{
"cells": [
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"# from plotly import tools\n",
"from plotly.offline import init_notebook_mode\n",
"import plotly.offline as offline\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"from matplotlib.colors import rgb2hex"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"init_notebook_mode(connected=False)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"# tools.set_credentials_file(username='your_username', api_key='your_apikey')"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" is python the main language you use for your current projects? | \n",
" none:what other language(s) do you use? | \n",
" java:what other language(s) do you use? | \n",
" javascript:what other language(s) do you use? | \n",
" c/c++:what other language(s) do you use? | \n",
" php:what other language(s) do you use? | \n",
" c#:what other language(s) do you use? | \n",
" ruby:what other language(s) do you use? | \n",
" bash / shell:what other language(s) do you use? | \n",
" objective-c:what other language(s) do you use? | \n",
" ... | \n",
" technical support:which of the following best describes your job role(s)? | \n",
" data analyst:which of the following best describes your job role(s)? | \n",
" business analyst:which of the following best describes your job role(s)? | \n",
" team lead:which of the following best describes your job role(s)? | \n",
" product manager:which of the following best describes your job role(s)? | \n",
" cio / ceo / cto:which of the following best describes your job role(s)? | \n",
" systems analyst:which of the following best describes your job role(s)? | \n",
" other - write in::which of the following best describes your job role(s)? | \n",
" could you tell us your age range? | \n",
" what country do you live in? | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" Yes | \n",
" NaN | \n",
" NaN | \n",
" JavaScript | \n",
" NaN | \n",
" PHP | \n",
" NaN | \n",
" NaN | \n",
" Bash / Shell | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 60 or older | \n",
" Italy | \n",
"
\n",
" \n",
" | 1 | \n",
" Yes | \n",
" NaN | \n",
" NaN | \n",
" JavaScript | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" Team lead | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 40-49 | \n",
" United Kingdom | \n",
"
\n",
" \n",
" | 2 | \n",
" Yes | \n",
" NaN | \n",
" NaN | \n",
" JavaScript | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 40-49 | \n",
" France | \n",
"
\n",
" \n",
" | 3 | \n",
" No, I don’t use Python for my current projects | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" C# | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 17 or younger | \n",
" Spain | \n",
"
\n",
" \n",
" | 4 | \n",
" Yes | \n",
" NaN | \n",
" Java | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 18-20 | \n",
" Israel | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 162 columns
\n",
"
"
],
"text/plain": [
" is python the main language you use for your current projects? \\\n",
"0 Yes \n",
"1 Yes \n",
"2 Yes \n",
"3 No, I don’t use Python for my current projects \n",
"4 Yes \n",
"\n",
" none:what other language(s) do you use? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" java:what other language(s) do you use? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 Java \n",
"\n",
" javascript:what other language(s) do you use? \\\n",
"0 JavaScript \n",
"1 JavaScript \n",
"2 JavaScript \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" c/c++:what other language(s) do you use? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" php:what other language(s) do you use? \\\n",
"0 PHP \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" c#:what other language(s) do you use? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 C# \n",
"4 NaN \n",
"\n",
" ruby:what other language(s) do you use? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" bash / shell:what other language(s) do you use? \\\n",
"0 Bash / Shell \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" objective-c:what other language(s) do you use? ... \\\n",
"0 NaN ... \n",
"1 NaN ... \n",
"2 NaN ... \n",
"3 NaN ... \n",
"4 NaN ... \n",
"\n",
" technical support:which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" data analyst:which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" business analyst:which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" team lead:which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 Team lead \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" product manager:which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" cio / ceo / cto:which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" systems analyst:which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" other - write in::which of the following best describes your job role(s)? \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" could you tell us your age range? what country do you live in? \n",
"0 60 or older Italy \n",
"1 40-49 United Kingdom \n",
"2 40-49 France \n",
"3 17 or younger Spain \n",
"4 18-20 Israel \n",
"\n",
"[5 rows x 162 columns]"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"survey_df = pd.read_csv('pythondevsurvey2017_raw_data.csv')\n",
"survey_df.columns = [c.lower() for c in survey_df.columns]\n",
"survey_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"def find_cols(df, kws):\n",
" '''找到 df 中含有 kws 的列'''\n",
" return [item for item in df.columns if all ([w in item for w in kws])]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 散点图/折线图"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "red"
},
"mode": "lines+markers",
"type": "scatter",
"uid": "8cb44f1c-ea75-11e8-8482-d8c4973dfcaa",
"x": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99
],
"y": [
0.9716512779319738,
0.8456386975545167,
0.48480067400456117,
0.770398050401701,
0.23284543577018268,
0.10554137897395932,
0.049855439663064605,
0.10895935323758432,
0.3562052572025035,
0.5363346289889088,
0.16768718890664136,
0.38823350577813787,
0.8711933163021941,
0.5104439534784287,
0.458760896773429,
0.9866129907169772,
0.8552936945231427,
0.8093668439466623,
0.856409086358952,
0.39645899972911014,
0.4998502895416449,
0.4153595186110006,
0.26109957737737644,
0.8969650131097293,
0.3013973908589037,
0.5597656510898611,
0.8603109854527045,
0.272433624644406,
0.781348873531537,
0.13398243378897778,
0.2361945293241886,
0.49730876007938507,
0.39301399764002076,
0.9201696974361896,
0.6044080348487139,
0.4062898718928051,
0.5369137313103775,
0.13297560185644364,
0.5799563662826495,
0.7267963448956315,
0.7396366719577046,
0.020109046231340688,
0.7314919504821047,
0.1904647036691225,
0.7178426517353867,
0.5256157370046654,
0.4236932824062992,
0.7134616399770779,
0.1144823531938145,
0.01456631082362947,
0.0655975033688303,
0.5381252762748181,
0.9289341998154816,
0.17276833436434524,
0.8418567001676033,
0.5083971929795241,
0.2580651633906016,
0.5562884144052586,
0.5332648437624022,
0.2150119538432511,
0.0680067530269769,
0.5601425656108872,
0.621413091043735,
0.28795006601045914,
0.10587298822587954,
0.8269689916716478,
0.9780256539717129,
0.7263585356593383,
0.5185631953692592,
0.56278190542258,
0.35520403207617324,
0.9657470041550605,
0.38744572815318057,
0.26597977981740417,
0.06836966500226538,
0.8870966986795674,
0.976167558787473,
0.17327018117333237,
0.3824895760127771,
0.8503342844994518,
0.6792440685590809,
0.0978767537338796,
0.15738922422631063,
0.34546788881498713,
0.7687208735370491,
0.5395095831217798,
0.7478890204215055,
0.06946164676996658,
0.1969903074354542,
0.06158093202786652,
0.4315358679837695,
0.5396764511896047,
0.6026585848025823,
0.012998100029235626,
0.2758930973972443,
0.5964986034867495,
0.017387563465794287,
0.43504004107099337,
0.2179625248555077,
0.19385941195278
]
}
],
"layout": {
"title": "散点+折线"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# mode 可以是 ['lines', 'markers', 'text'] 三者的任意组合\n",
"# 颜色支持 rgb 和 十六进制格式\n",
"# 对于大数据量可以使用 go.Scattergl 进行绘制\n",
"trace1 = go.Scatter(x=np.arange(100), y = np.random.rand(100), mode='lines+markers',\n",
" marker={\n",
" 'color': 'red'\n",
" })\n",
"data = [trace1]\n",
"layout = {\n",
" 'title': '散点+折线'\n",
"}\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig, show_link=False)\n",
"\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 使用 Python 2 和 Python 3 的开发者的比例?"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Python 3 6046\n",
"Python 2 2066\n",
"Name: which version of python do you use the most?, dtype: int64"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"python_version = survey_df['which version of python do you use the most?']\n",
"counts = python_version.value_counts()\n",
"counts"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"hoverinfo": "label+value",
"labels": [
"Python 3",
"Python 2"
],
"marker": {
"colors": [
"#386df9",
"#12c8e6"
]
},
"rotation": 0,
"type": "pie",
"uid": "8cbb2cfe-ea75-11e8-9c66-d8c4973dfcaa",
"values": [
6046,
2066
]
}
],
"layout": {
"title": "Python 2 VS Python 3"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"labels = counts.index\n",
"values = counts.values\n",
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"trace = go.Pie(labels=labels, values=values,\n",
" marker={\n",
" 'colors': colors\n",
" },\n",
" rotation=0,\n",
" hoverinfo='label+value')\n",
"data = [trace]\n",
"layout = {\n",
" 'title': 'Python 2 VS Python 3'\n",
"}\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 做数据分析和机器学习的人中分别有多少人使用的是 Python 3?"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"python_da_ml = survey_df[['machine learning:\\xa0what do you use python for?', 'data analysis:\\xa0what do you use python for?', 'which version of python do you use the most?']]\n",
"python_da = pd.crosstab(python_da_ml['which version of python do you use the most?'], python_da_ml['data analysis:\\xa0what do you use python for?'], normalize=True)\n",
"python_ml = pd.crosstab(python_da_ml['which version of python do you use the most?'], python_da_ml['machine learning:\\xa0what do you use python for?'], normalize=True)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Data analysis | \n",
" Machine learning | \n",
"
\n",
" \n",
" | which version of python do you use the most? | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | Python 2 | \n",
" 0.233177 | \n",
" 0.193548 | \n",
"
\n",
" \n",
" | Python 3 | \n",
" 0.766823 | \n",
" 0.806452 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Data analysis Machine learning\n",
"which version of python do you use the most? \n",
"Python 2 0.233177 0.193548\n",
"Python 3 0.766823 0.806452"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"da_ml = pd.concat([python_da, python_ml], axis=1)\n",
"da_ml"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "bar",
"uid": "8cd45ba8-ea75-11e8-832e-d8c4973dfcaa",
"x": [
"Data analysis",
"Machine learning"
],
"y": [
0.2331772245501602,
0.1935483870967742
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "bar",
"uid": "8cd45ba9-ea75-11e8-978f-d8c4973dfcaa",
"x": [
"Data analysis",
"Machine learning"
],
"y": [
0.7668227754498398,
0.8064516129032258
]
}
],
"layout": {}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"python2 = go.Bar(x=da_ml.columns, y=da_ml.loc['Python 2'], name='Python 2', marker={'color': colors[0]})\n",
"python3 = go.Bar(x=da_ml.columns, y=da_ml.loc['Python 3'], name='Python 3', marker={'color': colors[1]})\n",
"\n",
"data = [python2, python3]\n",
"# go.FigureWidget(data)\n",
"fig = go.Figure(data=data)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 做数据分析和机器学习的人常用的框架?"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"django 3363\n",
"numpy / pandas / matplotlib / scipy and similar 3163\n",
"requests 2769\n",
"flask 2607\n",
"cloud platforms (google app engine, aws, rackspace, heroku and similar) 1960\n",
"dtype: int64"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cols = find_cols(survey_df, 'what framework(s) do you use in addition to python?')\n",
"frameworks = survey_df[cols[1:]]\n",
"count_df = frameworks.count().sort_values(ascending=False)\n",
"count_df.index = [item.split(':')[0] for item in count_df.index]\n",
"count_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#6c1fff",
"#583efd",
"#445cfb",
"#3079f7",
"#1996f3",
"#06aeed",
"#0fc4e7",
"#22d6e0",
"#38e7d7",
"#4df3ce",
"#60fac5",
"#74feba",
"#8bfeae",
"#9efaa2",
"#b2f396",
"#c6e789",
"#dcd67a",
"#f0c46c",
"#ffae5e",
"#ff964f",
"#ff793e",
"#ff5c2f",
"#ff3e1f",
"#ff1f10"
]
},
"type": "bar",
"uid": "8cddf746-ea75-11e8-95f2-d8c4973dfcaa",
"x": [
"django",
"numpy / pandas / matplotlib / scipy and similar",
"requests",
"flask",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"asyncio",
"other - write in",
"six",
"tornado",
"aiohttp",
"kivy",
"web2py",
"twisted",
"bottle",
"pyramid",
"cherrypy",
"komodo ide",
"komodo editor"
],
"y": [
3363,
3163,
2769,
2607,
1960,
1740,
1360,
1257,
1129,
938,
791,
759,
649,
626,
510,
439,
389,
332,
303,
282,
278,
224,
185,
164
]
}
],
"layout": {
"title": "Framework Usage"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', len(count_df))]\n",
"trace = go.Bar(x=count_df.index, y=count_df.values, marker={'color': colors})\n",
"\n",
"data = [trace]\n",
"layout = {'title': 'Framework Usage'}\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#ff1f10",
"#ff3e1f",
"#ff5c2f",
"#ff793e",
"#ff964f",
"#ffae5e",
"#f0c46c",
"#dcd67a",
"#c6e789",
"#b2f396",
"#9efaa2",
"#8bfeae",
"#74feba",
"#60fac5",
"#4df3ce",
"#38e7d7",
"#22d6e0",
"#0fc4e7",
"#06aeed",
"#1996f3",
"#3079f7",
"#445cfb",
"#583efd",
"#6c1fff"
]
},
"orientation": "h",
"type": "bar",
"uid": "8ce63614-ea75-11e8-a394-d8c4973dfcaa",
"x": [
164,
185,
224,
278,
282,
303,
332,
389,
439,
510,
626,
649,
759,
791,
938,
1129,
1257,
1360,
1740,
1960,
2607,
2769,
3163,
3363
],
"y": [
"komodo editor",
"komodo ide",
"cherrypy",
"pyramid",
"bottle",
"twisted",
"web2py",
"kivy",
"aiohttp",
"tornado",
"six",
"other - write in",
"asyncio",
"pygame",
"tkinter",
"pyqt / pygtk / wxpython",
"pillow",
"keras / theano / tensorflow / scikit-learn and similar",
"jupyter notebook",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"flask",
"requests",
"numpy / pandas / matplotlib / scipy and similar",
"django"
]
}
],
"layout": {
"height": 1000,
"margin": {
"r": 10
},
"title": "Framework Usage",
"yaxis": {
"automargin": true
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 对于 Y 轴刻度标签太长的情况,可以设置 layout 中 yaxis 的 automargin 属性为 True\n",
"# 也可以自定义 margin\n",
"trace = go.Bar(y=count_df.index[::-1], x=count_df.values[::-1], marker={'color': colors[::-1]}, orientation='h')\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(\n",
" title='Framework Usage',\n",
" margin={'r': 10},\n",
" height=1000,\n",
" yaxis={'automargin': True}\n",
")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" django | \n",
" flask | \n",
" tornado | \n",
" bottle | \n",
" web2py | \n",
" numpy / pandas / matplotlib / scipy and similar | \n",
" keras / theano / tensorflow / scikit-learn and similar | \n",
" pillow | \n",
" pyqt / pygtk / wxpython | \n",
" tkinter | \n",
" ... | \n",
" requests | \n",
" asyncio | \n",
" kivy | \n",
" six | \n",
" aiohttp | \n",
" other - write in | \n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) | \n",
" jupyter notebook | \n",
" komodo editor | \n",
" komodo ide | \n",
"
\n",
" \n",
" | which version of python do you use the most? | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | Python 2 | \n",
" 0.250074 | \n",
" 0.260069 | \n",
" 0.282353 | \n",
" 0.294326 | \n",
" 0.292169 | \n",
" 0.229845 | \n",
" 0.194118 | \n",
" 0.264916 | \n",
" 0.264836 | \n",
" 0.186567 | \n",
" ... | \n",
" 0.275551 | \n",
" 0.125165 | \n",
" 0.179949 | \n",
" 0.378594 | \n",
" 0.100228 | \n",
" 0.343606 | \n",
" 0.281122 | \n",
" 0.198851 | \n",
" 0.262195 | \n",
" 0.318919 | \n",
"
\n",
" \n",
" | Python 3 | \n",
" 0.749926 | \n",
" 0.739931 | \n",
" 0.717647 | \n",
" 0.705674 | \n",
" 0.707831 | \n",
" 0.770155 | \n",
" 0.805882 | \n",
" 0.735084 | \n",
" 0.735164 | \n",
" 0.813433 | \n",
" ... | \n",
" 0.724449 | \n",
" 0.874835 | \n",
" 0.820051 | \n",
" 0.621406 | \n",
" 0.899772 | \n",
" 0.656394 | \n",
" 0.718878 | \n",
" 0.801149 | \n",
" 0.737805 | \n",
" 0.681081 | \n",
"
\n",
" \n",
"
\n",
"
2 rows × 24 columns
\n",
"
"
],
"text/plain": [
" django flask tornado \\\n",
"which version of python do you use the most? \n",
"Python 2 0.250074 0.260069 0.282353 \n",
"Python 3 0.749926 0.739931 0.717647 \n",
"\n",
" bottle web2py \\\n",
"which version of python do you use the most? \n",
"Python 2 0.294326 0.292169 \n",
"Python 3 0.705674 0.707831 \n",
"\n",
" numpy / pandas / matplotlib / scipy and similar \\\n",
"which version of python do you use the most? \n",
"Python 2 0.229845 \n",
"Python 3 0.770155 \n",
"\n",
" keras / theano / tensorflow / scikit-learn and similar \\\n",
"which version of python do you use the most? \n",
"Python 2 0.194118 \n",
"Python 3 0.805882 \n",
"\n",
" pillow \\\n",
"which version of python do you use the most? \n",
"Python 2 0.264916 \n",
"Python 3 0.735084 \n",
"\n",
" pyqt / pygtk / wxpython \\\n",
"which version of python do you use the most? \n",
"Python 2 0.264836 \n",
"Python 3 0.735164 \n",
"\n",
" tkinter ... requests \\\n",
"which version of python do you use the most? ... \n",
"Python 2 0.186567 ... 0.275551 \n",
"Python 3 0.813433 ... 0.724449 \n",
"\n",
" asyncio kivy six \\\n",
"which version of python do you use the most? \n",
"Python 2 0.125165 0.179949 0.378594 \n",
"Python 3 0.874835 0.820051 0.621406 \n",
"\n",
" aiohttp other - write in \\\n",
"which version of python do you use the most? \n",
"Python 2 0.100228 0.343606 \n",
"Python 3 0.899772 0.656394 \n",
"\n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) \\\n",
"which version of python do you use the most? \n",
"Python 2 0.281122 \n",
"Python 3 0.718878 \n",
"\n",
" jupyter notebook komodo editor \\\n",
"which version of python do you use the most? \n",
"Python 2 0.198851 0.262195 \n",
"Python 3 0.801149 0.737805 \n",
"\n",
" komodo ide \n",
"which version of python do you use the most? \n",
"Python 2 0.318919 \n",
"Python 3 0.681081 \n",
"\n",
"[2 rows x 24 columns]"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frameworks_pyver = frameworks.apply(lambda col: pd.crosstab(index=python_version, columns=col).iloc[:, 0])\n",
"frameworks_pyver = frameworks_pyver / frameworks_pyver.sum(axis=0)\n",
"frameworks_pyver.columns = [item.split(':')[0] for item in frameworks.columns]\n",
"frameworks_pyver"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "bar",
"uid": "8d1dbf64-ea75-11e8-9470-d8c4973dfcaa",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": [
