are approximately 35%-points lower. Dijkstra
based on the success probability has a mean failure rate of 40.58% and MinCostFlow
based on the success probability has a mean failure rate of 32.04%.

This is in line with our expectation. One reason for the higher failure rate of fee-based
delivery strategies is that payments completely drain the liquidity of channels with
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low fees over time. Because of the algorithm always choosing the same cheap chan-
nels, they at some point don’t carry enough liquidity and thus payments fail more of-
ten. This is the case for success probability based strategies as well, however this is ef-
fect is less pronounced than with the fee-based strategies.

7.1.1 Failure Rates over Time for Selfish Payment Delivery
Strategies

If there is a liquidity drain in channels over time, then this would show up in our
sample of 10,000 payments. And indeed, we can verify this by looking at the failure
rates after processing blocks of 2,500 payments. Failure rates of fee-based payment
delivery strategies rise significantly over time, up to around 80% in the Lightning
Network model graph (see figure 6.2). Probability based payment delivery strategies
have increasing failure rates as well, however slower and the rate of failing payments
remains below 40%.

This demonstrates a higher robustness against payment delivery failures. The data
shows that choosing a payment delivery strategy that is based on the success proba-
bility of the payment in the optimization not only offers a higher reliability but also
a more stable success probability.

7.1.2 Minimum-Possible Failure Rate of Selfish Payment
Strategies

We know that the optimal strategy is within the set of the strategies described above
and thus we can establish the minimum proportion of failing payments within this
set of payment delivery strategies. To achieve the maximum possible welfare for
the Lightning Network through selfish strategies, we can conclude that participants
should converge to using multi-part payments and a success probability based pay-
ment delivery strategy.

We recognize that this is not yet the case with participants in the Lightning Net-
work, and there might be several reasons for this. Participants might believe that an
information-efficient market exists with all nodes following the strategy of signaling
liquidity by adjustment of fees. Also it is possible that node maintainers don’t fol-
low the strategy of signaling liquidity balances through fees but aim to set their fees
following other goals. Node implementations might not allow for such payment deliv-
ery method and/or node maintainers don’t yet feel comfortable using such strategies.
Also, the participants’ utility function might not just be a function of the reliability
of the payment but also of the fees paid. And while fees paid for reliable payments
might be higher than for a payment with less success probability, participants might
still feel like there is a maximum amount for a transaction fee they are willing to
pay. Consequently a failing payment is not as bad for them as for other participants,
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because if a payment fails for this lower amount, then they can still switch to other
payment strategies.

In our model the maximum welfare and the minimum failure rate of the four selfish
strategies is at 32.04%.

7.2 Cooperative Payment Delivery
Strategies

With more information, which for example can be gained through cooperation, a
more beneficial payment delivery for the network can be achieved, leading to an in-
crease in welfare. Above results show that without intervention through for example
rebalancing or opening of new channels, the payment delivery methods for selfish
payment delivery strategies lead to steadily increasing failure rates in the Lightning
Network.

7.2.1 Payment Delivery Strategy with Learning

In chapter 5.4.5 we introduced learning, implemented as maintaining a belief net-
work about the minimum and maximum liquidity in the payment channels. This con-
tributes to more accurately estimating the success of payment delivery.

Comparing the failure rate of the payment delivery strategy with learning to the
selfish strategies in figure 6.4, we recognize a significant drop in failing payments by
35% or 11 percentage points from 32.0% to 20.7% compared to the most beneficial
selfish payment delivery strategy. We consider this to be a substantial contribution
to the reliability of the network.

When conducting probability based payment delivery, the observer can learn about
failing payments and incorporate this knowledge in its belief about liquidity balances
in the Uncertainty Network. This leads to a higher success rate for the payments
being tried to deliver, because the success probabilities now don’t relate to the ca-
pacity of the channel, but to our — more precise — estimate of the range of possible
liquidity.

Thus, learning about liquidity balances from successful payments and failing pay-
ments increases welfare in the Lightning Network. This is a strategy that is unavail-
able to the individual participant and thus cannot be achieved in non-cooperative or
selfish routing.

We conclude that there is a significant difference in welfare for the network between
a strategy that uses collected information or cooperation, and strategies by selfish
participants (see table 6.3). Given this difference in welfare between the selfish strat-
egy and the cooperative observer strategy, we can assume that a Price of Anarchy
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exists. The strategy of learning provides a failure rate for the denominator in our
definition of the Price of Anarchy.

7.2.2 Learning over Time

When starting our simulation, the omniscient router has no prior knowledge and
learns over time, beginning with the first payment. Because there is a benefit in
retaining knowledge and building beliefs about liquidity balances in the channels,
this results in constantly improving payment delivery and a decreasing failure rate
for payments (see figure 6.7).

While the failure rates of payments delivered with selfish strategies increase over time,
the failure rate decreases for the omniscient observer from 15.9% to 12.2%. This is
intuitive, because the a priori estimate of a payment success improves. Consequently
the payment method avoids depleted channels and, as has been shown in figure 5.1,
more frequently avoids payment delivery generally if there is no feasible flow. The
payment delivery strategy with learning is not only more stable over time, but the
more payment results are incorporated in the belief network, the lower the failure
rate.

7.2.3 Concluding Remarks on the Strategy with
Learning

The results of our experiments show that the payment delivery strategy with learning
provides a significant benefit for the Lightning Network. It has the lowest failure rates
among all five simulated payment delivery strategies.

It is necessary to have more information for this payment delivery strategy than is
available from the gossip graph in the Lightning Network. A sending node alone can
collect all information it receives from its own payments, and with this can build its
own belief network, to better estimate the liquidity balances in the network graph.
However, this information will not cover the full graph and the estimate will never
be as good as in the case of the omniscient router who knows about all payments
and their status. In addition, because the sender only knows the own payment at-
tempts, the effect from other participants in the network executing their payments
and changing channel balances cannot be reflected in this belief. Knowledge that
an individual sending node carries is thus inferior to the knowledge that a general
observer of the network can gain, because this information incorporates a more com-
plete state of the graph. For this reason as well, the sender cannot achieve a strategy
that is equally beneficial on its own.

This leads to the conclusion that without cooperation of the participants in the
network the optimal outcome, the highest welfare possible, cannot be achieved and
a Price of Anarchy exists.
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Another aspect that needs to be considered regarding the question of achieving an
optimal payment execution through cooperation is wether the utility of the sender
might not solely depend on the success rate of the payments executed, other more soft
factors might play a role as well, such as privacy. If information hiding is beneficial to
the individual, this can lead to the situation that the single player has an interest in
receiving information so it can route successfully, but might hide information or give
misleading information to maintain the own privacy.

Analyzing the consequences of this dilemma exceeds the scope of this work and
remains for future research.

7.2.4 Payment Delivery Strategy with Netting

We find that netting reduces the flow in the Lightning Network model graph while
maintaining the liquidity balances after executed payments (see chapter 6.3.3). The
flow can be reduced substantially for the set of payments. The number of payments
executed approximates the number of payments executed by a major credit card
company within one to three seconds. In consequence, within an acceptable time-
frame for participants in the network, this measure allows to reduce the load on the
graph and reduces the probability of payments failing.

From a research perspective we are faced with the challenge to translate this reduc-
tion of flow into a change in failure rates in the Lightning Network. A change in
failure rate cannot be quantified, but we can safely assume that reducing flow for
payments by netting will have a positive impact. Firstly, this reduces the liquidity
moved in the network and thus reduces the amount of liquidity consumed. Because
liquidity is scarce in the network, this increases availability of liquidity. Secondly,
if a lower amount is moved between two adjacent nodes, the probability to succeed
is higher than for a higher amount being moved, thus reliability increases. Thirdly,
any payment amount that is not sent is a payment amount that does not fail. As
a consequence, the number of payments in the network that could possibly fail, is
reduced.

Because we cannot calculate a lower failure rate for the optimal cooperative strategy
multi-part payments with success probability as a cost function with netting, we can
only determine this failure rate of 20.7% to be an upper bound. This demonstrates
that the Price of Anarchy of 1.5456 is in fact a lower bound, because if such measures
were applied, the Price of Anarchy increases.

For practical purposes we only considered flows that settled successfully. After net-
ting and moving less money through channels and draining less liquidity in the used
channels, it is possible that a previously failing payment could succeed. The ques-
tion of failure or success translates into a question of timing. If the payment was
to have taken place in a later position in the payment queue, it might have suc-
ceeded. One way to safely test this hypothesis is to translate the payment delivery
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experiment into a multi-source multi-sink MinCostFlow problem with the sending
nodes and the receiving nodes of the 10,000 payments as sources and sinks. This
exceeds the scope of this work, and we leave this question for future research. We
do conclude, however, that netting has a positive contribution to the welfare of the
network. It does decrease the failure rate of payments, even though it cannot be
quantified.