0.25007433838834375,
0.2600690448791715,
0.2823529411764706,
0.29432624113475175,
0.2921686746987952,
0.22984508378122037,
0.19411764705882353,
0.2649164677804296,
0.26483613817537643,
0.1865671641791045,
0.16434892541087232,
0.3169642857142857,
0.39933993399339934,
0.29136690647482016,
0.27555074033947274,
0.1251646903820817,
0.17994858611825193,
0.37859424920127793,
0.10022779043280182,
0.3436055469953775,
0.2811224489795918,
0.19885057471264367,
0.2621951219512195,
0.31891891891891894
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "bar",
"uid": "8d1dbf65-ea75-11e8-a4d3-d8c4973dfcaa",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": [
0.7499256616116563,
0.7399309551208285,
0.7176470588235294,
0.7056737588652482,
0.7078313253012049,
0.7701549162187796,
0.8058823529411765,
0.7350835322195705,
0.7351638618246236,
0.8134328358208955,
0.8356510745891277,
0.6830357142857143,
0.6006600660066007,
0.7086330935251799,
0.7244492596605273,
0.8748353096179183,
0.8200514138817481,
0.6214057507987221,
0.8997722095671982,
0.6563944530046225,
0.7188775510204082,
0.8011494252873563,
0.7378048780487805,
0.6810810810810811
]
}
],
"layout": {
"title": "Python 2 and Python 3 Usage among Frameworks"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"py2 = go.Bar(x=frameworks_pyver.columns, y=frameworks_pyver.loc['Python 2'], marker={'color': colors[0]}, name='Python 2')\n",
"py3 = go.Bar(x=frameworks_pyver.columns, y=frameworks_pyver.loc['Python 3'], marker={'color': colors[1]}, name='Python 3')\n",
"\n",
"data = [py2, py3]\n",
"layout = go.Layout(title='Python 2 and Python 3 Usage among Frameworks')\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"orientation": "h",
"type": "bar",
"uid": "8d27d1a8-ea75-11e8-9282-d8c4973dfcaa",
"x": [
0.25007433838834375,
0.2600690448791715,
0.2823529411764706,
0.29432624113475175,
0.2921686746987952,
0.22984508378122037,
0.19411764705882353,
0.2649164677804296,
0.26483613817537643,
0.1865671641791045,
0.16434892541087232,
0.3169642857142857,
0.39933993399339934,
0.29136690647482016,
0.27555074033947274,
0.1251646903820817,
0.17994858611825193,
0.37859424920127793,
0.10022779043280182,
0.3436055469953775,
0.2811224489795918,
0.19885057471264367,
0.2621951219512195,
0.31891891891891894
],
"y": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"orientation": "h",
"type": "bar",
"uid": "8d27d1a9-ea75-11e8-84f4-d8c4973dfcaa",
"x": [
0.7499256616116563,
0.7399309551208285,
0.7176470588235294,
0.7056737588652482,
0.7078313253012049,
0.7701549162187796,
0.8058823529411765,
0.7350835322195705,
0.7351638618246236,
0.8134328358208955,
0.8356510745891277,
0.6830357142857143,
0.6006600660066007,
0.7086330935251799,
0.7244492596605273,
0.8748353096179183,
0.8200514138817481,
0.6214057507987221,
0.8997722095671982,
0.6563944530046225,
0.7188775510204082,
0.8011494252873563,
0.7378048780487805,
0.6810810810810811
],
"y": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
]
}
],
"layout": {
"height": 1000,
"title": "Python 2 and Python 3 Usage among Frameworks",
"yaxis": {
"automargin": true
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"py2 = go.Bar(y=frameworks_pyver.columns, x=frameworks_pyver.loc['Python 2'], marker={'color': colors[0]}, orientation='h', name='Python 2')\n",
"py3 = go.Bar(y=frameworks_pyver.columns, x=frameworks_pyver.loc['Python 3'], marker={'color': colors[1]}, orientation='h', name='Python 3')\n",
"\n",
"data = [py2, py3]\n",
"layout = go.Layout(title='Python 2 and Python 3 Usage among Frameworks', height=1000, yaxis={'automargin': True})\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"import plotly.figure_factory as ff"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"autobinx": false,
"histnorm": "probability density",
"legendgroup": "Python 2",
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"opacity": 0.7,
"type": "histogram",
"uid": "8d36ecac-ea75-11e8-9451-d8c4973dfcaa",
"x": [
0.25007433838834375,
0.2600690448791715,
0.2823529411764706,
0.29432624113475175,
0.2921686746987952,
0.22984508378122037,
0.19411764705882353,
0.2649164677804296,
0.26483613817537643,
0.1865671641791045,
0.16434892541087232,
0.3169642857142857,
0.39933993399339934,
0.29136690647482016,
0.27555074033947274,
0.1251646903820817,
0.17994858611825193,
0.37859424920127793,
0.10022779043280182,
0.3436055469953775,
0.2811224489795918,
0.19885057471264367,
0.2621951219512195,
0.31891891891891894
],
"xaxis": "x",
"xbins": {
"end": 0.39933993399339934,
"size": 0.05,
"start": 0.10022779043280182
},
"yaxis": "y"
},
{
"autobinx": false,
"histnorm": "probability density",
"legendgroup": "Python 3",
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"opacity": 0.7,
"type": "histogram",
"uid": "8d36ecad-ea75-11e8-a21c-d8c4973dfcaa",
"x": [
0.7499256616116563,
0.7399309551208285,
0.7176470588235294,
0.7056737588652482,
0.7078313253012049,
0.7701549162187796,
0.8058823529411765,
0.7350835322195705,
0.7351638618246236,
0.8134328358208955,
0.8356510745891277,
0.6830357142857143,
0.6006600660066007,
0.7086330935251799,
0.7244492596605273,
0.8748353096179183,
0.8200514138817481,
0.6214057507987221,
0.8997722095671982,
0.6563944530046225,
0.7188775510204082,
0.8011494252873563,
0.7378048780487805,
0.6810810810810811
],
"xaxis": "x",
"xbins": {
"end": 0.8997722095671982,
"size": 0.05,
"start": 0.6006600660066007
},
"yaxis": "y"
},
{
"legendgroup": "Python 2",
"marker": {
"color": "#386df9"
},
"mode": "lines",
"name": "Python 2",
"showlegend": false,
"type": "scatter",
"uid": "8d36ecae-ea75-11e8-8b08-d8c4973dfcaa",
"x": [
0.10022779043280182,
0.10082601471992302,
0.10142423900704421,
0.10202246329416541,
0.1026206875812866,
0.1032189118684078,
0.10381713615552898,
0.10441536044265018,
0.10501358472977138,
0.10561180901689257,
0.10621003330401377,
0.10680825759113496,
0.10740648187825616,
0.10800470616537736,
0.10860293045249855,
0.10920115473961975,
0.10979937902674095,
0.11039760331386214,
0.11099582760098334,
0.11159405188810452,
0.11219227617522572,
0.11279050046234691,
0.11338872474946811,
0.1139869490365893,
0.1145851733237105,
0.1151833976108317,
0.1157816218979529,
0.11637984618507408,
0.11697807047219527,
0.11757629475931647,
0.11817451904643766,
0.11877274333355886,
0.11937096762068006,
0.11996919190780125,
0.12056741619492245,
0.12116564048204365,
0.12176386476916484,
0.12236208905628604,
0.12296031334340723,
0.12355853763052843,
0.12415676191764963,
0.12475498620477081,
0.12535321049189202,
0.12595143477901322,
0.1265496590661344,
0.1271478833532556,
0.1277461076403768,
0.12834433192749797,
0.1289425562146192,
0.12954078050174037,
0.13013900478886156,
0.13073722907598276,
0.13133545336310395,
0.13193367765022515,
0.13253190193734635,
0.13313012622446754,
0.13372835051158874,
0.13432657479870994,
0.13492479908583113,
0.13552302337295233,
0.13612124766007352,
0.13671947194719472,
0.13731769623431592,
0.13791592052143709,
0.1385141448085583,
0.1391123690956795,
0.13971059338280067,
0.14030881766992187,
0.14090704195704307,
0.14150526624416426,
0.14210349053128546,
0.14270171481840666,
0.14329993910552785,
0.14389816339264905,
0.14449638767977024,
0.14509461196689144,
0.14569283625401264,
0.14629106054113383,
0.14688928482825503,
0.14748750911537623,
0.14808573340249742,
0.14868395768961862,
0.14928218197673981,
0.149880406263861,
0.1504786305509822,
0.1510768548381034,
0.1516750791252246,
0.1522733034123458,
0.152871527699467,
0.1534697519865882,
0.15406797627370938,
0.15466620056083058,
0.15526442484795178,
0.15586264913507297,
0.15646087342219414,
0.15705909770931534,
0.15765732199643656,
0.15825554628355773,
0.15885377057067893,
0.15945199485780012,
0.16005021914492132,
0.16064844343204251,
0.1612466677191637,
0.1618448920062849,
0.1624431162934061,
0.1630413405805273,
0.1636395648676485,
0.16423778915476966,
0.16483601344189086,
0.16543423772901206,
0.16603246201613328,
0.16663068630325448,
0.16722891059037565,
0.16782713487749684,
0.16842535916461804,
0.16902358345173923,
0.16962180773886043,
0.17022003202598163,
0.17081825631310282,
0.17141648060022402,
0.17201470488734522,
0.1726129291744664,
0.1732111534615876,
0.1738093777487088,
0.17440760203583,
0.1750058263229512,
0.1756040506100724,
0.1762022748971936,
0.17680049918431479,
0.17739872347143598,
0.17799694775855718,
0.17859517204567837,
0.17919339633279957,
0.17979162061992077,
0.18038984490704196,
0.18098806919416316,
0.18158629348128436,
0.18218451776840555,
0.18278274205552675,
0.18338096634264794,
0.1839791906297691,
0.1845774149168903,
0.1851756392040115,
0.18577386349113273,
0.18637208777825393,
0.1869703120653751,
0.1875685363524963,
0.1881667606396175,
0.18876498492673868,
0.18936320921385988,
0.18996143350098105,
0.19055965778810227,
0.19115788207522347,
0.19175610636234466,
0.19235433064946586,
0.19295255493658703,
0.19355077922370822,
0.19414900351082942,
0.19474722779795062,
0.1953454520850718,
0.195943676372193,
0.1965419006593142,
0.1971401249464354,
0.1977383492335566,
0.1983365735206778,
0.198934797807799,
0.1995330220949202,
0.20013124638204138,
0.20072947066916258,
0.20132769495628378,
0.20192591924340497,
0.20252414353052617,
0.20312236781764736,
0.20372059210476856,
0.20431881639188976,
0.20491704067901095,
0.20551526496613215,
0.20611348925325335,
0.20671171354037454,
0.20730993782749574,
0.20790816211461693,
0.20850638640173813,
0.20910461068885933,
0.2097028349759805,
0.21030105926310172,
0.21089928355022292,
0.2114975078373441,
0.2120957321244653,
0.21269395641158648,
0.21329218069870767,
0.21389040498582887,
0.21448862927295007,
0.2150868535600713,
0.21568507784719246,
0.21628330213431365,
0.21688152642143485,
0.21747975070855605,
0.21807797499567722,
0.2186761992827984,
0.2192744235699196,
0.21987264785704083,
0.22047087214416203,
0.2210690964312832,
0.2216673207184044,
0.2222655450055256,
0.22286376929264679,
0.22346199357976798,
0.22406021786688918,
0.22465844215401037,
0.22525666644113157,
0.22585489072825277,
0.22645311501537396,
0.22705133930249516,
0.22764956358961635,
0.22824778787673755,
0.22884601216385875,
0.22944423645097994,
0.23004246073810114,
0.23064068502522234,
0.23123890931234353,
0.23183713359946473,
0.23243535788658592,
0.23303358217370712,
0.23363180646082832,
0.2342300307479495,
0.2348282550350707,
0.2354264793221919,
0.2360247036093131,
0.2366229278964343,
0.2372211521835555,
0.2378193764706767,
0.2384176007577979,
0.23901582504491908,
0.23961404933204028,
0.24021227361916142,
0.24081049790628267,
0.24140872219340387,
0.24200694648052506,
0.24260517076764626,
0.2432033950547674,
0.24380161934188865,
0.2443998436290098,
0.244998067916131,
0.2455962922032522,
0.24619451649037338,
0.24679274077749463,
0.24739096506461578,
0.24798918935173697,
0.24858741363885817,
0.24918563792597936,
0.24978386221310056,
0.25038208650022176,
0.25098031078734295,
0.25157853507446415,
0.25217675936158535,
0.25277498364870654,
0.25337320793582774,
0.25397143222294893,
0.25456965651007013,
0.2551678807971913,
0.2557661050843125,
0.2563643293714337,
0.2569625536585549,
0.2575607779456761,
0.2581590022327973,
0.2587572265199185,
0.2593554508070397,
0.2599536750941609,
0.2605518993812821,
0.2611501236684033,
0.2617483479555245,
0.2623465722426457,
0.2629447965297669,
0.2635430208168881,
0.26414124510400927,
0.2647394693911304,
0.26533769367825166,
0.26593591796537286,
0.26653414225249406,
0.26713236653961525,
0.2677305908267364,
0.26832881511385764,
0.2689270394009788,
0.26952526368810004,
0.2701234879752212,
0.2707217122623424,
0.2713199365494636,
0.27191816083658477,
0.272516385123706,
0.27311460941082716,
0.27371283369794835,
0.27431105798506955,
0.27490928227219075,
0.275507506559312,
0.27610573084643314,
0.27670395513355434,
0.27730217942067553,
0.27790040370779673,
0.2784986279949179,
0.2790968522820391,
0.2796950765691603,
0.2802933008562815,
0.2808915251434027,
0.2814897494305239,
0.2820879737176451,
0.2826861980047663,
0.2832844222918875,
0.2838826465790087,
0.2844808708661299,
0.2850790951532511,
0.2856773194403723,
0.2862755437274935,
0.28687376801461467,
0.28747199230173587,
0.28807021658885706,
0.28866844087597826,
0.28926666516309946,
0.28986488945022065,
0.29046311373734185,
0.29106133802446305,
0.29165956231158424,
0.29225778659870544,
0.29285601088582663,
0.2934542351729478,
0.294052459460069,
0.29465068374719017,
0.2952489080343114,
0.2958471323214326,
0.29644535660855376,
0.297043580895675,
0.29764180518279615,
0.2982400294699174,
0.29883825375703854,
0.29943647804415974,
0.300034702331281,
0.30063292661840213,
0.3012311509055234,
0.3018293751926445,
0.3024275994797657,
0.3030258237668869,
0.3036240480540081,
0.3042222723411293,
0.3048204966282505,
0.3054187209153717,
0.3060169452024929,
0.3066151694896141,
0.3072133937767353,
0.3078116180638565,
0.3084098423509777,
0.3090080666380989,
0.3096062909252201,
0.31020451521234127,
0.31080273949946247,
0.31140096378658366,
0.31199918807370486,
0.31259741236082605,
0.31319563664794725,
0.31379386093506845,
0.31439208522218964,
0.31499030950931084,
0.31558853379643204,
0.31618675808355323,
0.31678498237067443,
0.3173832066577956,
0.3179814309449168,
0.318579655232038,
0.31917787951915916,
0.3197761038062804,
0.3203743280934016,
0.3209725523805228,
0.321570776667644,
0.32216900095476514,
0.3227672252418864,
0.32336544952900753,
0.3239636738161288,
0.32456189810325,
0.3251601223903711,
0.32575834667749237,
0.3263565709646135,
0.32695479525173476,
0.3275530195388559,
0.3281512438259771,
0.3287494681130983,
0.3293476924002195,
0.32994591668734075,
0.3305441409744619,
0.3311423652615831,
0.3317405895487043,
0.3323388138358255,
0.33293703812294667,
0.33353526241006787,
0.33413348669718906,
0.33473171098431026,
0.33532993527143146,
0.33592815955855265,
0.33652638384567385,
0.33712460813279505,
0.33772283241991624,
0.33832105670703744,
0.33891928099415863,
0.33951750528127983,
0.340115729568401,
0.3407139538555222,
0.3413121781426434,
0.3419104024297646,
0.3425086267168858,
0.343106851004007,
0.3437050752911282,
0.3443032995782494,
0.3449015238653706,
0.3454997481524918,
0.346097972439613,
0.3466961967267342,
0.3472944210138554,
0.3478926453009765,
0.3484908695880978,
0.34908909387521897,
0.34968731816234017,
0.35028554244946136,
0.35088376673658256,
0.35148199102370375,
0.35208021531082495,
0.3526784395979461,
0.35327666388506734,
0.35387488817218854,
0.35447311245930974,
0.35507133674643093,
0.3556695610335521,
0.35626778532067327,
0.3568660096077945,
0.3574642338949157,
0.35806245818203686,
0.35866068246915805,
0.35925890675627925,
0.3598571310434005,
0.3604553553305217,
0.36105357961764284,
0.36165180390476404,
0.36225002819188523,
0.3628482524790065,
0.3634464767661277,
0.3640447010532488,
0.36464292534037,
0.3652411496274912,
0.36583937391461246,
0.3664375982017336,
0.3670358224888548,
0.367634046775976,
0.3682322710630972,
0.36883049535021845,
0.3694287196373396,
0.3700269439244608,
0.370625168211582,
0.3712233924987032,
0.37182161678582437,
0.37241984107294557,
0.37301806536006676,
0.37361628964718796,
0.37421451393430916,
0.37481273822143035,
0.37541096250855155,
0.37600918679567275,
0.37660741108279394,
0.3772056353699151,
0.37780385965703633,
0.37840208394415753,
0.3790003082312787,
0.3795985325183999,
0.38019675680552106,
0.3807949810926423,
0.3813932053797635,
0.3819914296668847,
0.3825896539540059,
0.38318787824112704,
0.3837861025282483,
0.3843843268153695,
0.3849825511024907,
0.38558077538961183,
0.386178999676733,
0.3867772239638542,
0.3873754482509755,
0.38797367253809667,
0.3885718968252178,
0.389170121112339,
0.3897683453994602,
0.39036656968658145,
0.3909647939737026,
0.3915630182608238,
0.392161242547945,
0.3927594668350662,
0.39335769112218744,
0.3939559154093086,
0.3945541396964298,
0.39515236398355097,
0.39575058827067217,
0.39634881255779336,
0.39694703684491456,
0.39754526113203575,
0.39814348541915695,
0.39874170970627815
],
"xaxis": "x",
"y": [
1.016838593729262,
1.0276109046876407,
1.0384072843007583,
1.0492279395865136,
1.0600731247864656,
1.070943140545373,
1.0818383329812853,
1.0927590926467268,
1.1037058533817563,
1.1146790910599298,
1.125679322228439,
1.1367071026439457,
1.147763025705885,
1.1588477207892462,
1.169961851479105,
1.1811061137094152,
1.1922812338088191,
1.203487966456481,
1.2147270925511855,
1.2259994169971828,
1.2373057664105012,
1.2486469867496695,
1.2600239408750247,
1.2714375060409964,
1.2828885713259754,
1.2943780350045742,
1.3059068018673012,
1.3174757804928503,
1.3290858804783907,
1.3407380096334267,
1.3524330711429569,
1.364171960705815,
1.375955563654225,
1.3877847520607334,
1.3996603818388074,
1.4115832898434952,
1.4235542909786483,
1.4355741753172833,
1.4476437052417426,
1.4597636126103632,
1.471934595957421,
1.4841573177331313,
1.4964324015905213,
1.5087604297259734,
1.521141940280253,
1.5335774248067664,
1.5460673258137918,
1.5586120343873384,
1.5712118879012351,
1.583867167820927,
1.5965780976074153,
1.609344840727565,
1.6221674987769592,
1.6350461097212579,
1.6479806462618916,
1.6609710143317107,
1.674017051726033,
1.6871185268743059,
1.7002751377573746,
1.713486510975108,
1.7267522009688718,
1.740071689403074,
1.753444384709721,
1.766869621799623,
1.7803466619435924,
1.793874692826626,
1.807452828777786,
1.8210801111780823,
1.8347555090483623,
1.8484779198188286,
1.862246170281423,
1.8760590177259677,
1.8899151512605301,
1.9038131933161175,
1.9177517013353809,
1.9317291696446215,
1.9457440315079755,
1.9597946613622492,
1.973879377230438,
1.9879964433115906,
2.0021440727442,
2.0163204305399556,
2.0305236366842094,
2.0447517693991437,
2.059002868565181,
2.0732749392958,
2.0875659556604864,
2.101873864550173,
2.1161965896791255,
2.1305320357168482,
2.144878092543188,
2.1592326396195003,
2.173593550468319,
2.1879586972536846,
2.2023259554539214,
2.216693208618336,
2.2310583531990256,
2.2454193034486587,
2.2597739963748675,
2.2741203967415533,
2.288456502107259,
2.302780347890447,
2.3170900124513856,
2.3313836221801107,
2.345659356579796,
2.3599154533346827,
2.37415021335163,
2.388362005764216,
2.402549272888244,
2.416710535117431,
2.430844395748062,
2.4449495457213084,
2.4590247682719863,
2.473068943472503,
2.4870810526608174,
2.5010601827413397,
2.5150055303477514,
2.5289164058568803,
2.542792237242915,
2.556632573761403,
2.5704370894526742,
2.5842055864545705,
2.597937998114575,
2.6116343918917195,
2.6252949720389425,
2.6389200820568597,
2.652510206910258,
2.666065974998981,
2.679588159875225,
2.693077681699693,
2.7065356084294425,
2.719963156730712,
2.733361692610448,
2.7467327317607415,
2.760077939610861,
2.77339913108206,
2.7866982700408753,
2.799977468447144,
2.813238985193523,
2.8264852246338434,
2.839718734798202,
2.8529422052932714,
2.866158464886883,
2.879370478776549,
2.892581345542179,
2.905794293783848,
2.9190126784460846,
2.9322399768307745,
2.945479784301352,
2.9587358096816203,
2.972011870353104,
2.985311887055473,
2.9986398783951884,
3.0119999550681205,
3.0253963138024806,
3.038833231029008,
3.0523150562859365,
3.0658462053668387,
3.0794311532199963,
3.0930744266085286,
3.106780596541007,
3.1205542704828497,
3.134400084359263,
3.1483226943610196,
3.1623267685648138,
3.1764169783804186,
3.1905979898372685,
3.2048744547235497,
3.219251001591251,
3.2337322266409916,
3.248322684500839,
3.263026878913582,
3.277849253347304,
3.2927941815443114,
3.3078659580237715,
3.3230687885535963,
3.3384067806073228,
3.3538839338219253,
3.369504130472588,
3.385271125980615,
3.4011885394707395,
3.4172598443940854,
3.433488359233143,
3.44987723830505,
3.4664294626794443,
3.4831478312270994,
3.5000349518154468,
3.517093232666967,
3.534324873896247,
3.5517318592413707,
3.5693159480050163,
3.5870786672204584,
3.605021304057363,
3.6231448984819523,
3.6414502361858148,
3.65993784179724,
3.6786079723886393,
3.6974606112930934,
3.7164954622427553,
3.735711943841293,
3.7551091843820807,
3.7746860170233973,
3.794440975331279,
3.814372289200192,
3.83447788116108,
3.854755363085756,
3.875202033296046,
3.8958148740853753,
3.9165905496599605,
3.937525404506012,
3.958615462188763,
3.979856424588413,
4.001243671577397,
4.02277226114271,
4.044436929956256,
4.066232094395563,
4.088151852016347,
4.110189983477863,
4.132339954921069,
4.154594920799026,
4.1769477271581685,
4.19939091536838,
4.221916726299024,
4.244517104937442,
4.267183705445635,
4.289907896650189,
4.3126807679597245,
4.3354931357035715,
4.358335549884562,
4.381198301338234,
4.4040714292900525,
4.426944729301629,
4.449807761596242,
4.472649859753389,
4.495460139761478,
4.518227509417226,
4.540940678059644,
4.563588166626186,
4.586158318017843,
4.608639307759651,
4.631019154942585,
4.6532857334322575,
4.675426783329573,
4.697429922667923,
4.719282659331276,
4.7409724031770955,
4.762486478347662,
4.783812135753248,
4.804936565710064,
4.825846910715957,
4.8465302783464015,
4.866973754253278,
4.887164415248724,
4.907089342456264,
4.926735634511329,
4.946090420793173,
4.965140874670259,
4.983874226741071,
5.002277778052469,
5.020338913277649,
5.038045113835916,
5.055383970936647,
5.072343198529806,
5.08891064614578,
5.105074311607305,
5.120822353596556,
5.136143104060819,
5.1510250804402755,
5.165456997701884,
5.179427780163619,
5.192926573093674,
5.205942754069653,
5.218465944083141,
5.230486018375505,
5.2419931169912095,
5.25297765503537,
5.263430332622799,
5.273342144506276,
5.28270438937229,
5.291508678793041,
5.299746945824059,
5.307411453237326,
5.314494801380369,
5.32098993565246,
5.326890153589477,
5.332189111549803,
5.336880830994104,
5.340959704352476,
5.344420500473181,
5.347258369647633,
5.349468848207127,
5.351047862687335,
5.35199173355723,
5.352297178509781,
5.351961315312403,
5.350981664215711,
5.349356149919857,
5.3470831030983,
5.344161261479456,
5.340589770487389,
5.3363681834432,
5.331496461329456,
5.325974972120539,
5.31980448968242,
5.31298619224587,
5.305521660457776,
5.297412875015647,
5.28866221389106,
5.279272449148187,
5.26924674336415,
5.258588645658366,
5.247302087338548,
5.235391377171464,
5.222861196286981,
5.2097165927244005,
5.195962975630367,
5.18160610911813,
5.166652105798254,
5.151107419991158,
5.134978840632284,
5.118273483880899,
5.100998785443893,
5.083162492626093,
5.064772656118978,
5.045837621539771,
5.02636602073316,
5.0063667628480095,
4.985849025201677,
4.964822243944539,
4.943296104537547,
4.921280532055726,
4.898785681330484,
4.875821926943824,
4.852399853087396,
4.828530243299495,
4.80422407009299,
4.779492484487188,
4.754346805456615,
4.728798509309522,
4.702859219009046,
4.676540693449579,
4.649854816701059,
4.622813587233568,
4.595429107134548,
4.56771357133081,
4.539679256827282,
4.511338511974254,
4.482703745774727,
4.4537874172431895,
4.424602024826954,
4.395160095900955,
4.3654741763466,
4.335556820225104,
4.305420579555339,
4.275077994206087,
4.244541581912201,
4.213823828423894,
4.182937177798138,
4.151894022840793,
4.12070669570774,
4.089387458673099,
4.057948495072141,
4.026401900426284,
3.994759673757181,
3.9630337090966092,
3.9312357871985153,
3.899377567459227,
3.86747058005153,
3.835526218278026,
3.803555731148659,
3.771570216187233,
3.739580612471211,
3.707597693908804,
3.6756320627571104,
3.6436941433845726,
3.611794176280915,
3.579942212317177,
3.5481481072583057,
3.516421516530443,
3.4847718902445504,
3.453208468478067,
3.4217402768155636,
3.3903761221494624,
3.3591245887413343,
3.327994034544101,
3.2969925877852404,
3.26612814381068,
3.235408362188999,
3.2048406640750993,
3.174432229832387,
3.1441899969122202,
3.1141206579891274,
3.0842306593500894,
3.0545261995359376,
3.025013228232715,
2.9956974454106167,
2.9665843007079498,
2.9376789930573164,
2.9089864705510724,
2.880511430542881,
2.8522583199820635,
2.824231335977215,
2.796434426585424,
2.768871291823268,
2.741545384895615,
2.7144599136380694,
2.6876178421688355,
2.6610218927455698,
2.6346745478226903,
2.6085780523045154,
2.5827344159894348,
2.5571454162002496,
2.5318126005957007,
2.506737290158094,
2.481920582351857,
2.4573633544477347,
2.433066267007349,
2.4090297675225942,
2.385254094204465,
2.3617392799157004,
2.338485156241638,
2.3154913576935923,
2.2927573260390144,
2.2702823147526483,
2.2480653935828974,
2.226105453227449,
2.204401210112356,
2.182951211268585,
2.161753839300094,
2.140807317437482,
2.120109714671212,
2.09965895095838,
2.0794528024970833,
2.0594889070623372,
2.039764769397534,
2.02027776665547,
2.001025153882923,
1.9820040695428223,
1.9632115410680693,
1.9446444904410425,
1.9262997397929278,
1.9081740170169676,
1.8902639613898211,
1.8725661291952533,
1.8550769993443736,
1.837792978986781,
1.8207104091069133,
1.8038255701001096,
1.7871346873227865,
1.7706339366113357,
1.7543194497643668,
1.738187319982959,
1.7222336072637858,
1.7064543437399102,
1.690845538964268,
1.6754031851308793,
1.660123262228957,
1.6450017431251764,
1.630034598569483,
1.6152178021199313,
1.6005473349821497,
1.5860191907591776,
1.5716293801075125,
1.5573739352953644,
1.543248914659222,
1.5292504069550201,
1.515374535600251,
1.5016174628036287,
1.4879753935789524,
1.4744445796400338,
1.4610213231737066,
1.4477019804880393,
1.4344829655331228,
1.4213607532918855,
1.4083318830386173,
1.3953929614630258,
1.3825406656578068,
1.3697717459679386,
1.3570830287000168,
1.3444714186901974,
1.3319339017294258,
1.3194675468448698,
1.3070695084366153,
1.2947370282688877,
1.2824674373152558,
1.2702581574574154,
1.2581067030373907,
1.2460106822631236,
1.233967798467651,
1.221975851222211,
1.210032737303829,
1.1981364515181043,
1.1862850873780861,
1.1744768376403405,
1.1627099946994308,
1.1509829508422553,
1.1392941983638243,
1.1276423295462454,
1.1160260365028312,
1.10444411088942
],
"yaxis": "y"
},
{
"legendgroup": "Python 3",
"marker": {
"color": "#12c8e6"
},
"mode": "lines",
"name": "Python 3",
"showlegend": false,
"type": "scatter",
"uid": "8d36ecaf-ea75-11e8-93e2-d8c4973dfcaa",
"x": [
0.6006600660066007,
0.6012582902937219,
0.6018565145808431,
0.6024547388679643,
0.6030529631550855,
0.6036511874422067,
0.6042494117293279,
0.6048476360164491,
0.6054458603035703,
0.6060440845906915,
0.6066423088778127,
0.6072405331649339,
0.6078387574520551,
0.6084369817391763,
0.6090352060262975,
0.6096334303134187,
0.6102316546005399,
0.610829878887661,
0.6114281031747822,
0.6120263274619034,
0.6126245517490246,
0.6132227760361458,
0.613821000323267,
0.6144192246103882,
0.6150174488975094,
0.6156156731846306,
0.6162138974717518,
0.616812121758873,
0.6174103460459942,
0.6180085703331154,
0.6186067946202366,
0.6192050189073578,
0.619803243194479,
0.6204014674816002,
0.6209996917687214,
0.6215979160558426,
0.6221961403429638,
0.622794364630085,
0.6233925889172062,
0.6239908132043274,
0.6245890374914486,
0.6251872617785696,
0.6257854860656908,
0.626383710352812,
0.6269819346399332,
0.6275801589270544,
0.6281783832141756,
0.6287766075012968,
0.629374831788418,
0.6299730560755392,
0.6305712803626604,
0.6311695046497816,
0.6317677289369028,
0.632365953224024,
0.6329641775111452,
0.6335624017982664,
0.6341606260853876,
0.6347588503725088,
0.63535707465963,
0.6359552989467512,
0.6365535232338724,
0.6371517475209936,
0.6377499718081148,
0.638348196095236,
0.6389464203823572,
0.6395446446694784,
0.6401428689565996,
0.6407410932437207,
0.641339317530842,
0.6419375418179631,
0.6425357661050843,
0.6431339903922055,
0.6437322146793267,
0.6443304389664479,
0.6449286632535691,
0.6455268875406903,
0.6461251118278115,
0.6467233361149327,
0.6473215604020539,
0.6479197846891751,
0.6485180089762963,
0.6491162332634175,
0.6497144575505387,
0.6503126818376599,
0.6509109061247811,
0.6515091304119023,
0.6521073546990235,
0.6527055789861447,
0.6533038032732659,
0.6539020275603871,
0.6545002518475083,
0.6550984761346295,
0.6556967004217507,
0.6562949247088719,
0.656893148995993,
0.6574913732831142,
0.6580895975702354,
0.6586878218573566,
0.6592860461444778,
0.659884270431599,
0.6604824947187202,
0.6610807190058414,
0.6616789432929626,
0.6622771675800838,
0.662875391867205,
0.6634736161543262,
0.6640718404414474,
0.6646700647285686,
0.6652682890156898,
0.665866513302811,
0.6664647375899322,
0.6670629618770534,
0.6676611861641746,
0.6682594104512958,
0.668857634738417,
0.6694558590255382,
0.6700540833126594,
0.6706523075997806,
0.6712505318869018,
0.671848756174023,
0.6724469804611442,
0.6730452047482653,
0.6736434290353865,
0.6742416533225077,
0.6748398776096289,
0.6754381018967501,
0.6760363261838712,
0.6766345504709925,
0.6772327747581137,
0.6778309990452349,
0.6784292233323561,
0.6790274476194772,
0.6796256719065984,
0.6802238961937196,
0.6808221204808408,
0.681420344767962,
0.6820185690550832,
0.6826167933422044,
0.6832150176293256,
0.6838132419164468,
0.684411466203568,
0.6850096904906892,
0.6856079147778104,
0.6862061390649316,
0.6868043633520527,
0.687402587639174,
0.6880008119262951,
0.6885990362134163,
0.6891972605005375,
0.6897954847876587,
0.6903937090747799,
0.6909919333619011,
0.6915901576490223,
0.6921883819361435,
0.6927866062232647,
0.6933848305103859,
0.6939830547975071,
0.6945812790846283,
0.6951795033717495,
0.6957777276588707,
0.6963759519459919,
0.6969741762331131,
0.6975724005202343,
0.6981706248073555,
0.6987688490944767,
0.6993670733815979,
0.6999652976687191,
0.7005635219558403,
0.7011617462429615,
0.7017599705300827,
0.7023581948172039,
0.702956419104325,
0.7035546433914462,
0.7041528676785674,
0.7047510919656886,
0.7053493162528098,
0.705947540539931,
0.7065457648270522,
0.7071439891141734,
0.7077422134012946,
0.7083404376884158,
0.708938661975537,
0.7095368862626582,
0.7101351105497794,
0.7107333348369006,
0.7113315591240218,
0.711929783411143,
0.7125280076982642,
0.7131262319853854,
0.7137244562725066,
0.7143226805596278,
0.714920904846749,
0.7155191291338702,
0.7161173534209914,
0.7167155777081126,
0.7173138019952338,
0.717912026282355,
0.7185102505694761,
0.7191084748565973,
0.7197066991437184,
0.7203049234308397,
0.7209031477179609,
0.7215013720050821,
0.7220995962922033,
0.7226978205793244,
0.7232960448664456,
0.7238942691535668,
0.724492493440688,
0.7250907177278092,
0.7256889420149304,
0.7262871663020516,
0.7268853905891728,
0.727483614876294,
0.7280818391634152,
0.7286800634505364,
0.7292782877376576,
0.7298765120247788,
0.7304747363119,
0.7310729605990212,
0.7316711848861424,
0.7322694091732636,
0.7328676334603847,
0.733465857747506,
0.7340640820346271,
0.7346623063217483,
0.7352605306088695,
0.7358587548959907,
0.7364569791831119,
0.7370552034702331,
0.7376534277573543,
0.7382516520444755,
0.7388498763315967,
0.7394481006187179,
0.7400463249058391,
0.7406445491929603,
0.7412427734800815,
0.7418409977672027,
0.7424392220543239,
0.7430374463414451,
0.7436356706285663,
0.7442338949156875,
0.7448321192028087,
0.7454303434899299,
0.7460285677770511,
0.7466267920641723,
0.7472250163512935,
0.7478232406384147,
0.7484214649255359,
0.749019689212657,
0.7496179134997782,
0.7502161377868994,
0.7508143620740206,
0.7514125863611418,
0.752010810648263,
0.7526090349353842,
0.7532072592225054,
0.7538054835096266,
0.7544037077967478,
0.755001932083869,
0.7556001563709902,
0.7561983806581114,
0.7567966049452326,
0.7573948292323538,
0.757993053519475,
0.7585912778065962,
0.7591895020937174,
0.7597877263808386,
0.7603859506679598,
0.760984174955081,
0.7615823992422022,
0.7621806235293234,
0.7627788478164446,
0.7633770721035658,
0.763975296390687,
0.7645735206778081,
0.7651717449649293,
0.7657699692520505,
0.7663681935391717,
0.7669664178262929,
0.7675646421134141,
0.7681628664005353,
0.7687610906876565,
0.7693593149747777,
0.7699575392618989,
0.7705557635490201,
0.7711539878361413,
0.7717522121232625,
0.7723504364103837,
0.7729486606975049,
0.7735468849846261,
0.7741451092717473,
0.7747433335588685,
0.7753415578459897,
0.7759397821331108,
0.7765380064202321,
0.7771362307073533,
0.7777344549944745,
0.7783326792815957,
0.7789309035687167,
0.779529127855838,
0.7801273521429591,
0.7807255764300804,
0.7813238007172016,
0.7819220250043227,
0.782520249291444,
0.7831184735785651,
0.7837166978656864,
0.7843149221528075,
0.7849131464399287,
0.7855113707270499,
0.7861095950141711,
0.7867078193012923,
0.7873060435884135,
0.7879042678755347,
0.7885024921626559,
0.7891007164497771,
0.7896989407368983,
0.7902971650240195,
0.7908953893111407,
0.7914936135982619,
0.7920918378853831,
0.7926900621725043,
0.7932882864596255,
0.7938865107467467,
0.7944847350338679,
0.795082959320989,
0.7956811836081102,
0.7962794078952314,
0.7968776321823526,
0.7974758564694738,
0.798074080756595,
0.7986723050437162,
0.7992705293308374,
0.7998687536179586,
0.8004669779050798,
0.801065202192201,
0.8016634264793222,
0.8022616507664434,
0.8028598750535646,
0.8034580993406858,
0.804056323627807,
0.8046545479149282,
0.8052527722020494,
0.8058509964891706,
0.8064492207762918,
0.807047445063413,
0.8076456693505342,
0.8082438936376554,
0.8088421179247766,
0.8094403422118978,
0.810038566499019,
0.8106367907861401,
0.8112350150732613,
0.8118332393603825,
0.8124314636475037,
0.8130296879346249,
0.8136279122217461,
0.8142261365088672,
0.8148243607959885,
0.8154225850831097,
0.8160208093702309,
0.8166190336573521,
0.8172172579444732,
0.8178154822315945,
0.8184137065187156,
0.8190119308058369,
0.819610155092958,
0.8202083793800792,
0.8208066036672005,
0.8214048279543216,
0.8220030522414429,
0.822601276528564,
0.8231995008156852,
0.8237977251028064,
0.8243959493899276,
0.8249941736770487,
0.8255923979641699,
0.8261906222512911,
0.8267888465384123,
0.8273870708255335,
0.8279852951126547,
0.8285835193997759,
0.8291817436868971,
0.8297799679740183,
0.8303781922611395,
0.8309764165482607,
0.8315746408353819,
0.8321728651225031,
0.8327710894096243,
0.8333693136967455,
0.8339675379838667,
0.8345657622709879,
0.8351639865581091,
0.8357622108452303,
0.8363604351323515,
0.8369586594194727,
0.8375568837065939,
0.8381551079937151,
0.8387533322808363,
0.8393515565679575,
0.8399497808550787,
0.8405480051421998,
0.841146229429321,
0.8417444537164422,
0.8423426780035634,
0.8429409022906846,
0.8435391265778058,
0.844137350864927,
0.8447355751520482,
0.8453337994391694,
0.8459320237262906,
0.8465302480134118,
0.847128472300533,
0.8477266965876542,
0.8483249208747754,
0.8489231451618966,
0.8495213694490178,
0.850119593736139,
0.8507178180232602,
0.8513160423103814,
0.8519142665975026,
0.8525124908846238,
0.853110715171745,
0.8537089394588662,
0.8543071637459874,
0.8549053880331086,
0.8555036123202298,
0.856101836607351,
0.8567000608944721,
0.8572982851815933,
0.8578965094687145,
0.8584947337558357,
0.8590929580429569,
0.8596911823300781,
0.8602894066171993,
0.8608876309043205,
0.8614858551914417,
0.8620840794785629,
0.8626823037656841,
0.8632805280528053,
0.8638787523399265,
0.8644769766270477,
0.8650752009141689,
0.8656734252012901,
0.8662716494884113,
0.8668698737755325,
0.8674680980626537,
0.8680663223497749,
0.8686645466368961,
0.8692627709240173,
0.8698609952111385,
0.8704592194982597,
0.8710574437853809,
0.871655668072502,
0.8722538923596233,
0.8728521166467444,
0.8734503409338656,
0.8740485652209868,
0.874646789508108,
0.8752450137952292,
0.8758432380823504,
0.8764414623694716,
0.8770396866565928,
0.8776379109437139,
0.8782361352308352,
0.8788343595179564,
0.8794325838050776,
0.8800308080921988,
0.8806290323793199,
0.8812272566664412,
0.8818254809535624,
0.8824237052406836,
0.8830219295278047,
0.8836201538149259,
0.8842183781020472,
0.8848166023891684,
0.8854148266762896,
0.8860130509634107,
0.8866112752505318,
0.8872094995376532,
0.8878077238247744,
0.8884059481118955,
0.8890041723990166,
0.8896023966861378,
0.8902006209732591,
0.8907988452603803,
0.8913970695475014,
0.8919952938346226,
0.8925935181217438,
0.8931917424088651,
0.8937899666959863,
0.8943881909831074,
0.8949864152702286,
0.8955846395573498,
0.896182863844471,
0.8967810881315922,
0.8973793124187134,
0.8979775367058346,
0.8985757609929558,
0.899173985280077
],
"xaxis": "x",
"y": [
1.0928954434851446,
1.104444110889421,
1.116026036502832,
1.1276423295462463,
1.1392941983638252,
1.150982950842256,
1.1627099946994317,
1.1744768376403414,
1.186285087378087,
1.1981364515181054,
1.2100327373038309,
1.221975851222212,
1.2339677984676516,
1.2460106822631247,
1.2581067030373918,
1.2702581574574172,
1.282467437315257,
1.2947370282688888,
1.3070695084366162,
1.3194675468448722,
1.3319339017294278,
1.3444714186901983,
1.357083028700018,
1.36977174596794,
1.3825406656578092,
1.3953929614630283,
1.4083318830386198,
1.4213607532918864,
1.4344829655331248,
1.447701980488042,
1.461021323173709,
1.4744445796400358,
1.4879753935789535,
1.5016174628036307,
1.5153745356002533,
1.5292504069550226,
1.5432489146592248,
1.5573739352953655,
1.5716293801075152,
1.58601919075918,
1.6005473349821522,
1.6152178021199308,
1.630034598569483,
1.645001743125176,
1.6601232622289566,
1.6754031851308793,
1.6908455389642678,
1.7064543437399098,
1.7222336072637858,
1.7381873199829587,
1.7543194497643664,
1.7706339366113368,
1.787134687322786,
1.8038255701001096,
1.8207104091069128,
1.8377929789867806,
1.8550769993443752,
1.872566129195253,
1.8902639613898207,
1.908174017016967,
1.9262997397929293,
1.9446444904410436,
1.963211541068069,
1.9820040695428223,
2.0010251538829222,
2.0202777666554708,
2.0397647693975354,
2.0594889070623363,
2.0794528024970824,
2.0996589509583794,
2.120109714671213,
2.140807317437484,
2.161753839300094,
2.1829512112685845,
2.204401210112357,
2.2261054532274502,