7.2.5 Failure Rate of Optimal Flow

Learning about liquidity balances from successful payments leads to a better payment
flow than selfish strategies. Better in this case refers to higher welfare in the Lightning
Network, defined as a lower failure rate of payments. We also demonstrated that
aggregating payments and netting flow can decrease failure rates and contribute to
a more reliable payment delivery.

We find that there is a significant difference in welfare for the network, between
a strategy with information through cooperation, and the degree of welfare that
is established by participants following selfish strategies. Given this difference in
welfare between the selfish strategy and the observer strategy, we can assume that a
Price of Anarchy exists.

Because it is unfortunately not possible to determine a resulting failure rate after
applying netting strategies, we have to refer to the failure rate for the strategy with
learning as a conservative estimate for the failure rate of an optimal flow for the
payments in our Lightning Network model.

7.2.6 Price of Anarchy

We demonstrate that there is a significant difference in welfare in the Lightning
Network model graph between selfish payment delivery strategies and those of an
omniscient router or cooperation. We established a Price of Anarchy exists and
calculate the lower bound for the Price of Anarchy to be 1.5456. Coordination
increases the benefit of the Lightning Network, compared to competitive payment
delivery strategies.

This finding provides a legitimate reason for lightning service providers to exist,
because they are beneficial for the Lightning Network. They are beneficial for the
network because they can learn information about channels when executing payments
or even use netting to reduce the overall flow. Trampoline routing is a possibility
to transfer information about payment flow as well as the outcome of a payment
attempt, and providing this information is a form of cooperation. This reduces the
Price of Anarchy, because with building a belief network they learn and decrease
failure rates.
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We point out that when we translate our payment delivery methods to the imple-
mentation in the real world, we observe that participants don’t only use one round
for finding the successful payment, but once the payment failed they start further
tries, eliminating the previously failing channel. Thus, we see some learning strat-
egy currently implemented, which increases success rates when the definition of a
payment is extended from one attempt to a set of several rounds. This lowers fail-
ure rates and increases the welfare of the network, possibly reducing the Price of
Anarchy.

Extending the set of strategies for players from those with only one action to strate-
gies where players can conduct a sequence of actions with signals about the liquidity
state in between can provide further interesting results. We leave this analysis for
future research.

7.3 Generalization of Results

We validate our findings with regards to other random samples of payments and
randomly distributed liquidity balances to allow for generalization of our results. We
find none of these factors has an impact on our results. As we can see in table 6.4,
our finding regarding the overall failure rates is still highly significant for random
liquidity distributions. This is also the case for a change in the sample of the 10,000
payments, see chapter 6.5.2.

7.3.1 Centrality

When sending payments from sender to receiver the sender tries to find a feasible
flow to send the payment amount. This means that the channels need to signal a
high enough capacity. If for capacity reasons no path can be established, then further
questions regarding the possible liquidity along the channels need not be considered.
Thus, the topology plays an important role. In particular the connectedness of the
nodes and the available liquidity in the most connected nodes.

We find that those highly connected nodes carry the most responsibility for main-
taining a reliable network (see figure 6.10).

While generally the number of payments that can be sent through the Lightning Net-
work drastically decreases, the failure rate of the payments for the different payment
delivery strategies still show the same profile, in that the fee based strategies have a
higher failure rate than the payment delivery strategies using success probabilities for
finding the path. The cooperative payment delivery strategy has the lowest failure
rates, compared to all other strategies.
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Thus, the cooperative strategy performs best, even with central nodes removed.
The Price of Anarchy exists, irrespective of the centrality of the lightning network
graph.

7.3.2 General Graphs

The differences in the failure rates of the selfish payment strategies compared to
the cooperative strategy, the multi-part payment delivery strategy with learning,
are directionally the same as with our Lightning Network model graph, see fig-
ure 6.12.

Our results demonstrate that payment delivery with multi-part payments based on a
success probability as a cost function leads to the lowest failure rate for payment de-
livery for participants, even on a random graph. The results also show that a coopera-
tive strategy outperforms selfish strategies, as expected, and can even lead to a negli-
gible failure rate of payments, for our sample of random graphs.