2.2480653935828987,
2.27028231475265,
2.2927573260390135,
2.315491357693594,
2.3384851562416396,
2.3617392799157018,
2.3852540942044667,
2.4090297675225956,
2.433066267007351,
2.4573633544477365,
2.481920582351856,
2.5067372901580964,
2.5318126005957025,
2.5571454162002505,
2.582734415989436,
2.6085780523045177,
2.634674547822692,
2.6610218927455715,
2.6876178421688377,
2.7144599136380707,
2.741545384895617,
2.7688712918232703,
2.7964344265854253,
2.8242313359772173,
2.8522583199820652,
2.8805114305428825,
2.9089864705510737,
2.9376789930573186,
2.9665843007079515,
2.995697445410619,
3.0250132282327167,
3.05452619953594,
3.0842306593500908,
3.1141206579891296,
3.1441899969122216,
3.1744322298323886,
3.204840664075101,
3.2354083621890006,
3.266128143810682,
3.296992587785242,
3.3279940345441057,
3.3591245887413357,
3.3903761221494646,
3.421740276815566,
3.4532084684780693,
3.4847718902445557,
3.5164215165304444,
3.548148107258311,
3.5799422123171794,
3.6117941762809203,
3.6436941433845713,
3.6756320627571126,
3.707597693908808,
3.7395806124712143,
3.7715702161872375,
3.803555731148658,
3.8355262182780256,
3.867470580051529,
3.8993775674592226,
3.931235787198515,
3.963033709096609,
3.994759673757179,
4.026401900426283,
4.057948495072139,
4.089387458673098,
4.120706695707737,
4.151894022840791,
4.182937177798138,
4.213823828423893,
4.244541581912201,
4.275077994206087,
4.305420579555338,
4.3355568202251025,
4.365474176346599,
4.395160095900954,
4.424602024826953,
4.453787417243189,
4.482703745774725,
4.511338511974255,
4.539679256827281,
4.567713571330809,
4.595429107134547,
4.622813587233567,
4.649854816701058,
4.676540693449578,
4.702859219009044,
4.728798509309522,
4.754346805456614,
4.779492484487189,
4.804224070092989,
4.828530243299495,
4.852399853087395,
4.875821926943823,
4.898785681330484,
4.921280532055725,
4.943296104537547,
4.964822243944539,
4.985849025201677,
5.00636676284801,
5.026366020733159,
5.045837621539773,
5.064772656118977,
5.083162492626093,
5.100998785443894,
5.1182734838809,
5.134978840632285,
5.15110741999116,
5.166652105798255,
5.181606109118132,
5.195962975630369,
5.209716592724401,
5.222861196286981,
5.235391377171465,
5.247302087338548,
5.2585886456583655,
5.26924674336415,
5.279272449148189,
5.288662213891061,
5.297412875015649,
5.305521660457777,
5.31298619224587,
5.31980448968242,
5.32597497212054,
5.331496461329455,
5.336368183443201,
5.340589770487389,
5.344161261479456,
5.347083103098301,
5.349356149919857,
5.35098166421571,
5.351961315312403,
5.352297178509782,
5.35199173355723,
5.351047862687335,
5.349468848207126,
5.347258369647632,
5.3444205004731815,
5.340959704352476,
5.336880830994104,
5.3321891115498055,
5.326890153589477,
5.320989935652462,
5.314494801380369,
5.307411453237325,
5.299746945824061,
5.291508678793042,
5.282704389372291,
5.273342144506275,
5.263430332622799,
5.25297765503537,
5.2419931169912095,
5.230486018375506,
5.218465944083141,
5.205942754069653,
5.192926573093675,
5.179427780163619,
5.165456997701884,
5.1510250804402755,
5.136143104060821,
5.120822353596557,
5.105074311607305,
5.088910646145781,
5.072343198529806,
5.055383970936649,
5.038045113835919,
5.020338913277648,
5.00227777805247,
4.9838742267410705,
4.96514087467026,
4.9460904207931735,
4.92673563451133,
4.907089342456265,
4.887164415248725,
4.866973754253279,
4.846530278346402,
4.825846910715957,
4.804936565710066,
4.783812135753249,
4.762486478347664,
4.740972403177093,
4.719282659331276,
4.697429922667925,
4.6754267833295735,
4.6532857334322575,
4.631019154942586,
4.608639307759652,
4.586158318017841,
4.563588166626185,
4.540940678059643,
4.518227509417225,
4.495460139761479,
4.472649859753388,
4.449807761596241,
4.426944729301629,
4.404071429290051,
4.381198301338232,
4.358335549884562,
4.33549313570357,
4.312680767959724,
4.2899078966501865,
4.267183705445635,
4.24451710493744,
4.221916726299025,
4.19939091536838,
4.176947727158169,
4.154594920799026,
4.132339954921068,
4.110189983477863,
4.088151852016346,
4.066232094395562,
4.044436929956256,
4.022772261142709,
4.001243671577396,
3.9798564245884114,
3.958615462188763,
3.93752540450601,
3.916590549659959,
3.895814874085379,
3.875202033296045,
3.854755363085756,
3.834477881161078,
3.814372289200192,
3.7944409753312818,
3.774686017023395,
3.7551091843820825,
3.7357119438412907,
3.716495462242754,
3.697460611293095,
3.678607972388638,
3.6599378417972432,
3.6414502361858125,
3.6231448984819545,
3.605021304057364,
3.5870786672204598,
3.5693159480050167,
3.5517318592413725,
3.53432487389625,
3.517093232666967,
3.500034951815447,
3.4831478312270994,
3.466429462679445,
3.449877238305052,
3.4334883592331438,
3.417259844394087,
3.4011885394707395,
3.385271125980616,
3.3695041304725883,
3.353883933821926,
3.3384067806073237,
3.3230687885535977,
3.307865958023773,
3.292794181544312,
3.2778492533473043,
3.263026878913583,
3.24832268450084,
3.233732226640992,
3.219251001591251,
3.2048744547235506,
3.1905979898372685,
3.1764169783804195,
3.162326768564814,
3.14832269436102,
3.1344000843592643,
3.1205542704828497,
3.106780596541008,
3.0930744266085286,
3.0794311532199963,
3.0658462053668396,
3.052315056285937,
3.0388332310290083,
3.0253963138024806,
3.01199995506812,
2.998639878395189,
2.985311887055473,
2.972011870353104,
2.9587358096816208,
2.9454797843013516,
2.932239976830775,
2.9190126784460846,
2.9057942937838472,
2.892581345542179,
2.87937047877655,
2.866158464886883,
2.8529422052932714,
2.8397187347982014,
2.8264852246338434,
2.813238985193524,
2.799977468447143,
2.7866982700408776,
2.7733991310820594,
2.7600779396108623,
2.746732731760743,
2.733361692610447,
2.7199631567307128,
2.7065356084294416,
2.693077681699694,
2.6795881598752267,
2.666065974998983,
2.65251020691026,
2.638920082056862,
2.625294972038944,
2.6116343918917213,
2.5979379981145767,
2.584205586454573,
2.570437089452676,
2.5566325737614046,
2.542792237242917,
2.5289164058568816,
2.515005530347753,
2.5010601827413415,
2.487081052660819,
2.4730689434725046,
2.4590247682719886,
2.44494954572131,
2.4308443957480628,
2.4167105351174327,
2.4025492728882463,
2.3883620057642174,
2.374150213351631,
2.3599154533346836,
2.345659356579797,
2.3313836221801125,
2.3170900124513865,
2.302780347890447,
2.2884565021072603,
2.2741203967415538,
2.2597739963748684,
2.2454193034486596,
2.2310583531990256,
2.2166932086183375,
2.2023259554539227,
2.187958697253685,
2.173593550468319,
2.1592326396195003,
2.144878092543189,
2.1305320357168487,
2.1161965896791264,
2.1018738645501736,
2.0875659556604864,
2.0732749392958003,
2.0590028685651816,
2.044751769399144,
2.0305236366842094,
2.016320430539956,
2.0021440727442,
1.9879964433115909,
1.9738793772304382,
1.95979466136225,
1.945744031507976,
1.9317291696446215,
1.9177517013353813,
1.903813193316118,
1.8899151512605301,
1.8760590177259677,
1.862246170281423,
1.8484779198188295,
1.834755509048363,
1.8210801111780826,
1.8074528287777865,
1.793874692826626,
1.780346661943592,
1.7668696217996238,
1.753444384709721,
1.740071689403074,
1.7267522009688714,
1.713486510975108,
1.7002751377573746,
1.6871185268743054,
1.674017051726033,
1.6609710143317105,
1.6479806462618913,
1.6350461097212574,
1.622167498776959,
1.6093448407275646,
1.596578097607415,
1.583867167820927,
1.5712118879012342,
1.5586120343873384,
1.546067325813791,
1.5335774248067655,
1.5211419402802524,
1.5087604297259727,
1.4964324015905204,
1.4841573177331306,
1.4719345959574204,
1.4597636126103624,
1.4476437052417417,
1.4355741753172848,
1.4235542909786478,
1.4115832898434946,
1.3996603818388067,
1.3877847520607327,
1.3759555636542264,
1.3641719607058143,
1.352433071142956,
1.3407380096334258,
1.329085880478392,
1.3174757804928514,
1.3059068018673001,
1.294378035004573,
1.2828885713259743,
1.2714375060409975,
1.2600239408750258,
1.2486469867496683,
1.2373057664105,
1.225999416997182,
1.2147270925511866,
1.2034879664564821,
1.192281233808818,
1.1811061137094139,
1.169961851479106,
1.1588477207892474,
1.147763025705886,
1.1367071026439444,
1.1256793222284376,
1.1146790910599307,
1.1037058533817572,
1.0927590926467277,
1.081838332981286,
1.0709431405453735,
1.060073124786466,
1.049227939586514,
1.0384072843007586,
1.0276109046876416
],
"yaxis": "y"
},
{
"legendgroup": "Python 2",
"marker": {
"color": "#386df9",
"symbol": "line-ns-open"
},
"mode": "markers",
"name": "Python 2",
"showlegend": false,
"type": "scatter",
"uid": "8d36ecb0-ea75-11e8-ac7d-d8c4973dfcaa",
"x": [
0.25007433838834375,
0.2600690448791715,
0.2823529411764706,
0.29432624113475175,
0.2921686746987952,
0.22984508378122037,
0.19411764705882353,
0.2649164677804296,
0.26483613817537643,
0.1865671641791045,
0.16434892541087232,
0.3169642857142857,
0.39933993399339934,
0.29136690647482016,
0.27555074033947274,
0.1251646903820817,
0.17994858611825193,
0.37859424920127793,
0.10022779043280182,
0.3436055469953775,
0.2811224489795918,
0.19885057471264367,
0.2621951219512195,
0.31891891891891894
],
"xaxis": "x",
"y": [
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2"
],
"yaxis": "y2"
},
{
"legendgroup": "Python 3",
"marker": {
"color": "#12c8e6",
"symbol": "line-ns-open"
},
"mode": "markers",
"name": "Python 3",
"showlegend": false,
"type": "scatter",
"uid": "8d36ecb1-ea75-11e8-bba9-d8c4973dfcaa",
"x": [
0.7499256616116563,
0.7399309551208285,
0.7176470588235294,
0.7056737588652482,
0.7078313253012049,
0.7701549162187796,
0.8058823529411765,
0.7350835322195705,
0.7351638618246236,
0.8134328358208955,
0.8356510745891277,
0.6830357142857143,
0.6006600660066007,
0.7086330935251799,
0.7244492596605273,
0.8748353096179183,
0.8200514138817481,
0.6214057507987221,
0.8997722095671982,
0.6563944530046225,
0.7188775510204082,
0.8011494252873563,
0.7378048780487805,
0.6810810810810811
],
"xaxis": "x",
"y": [
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3"
],
"yaxis": "y2"
}
],
"layout": {
"barmode": "overlay",
"hovermode": "closest",
"legend": {
"traceorder": "reversed"
},
"xaxis": {
"anchor": "y2",
"domain": [
0,
1
],
"zeroline": false
},
"yaxis": {
"anchor": "free",
"domain": [
0.35,
1
],
"position": 0
},
"yaxis2": {
"anchor": "x",
"domain": [
0,
0.25
],
"dtick": 1,
"showticklabels": false
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"fig = ff.create_distplot(hist_data=[frameworks_pyver.loc['Python 2'], frameworks_pyver.loc['Python 3']], group_labels=['Python 2', 'Python 3'], bin_size=0.05, colors=colors)\n",
"# go.FigureWidget(fig)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"name": "Python 2",
"type": "scatter",
"uid": "8d456b9a-ea75-11e8-8a8d-d8c4973dfcaa",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": [
0.25007433838834375,
0.2600690448791715,
0.2823529411764706,
0.29432624113475175,
0.2921686746987952,
0.22984508378122037,
0.19411764705882353,
0.2649164677804296,
0.26483613817537643,
0.1865671641791045,
0.16434892541087232,
0.3169642857142857,
0.39933993399339934,
0.29136690647482016,
0.27555074033947274,
0.1251646903820817,
0.17994858611825193,
0.37859424920127793,
0.10022779043280182,
0.3436055469953775,
0.2811224489795918,
0.19885057471264367,
0.2621951219512195,
0.31891891891891894
]
},
{
"marker": {
"color": "#12c8e6"
},
"mode": "markers",
"name": "Python 3",
"type": "scatter",
"uid": "8d456b9b-ea75-11e8-9314-d8c4973dfcaa",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": [
0.7499256616116563,
0.7399309551208285,
0.7176470588235294,
0.7056737588652482,
0.7078313253012049,
0.7701549162187796,
0.8058823529411765,
0.7350835322195705,
0.7351638618246236,
0.8134328358208955,
0.8356510745891277,
0.6830357142857143,
0.6006600660066007,
0.7086330935251799,
0.7244492596605273,
0.8748353096179183,
0.8200514138817481,
0.6214057507987221,
0.8997722095671982,
0.6563944530046225,
0.7188775510204082,
0.8011494252873563,
0.7378048780487805,
0.6810810810810811
]
}
],
"layout": {
"title": "Python 2 and Python 3 Usage among Frameworks"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"py2 = go.Scatter(x=frameworks_pyver.columns, y=frameworks_pyver.loc['Python 2'], mode='markers', marker={'color': colors[0]}, name='Python 2')\n",
"py3 = go.Scatter(x=frameworks_pyver.columns, y=frameworks_pyver.loc['Python 3'], mode='markers', marker={'color': colors[1]}, name='Python 3')\n",
"\n",
"data = [py2, py3]\n",
"layout = go.Layout(title='Python 2 and Python 3 Usage among Frameworks')\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"name": "Python 2",
"orientation": "h",
"type": "scatter",
"uid": "8d4f569c-ea75-11e8-9149-d8c4973dfcaa",
"x": [
0.31891891891891894,
0.2621951219512195,
0.19885057471264367,
0.2811224489795918,
0.3436055469953775,
0.10022779043280182,
0.37859424920127793,
0.17994858611825193,
0.1251646903820817,
0.27555074033947274,
0.29136690647482016,
0.39933993399339934,
0.3169642857142857,
0.16434892541087232,
0.1865671641791045,
0.26483613817537643,
0.2649164677804296,
0.19411764705882353,
0.22984508378122037,
0.2921686746987952,
0.29432624113475175,
0.2823529411764706,
0.2600690448791715,
0.25007433838834375
],
"y": [
"komodo ide",
"komodo editor",
"jupyter notebook",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"other - write in",
"aiohttp",
"six",
"kivy",
"asyncio",
"requests",
"pyramid",
"twisted",
"cherrypy",
"pygame",
"tkinter",
"pyqt / pygtk / wxpython",
"pillow",
"keras / theano / tensorflow / scikit-learn and similar",
"numpy / pandas / matplotlib / scipy and similar",
"web2py",
"bottle",
"tornado",
"flask",
"django"
]
},
{
"marker": {
"color": "#12c8e6"
},
"mode": "markers",
"name": "Python 3",
"orientation": "h",
"type": "scatter",
"uid": "8d4f569d-ea75-11e8-8451-d8c4973dfcaa",
"x": [
0.6810810810810811,
0.7378048780487805,
0.8011494252873563,
0.7188775510204082,
0.6563944530046225,
0.8997722095671982,
0.6214057507987221,
0.8200514138817481,
0.8748353096179183,
0.7244492596605273,
0.7086330935251799,
0.6006600660066007,
0.6830357142857143,
0.8356510745891277,
0.8134328358208955,
0.7351638618246236,
0.7350835322195705,
0.8058823529411765,
0.7701549162187796,
0.7078313253012049,
0.7056737588652482,
0.7176470588235294,
0.7399309551208285,
0.7499256616116563
],
"y": [
"komodo ide",
"komodo editor",
"jupyter notebook",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"other - write in",
"aiohttp",
"six",
"kivy",
"asyncio",
"requests",
"pyramid",
"twisted",
"cherrypy",
"pygame",
"tkinter",
"pyqt / pygtk / wxpython",
"pillow",
"keras / theano / tensorflow / scikit-learn and similar",
"numpy / pandas / matplotlib / scipy and similar",
"web2py",
"bottle",
"tornado",
"flask",
"django"
]
}
],
"layout": {
"height": 1000,
"margin": {
"r": 10
},
"title": "Python 2 and Python 3 Usage among Frameworks",
"yaxis": {
"automargin": true
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"py2 = go.Scatter(y=frameworks_pyver.columns[::-1], x=frameworks_pyver.loc['Python 2'][::-1], mode='markers', marker={'color': colors[0]}, orientation='h', name='Python 2')\n",
"py3 = go.Scatter(y=frameworks_pyver.columns[::-1], x=frameworks_pyver.loc['Python 3'][::-1], mode='markers', marker={'color': colors[1]}, orientation='h', name='Python 3')\n",
"\n",
"data = [py2, py3]\n",
"layout = go.Layout(\n",
" title='Python 2 and Python 3 Usage among Frameworks',\n",
" margin={'r': 10},\n",
" height=1000,\n",
" yaxis={'automargin': True}\n",
")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" django | \n",
" flask | \n",
" tornado | \n",
" bottle | \n",
" web2py | \n",
" numpy / pandas / matplotlib / scipy and similar | \n",
" keras / theano / tensorflow / scikit-learn and similar | \n",
" pillow | \n",
" pyqt / pygtk / wxpython | \n",
" tkinter | \n",
" ... | \n",
" requests | \n",
" asyncio | \n",
" kivy | \n",
" six | \n",
" aiohttp | \n",
" other - write in | \n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) | \n",
" jupyter notebook | \n",
" komodo editor | \n",
" komodo ide | \n",
"
\n",
" \n",
" | which version of python do you use the most? | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | Python 2 | \n",
" 0.250074 | \n",
" 0.260069 | \n",
" 0.282353 | \n",
" 0.294326 | \n",
" 0.292169 | \n",
" 0.229845 | \n",
" 0.194118 | \n",
" 0.264916 | \n",
" 0.264836 | \n",
" 0.186567 | \n",
" ... | \n",
" 0.275551 | \n",
" 0.125165 | \n",
" 0.179949 | \n",
" 0.378594 | \n",
" 0.100228 | \n",
" 0.343606 | \n",
" 0.281122 | \n",
" 0.198851 | \n",
" 0.262195 | \n",
" 0.318919 | \n",
"
\n",
" \n",
" | Python 3 | \n",
" 0.749926 | \n",
" 0.739931 | \n",
" 0.717647 | \n",
" 0.705674 | \n",
" 0.707831 | \n",
" 0.770155 | \n",
" 0.805882 | \n",
" 0.735084 | \n",
" 0.735164 | \n",
" 0.813433 | \n",
" ... | \n",
" 0.724449 | \n",
" 0.874835 | \n",
" 0.820051 | \n",
" 0.621406 | \n",
" 0.899772 | \n",
" 0.656394 | \n",
" 0.718878 | \n",
" 0.801149 | \n",
" 0.737805 | \n",
" 0.681081 | \n",
"
\n",
" \n",
"
\n",
"
2 rows × 24 columns
\n",
"
"
],
"text/plain": [
" django flask tornado \\\n",
"which version of python do you use the most? \n",
"Python 2 0.250074 0.260069 0.282353 \n",
"Python 3 0.749926 0.739931 0.717647 \n",
"\n",
" bottle web2py \\\n",
"which version of python do you use the most? \n",
"Python 2 0.294326 0.292169 \n",
"Python 3 0.705674 0.707831 \n",
"\n",
" numpy / pandas / matplotlib / scipy and similar \\\n",
"which version of python do you use the most? \n",
"Python 2 0.229845 \n",
"Python 3 0.770155 \n",
"\n",
" keras / theano / tensorflow / scikit-learn and similar \\\n",
"which version of python do you use the most? \n",
"Python 2 0.194118 \n",
"Python 3 0.805882 \n",
"\n",
" pillow \\\n",
"which version of python do you use the most? \n",
"Python 2 0.264916 \n",
"Python 3 0.735084 \n",
"\n",
" pyqt / pygtk / wxpython \\\n",
"which version of python do you use the most? \n",
"Python 2 0.264836 \n",
"Python 3 0.735164 \n",
"\n",
" tkinter ... requests \\\n",
"which version of python do you use the most? ... \n",
"Python 2 0.186567 ... 0.275551 \n",
"Python 3 0.813433 ... 0.724449 \n",
"\n",
" asyncio kivy six \\\n",
"which version of python do you use the most? \n",
"Python 2 0.125165 0.179949 0.378594 \n",
"Python 3 0.874835 0.820051 0.621406 \n",
"\n",
" aiohttp other - write in \\\n",
"which version of python do you use the most? \n",
"Python 2 0.100228 0.343606 \n",
"Python 3 0.899772 0.656394 \n",
"\n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) \\\n",
"which version of python do you use the most? \n",
"Python 2 0.281122 \n",
"Python 3 0.718878 \n",
"\n",
" jupyter notebook komodo editor \\\n",
"which version of python do you use the most? \n",
"Python 2 0.198851 0.262195 \n",
"Python 3 0.801149 0.737805 \n",
"\n",
" komodo ide \n",
"which version of python do you use the most? \n",
"Python 2 0.318919 \n",
"Python 3 0.681081 \n",
"\n",
"[2 rows x 24 columns]"
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frameworks_pyver"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" aiohttp | \n",
" asyncio | \n",
" pygame | \n",
" kivy | \n",
" tkinter | \n",
" keras / theano / tensorflow / scikit-learn and similar | \n",
" jupyter notebook | \n",
" numpy / pandas / matplotlib / scipy and similar | \n",
" django | \n",
" flask | \n",
" ... | \n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) | \n",
" tornado | \n",
" pyramid | \n",
" web2py | \n",
" bottle | \n",
" cherrypy | \n",
" komodo ide | \n",
" other - write in | \n",
" six | \n",
" twisted | \n",
"
\n",
" \n",
" | which version of python do you use the most? | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | Python 2 | \n",
" 0.100228 | \n",
" 0.125165 | \n",
" 0.164349 | \n",
" 0.179949 | \n",
" 0.186567 | \n",
" 0.194118 | \n",
" 0.198851 | \n",
" 0.229845 | \n",
" 0.250074 | \n",
" 0.260069 | \n",
" ... | \n",
" 0.281122 | \n",
" 0.282353 | \n",
" 0.291367 | \n",
" 0.292169 | \n",
" 0.294326 | \n",
" 0.316964 | \n",
" 0.318919 | \n",
" 0.343606 | \n",
" 0.378594 | \n",
" 0.39934 | \n",
"
\n",
" \n",
" | Python 3 | \n",
" 0.899772 | \n",
" 0.874835 | \n",
" 0.835651 | \n",
" 0.820051 | \n",
" 0.813433 | \n",
" 0.805882 | \n",
" 0.801149 | \n",
" 0.770155 | \n",
" 0.749926 | \n",
" 0.739931 | \n",
" ... | \n",
" 0.718878 | \n",
" 0.717647 | \n",
" 0.708633 | \n",
" 0.707831 | \n",
" 0.705674 | \n",
" 0.683036 | \n",
" 0.681081 | \n",
" 0.656394 | \n",
" 0.621406 | \n",
" 0.60066 | \n",
"
\n",
" \n",
"
\n",
"
2 rows × 24 columns
\n",
"
"
],
"text/plain": [
" aiohttp asyncio pygame \\\n",
"which version of python do you use the most? \n",
"Python 2 0.100228 0.125165 0.164349 \n",
"Python 3 0.899772 0.874835 0.835651 \n",
"\n",
" kivy tkinter \\\n",
"which version of python do you use the most? \n",
"Python 2 0.179949 0.186567 \n",
"Python 3 0.820051 0.813433 \n",
"\n",
" keras / theano / tensorflow / scikit-learn and similar \\\n",
"which version of python do you use the most? \n",
"Python 2 0.194118 \n",
"Python 3 0.805882 \n",
"\n",
" jupyter notebook \\\n",
"which version of python do you use the most? \n",
"Python 2 0.198851 \n",
"Python 3 0.801149 \n",
"\n",
" numpy / pandas / matplotlib / scipy and similar \\\n",
"which version of python do you use the most? \n",
"Python 2 0.229845 \n",
"Python 3 0.770155 \n",
"\n",
" django flask ... \\\n",
"which version of python do you use the most? ... \n",
"Python 2 0.250074 0.260069 ... \n",
"Python 3 0.749926 0.739931 ... \n",
"\n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) \\\n",
"which version of python do you use the most? \n",
"Python 2 0.281122 \n",
"Python 3 0.718878 \n",
"\n",
" tornado pyramid web2py \\\n",
"which version of python do you use the most? \n",
"Python 2 0.282353 0.291367 0.292169 \n",
"Python 3 0.717647 0.708633 0.707831 \n",
"\n",
" bottle cherrypy komodo ide \\\n",
"which version of python do you use the most? \n",
"Python 2 0.294326 0.316964 0.318919 \n",
"Python 3 0.705674 0.683036 0.681081 \n",
"\n",
" other - write in six \\\n",
"which version of python do you use the most? \n",
"Python 2 0.343606 0.378594 \n",
"Python 3 0.656394 0.621406 \n",
"\n",
" twisted \n",
"which version of python do you use the most? \n",
"Python 2 0.39934 \n",
"Python 3 0.60066 \n",
"\n",
"[2 rows x 24 columns]"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_frameworks_pyver = frameworks_pyver.sort_values(by='Python 3', axis=1, ascending=False)\n",
"sorted_frameworks_pyver"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"name": "Python 2",
"orientation": "h",
"type": "scatter",
"uid": "8d617f34-ea75-11e8-bb0c-d8c4973dfcaa",
"x": [
0.39933993399339934,
0.37859424920127793,
0.3436055469953775,
0.31891891891891894,
0.3169642857142857,
0.29432624113475175,
0.2921686746987952,
0.29136690647482016,
0.2823529411764706,
0.2811224489795918,
0.27555074033947274,
0.2649164677804296,
0.26483613817537643,
0.2621951219512195,
0.2600690448791715,
0.25007433838834375,
0.22984508378122037,
0.19885057471264367,
0.19411764705882353,
0.1865671641791045,
0.17994858611825193,
0.16434892541087232,
0.1251646903820817,
0.10022779043280182
],
"y": [
"twisted",
"six",
"other - write in",
"komodo ide",
"cherrypy",
"bottle",
"web2py",
"pyramid",
"tornado",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"pillow",
"pyqt / pygtk / wxpython",
"komodo editor",
"flask",
"django",
"numpy / pandas / matplotlib / scipy and similar",
"jupyter notebook",
"keras / theano / tensorflow / scikit-learn and similar",
"tkinter",
"kivy",
"pygame",
"asyncio",
"aiohttp"
]
},
{
"marker": {
"color": "#12c8e6"
},
"mode": "markers",
"name": "Python 3",
"orientation": "h",
"type": "scatter",
"uid": "8d617f35-ea75-11e8-9c16-d8c4973dfcaa",
"x": [
0.6006600660066007,
0.6214057507987221,
0.6563944530046225,
0.6810810810810811,
0.6830357142857143,
0.7056737588652482,
0.7078313253012049,
0.7086330935251799,
0.7176470588235294,
0.7188775510204082,
0.7244492596605273,
0.7350835322195705,
0.7351638618246236,
0.7378048780487805,
0.7399309551208285,
0.7499256616116563,
0.7701549162187796,
0.8011494252873563,
0.8058823529411765,
0.8134328358208955,
0.8200514138817481,
0.8356510745891277,
0.8748353096179183,
0.8997722095671982
],
"y": [
"twisted",
"six",
"other - write in",
"komodo ide",
"cherrypy",
"bottle",
"web2py",
"pyramid",
"tornado",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"pillow",
"pyqt / pygtk / wxpython",
"komodo editor",
"flask",
"django",
"numpy / pandas / matplotlib / scipy and similar",
"jupyter notebook",
"keras / theano / tensorflow / scikit-learn and similar",
"tkinter",
"kivy",
"pygame",
"asyncio",
"aiohttp"
]
}
],
"layout": {
"height": 1000,
"margin": {
"r": 10
},
"title": "Python 2 and Python 3 Usage among Frameworks",
"yaxis": {
"automargin": true
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"py2 = go.Scatter(y=sorted_frameworks_pyver.columns[::-1], x=sorted_frameworks_pyver.loc['Python 2'][::-1], mode='markers', marker={'color': colors[0]}, orientation='h', name='Python 2')\n",
"py3 = go.Scatter(y=sorted_frameworks_pyver.columns[::-1], x=sorted_frameworks_pyver.loc['Python 3'][::-1], mode='markers', marker={'color': colors[1]}, orientation='h', name='Python 3')\n",
"\n",
"data = [py2, py3]\n",
"layout = go.Layout(\n",
" title='Python 2 and Python 3 Usage among Frameworks',\n",
" margin={'r': 10},\n",
" height=1000,\n",
" yaxis={'automargin': True}\n",
")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 做数据分析和机器学习的人常用的框架?"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" django | \n",
" flask | \n",
" tornado | \n",
" bottle | \n",
" web2py | \n",
" numpy / pandas / matplotlib / scipy and similar | \n",
" keras / theano / tensorflow / scikit-learn and similar | \n",
" pillow | \n",
" pyqt / pygtk / wxpython | \n",
" tkinter | \n",
" ... | \n",
" requests | \n",
" asyncio | \n",
" kivy | \n",
" six | \n",
" aiohttp | \n",
" other - write in | \n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) | \n",
" jupyter notebook | \n",
" komodo editor | \n",
" komodo ide | \n",
"
\n",
" \n",
" \n",
" \n",
" | Computer graphics | \n",
" 20 | \n",
" 15 | \n",
" 7 | \n",
" 3 | \n",
" 3 | \n",
" 47 | \n",
" 11.0 | \n",
" 23 | \n",
" 34 | \n",
" 16 | \n",
" ... | \n",
" 16 | \n",
" 3.0 | \n",
" 9 | \n",
" 3.0 | \n",
" 1 | \n",
" 8 | \n",
" 16 | \n",
" 10 | \n",
" 5 | \n",
" 3 | \n",
"
\n",
" \n",
" | Data analysis | \n",
" 424 | \n",
" 395 | \n",
" 73 | \n",
" 38 | \n",
" 49 | \n",
" 926 | \n",
" 397.0 | \n",
" 159 | \n",
" 200 | \n",
" 154 | \n",
" ... | \n",
" 376 | \n",
" 85.0 | \n",
" 44 | \n",
" 94.0 | \n",
" 46 | \n",
" 81 | \n",
" 279 | \n",
" 594 | \n",
" 27 | \n",
" 25 | \n",
"
\n",
" \n",
" | Desktop development | \n",
" 151 | \n",
" 114 | \n",
" 17 | \n",
" 13 | \n",
" 21 | \n",
" 156 | \n",
" 28.0 | \n",
" 79 | \n",
" 193 | \n",
" 139 | \n",
" ... | \n",
" 119 | \n",
" 20.0 | \n",
" 51 | \n",
" 26.0 | \n",
" 8 | \n",
" 41 | \n",
" 61 | \n",
" 71 | \n",
" 13 | \n",
" 15 | \n",
"
\n",
" \n",
" | DevOps / System administration / Writing automation scripts | \n",
" 271 | \n",
" 289 | \n",
" 41 | \n",
" 33 | \n",
" 28 | \n",
" 230 | \n",
" 58.0 | \n",
" 83 | \n",
" 106 | \n",
" 80 | \n",
" ... | \n",
" 343 | \n",
" 97.0 | \n",
" 20 | \n",
" 64.0 | \n",
" 53 | \n",
" 68 | \n",
" 227 | \n",
" 113 | \n",
" 24 | \n",
" 23 | \n",
"
\n",
" \n",
" | Educational purposes | \n",
" 160 | \n",
" 91 | \n",
" 13 | \n",
" 16 | \n",
" 21 | \n",
" 186 | \n",
" 53.0 | \n",
" 55 | \n",
" 68 | \n",
" 115 | \n",
" ... | \n",
" 68 | \n",
" 17.0 | \n",
" 35 | \n",
" 6.0 | \n",
" 9 | \n",
" 22 | \n",
" 80 | \n",
" 96 | \n",
" 16 | \n",
" 20 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" django flask tornado \\\n",
"Computer graphics 20 15 7 \n",
"Data analysis 424 395 73 \n",
"Desktop development 151 114 17 \n",
"DevOps / System administration / Writing automa... 271 289 41 \n",
"Educational purposes 160 91 13 \n",
"\n",
" bottle web2py \\\n",
"Computer graphics 3 3 \n",
"Data analysis 38 49 \n",
"Desktop development 13 21 \n",
"DevOps / System administration / Writing automa... 33 28 \n",
"Educational purposes 16 21 \n",
"\n",
" numpy / pandas / matplotlib / scipy and similar \\\n",
"Computer graphics 47 \n",
"Data analysis 926 \n",
"Desktop development 156 \n",
"DevOps / System administration / Writing automa... 230 \n",
"Educational purposes 186 \n",
"\n",
" keras / theano / tensorflow / scikit-learn and similar \\\n",
"Computer graphics 11.0 \n",
"Data analysis 397.0 \n",
"Desktop development 28.0 \n",
"DevOps / System administration / Writing automa... 58.0 \n",
"Educational purposes 53.0 \n",
"\n",
" pillow \\\n",
"Computer graphics 23 \n",
"Data analysis 159 \n",
"Desktop development 79 \n",
"DevOps / System administration / Writing automa... 83 \n",
"Educational purposes 55 \n",
"\n",
" pyqt / pygtk / wxpython \\\n",
"Computer graphics 34 \n",
"Data analysis 200 \n",
"Desktop development 193 \n",
"DevOps / System administration / Writing automa... 106 \n",
"Educational purposes 68 \n",
"\n",
" tkinter ... \\\n",
"Computer graphics 16 ... \n",
"Data analysis 154 ... \n",
"Desktop development 139 ... \n",
"DevOps / System administration / Writing automa... 80 ... \n",
"Educational purposes 115 ... \n",
"\n",
" requests asyncio kivy \\\n",
"Computer graphics 16 3.0 9 \n",
"Data analysis 376 85.0 44 \n",
"Desktop development 119 20.0 51 \n",
"DevOps / System administration / Writing automa... 343 97.0 20 \n",
"Educational purposes 68 17.0 35 \n",
"\n",
" six aiohttp \\\n",
"Computer graphics 3.0 1 \n",
"Data analysis 94.0 46 \n",
"Desktop development 26.0 8 \n",
"DevOps / System administration / Writing automa... 64.0 53 \n",
"Educational purposes 6.0 9 \n",
"\n",
" other - write in \\\n",
"Computer graphics 8 \n",
"Data analysis 81 \n",
"Desktop development 41 \n",
"DevOps / System administration / Writing automa... 68 \n",
"Educational purposes 22 \n",
"\n",
" cloud platforms (google app engine, aws, rackspace, heroku and similar) \\\n",
"Computer graphics 16 \n",
"Data analysis 279 \n",
"Desktop development 61 \n",
"DevOps / System administration / Writing automa... 227 \n",
"Educational purposes 80 \n",
"\n",
" jupyter notebook \\\n",
"Computer graphics 10 \n",
"Data analysis 594 \n",
"Desktop development 71 \n",
"DevOps / System administration / Writing automa... 113 \n",
"Educational purposes 96 \n",
"\n",
" komodo editor komodo ide \n",
"Computer graphics 5 3 \n",
"Data analysis 27 25 \n",
"Desktop development 13 15 \n",
"DevOps / System administration / Writing automa... 24 23 \n",
"Educational purposes 16 20 \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cols = find_cols(survey_df, ['use', 'python', 'most'])\n",
"uses = survey_df['what do you use python for the most?']\n",
"frameworks_uses = frameworks.apply(lambda col: pd.crosstab(index=uses, columns=col).iloc[:, 0])\n",
"frameworks_uses.columns = [item.split(':')[0] for item in frameworks_uses.columns]\n",
"frameworks_uses.head()"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"da_ml_frameworks_uses = frameworks_uses.loc[['Data analysis', 'Machine learning']]"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"fill": "tozeroy",
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "scatter",
"uid": "8da0b1e6-ea75-11e8-92bd-d8c4973dfcaa",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": [
424,
395,
73,
38,
49,
926,
397,
159,
200,
154,
94,
32,
31,
33,
376,
85,
44,
94,
46,
81,
279,
594,
27,
25
]
},
{
"fill": "tozeroy",
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "scatter",
"uid": "8da0b1e7-ea75-11e8-bfea-d8c4973dfcaa",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": [
239,
186,
48,
19,
31,
462,
416,
90,
88,
76,
69,
15,
15,
12,
163,
40,
25,
37,
22,
33,
139,
297,
10,
7
]
}
],
"layout": {
"title": "Frameworks Usage among Data Analysis and Machine Learning Developers"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# fill 的可选值为:['none', 'tozeroy', 'tozerox', 'tonexty', 'tonextx', 'toself', 'tonext']\n",
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"da = go.Scatter(x=da_ml_frameworks_uses.columns, y=da_ml_frameworks_uses.loc['Data analysis'], fill='tozeroy', marker={'color': colors[0]}, name='Python 2')\n",
"ml = go.Scatter(x=da_ml_frameworks_uses.columns, y=da_ml_frameworks_uses.loc['Machine learning'], fill='tozeroy', marker={'color': colors[1]}, name='Python 3')\n",
"\n",
"data = [da, ml]\n",
"layout = go.Layout(title='Frameworks Usage among Data Analysis and Machine Learning Developers')\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"fill": "tozeroy",
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "scatter",
"uid": "8db63540-ea75-11e8-b245-d8c4973dfcaa",
"x": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
],
"y": [
25,
27,
31,
32,
33,
38,
44,
46,
49,
73,
81,
85,
94,
94,
154,
159,
200,
279,
376,
395,
397,
424,
594,
926
]
},
{
"fill": "tozeroy",
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "scatter",
"uid": "8db63541-ea75-11e8-8cbe-d8c4973dfcaa",
"x": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
],
"y": [
7,
10,
15,
15,
12,
19,
25,
22,
31,
48,
33,
40,
69,
37,
76,
90,
88,
139,
163,
186,
416,
239,
297,
462
]
}
],
"layout": {
"title": "Frameworks Usage among Data Analysis and Machine Learning Developers"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sorted_da_ml_frameworks_uses = da_ml_frameworks_uses.sort_values(by='Data analysis', axis=1, ascending=True)\n",
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"da = go.Scatter(x=sorted_da_ml_frameworks_uses.columns, y=sorted_da_ml_frameworks_uses.loc['Data analysis'], fill='tozeroy', marker={'color': colors[0]}, name='Python 2')\n",
"ml = go.Scatter(x=sorted_da_ml_frameworks_uses.columns, y=sorted_da_ml_frameworks_uses.loc['Machine learning'], fill='tozeroy', marker={'color': colors[1]}, name='Python 3')\n",
"\n",
"data = [da, ml]\n",
"layout = go.Layout(title='Frameworks Usage among Data Analysis and Machine Learning Developers')\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"name": "Data analysis",
"orientation": "h",
"type": "bar",
"uid": "8dbf5d08-ea75-11e8-9fb2-d8c4973dfcaa",
"x": [
25,
27,
31,
32,
33,
38,
44,
46,
49,
73,
81,
85,
94,
94,
154,
159,
200,
279,
376,
395,
397,
424,
594,
926
],
"y": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Machine learning",
"orientation": "h",
"type": "bar",
"uid": "8dbf5d09-ea75-11e8-8625-d8c4973dfcaa",
"x": [
7,
10,
15,
15,
12,
19,
25,
22,
31,
48,
33,
40,
69,
37,
76,
90,
88,
139,
163,
186,
416,
239,
297,
462
],
"y": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
]
}
],
"layout": {
"height": 1000,
"title": "Frameworks Usage among Data Analysis and Machine Learning Developers",
"yaxis": {
"automargin": true
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"da = go.Bar(y=sorted_da_ml_frameworks_uses.columns, x=sorted_da_ml_frameworks_uses.loc['Data analysis'], marker={'color': colors[0]}, orientation='h', name='Data analysis')\n",
"ml = go.Bar(y=sorted_da_ml_frameworks_uses.columns, x=sorted_da_ml_frameworks_uses.loc['Machine learning'], marker={'color': colors[1]}, orientation='h', name='Machine learning')\n",
"\n",
"data = [da, ml]\n",
"layout = go.Layout(title='Frameworks Usage among Data Analysis and Machine Learning Developers', height=1000, yaxis={'automargin': True})\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 公司规模大小和是否使用 Python 3 的关系?"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | which version of python do you use the most? | \n",
" Python 2 | \n",
" Python 3 | \n",
"
\n",
" \n",
" | how many people are in your project team? | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2-7 people | \n",
" 0.331180 | \n",
" 0.668820 | \n",
"
\n",
" \n",
" | 8-12 people | \n",
" 0.358824 | \n",
" 0.641176 | \n",
"
\n",
" \n",
" | 21-40 people | \n",
" 0.373134 | \n",
" 0.626866 | \n",
"
\n",
" \n",
" | 13-20 people | \n",
" 0.382353 | \n",
" 0.617647 | \n",
"
\n",
" \n",
" | More than 40 people | \n",
" 0.411765 | \n",
" 0.588235 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"which version of python do you use the most? Python 2 Python 3\n",
"how many people are in your project team? \n",
"2-7 people 0.331180 0.668820\n",
"8-12 people 0.358824 0.641176\n",
"21-40 people 0.373134 0.626866\n",
"13-20 people 0.382353 0.617647\n",
"More than 40 people 0.411765 0.588235"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cols = find_cols(survey_df, ['how', 'many', 'people', 'project'])\n",
"team_scale = survey_df[cols[0]]\n",
"team_pyver = pd.crosstab(team_scale, python_version)\n",
"team_pyver = team_pyver.reindex(['2-7 people', '8-12 people', '13-20 people', '21-40 people', 'More than 40 people'])\n",
"team_pyver_sorted = team_pyver.div(team_pyver.sum(axis=1), axis=0).sort_values(by='Python 3', ascending=False)\n",
"team_pyver_sorted"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"line": {
"width": 2
},
"marker": {
"color": "#386df9"
},
"mode": "lines+markers",
"type": "scatter",
"uid": "8dcc2e64-ea75-11e8-a624-d8c4973dfcaa",
"x": [
"2-7 people",
"8-12 people",
"21-40 people",
"13-20 people",
"More than 40 people"
],
"y": [
0.6688199827734711,
0.6411764705882353,
0.6268656716417911,
0.6176470588235294,
0.5882352941176471
]
}
],
"layout": {
"title": "Team scale VS Use ratio of Python 3"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trace = go.Scatter(x=team_pyver_sorted.index, y=team_pyver_sorted['Python 3'], marker={'color': colors[0]}, mode='lines+markers', line={'width': 2})\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(title='Team scale VS Use ratio of Python 3')\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 开发者年龄和是否使用 Python 3 的关系?"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | which version of python do you use the most? | \n",