We also notice that the resulting means for failure rates in our Lightning Network
model are worse than the means for the random graphs, which suggests that pay-
ment channel creation by participants in the Lightning Network is not the most
efficient under the measure of payment reliability. Given that in the Lightning
Network channel creation is in the hands of participants and the topology is the
result of a network creation game [FLM+03], we do however not calculate a Price
of Anarchy. We believe that one cannot separate the underlying graph from the
participants utility functions that give rise to a specific graph. The selfish routing
strategy, the resulting equilibrium and the topology of the graph are tightly con-
nected [AHWW20].

7.4 Future Work

We simulate fee-based strategies for payment delivery. In our context we consider fees
to be signals for liquidity in channels. Looking at the results and highest failure rates
for fee-based strategies, we conclude that they are a rather unsuitable indicator for
availability of liquidity in channels. This might change in the future, but we explain
why such change would not come without its difficulties.

If fees were to be seen solely as transaction cost, then this cost measure can be used
as an objective function. However, measuring the amount of fees paid does not work
without incorporating the probability of failure of payments. Finding the tradeoff and
an equilibrium of individually optimal strategies between low costs and low failure
rates is highly dependent on the utility function of the participants. A generalization
for mixed strategies that is suitable for a Price of Anarchy under such mixed strategies
is an additional direction for further research.
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From the perspective of game theory, the Lightning Network is an infinite game.
We treated the set of 10,000 payments as a suitable subgame of the infinite game
and translated the findings for our model to the Lightning Network in general. We
see the necessity to extend this assumption and differentiate between participants
with sporadic payments and participants with continuous, frequent and recurring
payments, because the considerations for an optimal outcome might be different. One
type of players sees the singular use case, optimizing for the short term maximum
use, while the other type considers future payments and takes a long term view. To
one type of players this is a finite game, to the other type of players it is an infinite
game. It is an open question if in the Lightning Network this mix of strategies leads
to a different equilibrium (if one at all) for such types of players prevalent in the
network.

We describe how a cooperative strategy might look like, in that players share their
information to achieve better learning about liquidity balances. We briefly discussed
that the utility of the sender might not solely depend on the success rate of the
payments executed, other more soft factors might play a role as well, such as pri-
vacy. However, participants might see the benefit of more knowledge about liquidity
balances and decide to share information. But we then face a problem of moral
hazard, because participants might share wrong information to hide their liquidity
balance in exchange for potentially right information by other participants. While
this is not possible with trampoline payments, this can be the case for situations like
friends-of-friends information sharing. Analyzing what measures would incentivize
participants to truthfully share their information and if there is an equilibrium where
a good enough belief about liquidity balances can be established under moral hazard
makes further research necessary.

When we analyzed the benefit of netting, for practical purposes we only considered
flows that did settle successfully. The net balance of payment balances in the chan-
nels is the result of summing flows from a sequence of payments. It is possible that
payments failed on these channels, because liquidity was moved to the other chan-
nel before. This leaves the question to what extent flow could have been found for
failing payments, if there was a different sequence of payments. If the payment was
to have taken place in an earlier or later position in the payment queue, it might
have succeeded. One way to safely test this hypothesis would be to analyze the pay-
ment delivery for a given set of payments as a multi-source multi-sink MinCostFlow
problem. The benefit of such netting is higher, the more payments can be consid-
ered. At the same time, the problem gains in complexity by adding more source-sink
pairs. How does the tradeoff look like for the benefit of less failing payments versus
longer processing time for the algorithm? Is this possible in a reasonable amount of
time?

While current challenges exist, there is room for improvement in efficiency and reli-
ability for the Lightning Network, and these open research questions can provide
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ample possibilities for understanding existing problems better and propose solu-
tions, that increase the benefit of the Lightning Network and help lead the way
for the Lightning Network to become a major decentralized payment delivery net-
work.



8 Related Work

The Price of Anarchy is a topic at the intersection of game theory and the do-
main of networking. While there is extensive research on these two fields, not
much work has been published that applies these findings to the Lightning Net-
work.

While research on the Price of Anarchy is abundant for common network prob-
lems, the focus on the Price of Anarchy in the Lightning Network mainly cen-
ters around its topology. Prior research on the Price of Anarchy with regards
to failure rates of payments is scarce and instead uses for example the change
in liquidity distribution in the channels as a measure for the Price of Anarchy
(like [Pic22]).