" Python 2 | \n",
" Python 3 | \n",
"
\n",
" \n",
" | could you tell us your age range? | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | 17 or younger | \n",
" 0.148036 | \n",
" 0.851964 | \n",
"
\n",
" \n",
" | 18-20 | \n",
" 0.160830 | \n",
" 0.839170 | \n",
"
\n",
" \n",
" | 21-29 | \n",
" 0.259882 | \n",
" 0.740118 | \n",
"
\n",
" \n",
" | 30-39 | \n",
" 0.287273 | \n",
" 0.712727 | \n",
"
\n",
" \n",
" | 40-49 | \n",
" 0.289535 | \n",
" 0.710465 | \n",
"
\n",
" \n",
" | 50-59 | \n",
" 0.347079 | \n",
" 0.652921 | \n",
"
\n",
" \n",
" | 60 or older | \n",
" 0.225225 | \n",
" 0.774775 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"which version of python do you use the most? Python 2 Python 3\n",
"could you tell us your age range? \n",
"17 or younger 0.148036 0.851964\n",
"18-20 0.160830 0.839170\n",
"21-29 0.259882 0.740118\n",
"30-39 0.287273 0.712727\n",
"40-49 0.289535 0.710465\n",
"50-59 0.347079 0.652921\n",
"60 or older 0.225225 0.774775"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cols = find_cols(survey_df, ['age', 'range'])\n",
"age = survey_df[cols[0]]\n",
"age_pyver = pd.crosstab(index=age, columns=python_version)\n",
"age_pyver = age_pyver.div(age_pyver.sum(axis=1), axis=0)\n",
"age_pyver"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"line": {
"width": 2
},
"marker": {
"color": "#386df9"
},
"mode": "lines+markers",
"name": "Python 3",
"type": "scatter",
"uid": "8dd8ff4a-ea75-11e8-bffa-d8c4973dfcaa",
"x": [
"17 or younger",
"18-20",
"21-29",
"30-39",
"40-49",
"50-59",
"60 or older"
],
"y": [
0.851963746223565,
0.8391699092088197,
0.7401182695300342,
0.7127272727272728,
0.7104651162790697,
0.6529209621993127,
0.7747747747747747
]
}
],
"layout": {
"title": "The developers' age VS The use ratio of Python 3"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trace = go.Scatter(x=age_pyver.index, y=age_pyver['Python 3'], marker={'color': colors[0]}, mode='lines+markers', line={'width': 2}, name='Python 3')\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(title=\"The developers' age VS The use ratio of Python 3\")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | could you tell us your age range? | \n",
" 17 or younger | \n",
" 18-20 | \n",
" 21-29 | \n",
" 30-39 | \n",
" 40-49 | \n",
" 50-59 | \n",
" 60 or older | \n",
"
\n",
" \n",
" | what country do you live in? | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | Afghanistan | \n",
" 3 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" | Albania | \n",
" 0 | \n",
" 4 | \n",
" 8 | \n",
" 4 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" | Algeria | \n",
" 1 | \n",
" 2 | \n",
" 15 | \n",
" 4 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" | Andorra | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" | Antigua and Barbuda | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"could you tell us your age range? 17 or younger 18-20 21-29 30-39 40-49 \\\n",
"what country do you live in? \n",
"Afghanistan 3 1 1 1 0 \n",
"Albania 0 4 8 4 1 \n",
"Algeria 1 2 15 4 1 \n",
"Andorra 0 0 1 0 0 \n",
"Antigua and Barbuda 2 0 0 0 0 \n",
"\n",
"could you tell us your age range? 50-59 60 or older \n",
"what country do you live in? \n",
"Afghanistan 0 0 \n",
"Albania 1 0 \n",
"Algeria 0 0 \n",
"Andorra 0 0 \n",
"Antigua and Barbuda 0 0 "
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"country_age = pd.crosstab([survey_df['what country do you live in?'], survey_df['which version of python do you use the most?']], survey_df['could you tell us your age range?'])\n",
"country_age_total = country_age.sum(level=0)\n",
"country_age_total.head()"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#5247fc",
"#2489f5",
"#0ac0e8",
"#3ae8d6",
"#68fcc1",
"#96fca7",
"#c4e88a",
"#f4c069",
"#ff8947",
"#ff4724"
]
},
"type": "bar",
"uid": "8de53482-ea75-11e8-9714-d8c4973dfcaa",
"x": [
"United States",
"United Kingdom",
"Canada",
"Germany",
"Poland",
"Mexico",
"Italy",
"Belgium",
"Venezuela",
"South Africa"
],
"y": [
56,
7,
6,
6,
2,
2,
2,
2,
2,
2
]
}
],
"layout": {
"title": "Top 10 countries of # of the developers whose age are 60+"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sorted_country_age_total = country_age_total.sort_values(by='60 or older', ascending=False)\n",
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', 10)]\n",
"trace = go.Bar(x=sorted_country_age_total.index[:10], y=sorted_country_age_total.iloc[:10, -1], marker={'color': colors})\n",
"\n",
"data = [trace]\n",
"layout = {'title': 'Top 10 countries of # of the developers whose age are 60+'}\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | could you tell us your age range? | \n",
" 17 or younger | \n",
" 18-20 | \n",
" 21-29 | \n",
" 30-39 | \n",
" 40-49 | \n",
" 50-59 | \n",
" 60 or older | \n",
"
\n",
" \n",
" | what country do you live in? | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | United States | \n",
" 0.083621 | \n",
" 0.070491 | \n",
" 0.293711 | \n",
" 0.287491 | \n",
" 0.156876 | \n",
" 0.069109 | \n",
" 0.038701 | \n",
"
\n",
" \n",
" | India | \n",
" 0.043810 | \n",
" 0.222857 | \n",
" 0.557143 | \n",
" 0.137143 | \n",
" 0.030476 | \n",
" 0.006667 | \n",
" 0.001905 | \n",
"
\n",
" \n",
" | China | \n",
" 0.029260 | \n",
" 0.077453 | \n",
" 0.645439 | \n",
" 0.213425 | \n",
" 0.034423 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"could you tell us your age range? 17 or younger 18-20 21-29 \\\n",
"what country do you live in? \n",
"United States 0.083621 0.070491 0.293711 \n",
"India 0.043810 0.222857 0.557143 \n",
"China 0.029260 0.077453 0.645439 \n",
"\n",
"could you tell us your age range? 30-39 40-49 50-59 60 or older \n",
"what country do you live in? \n",
"United States 0.287491 0.156876 0.069109 0.038701 \n",
"India 0.137143 0.030476 0.006667 0.001905 \n",
"China 0.213425 0.034423 0.000000 0.000000 "
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"three_countries = country_age_total.loc[['United States', 'India', 'China']]\n",
"three_countries = three_countries.div(three_countries.sum(axis=1), axis=0)\n",
"three_countries"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#4062fa"
},
"name": "17 or younger",
"type": "bar",
"uid": "8df7f80c-ea75-11e8-8fd2-d8c4973dfcaa",
"x": [
"United States",
"India",
"China"
],
"y": [
0.08362128541810643,
0.04380952380952381,
0.029259896729776247
]
},
{
"marker": {
"color": "#00b5eb"
},
"name": "18-20",
"type": "bar",
"uid": "8df7f80d-ea75-11e8-b693-d8c4973dfcaa",
"x": [
"United States",
"India",
"China"
],
"y": [
0.07049067035245335,
0.22285714285714286,
0.0774526678141136
]
},
{
"marker": {
"color": "#40ecd4"
},
"name": "21-29",
"type": "bar",
"uid": "8df7f80e-ea75-11e8-8f5c-d8c4973dfcaa",
"x": [
"United States",
"India",
"China"
],
"y": [
0.29371112646855563,
0.5571428571428572,
0.6454388984509466
]
},
{
"marker": {
"color": "#80ffb4"
},
"name": "30-39",
"type": "bar",
"uid": "8df7f80f-ea75-11e8-bd00-d8c4973dfcaa",
"x": [
"United States",
"India",
"China"
],
"y": [
0.2874913614374568,
0.13714285714285715,
0.2134251290877797
]
},
{
"marker": {
"color": "#c0eb8d"
},
"name": "40-49",
"type": "bar",
"uid": "8df7f810-ea75-11e8-9e8a-d8c4973dfcaa",
"x": [
"United States",
"India",
"China"
],
"y": [
0.15687629578438148,
0.030476190476190476,
0.03442340791738382
]
},
{
"marker": {
"color": "#ffb360"
},
"name": "50-59",
"type": "bar",
"uid": "8df81f68-ea75-11e8-943f-d8c4973dfcaa",
"x": [
"United States",
"India",
"China"
],
"y": [
0.0691085003455425,
0.006666666666666667,
0
]
},
{
"marker": {
"color": "#ff5f30"
},
"name": "60 or older",
"type": "bar",
"uid": "8df81f69-ea75-11e8-bcbc-d8c4973dfcaa",
"x": [
"United States",
"India",
"China"
],
"y": [
0.038700760193503804,
0.0019047619047619048,
0
]
}
],
"layout": {
"title": "Age distribution of the developers who're from USA, India and China"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', 7)]\n",
"\n",
"data = [go.Bar(x=three_countries.index, y=three_countries[c], marker={'color': colors[i]}, name=c)\n",
" for i, c in enumerate(three_countries.columns)]\n",
"layout = go.Layout(title=\"Age distribution of the developers who're from USA, India and China\")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 使用 Python 3 和 Python 2 的开发者的国别分布?"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 Italy\n",
"1 United Kingdom\n",
"2 France\n",
"3 Spain\n",
"4 Israel\n",
"Name: what country do you live in?, dtype: object"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cols = find_cols(survey_df, ['country', 'live'])\n",
"countries = survey_df[cols[0]]\n",
"count_countries = countries.value_counts(ascending=False)\n",
"countries.head()"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#5247fc",
"#2489f5",
"#0ac0e8",
"#3ae8d6",
"#68fcc1",
"#96fca7",
"#c4e88a",
"#f4c069",
"#ff8947",
"#ff4724"
]
},
"type": "bar",
"uid": "8e0342d2-ea75-11e8-8aeb-d8c4973dfcaa",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": [
1638,
1343,
710,
521,
417,
383,
281,
261,
223,
219
]
}
],
"layout": {
"title": "Top 10 countries of # of the developers"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 等同于 sns.countplot\n",
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', 10)]\n",
"\n",
"trace = go.Bar(x=count_countries.index[:10], y=count_countries[:10], marker={'color': colors})\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(title='Top 10 countries of # of the developers')\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | which version of python do you use the most? | \n",
" Python 2 | \n",
" Python 3 | \n",
"
\n",
" \n",
" \n",
" \n",
" | United States | \n",
" 0.272979 | \n",
" 0.727021 | \n",
"
\n",
" \n",
" | India | \n",
" 0.303810 | \n",
" 0.696190 | \n",
"
\n",
" \n",
" | China | \n",
" 0.254733 | \n",
" 0.745267 | \n",
"
\n",
" \n",
" | United Kingdom | \n",
" 0.220126 | \n",
" 0.779874 | \n",
"
\n",
" \n",
" | Germany | \n",
" 0.219638 | \n",
" 0.780362 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"which version of python do you use the most? Python 2 Python 3\n",
"United States 0.272979 0.727021\n",
"India 0.303810 0.696190\n",
"China 0.254733 0.745267\n",
"United Kingdom 0.220126 0.779874\n",
"Germany 0.219638 0.780362"
]
},
"execution_count": 94,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"countries_pyver = pd.crosstab(index=countries, columns=python_version)\n",
"top10_countries = countries_pyver.loc[countries.value_counts()[:10].index]\n",
"top10_countries = top10_countries.div(top10_countries.sum(axis=1), axis=0)\n",
"top10_countries.head()"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "bar",
"uid": "8e12d300-ea75-11e8-8de5-d8c4973dfcaa",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": [
0.27297857636489287,
0.3038095238095238,
0.2547332185886403,
0.22012578616352202,
0.21963824289405684,
0.20857142857142857,
0.1615720524017467,
0.27896995708154504,
0.19306930693069307,
0.19689119170984457
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "bar",
"uid": "8e12d301-ea75-11e8-9b66-d8c4973dfcaa",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": [
0.7270214236351071,
0.6961904761904761,
0.7452667814113597,
0.779874213836478,
0.7803617571059431,
0.7914285714285715,
0.8384279475982532,
0.721030042918455,
0.806930693069307,
0.8031088082901554
]
}
],
"layout": {
"title": "Python 2 and Python 3 Usage among Different Countries"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"py2 = go.Bar(x=top10_countries.index, y=top10_countries['Python 2'], marker={'color': colors[0]}, name='Python 2')\n",
"py3 = go.Bar(x=top10_countries.index, y=top10_countries['Python 3'], marker={'color': colors[1]}, name='Python 3')\n",
"\n",
"data = [py2, py3]\n",
"layout = go.Layout(title='Python 2 and Python 3 Usage among Different Countries')\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [],
"source": [
"countries_pyver_ratio = countries_pyver.div(countries_pyver.sum(axis=1), axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "bar",
"uid": "8e234dd2-ea75-11e8-ba13-d8c4973dfcaa",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": [
0.27297857636489287,
0.3038095238095238,
0.2547332185886403,
0.22012578616352202,
0.21963824289405684,
0.20857142857142857,
0.1615720524017467,
0.27896995708154504,
0.19306930693069307,
0.19689119170984457
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "bar",
"uid": "8e234dd3-ea75-11e8-b02f-d8c4973dfcaa",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": [
0.7270214236351071,
0.6961904761904761,
0.7452667814113597,
0.779874213836478,
0.7803617571059431,
0.7914285714285715,
0.8384279475982532,
0.721030042918455,
0.806930693069307,
0.8031088082901554
]
}
],
"layout": {
"title": "Python 2 and Python 3 Usage among Different Countries"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 等同于 sns.distplot\n",
"# 注意 hist_data, group_labels, colors 都必须是列表形式,一个元素表示一个数据集\n",
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"fig = ff.create_distplot(hist_data=[countries_pyver_ratio['Python 3']], group_labels=['Python 3'], bin_size=0.05, colors=[colors[0]])\n",
"fig['layout'].update(title='Use ratio of Python 3 in the world')\n",
"# go.FigureWidget(fig)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"type": "scatter",
"uid": "8e287dd8-ea75-11e8-bd6b-d8c4973dfcaa",
"x": [
0.3333333333333333,
0.8888888888888888,
0.6956521739130435,
1,
1,
0.7272727272727273,
1,
0.7518248175182481,
0.7272727272727273,
0.8,
0.5,
0.75,
0.7894736842105263,
0.6666666666666666,
0.7586206896551724,
0.746268656716418,
1,
1,
0.3333333333333333,
1,
0.7914285714285715,
0.6956521739130435,
1,
0.6666666666666666,
0.8031088082901554,
1,
1,
0.9130434782608695,
0.7452667814113597,
0.6666666666666666,
1,
0.6,
0.5,
0.65625,
0.5555555555555556,
0.5,
0.8135593220338984,
0.803921568627451,
1,
0.875,
0.6666666666666666,
0.7142857142857143,
0.75,
0.7333333333333333,
0.16666666666666666,
0.76,
0.721030042918455,
1,
1,
0.8648648648648649,
0.7803617571059431,
0.7692307692307693,
0.7924528301886793,
0.6666666666666666,
1,
1,
1,
0.7906976744186046,
0,
0.6961904761904761,
0.6530612244897959,
0.75,
0.5,
0.7837837837837838,
0.5222222222222223,
0.7288135593220338,
1,
0.9137931034482759,
0.75,
0.8333333333333334,
0.7777777777777778,
0.8333333333333334,
0.5,
1,
1,
0,
0.5384615384615384,
1,
0.75,
1,
0.76,
1,
0.5,
1,
0.5,
0.6455696202531646,
0.5,
1,
1,
1,
0.5263157894736842,
0.3333333333333333,
1,
0.7741935483870968,
0.7906976744186046,
0.6451612903225806,
0.6666666666666666,
0.7833333333333333,
0.5,
0.8387096774193549,
1,
0.8245614035087719,
1,
0.6666666666666666,
0.7142857142857143,
0.7741935483870968,
0.806930693069307,
0.5454545454545454,
1,
0.6619718309859155,
0.8384279475982532,
0.75,
1,
0.7142857142857143,
0,
0.6551724137931034,
0.7142857142857143,
0.8,
0.8125,
0.8863636363636364,
0.8837209302325582,
0.6991869918699187,
0.7142857142857143,
0.5,
0.8166666666666667,
0.6382978723404256,
1,
0.6896551724137931,
0,
0.625,
0.8,
1,
1,
0.6666666666666666,
0.7441860465116279,
1,
0.8247422680412371,
0.8260869565217391,
0.779874213836478,
0.7270214236351071,
0.5454545454545454,
1,
0,
0.6818181818181818,
0.7857142857142857,
1,
1,
0.8888888888888888
],
"y": [
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3"
]
}
],
"layout": {}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 等同于 sns.tripplot\n",
"trace = go.Scatter(x=countries_pyver_ratio['Python 3'], y=['Python 3'] * len(countries_pyver_ratio), mode='markers', marker={'color': colors[0]})\n",
"data = [trace]\n",
"# go.FigureWidget(data)\n",
"fig = go.Figure(data=data)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"box": {
"visible": true
},
"fillcolor": "#386df9",
"line": {
"color": "black"
},
"meanline": {
"visible": true
},
"opacity": 0.6,
"type": "violin",
"uid": "8e2e9888-ea75-11e8-ab2d-d8c4973dfcaa",
"x0": "Total Bill",
"y": [
0.3333333333333333,
0.8888888888888888,
0.6956521739130435,
1,
1,
0.7272727272727273,
1,
0.7518248175182481,
0.7272727272727273,
0.8,
0.5,
0.75,
0.7894736842105263,
0.6666666666666666,
0.7586206896551724,
0.746268656716418,
1,
1,
0.3333333333333333,
1,
0.7914285714285715,
0.6956521739130435,
1,
0.6666666666666666,
0.8031088082901554,
1,
1,
0.9130434782608695,
0.7452667814113597,
0.6666666666666666,
1,
0.6,
0.5,
0.65625,
0.5555555555555556,
0.5,
0.8135593220338984,
0.803921568627451,
1,
0.875,
0.6666666666666666,
0.7142857142857143,
0.75,
0.7333333333333333,
0.16666666666666666,
0.76,
0.721030042918455,
1,
1,
0.8648648648648649,
0.7803617571059431,
0.7692307692307693,
0.7924528301886793,
0.6666666666666666,
1,
1,
1,
0.7906976744186046,
0,
0.6961904761904761,
0.6530612244897959,
0.75,
0.5,
0.7837837837837838,
0.5222222222222223,
0.7288135593220338,
1,
0.9137931034482759,
0.75,
0.8333333333333334,
0.7777777777777778,
0.8333333333333334,
0.5,
1,
1,
0,
0.5384615384615384,
1,
0.75,
1,
0.76,
1,
0.5,
1,
0.5,
0.6455696202531646,
0.5,
1,
1,
1,
0.5263157894736842,
0.3333333333333333,
1,
0.7741935483870968,
0.7906976744186046,
0.6451612903225806,
0.6666666666666666,
0.7833333333333333,
0.5,
0.8387096774193549,
1,
0.8245614035087719,
1,
0.6666666666666666,
0.7142857142857143,
0.7741935483870968,
0.806930693069307,
0.5454545454545454,
1,
0.6619718309859155,
0.8384279475982532,
0.75,
1,
0.7142857142857143,
0,
0.6551724137931034,
0.7142857142857143,
0.8,
0.8125,
0.8863636363636364,
0.8837209302325582,
0.6991869918699187,
0.7142857142857143,
0.5,
0.8166666666666667,
0.6382978723404256,
1,
0.6896551724137931,
0,
0.625,
0.8,
1,
1,
0.6666666666666666,
0.7441860465116279,
1,
0.8247422680412371,
0.8260869565217391,
0.779874213836478,
0.7270214236351071,
0.5454545454545454,
1,
0,
0.6818181818181818,
0.7857142857142857,
1,
1,
0.8888888888888888
]
}
],
"layout": {
"title": "Use ratio of Python 3 in the world",
"yaxis": {
"zeroline": false
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = {\n",
" \"data\": [{\n",
" \"type\": 'violin',\n",
" \"y\": countries_pyver_ratio['Python 3'],\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": 'black'\n",
" },\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"fillcolor\": colors[0],\n",
" \"opacity\": 0.6,\n",
" \"x0\": 'Total Bill'\n",
" }],\n",
" \"layout\" : {\n",
" \"title\": \"Use ratio of Python 3 in the world\",\n",
" \"yaxis\": {\n",
" \"zeroline\": False,\n",
" }\n",
" }\n",
"}\n",
"\n",
"# go.FigureWidget(fig)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"box": {
"visible": true
},
"fillcolor": "#386df9",
"line": {
"color": "black"
},
"meanline": {
"visible": true
},
"opacity": 0.6,
"type": "violin",
"uid": "8e3acd88-ea75-11e8-8f57-d8c4973dfcaa",
"x": [
0.3333333333333333,
0.8888888888888888,
0.6956521739130435,
1,
1,
0.7272727272727273,
1,
0.7518248175182481,
0.7272727272727273,
0.8,
0.5,
0.75,
0.7894736842105263,
0.6666666666666666,
0.7586206896551724,
0.746268656716418,
1,
1,
0.3333333333333333,
1,
0.7914285714285715,
0.6956521739130435,
1,
0.6666666666666666,
0.8031088082901554,
1,
1,
0.9130434782608695,
0.7452667814113597,
0.6666666666666666,
1,
0.6,
0.5,
0.65625,
0.5555555555555556,
0.5,
0.8135593220338984,
0.803921568627451,
1,
0.875,
0.6666666666666666,
0.7142857142857143,
0.75,
0.7333333333333333,
0.16666666666666666,
0.76,
0.721030042918455,
1,
1,
0.8648648648648649,
0.7803617571059431,
0.7692307692307693,
0.7924528301886793,
0.6666666666666666,
1,
1,
1,
0.7906976744186046,
0,
0.6961904761904761,
0.6530612244897959,
0.75,
0.5,
0.7837837837837838,
0.5222222222222223,
0.7288135593220338,
1,
0.9137931034482759,
0.75,
0.8333333333333334,
0.7777777777777778,
0.8333333333333334,
0.5,
1,
1,
0,
0.5384615384615384,
1,
0.75,
1,
0.76,
1,
0.5,
1,
0.5,
0.6455696202531646,
0.5,
1,
1,
1,
0.5263157894736842,
0.3333333333333333,
1,
0.7741935483870968,
0.7906976744186046,
0.6451612903225806,
0.6666666666666666,
0.7833333333333333,
0.5,
0.8387096774193549,
1,
0.8245614035087719,
1,
0.6666666666666666,
0.7142857142857143,
0.7741935483870968,
0.806930693069307,
0.5454545454545454,
1,
0.6619718309859155,
0.8384279475982532,
0.75,
1,
0.7142857142857143,
0,
0.6551724137931034,
0.7142857142857143,
0.8,
0.8125,
0.8863636363636364,
0.8837209302325582,
0.6991869918699187,
0.7142857142857143,
0.5,
0.8166666666666667,
0.6382978723404256,
1,
0.6896551724137931,
0,
0.625,
0.8,
1,
1,
0.6666666666666666,
0.7441860465116279,
1,
0.8247422680412371,
0.8260869565217391,
0.779874213836478,
0.7270214236351071,
0.5454545454545454,
1,
0,
0.6818181818181818,
0.7857142857142857,
1,
1,
0.8888888888888888
]
}
],
"layout": {
"title": "Use ratio of Python 3 in the world",
"xaxis": {
"zeroline": false
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow')[:2]]\n",
"\n",
"trace = go.Violin(x=countries_pyver_ratio['Python 3'], meanline={'visible': True}, box={'visible': True}, fillcolor=colors[0], opacity=0.6, line={'color': 'black'})\n",
"layout = go.Layout(title=\"Use ratio of Python 3 in the world\", xaxis={'zeroline': False})\n",
"\n",
"data = [trace]\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "Bluered",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "8e4b2292-ea75-11e8-b090-d8c4973dfcaa",
"z": [
33.33333333333333,
88.88888888888889,
69.56521739130434,
100,
100,
72.72727272727273,
100,
75.18248175182481,
72.72727272727273,
80,
50,
75,
78.94736842105263,
66.66666666666666,
75.86206896551724,
74.6268656716418,
100,
100,
33.33333333333333,
100,
79.14285714285715,
69.56521739130434,
100,
66.66666666666666,
80.31088082901555,
100,
100,
91.30434782608695,
74.52667814113597,
66.66666666666666,
100,
60,
50,
65.625,
55.55555555555556,
50,
81.35593220338984,
80.3921568627451,
100,
87.5,
66.66666666666666,
71.42857142857143,
75,
73.33333333333333,
16.666666666666664,
76,
72.1030042918455,
100,
100,
86.48648648648648,
78.0361757105943,
76.92307692307693,
79.24528301886792,
66.66666666666666,
100,
100,
100,
79.06976744186046,
0,
69.61904761904762,
65.3061224489796,
75,
50,
78.37837837837837,
52.22222222222223,
72.88135593220339,
100,
91.37931034482759,
75,
83.33333333333334,
77.77777777777779,
83.33333333333334,
50,
100,
100,
0,
53.84615384615385,
100,
75,
100,
76,
100,
50,
100,
50,
64.55696202531645,
50,
100,
100,
100,
52.63157894736842,
33.33333333333333,
100,
77.41935483870968,
79.06976744186046,
64.51612903225806,
66.66666666666666,
78.33333333333333,
50,
83.87096774193549,
100,
82.45614035087719,
100,
66.66666666666666,
71.42857142857143,
77.41935483870968,
80.6930693069307,
54.54545454545454,
100,
66.19718309859155,
83.84279475982532,
75,
100,
71.42857142857143,
0,
65.51724137931035,
71.42857142857143,
80,
81.25,
88.63636363636364,
88.37209302325581,
69.91869918699187,
71.42857142857143,
50,
81.66666666666667,
63.829787234042556,
100,
68.96551724137932,
0,
62.5,
80,
100,
100,
66.66666666666666,
74.4186046511628,
100,
82.4742268041237,
82.6086956521739,
77.9874213836478,
72.70214236351072,
54.54545454545454,
100,
0,
68.18181818181817,
78.57142857142857,
100,
100,
88.88888888888889
]
}
],
"layout": {
"geo": {
"projection": {
"type": "equirectangular"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ['equirectangular', 'mercator', 'orthographic', 'natural earth', 'kavrayskiy7', 'miller', 'robinson', 'eckert4',\n",
"# 'azimuthal equal area', 'azimuthal equidistant', 'conic\n",
"# equal area', 'conic conformal', 'conic equidistant',\n",
"# 'gnomonic', 'stereographic', 'mollweide', 'hammer',\n",
"# 'transverse mercator', 'albers usa', 'winkel tripel',\n",
"# 'aitoff', 'sinusoidal']\n",
"data = [ dict(\n",
" type = 'choropleth',\n",
" locations = countries_pyver_ratio.index,\n",
" locationmode = 'country names', \n",
" z = countries_pyver_ratio['Python 3'] * 100,\n",
" text = countries_pyver_ratio.index,\n",
" colorscale = 'Bluered',\n",
" autocolorscale = False,\n",
" reversescale = True,\n",
" marker = dict(\n",
" line = dict (\n",
" color = 'rgb(180,180,180)',\n",
" width = 0.5\n",
" ) ),\n",
" colorbar = dict(\n",
"# autotick = False,\n",
" ticksuffix = '%',\n",
" title = 'Percent'),\n",
" ) ]\n",
"\n",
"layout = dict(\n",
" title = 'Python 3 in the world',\n",
" geo = dict(\n",
" showframe = False,\n",
" showcoastlines = False,\n",
" projection = dict(\n",
" type = 'equirectangular'\n",
" ),\n",
" )\n",
")\n",
"\n",
"\n",
"# fig = go.Figure()\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"# py.iplot(fig)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 开发者中使用 IDE 的情况?"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" pycharm professional edition | \n",
" pycharm community edition | \n",
" sublime text | \n",
" vim | \n",
" atom | \n",
" vs code | \n",
" eclipse + pydev | \n",
" aptana | \n",
" jupyter notebook | \n",
" intellij idea | \n",
" ... | \n",
" netbeans | \n",
" spyder | \n",
" rodeo | \n",
" gedit | \n",
" ninja-ide | \n",
" komodo editor | \n",
" komodo ide | \n",
" wing ide | \n",
" textmate | \n",
" other - write in | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" Vim | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" Other - Write In: | \n",
"
\n",
" \n",
" | 1 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" Atom | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" Wing IDE | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | 2 | \n",
" PyCharm Professional Edition | \n",
" NaN | \n",
" Sublime Text | \n",
" Vim | \n",
" Atom | \n",
" NaN | \n",
" Eclipse + Pydev | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" Komodo IDE | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | 3 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | 4 | \n",
" PyCharm Professional Edition | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" pycharm professional edition pycharm community edition sublime text vim \\\n",
"0 NaN NaN NaN Vim \n",
"1 NaN NaN NaN NaN \n",
"2 PyCharm Professional Edition NaN Sublime Text Vim \n",
"3 NaN NaN NaN NaN \n",
"4 PyCharm Professional Edition NaN NaN NaN \n",
"\n",
" atom vs code eclipse + pydev aptana jupyter notebook intellij idea \\\n",
"0 NaN NaN NaN NaN NaN NaN \n",
"1 Atom NaN NaN NaN NaN NaN \n",
"2 Atom NaN Eclipse + Pydev NaN NaN NaN \n",
"3 NaN NaN NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN NaN NaN \n",
"\n",
" ... netbeans spyder rodeo gedit ninja-ide komodo editor \\\n",
"0 ... NaN NaN NaN NaN NaN NaN \n",
"1 ... NaN NaN NaN NaN NaN NaN \n",
"2 ... NaN NaN NaN NaN NaN NaN \n",
"3 ... NaN NaN NaN NaN NaN NaN \n",
"4 ... NaN NaN NaN NaN NaN NaN \n",
"\n",
" komodo ide wing ide textmate other - write in \n",
"0 NaN NaN NaN Other - Write In: \n",
"1 NaN Wing IDE NaN NaN \n",
"2 Komodo IDE NaN NaN NaN \n",
"3 NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 102,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cols = find_cols(survey_df, ['what', 'editor(s)/ide(s)'])\n",
"editors = survey_df[cols]\n",
"editors.columns = [item.split(':')[0] for item in editors.columns]\n",
"editors.head()"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pycharm community edition 3061\n",
"sublime text 2762\n",
"vim 2468\n",
"atom 2070\n",
"pycharm professional edition 2069\n",
"dtype: int64"
]
},
"execution_count": 103,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"count_editors = editors.count().sort_values(ascending=False)\n",
"count_editors.head()"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#ff1f10",
"#ff3e1f",
"#ff5c2f",
"#ff793e",
"#ff964f",
"#ffae5e",
"#f0c46c",
"#dcd67a",
"#c6e789",
"#b2f396",
"#9efaa2",
"#8bfeae",
"#74feba",
"#60fac5",
"#4df3ce",
"#38e7d7",
"#22d6e0",
"#0fc4e7",
"#06aeed",
"#1996f3",
"#3079f7",
"#445cfb",
"#583efd",
"#6c1fff"
]
},
"orientation": "h",
"type": "bar",
"uid": "8e5c8626-ea75-11e8-81d2-d8c4973dfcaa",
"x": [
71,
132,
139,
163,
164,
185,
218,
349,
405,
548,
578,
611,
697,
751,
1048,
1581,
1740,
1820,
1854,
2069,
2070,
2468,
2762,
3061
],
"y": [
"rodeo",
"ninja-ide",
"textmate",
"aptana",
"komodo editor",
"komodo ide",
"wing ide",
"netbeans",
"other - write in",
"gedit",
"python tools for visual studio (ptvs)",
"emacs",
"intellij idea",
"spyder",
"eclipse + pydev",
"vs code",
"jupyter notebook",
"idle",
"notepad++",
"pycharm professional edition",
"atom",
"vim",
"sublime text",
"pycharm community edition"
]
}
],
"layout": {
"height": 1000,
"margin": {
"r": 10
},
"title": "What editor(s)/IDE(s) have you considered for use in your Python development?",
"yaxis": {
"automargin": true
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', len(count_editors))]\n",
"trace = go.Bar(y=count_editors.index[::-1], x=count_editors.values[::-1], marker={'color': colors[::-1]}, orientation='h')\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(\n",
" title=\"What editor(s)/IDE(s) have you considered for use in your Python development?\",\n",
" margin={'r': 10},\n",
" height=1000,\n",
" yaxis={'automargin': True}\n",
")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#6c1fff",
"#583efd",
"#445cfb",
"#3079f7",
"#1996f3",
"#06aeed",
"#0fc4e7",
"#22d6e0",
"#38e7d7",
"#4df3ce",
"#60fac5",
"#74feba",
"#8bfeae",
"#9efaa2",
"#b2f396",
"#c6e789",
"#dcd67a",
"#f0c46c",
"#ffae5e",
"#ff964f",
"#ff793e",
"#ff5c2f",
"#ff3e1f",
"#ff1f10"
]
},
"orientation": "v",
"type": "bar",
"uid": "8e6511ae-ea75-11e8-96b8-d8c4973dfcaa",
"x": [
"pycharm community edition",
"sublime text",
"vim",
"atom",
"pycharm professional edition",
"notepad++",
"idle",
"jupyter notebook",
"vs code",
"eclipse + pydev",
"spyder",
"intellij idea",
"emacs",
"python tools for visual studio (ptvs)",
"gedit",
"other - write in",
"netbeans",
"wing ide",
"komodo ide",
"komodo editor",
"aptana",
"textmate",
"ninja-ide",
"rodeo"
],
"y": [
3061,
2762,
2468,
2070,
2069,
1854,
1820,
1740,
1581,
1048,
751,
697,
611,
578,
548,
405,
349,
218,
185,
164,
163,
139,
132,
71
]
}
],
"layout": {
"title": "What editor(s)/IDE(s) have you considered for use in your Python development?"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', len(count_editors))]\n",
"trace = go.Bar(x=count_editors.index, y=count_editors.values, marker={'color': colors}, orientation='v')\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(\n",
" title=\"What editor(s)/IDE(s) have you considered for use in your Python development?\",\n",
")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PyCharm Professional Edition 1339\n",
"PyCharm Community Edition 1240\n",
"Sublime Text 844\n",
"Vim 775\n",
"IDLE 708\n",
"Name: what is the main editor you use for your current python development?, dtype: int64"
]
},
"execution_count": 106,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"col = find_cols(survey_df, ['what', 'main', 'editor'])\n",
"main_editor = survey_df[col[0]]\n",
"count_main_editor = main_editor.value_counts(ascending=False)\n",
"count_main_editor.head()"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#ff1f10",
"#ff3e1f",
"#ff5c2f",
"#ff793e",
"#ff964f",
"#ffae5e",
"#f0c46c",
"#dcd67a",
"#c6e789",
"#b2f396",
"#9efaa2",
"#8bfeae",
"#74feba",
"#60fac5",
"#4df3ce",
"#38e7d7",
"#22d6e0",
"#0fc4e7",
"#06aeed",
"#1996f3",
"#3079f7",
"#445cfb",
"#583efd",
"#6c1fff"
]
},
"orientation": "h",
"type": "bar",
"uid": "8e6f9922-ea75-11e8-8803-d8c4973dfcaa",
"x": [
2,
13,
21,
22,
28,
41,
46,
54,
61,
100,
136,
205,
206,
225,
235,
262,
382,
566,
601,
708,
775,
844,
1240,
1339
],
"y": [
"Rodeo",
"TextMate",
"Komodo Editor",
"Ninja-IDE",
"Komodo IDE",
"Aptana",
"NetBeans",
"Wing IDE",
"Gedit",
"Python Tools for Visual Studio (PTVS)",
"IntelliJ IDEA",
"Spyder",
"Other - Write In:",
"Eclipse + Pydev",
"Emacs",
"Jupyter Notebook",
"NotePad++",
"Atom",
"VS Code",
"IDLE",
"Vim",
"Sublime Text",
"PyCharm Community Edition",
"PyCharm Professional Edition"
]
}
],
"layout": {
"height": 1000,
"margin": {
"r": 10
},
"title": "What is the main editor you use for your current python development?",
"yaxis": {
"automargin": true
}
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', len(count_main_editor))]\n",
"trace = go.Bar(y=count_main_editor.index[::-1], x=count_main_editor.values[::-1], marker={'color': colors[::-1]}, orientation='h')\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(\n",
" title=\"What is the main editor you use for your current python development?\",\n",
" margin={'r': 10},\n",
" height=1000,\n",
" yaxis={'automargin': True}\n",
")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"data": [
{
"marker": {
"color": [
"#6c1fff",
"#583efd",
"#445cfb",
"#3079f7",
"#1996f3",
"#06aeed",
"#0fc4e7",
"#22d6e0",
"#38e7d7",
"#4df3ce",
"#60fac5",
"#74feba",
"#8bfeae",
"#9efaa2",
"#b2f396",
"#c6e789",
"#dcd67a",
"#f0c46c",
"#ffae5e",
"#ff964f",
"#ff793e",
"#ff5c2f",
"#ff3e1f",
"#ff1f10"
]
},
"orientation": "v",
"type": "bar",
"uid": "8e77d666-ea75-11e8-88c4-d8c4973dfcaa",
"x": [
"PyCharm Professional Edition",
"PyCharm Community Edition",
"Sublime Text",
"Vim",
"IDLE",
"VS Code",
"Atom",
"NotePad++",
"Jupyter Notebook",
"Emacs",
"Eclipse + Pydev",
"Other - Write In:",
"Spyder",
"IntelliJ IDEA",
"Python Tools for Visual Studio (PTVS)",
"Gedit",
"Wing IDE",
"NetBeans",
"Aptana",
"Komodo IDE",
"Ninja-IDE",
"Komodo Editor",
"TextMate",
"Rodeo"
],
"y": [
1339,
1240,
844,
775,
708,
601,
566,
382,
262,
235,
225,
206,
205,
136,
100,
61,
54,
46,
41,
28,
22,
21,
13,
2
]
}
],
"layout": {
"title": "What is the main editor you use for your current python development?"
}
},
"text/html": [
""
],
"text/vnd.plotly.v1+html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [rgb2hex(i) for i in sns.color_palette('rainbow', len(count_editors))]\n",
"trace = go.Bar(x=count_main_editor.index, y=count_main_editor.values, marker={'color': colors}, orientation='v')\n",
"\n",
"data = [trace]\n",
"layout = go.Layout(\n",
" title=\"What is the main editor you use for your current python development?\",\n",
")\n",
"# go.FigureWidget(data=data, layout=layout)\n",
"fig = go.Figure(data=data, layout=layout)\n",
"offline.iplot(fig, show_link=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"081df3113abb481e84f5fe36c4a637c5": {
"buffers": [
{
"data": "oMgeXjRotT9KzQewM26mP+CnJ25O9p0/",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
},
{
"data": "Vj/WM60Lsj/QLiA2lYbMP83jPyPw07M/",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
},
{
"data": "T9epwCnM0j9CHdRBHdThP/U3DXpvp+Q/",
"encoding": "base64",
"path": [
"_data",
2,
"y",
"value"
]
},
{
"data": "vGjQKkJm0j9Ffyer5Y3BP8XNyb6DUcs/",
"encoding": "base64",
"path": [
"_data",
3,
"y",
"value"
]
},
{
"data": "Ya30v4UUxD/sjJuFJjWfPwuucebxn6E/",
"encoding": "base64",
"path": [
"_data",
4,
"y",
"value"
]
},
{
"data": "8BXcPBixsT9PG+i0gU57PwAAAAAAAAAA",
"encoding": "base64",
"path": [
"_data",
5,
"y",
"value"
]
},
{
"data": "VQ65BpbQoz/sjJuFJjVfPwAAAAAAAAAA",
"encoding": "base64",
"path": [
"_data",
6,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#4062fa"
},
"name": "17 or younger",
"type": "bar",
"uid": "b50b481e-dafe-11e8-9fe3-0c54159b97f0",
"x": [
"United States",
"India",
"China"
],
"y": {
"dtype": "float64",
"shape": [
3
],
"value": {}
}
},
{
"marker": {
"color": "#00b5eb"
},
"name": "18-20",
"type": "bar",
"uid": "b50b6f40-dafe-11e8-9163-0c54159b97f0",
"x": [
"United States",
"India",
"China"
],
"y": {
"dtype": "float64",
"shape": [
3
],
"value": {}
}
},
{
"marker": {
"color": "#40ecd4"
},
"name": "21-29",
"type": "bar",
"uid": "b50b6f41-dafe-11e8-849b-0c54159b97f0",
"x": [
"United States",
"India",
"China"
],
"y": {
"dtype": "float64",
"shape": [
3
],
"value": {}
}
},
{
"marker": {
"color": "#80ffb4"
},
"name": "30-39",
"type": "bar",
"uid": "b50b6f42-dafe-11e8-a2c2-0c54159b97f0",
"x": [
"United States",
"India",
"China"
],
"y": {
"dtype": "float64",
"shape": [
3
],
"value": {}
}
},
{
"marker": {
"color": "#c0eb8d"
},
"name": "40-49",
"type": "bar",
"uid": "b50b6f43-dafe-11e8-9d4e-0c54159b97f0",
"x": [
"United States",
"India",
"China"
],
"y": {
"dtype": "float64",
"shape": [
3
],
"value": {}
}
},
{
"marker": {
"color": "#ffb360"
},
"name": "50-59",
"type": "bar",
"uid": "b50b6f44-dafe-11e8-af37-0c54159b97f0",
"x": [
"United States",
"India",
"China"
],
"y": {
"dtype": "float64",
"shape": [
3
],
"value": {}
}
},
{
"marker": {
"color": "#ff5f30"
},
"name": "60 or older",
"type": "bar",
"uid": "b50b6f45-dafe-11e8-8337-0c54159b97f0",
"x": [
"United States",
"India",
"China"
],
"y": {
"dtype": "float64",
"shape": [
3
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Age distribution of the developers who're from USA, India and China"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"12c02cfb0499401fbec0d4e7b1645fee": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#6c1fff",
"#583efd",
"#445cfb",
"#3079f7",
"#1996f3",
"#06aeed",
"#0fc4e7",
"#22d6e0",
"#38e7d7",
"#4df3ce",
"#60fac5",
"#74feba",
"#8bfeae",
"#9efaa2",
"#b2f396",
"#c6e789",
"#dcd67a",
"#f0c46c",
"#ffae5e",
"#ff964f",
"#ff793e",
"#ff5c2f",
"#ff3e1f",
"#ff1f10"
]
},
"orientation": "v",
"type": "bar",
"uid": "b6d9eda4-dafe-11e8-b355-0c54159b97f0",
"x": [
"PyCharm Professional Edition",
"PyCharm Community Edition",
"Sublime Text",
"Vim",
"IDLE",
"VS Code",
"Atom",
"NotePad++",
"Jupyter Notebook",
"Emacs",
"Eclipse + Pydev",
"Other - Write In:",
"Spyder",
"IntelliJ IDEA",
"Python Tools for Visual Studio (PTVS)",
"Gedit",
"Wing IDE",
"NetBeans",
"Aptana",
"Komodo IDE",
"Ninja-IDE",
"Komodo Editor",
"TextMate",
"Rodeo"
],
"y": [
1339,
1240,
844,
775,
708,
601,
566,
382,
262,
235,
225,
206,
205,
136,
100,
61,
54,
46,
41,
28,
22,
21,
13,
2
]