Game theory is a topic that gained traction in the second quarter of the 20th century
and was at the time driven by John von Neumann and John Nash. Their definitions of
games and equilibria are still being used today [Jr50]. Since then a lot of refinements
and amendments evolved that take the Nash equilibrium as the general case and
apply it to more specific cases, which we discussed in chapter 3.1.4. The Lightning
Network can be regarded as an infinite game where participants take their first action
based on an unknown state of the graph, but can build an expectation on liquidity
balances. They learn about the fit of the probability function from the response
after sending a payment and can better specify their model when considering the
next best move. We particularly refer to [EP19] and [CVMS20] for equilibria under
misspecified models and equilibria in nonatomic games.

While initially game theory was mainly applied in an economic context, computer
science more and more discovered this field for its own topics or applying computer
science methods to the questions posed. Its application to routing problems in net-
works initially referred to urban traffic routing problems (taken from the third quarter
of the 20th century like [Bra68]) and then network routing. The most prominent work
in this space is by Tim Roughgarden [Rou05] who applies the concept of the Price
of Anarchy to competitive routing, or selfish routing.

What is referred to as the Price of Anarchy dates back to the work of Elias Kout-
soupias and Christos Papadimitriou on worst-case equilibria where they analyze
the cost of the lack of coordination as opposed to the lack of information or the
lack of unbounded computational resources, as has been done in computer sci-
ence before [KP99]. They propose the ratio between the worst possible Nash
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equilibrium and the social optimum as a measure of the effectiveness of a sys-
tem.

The translation of the Price of Anarchy to the Lightning Network in particular poses
the problem to determine the equilibria to describe the effectiveness. How is the
equilibrium defined, what is the objective function that measures the welfare of
the network but can also be applied as a cost function to the participants in the
network?

Avarikioti et al. describe the effectiveness of the Lightning Network under the mea-
sure of transaction fees paid. They analyze the network from a network creation
game perspective [AHWW20] and the topologies of the Lightning Network that
emerge. This is influenced by participants deciding selfishly on opening a new chan-
nel to a node, which incurs fees for the transaction on the blockchain, versus locking
liquidity in a lightning channel. In the network creation game, the incentive of the
participants is to maximize transaction fees paid and received by choosing to whom
they connect.

An optimal graph structure for the Lightning Network is examined in [AJWW18].
They analyze an optimal fee assignment to channels and find that a star is a near-
optimal solution for the topology. However, they assume the capacity of every chan-
nel to be infinite. This is the central drawback of their research.

As we have pointed out before, payments in the Lightning Network are a flow, how-
ever the capacity of the possible flow is unknown and cannot easily be determined
nor adjusted. When we compare the Lightning Network payment delivery to rout-
ing problems in traffic or data networks, there is no problem in passing an infinite
amount of cars or information along a route. It is merely a question of time, but even-
tually one will succeed. It is a tradeoff between bandwidth and time. However, the
Lightning Network is different in that channels can be depleted, because a payment
means to move money from one side of the channel to the other. Which at one point
doesn’t work anymore, because one side ran out of money, and more money cannot
be moved, even if one waits a long time. In consequence, loosening this constraint
when analyzing the Lightning Network eliminates the principal feature that leads to
unreliability in the fulfillment of its core functionality and restrains the adoption of
Lightning Payment today.

Liquidity and the uncertainty of payments has been analyzed by René Pickhardt
et al. [PTBN21]. Using probability theory they model the uncertainty of balances
and thus successful payment in the Lightning Network. They establish the proba-
bility for a payment of a certain amount to successfully be delivered and derive an
estimate of the number of payment attempts for an amount to be delivered com-
pletely.

The major step forward in optimizing payment strategies in the Lightning Network
has been performed by Pickhardt, Richter [PR21]. Building on the previous work
of establishing success probabilities, they use min cost flow to find the most likely
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multi-part payment. The algorithm they develop works by updating the probabil-
ity distributions with the information gained from both successful and unsuccessful
paths on prior rounds. With this algorithm even large amounts could be delivered
successfully. Additionally, they propose how to reduce the originally NP-hard prob-
lem of finding the cheapest multi-part payments to a linear min-cost flow problem
by linearizing the fees, by dropping the base fee.

Research on the Price of Anarchy in terms of depleted channels has been published by
Pickhardt before [Pic22]. They define the Price of Anarchy as the change in the shape
of the distribution of expected channel drain arising from selfish routing strategies
in comparison to the shape of that distribution if payments were centrally planned
in an optimal way. They find that given a skewed random walk on the payment
channels, failure rates become stationary, but less than 100% even for heavily skewed
random walk, for a large number of payments. They observe that the highest Price
of Anarchy is realized by nodes using a strategy that combines fee-based and success
probability based multi-part payments. They also state that the criteria applied
might not necessarily be a Nash equilibrium in that there is a dominant selfish
strategy amongst the set of analyzed strategies.

We share the opinion that drain explains failure rates of channels and the change in
shape is an appropriate measure of the reliability of the Lightning Network. However,
we choose a different measure for the Price of Anarchy, failure rates, because we
regard this as the effective cost to participants. Failure rates is a metric that can be
observed and optimized for, while the shape of the drain is a result of the optimization
by sending nodes and as such not measurable or observable by individually optimizing
participants.





9 Conclusion

The Lightning Network is inherently unreliable, because of unknown liquidity bal-
ances in the payment channels. Participants in the network compete for liquidity in
the channels. A lack of liquidity leads to failing payments. A significant number of
failing payments renders the Lightning Network unusable, because it is too unreliable
to fulfill its purpose of a payment network. In consequence, network reliability is a
central measure for the utility of the Lightning Network.

We build a model to simulate the Lightning Network and implement different pay-
ment delivery strategies. We derive the model from the gossip graph of the Lightning
Network on January 14th, 2023. Because no liquidity balances are available, we ran-
domly assign liquidity balances to the channels. To avoid outliers we draw a random
sample of 20 different liquidity distributions, which we tested on. Based on this
Lightning Network model graph we executed sets of 10,000 payments for each of our
payment delivery strategies.

The payment delivery strategies that are used to construct a flow for the payment
vary in payment delivery reliability. We show that fee-based strategies lead to the
highest failure rates of payments, compared to probability based strategies. Failure
rates of fee-based strategies are twice as high as failure rates of the tested probability
based strategies. We also show that the failure rates of fee-based strategies increase
over time, because the channels with low fees are depleted quicker. From these
results we assume that the optimal individual strategy under the objective function
of payment reliability is a multi-part payment that derives the payment flow based
on the success probability of the flow.

We introduce cooperative strategies in the Lightning Network via an omniscient
observer with knowledge about the outcome of the payments sent by nodes, and their
corresponding flows. We establish a cooperative strategy by sharing knowledge about
successful and failing payments with an omniscient router, who with this information
establishes a belief about payment balances and decides on the flow for a payment.
We also investigate if aggregation of flows is possible and if this can have a positive
influence on the welfare of the Lightning Network model.

Our results from the simulation show that failure rates significantly decrease when
payments are routed by the omniscient router who learnt about the minimum and
maximum liquidity balances of channels. Compared to the non-cooperative strategy
with the lowest failure rate, the failure rate decreases by 35%.



We established that a Price of Anarchy exists when using the payment network
reliability as an objective function. The results of our simulation lead to a lower
bound for the Price of Anarchy of ρ = 1.5456.

We also analyzed to what extent payment flows can be netted. For a payment
network to be useful, it not only needs to be reliable, it also needs to be quick. Thus
the amount of payments that could be taken into account for netting is limited.
Using existing payment networks and their transaction volume, we find that 10,000
payments are equivalent to a timeframe of 1 to 3 seconds of transactions processed by
a major credit card company. Thus, we assume that aggregation of 10,000 payments
is a reasonable assumption.

Based on this assumption we find that in total we can reduce the liquidity load
on the channels by 74%, if we collapse the successful payment flows between two
adjacent nodes and aggregate the payments back and forth between these adjacent
nodes. This demonstrates that it is possible to further increase payment reliability
by netting. We cannot determine the exact reduction in failure rates, but we derive
that a substantial improvement can be made, because of less volume being sent which
reduces the probability of failure.

How realistic is the assumption to have participants share information with a central
router or even have such counterparts relay payments? Based on one of the principal
ideas of the Lightning Network of hiding information about payments, at first it
seems to not be a likely outcome to have a central router. However, such nodes
already exist, for example trampoline nodes. Trampoline nodes offer to take over
the responsibility of finding a route from sender to recipient. Even though these
nodes won’t be aware of all payments in the network, any improvement on the belief
of payment balances with a good enough estimate increases network reliability and
reduces the Price of Anarchy. This does still come with a loss of privacy, if senders
disclose sender, receiver, and payment amount.
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