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "What is the main editor you use for your current python development?"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"157eb1298dc44972a9176ba50ef94ed7": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "721f8c62-daff-11e8-9063-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 20,
"_layout": {
"geo": {
"center": {
"lat": 4.757628221070452,
"lon": 126.32950292306295
},
"projection": {
"rotation": {
"lon": 126.32950292306295
},
"scale": 0.8408964152537138,
"type": "mercator"
},
"showcoastlines": false,
"showframe": false
},
"margin": {
"l": 0
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"1607da965458432da1d9e0a99b97b40d": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#ff1f10",
"#ff3e1f",
"#ff5c2f",
"#ff793e",
"#ff964f",
"#ffae5e",
"#f0c46c",
"#dcd67a",
"#c6e789",
"#b2f396",
"#9efaa2",
"#8bfeae",
"#74feba",
"#60fac5",
"#4df3ce",
"#38e7d7",
"#22d6e0",
"#0fc4e7",
"#06aeed",
"#1996f3",
"#3079f7",
"#445cfb",
"#583efd",
"#6c1fff"
]
},
"orientation": "h",
"type": "bar",
"uid": "b10ca33e-dafe-11e8-822f-0c54159b97f0",
"x": [
164,
185,
224,
278,
282,
303,
332,
389,
439,
510,
626,
649,
759,
791,
938,
1129,
1257,
1360,
1740,
1960,
2607,
2769,
3163,
3363
],
"y": [
"komodo editor",
"komodo ide",
"cherrypy",
"pyramid",
"bottle",
"twisted",
"web2py",
"kivy",
"aiohttp",
"tornado",
"six",
"other - write in",
"asyncio",
"pygame",
"tkinter",
"pyqt / pygtk / wxpython",
"pillow",
"keras / theano / tensorflow / scikit-learn and similar",
"jupyter notebook",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"flask",
"requests",
"numpy / pandas / matplotlib / scipy and similar",
"django"
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"height": 1000,
"margin": {
"r": 10
},
"title": "Framework Usage",
"yaxis": {
"automargin": true
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"25086372ce3a4653b5bf4b07a65b645b": {
"buffers": [
{
"data": "k0a15Spp1D/I4HwMzsfQP/g+l4Xvc8k/THsiA+n90T8GcMQeov3VP2cpD0qHqLk/gHuxX+M62D84bysmjgjHP3UK54VlBcA/R2KJkp+i0T/5i5xhwaXSP79CHxXJjtk/kiRJkiRJ1D9Q3+K1YgnFP0kPVM5u4cc/iscQRhPz0D9re1IzZPTQP9nY2NjY2Mg/5Ez+TpBrzT+nzq895LLSP8vQAbs91tI/EhISEhIS0j/WT52i+KTQP/GXPMw3AdA/",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
},
{
"data": "t1wljWrL5T+cj8H5GJznP0Iwmh4Eo+k/WsJufgsB5z/9x53wLgHlP9Mavhbvyuw/QEInUI7i4z8yJHV23D3qP2M9hp6m/us/3U67NrAu5z8EujFPH63mP6FecHWbOOM/t23btm3b5T8sSIdSp73qPy78akykB+o/O5z3XHaG5z9LwlbmzYXnP8rJycnJyek/x2xA7Bul6D+tGCjhjabmP5oXfyLhlOY/9/b29vb25j8VWLGug63nPwi04Rlk/+c/",
"encoding": "base64",
"path": [
"_data",
1,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"name": "Python 2",
"orientation": "h",
"type": "scatter",
"uid": "b458c262-dafe-11e8-be22-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"komodo ide",
"komodo editor",
"jupyter notebook",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"other - write in",
"aiohttp",
"six",
"kivy",
"asyncio",
"requests",
"pyramid",
"twisted",
"cherrypy",
"pygame",
"tkinter",
"pyqt / pygtk / wxpython",
"pillow",
"keras / theano / tensorflow / scikit-learn and similar",
"numpy / pandas / matplotlib / scipy and similar",
"web2py",
"bottle",
"tornado",
"flask",
"django"
]
},
{
"marker": {
"color": "#12c8e6"
},
"mode": "markers",
"name": "Python 3",
"orientation": "h",
"type": "scatter",
"uid": "b458c263-dafe-11e8-ac18-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"komodo ide",
"komodo editor",
"jupyter notebook",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"other - write in",
"aiohttp",
"six",
"kivy",
"asyncio",
"requests",
"pyramid",
"twisted",
"cherrypy",
"pygame",
"tkinter",
"pyqt / pygtk / wxpython",
"pillow",
"keras / theano / tensorflow / scikit-learn and similar",
"numpy / pandas / matplotlib / scipy and similar",
"web2py",
"bottle",
"tornado",
"flask",
"django"
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"height": 1000,
"margin": {
"r": 10
},
"title": "Python 2 and Python 3 Usage among Frameworks",
"yaxis": {
"automargin": true
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"2cc23267db7348ed91940d779e1da731": {
"buffers": [
{
"data": "8Zc8zDcB0D/WT52i+KTQPxISEhISEtI/y9ABuz3W0j+nzq895LLSP+RM/k6Qa80/2djY2NjYyD9re1IzZPTQP4rHEEYT89A/SQ9Uzm7hxz9Q3+K1YgnFP5IkSZIkSdQ/v0IfFcmO2T/5i5xhwaXSP0diiZKfotE/dQrnhWUFwD84bysmjgjHP4B7sV/jOtg/ZykPSoeouT8GcMQeov3VP0x7IgPp/dE/+D6Xhe9zyT/I4HwMzsfQP5NGteUqadQ/",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
},
{
"data": "CLThGWT/5z8VWLGug63nP/f29vb29uY/mhd/IuGU5j+tGCjhjabmP8dsQOwbpeg/ysnJycnJ6T9LwlbmzYXnPzuc91x2huc/LvxqTKQH6j8sSIdSp73qP7dt27Zt2+U/oV5wdZs44z8EujFPH63mP91OuzawLuc/Yz2Gnqb+6z8yJHV23D3qP0BCJ1CO4uM/0xq+Fu/K7D/9x53wLgHlP1rCbn4LAec/QjCaHgSj6T+cj8H5GJznP7dcJY1qy+U/",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"name": "Python 2",
"type": "scatter",
"uid": "b44d50a2-dafe-11e8-9cdd-0c54159b97f0",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
},
{
"marker": {
"color": "#12c8e6"
},
"mode": "markers",
"name": "Python 3",
"type": "scatter",
"uid": "b44d50a3-dafe-11e8-a14f-0c54159b97f0",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Python 2 and Python 3 Usage among Frameworks"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"30f0d385fea347d3844744644faf3bd1": {
"buffers": [
{
"data": "8Zc8zDcB0D/WT52i+KTQPxISEhISEtI/y9ABuz3W0j+nzq895LLSP+RM/k6Qa80/2djY2NjYyD9re1IzZPTQP4rHEEYT89A/SQ9Uzm7hxz9Q3+K1YgnFP5IkSZIkSdQ/v0IfFcmO2T/5i5xhwaXSP0diiZKfotE/dQrnhWUFwD84bysmjgjHP4B7sV/jOtg/ZykPSoeouT8GcMQeov3VP0x7IgPp/dE/+D6Xhe9zyT/I4HwMzsfQP5NGteUqadQ/",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
},
{
"data": "CLThGWT/5z8VWLGug63nP/f29vb29uY/mhd/IuGU5j+tGCjhjabmP8dsQOwbpeg/ysnJycnJ6T9LwlbmzYXnPzuc91x2huc/LvxqTKQH6j8sSIdSp73qP7dt27Zt2+U/oV5wdZs44z8EujFPH63mP91OuzawLuc/Yz2Gnqb+6z8yJHV23D3qP0BCJ1CO4uM/0xq+Fu/K7D/9x53wLgHlP1rCbn4LAec/QjCaHgSj6T+cj8H5GJznP7dcJY1qy+U/",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "bar",
"uid": "b147159a-dafe-11e8-9759-0c54159b97f0",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "bar",
"uid": "b147159b-dafe-11e8-a29e-0c54159b97f0",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Python 2 and Python 3 Usage among Frameworks"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"38732e30f205473184fc42c215e921e8": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "Bluered",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "f865d562-db01-11e8-8bea-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"geo": {
"projection": {
"type": "equirectangular"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"3c746fa0a6a843c19e213e0fb6cebb1d": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "b6a19fc0-dafe-11e8-aba5-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_layout": {
"geo": {
"projection": {
"type": "mercator"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"3ca97428bec4448e9577e7cd402f94df": {
"buffers": [
{
"data": "AAAAAACAekAAAAAAALB4QAAAAAAAQFJAAAAAAAAAQ0AAAAAAAIBIQAAAAAAA8IxAAAAAAADQeEAAAAAAAOBjQAAAAAAAAGlAAAAAAABAY0AAAAAAAIBXQAAAAAAAAEBAAAAAAAAAP0AAAAAAAIBAQAAAAAAAgHdAAAAAAABAVUAAAAAAAABGQAAAAAAAgFdAAAAAAAAAR0AAAAAAAEBUQAAAAAAAcHFAAAAAAACQgkAAAAAAAAA7QAAAAAAAADlA",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
},
{
"data": "AAAAAADgbUAAAAAAAEBnQAAAAAAAAEhAAAAAAAAAM0AAAAAAAAA/QAAAAAAA4HxAAAAAAAAAekAAAAAAAIBWQAAAAAAAAFZAAAAAAAAAU0AAAAAAAEBRQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAoQAAAAAAAYGRAAAAAAAAAREAAAAAAAAA5QAAAAAAAgEJAAAAAAAAANkAAAAAAAIBAQAAAAAAAYGFAAAAAAACQckAAAAAAAAAkQAAAAAAAABxA",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"fill": "tozeroy",
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "scatter",
"uid": "b4ad985c-dafe-11e8-9a95-0c54159b97f0",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
},
{
"fill": "tozeroy",
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "scatter",
"uid": "b4ad985d-dafe-11e8-87f7-0c54159b97f0",
"x": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Frameworks Usage among Data Analysis and Machine Learning Developers"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"4572a32fb70b4bad8c0cc2ba5c6fd582": {
"buffers": [
{
"data": "VVVVVVVV1T8cx3Ecx3HsP2QhC1nIQuY/AAAAAAAA8D8AAAAAAADwP0YXXXTRRec/AAAAAAAA8D9D/HHr8g7oP0YXXXTRRec/mpmZmZmZ6T8AAAAAAADgPwAAAAAAAOg/NpTXUF5D6T9VVVVVVVXlP+5phOWeRug/SQ9Uzm7h5z8AAAAAAADwPwAAAAAAAPA/VVVVVVVV1T8AAAAAAADwP5377AJiU+k/ZCELWchC5j8AAAAAAADwP1VVVVVVVeU/RotXPhGz6T8AAAAAAADwPwAAAAAAAPA/05ve9KY37T+Bn564OdnnP1VVVVVVVeU/AAAAAAAA8D8zMzMzMzPjPwAAAAAAAOA/AAAAAAAA5T9yHMdxHMfhPwAAAAAAAOA/lLovj60I6j+6ubm5ubnpPwAAAAAAAPA/AAAAAAAA7D9VVVVVVVXlP7dt27Zt2+Y/AAAAAAAA6D93d3d3d3fnP1VVVVVVVcU/UrgehetR6D9tlbiYrRLnPwAAAAAAAPA/AAAAAAAA8D/QusEU+azrPz42Oji5+Og/2Ymd2Imd6D9+DqkJxlvpP1VVVVVVVeU/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/U9aUNWVN6T8AAAAAAAAAANnK4D8xR+Y/OQUvp+Dl5D8AAAAAAADoPwAAAAAAAOA/TJHPusEU6T9hC7ZgC7bgP3lsRdBwUuc/AAAAAAAA8D+x3NMIyz3tPwAAAAAAAOg/q6qqqqqq6j85juM4juPoP6uqqqqqquo/AAAAAAAA4D8AAAAAAADwPwAAAAAAAPA/AAAAAAAAAACxEzuxEzvhPwAAAAAAAPA/AAAAAAAA6D8AAAAAAADwP1K4HoXrUeg/AAAAAAAA8D8AAAAAAADgPwAAAAAAAPA/AAAAAAAA4D9R6ciegajkPwAAAAAAAOA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/eQ3lNZTX4D9VVVVVVVXVPwAAAAAAAPA/xhhjjDHG6D9T1pQ1ZU3pP6WUUkoppeQ/VVVVVVVV5T8RERERERHpPwAAAAAAAOA/11prrbXW6j8AAAAAAADwPy2ms5jOYuo/AAAAAAAA8D9VVVVVVVXlP7dt27Zt2+Y/xhhjjDHG6D+W4RtRYNLpP3TRRRdddOE/AAAAAAAA8D/cpZ6M3y7lP66U39hm1Oo/AAAAAAAA6D8AAAAAAADwP7dt27Zt2+Y/AAAAAAAAAADCck8jLPfkP7dt27Zt2+Y/mpmZmZmZ6T8AAAAAAADqP1100UUXXew/EnfEHXFH7D9g1vtlvV/mP7dt27Zt2+Y/AAAAAAAA4D8iIiIiIiLqP1Lf2ajvbOQ/AAAAAAAA8D98GmG5pxHmPwAAAAAAAAAAAAAAAAAA5D+amZmZmZnpPwAAAAAAAPA/AAAAAAAA8D9VVVVVVVXlP/QFfUFf0Oc/AAAAAAAA8D8atpvlSWTqP6c3velNb+o/+nttxLr06D/4IcBuwkPnP3TRRRdddOE/AAAAAAAA8D8AAAAAAAAAANFFF1100eU/SZIkSZIk6T8AAAAAAADwPwAAAAAAAPA/HMdxHMdx7D8=",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"type": "scatter",
"uid": "b547dbf0-dafe-11e8-93d3-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
148
],
"value": {}
},
"y": [
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3"
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"4d51748365b045f9956ac0cf0bd5ae72": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "e1f96f3e-db01-11e8-8d5e-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_layout": {
"geo": {
"projection": {
"type": "equirectangular"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"4fc9ca21560d42328bfd6fa2c1675808": {
"buffers": [
{
"data": "VVVVVVVV1T8cx3Ecx3HsP2QhC1nIQuY/AAAAAAAA8D8AAAAAAADwP0YXXXTRRec/AAAAAAAA8D9D/HHr8g7oP0YXXXTRRec/mpmZmZmZ6T8AAAAAAADgPwAAAAAAAOg/NpTXUF5D6T9VVVVVVVXlP+5phOWeRug/SQ9Uzm7h5z8AAAAAAADwPwAAAAAAAPA/VVVVVVVV1T8AAAAAAADwP5377AJiU+k/ZCELWchC5j8AAAAAAADwP1VVVVVVVeU/RotXPhGz6T8AAAAAAADwPwAAAAAAAPA/05ve9KY37T+Bn564OdnnP1VVVVVVVeU/AAAAAAAA8D8zMzMzMzPjPwAAAAAAAOA/AAAAAAAA5T9yHMdxHMfhPwAAAAAAAOA/lLovj60I6j+6ubm5ubnpPwAAAAAAAPA/AAAAAAAA7D9VVVVVVVXlP7dt27Zt2+Y/AAAAAAAA6D93d3d3d3fnP1VVVVVVVcU/UrgehetR6D9tlbiYrRLnPwAAAAAAAPA/AAAAAAAA8D/QusEU+azrPz42Oji5+Og/2Ymd2Imd6D9+DqkJxlvpP1VVVVVVVeU/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/U9aUNWVN6T8AAAAAAAAAANnK4D8xR+Y/OQUvp+Dl5D8AAAAAAADoPwAAAAAAAOA/TJHPusEU6T9hC7ZgC7bgP3lsRdBwUuc/AAAAAAAA8D+x3NMIyz3tPwAAAAAAAOg/q6qqqqqq6j85juM4juPoP6uqqqqqquo/AAAAAAAA4D8AAAAAAADwPwAAAAAAAPA/AAAAAAAAAACxEzuxEzvhPwAAAAAAAPA/AAAAAAAA6D8AAAAAAADwP1K4HoXrUeg/AAAAAAAA8D8AAAAAAADgPwAAAAAAAPA/AAAAAAAA4D9R6ciegajkPwAAAAAAAOA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/eQ3lNZTX4D9VVVVVVVXVPwAAAAAAAPA/xhhjjDHG6D9T1pQ1ZU3pP6WUUkoppeQ/VVVVVVVV5T8RERERERHpPwAAAAAAAOA/11prrbXW6j8AAAAAAADwPy2ms5jOYuo/AAAAAAAA8D9VVVVVVVXlP7dt27Zt2+Y/xhhjjDHG6D+W4RtRYNLpP3TRRRdddOE/AAAAAAAA8D/cpZ6M3y7lP66U39hm1Oo/AAAAAAAA6D8AAAAAAADwP7dt27Zt2+Y/AAAAAAAAAADCck8jLPfkP7dt27Zt2+Y/mpmZmZmZ6T8AAAAAAADqP1100UUXXew/EnfEHXFH7D9g1vtlvV/mP7dt27Zt2+Y/AAAAAAAA4D8iIiIiIiLqP1Lf2ajvbOQ/AAAAAAAA8D98GmG5pxHmPwAAAAAAAAAAAAAAAAAA5D+amZmZmZnpPwAAAAAAAPA/AAAAAAAA8D9VVVVVVVXlP/QFfUFf0Oc/AAAAAAAA8D8atpvlSWTqP6c3velNb+o/+nttxLr06D/4IcBuwkPnP3TRRRdddOE/AAAAAAAA8D8AAAAAAAAAANFFF1100eU/SZIkSZIk6T8AAAAAAADwPwAAAAAAAPA/HMdxHMdx7D8=",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"box": {
"visible": true
},
"fillcolor": "#386df9",
"line": {
"color": "black"
},
"meanline": {
"visible": true
},
"opacity": 0.6,
"type": "violin",
"uid": "b5bbc03e-dafe-11e8-8890-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Use ratio of Python 3 in the world",
"xaxis": {
"zeroline": false
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"56fe72934f904c419b488b2440be827e": {
"buffers": [
{
"data": "AAAAAAAAOUAAAAAAAAA7QAAAAAAAAD9AAAAAAAAAQEAAAAAAAIBAQAAAAAAAAENAAAAAAAAARkAAAAAAAABHQAAAAAAAgEhAAAAAAABAUkAAAAAAAEBUQAAAAAAAQFVAAAAAAACAV0AAAAAAAIBXQAAAAAAAQGNAAAAAAADgY0AAAAAAAABpQAAAAAAAcHFAAAAAAACAd0AAAAAAALB4QAAAAAAA0HhAAAAAAACAekAAAAAAAJCCQAAAAAAA8IxA",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
},
{
"data": "AAAAAAAAHEAAAAAAAAAkQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAoQAAAAAAAADNAAAAAAAAAOUAAAAAAAAA2QAAAAAAAAD9AAAAAAAAASEAAAAAAAIBAQAAAAAAAAERAAAAAAABAUUAAAAAAAIBCQAAAAAAAAFNAAAAAAACAVkAAAAAAAABWQAAAAAAAYGFAAAAAAABgZEAAAAAAAEBnQAAAAAAAAHpAAAAAAADgbUAAAAAAAJByQAAAAAAA4HxA",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"fill": "tozeroy",
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "scatter",
"uid": "b4b95792-dafe-11e8-a72a-0c54159b97f0",
"x": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
},
{
"fill": "tozeroy",
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "scatter",
"uid": "b4b95793-dafe-11e8-a792-0c54159b97f0",
"x": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
],
"y": {
"dtype": "float64",
"shape": [
24
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Frameworks Usage among Data Analysis and Machine Learning Developers"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"5b3be65966004fb6b2e44367dd3e0535": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "c1e7314c-db01-11e8-986e-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 2,
"_layout": {
"geo": {
"projection": {
"rotation": {
"lat": 81.2667596347385,
"lon": -87.31766317965668
},
"scale": 1,
"type": "transverse mercator"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"5d741167b3444140b3ee21849fcf317b": {
"buffers": [
{
"data": "8Zc8zDcB0D/WT52i+KTQPxISEhISEtI/y9ABuz3W0j+nzq895LLSP+RM/k6Qa80/2djY2NjYyD9re1IzZPTQP4rHEEYT89A/SQ9Uzm7hxz9Q3+K1YgnFP5IkSZIkSdQ/v0IfFcmO2T/5i5xhwaXSP0diiZKfotE/dQrnhWUFwD84bysmjgjHP4B7sV/jOtg/ZykPSoeouT8GcMQeov3VP0x7IgPp/dE/+D6Xhe9zyT/I4HwMzsfQP5NGteUqadQ/",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
},
{
"data": "CLThGWT/5z8VWLGug63nP/f29vb29uY/mhd/IuGU5j+tGCjhjabmP8dsQOwbpeg/ysnJycnJ6T9LwlbmzYXnPzuc91x2huc/LvxqTKQH6j8sSIdSp73qP7dt27Zt2+U/oV5wdZs44z8EujFPH63mP91OuzawLuc/Yz2Gnqb+6z8yJHV23D3qP0BCJ1CO4uM/0xq+Fu/K7D/9x53wLgHlP1rCbn4LAec/QjCaHgSj6T+cj8H5GJznP7dcJY1qy+U/",
"encoding": "base64",
"path": [
"_data",
1,
"x",
"value"
]
},
{
"data": "hAuWi/hE8D+dV8ohGHHwP7j/3/RQnfA/OC1pPKPJ8D/sOKU8D/bwP1tJSEaVIvE/o2s7tjVP8T9wMFX18HvxP8naCnjHqPE/zzIavrnV8T/OEixSyALyP17Jb8nzL/I/wW8vwzxd8j/eV13oo4ryP9G5GuspuPI/Mc03hs/l8j+Zfq18lRPzP0z2EJl8QfM//SgBrYVv8z/+r46QsZ3zP0MqniEBzPM/oGtFQ3X68z+pwyPdDin0P4CptdrOV/Q/mx2kKraG9D8TFhC+xbX0P95N2of+5PQ/ZtLne2EU9T9MrmOO70P1P0ET/rKpc/U/zGcp3JCj9T9zoFX6pdP1P2hOKvvpA/Y/J9C/yF009j+jEthIAmX2P5BTF1zYlfY/F1c93eDG9j+4hF+gHPj2P3RgJHKMKfc/UdYAFzFb9z8/z3dKC433P62GXL4bv/c/sBgYGmPx9z9bwPL54SP4PyU+Ye6YVvg/Bt1We4iJ+D/0jJwXsbz4P8SHLSwT8Pg/oPSZE68j+T8C/G8ZhVf5P2u9q3mVi/k/XJQuYOC/+T87GT7oZfT5P/xGCxwmKfo/HCxC9CBe+j/PiaJXVpP6PyPBoRrGyPo/2GkW/2/++j/H6u2zUzT7P1xn7NRwavs/M1F36sag+z8i6GppVdf7P/Tt+rIbDvw/582eFBlF/D+tcgnITHz8P5z/LPO1s/w/ypxKqFPr/D+Zfg7mJCP9P/lLuJcoW/0/6v9PlV2T/T/+W+ejwsv9P4/753VWBP4/2g9uqxc9/j/dxq/SBHb+P1RXcWgcr/4/a6WF2Fzo/j9VbFt+xCH/P/HRlqVRW/8/20G3igKV/z/PZslb1c7/P12IkhxkBABA72cbm2whAEBjgiotgz4AQEUP0NCmWwBActz2ftZ4AECAIt8rEZYAQC5wnsdVswBAJHukPqPQAEDsoER6+O0AQJPfQ2FUCwFA8Qlr2LUoAUDZ+BzDG0YBQLF28AOFYwFAcaBNffCAAUDOcw4SXZ4BQJw/IqbJuwFA0qgzHzXZAUDl81BlnvYBQA9AlmMEFAJARF/ZCGYxAkAw9FZIwk4CQN98YBoYbAJAe+8KfWaJAkB8jN10rKYCQHOIgA3pwwJACC5rWhvhAkDoF5F3Qv4CQFMhDopdGwNAMKvQwGs4A0D/0kFVbFUDQPM464tecgNA0vEZtUGPA0DdQX4tFawDQMu9x17YyANAi289wIrlA0BdnVHXKwIEQGPSMDi7HgRACslLhjg7BEAT2dt0o1cEQFuMYcf7cwRAT/8cUkGQBED7s3/6c6wEQKKAl7eTyARAMEVykqDkBEB9FXqmmgAFQOiIySGCHAVA0uJ3RVc4BUC0ytxlGlQFQKRNy+rLbwVAxObDT2yLBUC0Tx0k/KYFQNzdIwt8wgVAaTUvvOzdBUD6Hq4CT/kFQFRRKL6jFAZAowQ24usvBkCmKW12KEsGQIsjRJZaZgZAQ+jpcIOBBkDDbxNJpJwGQMtfvnS+twZA2eboXNPSBkDovT595O0GQBxOu2PzCAdAl/xAsAEkB0DuoyUUET8HQEpItFEjWgdAhhikOzp1B0DZ04S0V5AHQHCxIK59qwdASezTKK7GB0A+G9oy6+EHQJCCkec2/QdAgZG0bpMYCEDOw4n7AjQIQAwkCsyHTwhAJbH+JyRrCEAg7hRg2oYIQFjo6sysoghASgUTzp2+CECP7Q/Jr9oIQJLvSCjl9ghArjj3WUATCUAOSAzPwy8JQIgCEvpxTAlABdMETk1pCUB4Rig9WIYJQHyW1jeVowlA65hLqwbBCUD3jWsAr94JQMpJhpqQ/AlA6DgX1q0aCkDswYIHCTkKQAWJ0XmkVwpARxxqbYJ2CkB7kckWpZUKQPKfO50OtQpAjsKSGcHUCkD37uCUvvQKQE9wMQcJFQtAZHREVqI1C0Bp2kxUjFYLQAvTsL7IdwtAQuHNPFmZC0DjysBeP7sLQJ4HMpx83QtA9zsnUxIADEDjTNrGASMMQPOWlh5MRgxA3tKcZPJpDECoLg6F9Y0MQAwh30xWsgxAKHrSaBXXDECdMX1kM/wMQLhvU6mwIQ1Atku/fY1HDUButkEEym0NQBsEnjpmlA1AMoUQ+WG7DUB7mZDxvOINQGWkHq92Cg5AnUUelY4yDkCVM73eA1sOQF0RZ57Vgw5A5JNGvQKtDkB8RdT6idYOQJsxc+xpAA9Agrwb/aAqD0DG5RRtLVUPQBEuvFENgA9ARlNclT6rD0DSDxP3vtYPQO4BYwVGARBApXSTnFEXEEBJluPfgC0QQIR/nVjSQxBA2velekRaEEBsiZ2k1XAQQEVcCSCEhxBAjtaDIU6eEEDE+/TIMbUQQL2B0iEtzBBAC49nIz7jEEBeEySxYvoQQASn85qYERFA3dubnd0oEUCW5iFjL0ARQG+EN4OLVxFAVf6ug+9uEUBkJ/bYWIYRQOwxmObEnRFARTPG/zC1EUDaK+ZnmswRQDBmKFP+4xFAEv0i51n7EUCMVnM7qhISQHNeZVrsKRJAzEmgQR1BEkD3qNjiOVgSQBaNhyQ/bxJACIOm4imGEkDCI3Dv9pwSQNP4JBSjsxJAMXHUESvKEkCHoSmii+ASQF+JO3jB9hJA6ZRgQckME0CMEgWmnyITQC9RhEpBOBNAVRwE0KpNE0BKSVLV2GITQF4IxPfHdxNARawW1HSME0BlmVEH3KATQE0OqS/6tBNAVHZh7cvIE0Bl97LjTdwTQLfrrLl87xNAu/gYG1UCFEBpdF250xQUQJvKXkz1JhRAAZVfk7Y4FEAeGN9VFEoUQHPZdWQLWxRAKgOwmZhrFEC1SuXauHsUQI4RDhlpixRAjneVUaaaFECDGCiPbakUQL0vf+q7txRA4t0ni47FFEAwT0ao4tIUQOaBVIm13xRApG7chgTsFEBfVi0LzfcUQJX7C5MMAxVAq45drsANFUCDF80A5xcVQJYoa0J9IRVARapHQIEqFUCVjwXd8DIVQNVHaBHKOhVAR8Pa7ApCFUDN4++VsUgVQHM03Eq8ThVAWcboYSlUFUBvE99J91gVQHXKbYokXRVAxGqGxK9gFUBvmLOyl2MVQOMUaCnbZRVAjUpGF3lnFUDTXGCFcGgVQLqwcJfAaBVASuUKjGhoFUBiNcW8Z2cVQME/Wp69ZRVAoTTDwGljFUDfakrPa2AVQMZhlpDDXBVAwjat5nBYFUBWmfDOc1MVQPZJEmLMTRVAKjMB1HpHFUCtLs9zf0AVQAaLj6vaOBVA+mcuAI0wFUAiA0ERlycVQKcPz5j5HRVA0DYVa7UTFUDj4EB2ywgVQApoJcI8/RRA7NjqbwrxFEBsZra5NeQUQCu4TPK/1hRAsjyuhKrIFEAqqq3z9rkUQCXagNmmqhRACi5M57uaFECuq6jkN4oUQIECJa8ceRRAQavBOWxnFEDnVGiMKFUUQAPTXsNTQhRATMK1DvAuFEAsGbOx/xoUQLfaOAKFBhRAhCMoaILxE0DQx8Bc+tsTQFq7/WnvxRNAuXvuKWSvE0DEtQ1GW5gTQKtflXbXgBNAloDQgdtoE0B+32o7alATQFXSvoOGNxNAq2YhRzMeE0DqHC19cwQTQIpuCyhK6hJABFi9U7rPEkDNHWMVx7QSQDmEg4pzmRJAw7BS2MJ9EkDe6vgquGESQNxx2bRWRRJAbZzZraEoEkB7dahSnAsSQF8JB+RJ7hFATpURpq3QEUDhyYnfyrIRQLhQItmklBFAxsPL3D52EUAsRAM1nFcRQLjcIizAOBFAkduzC64ZEUDPTMMbafoQQJu+OKL02hBAUHYv4lO7EECAPFIbipsQQFHkOYmaexBArbHOYohbEEDCv6zZVjsQQFWIixkJGxBAclVRj0T1D0DGH2wES7QPQDwPl78rcw9Ag/K33ewxD0D9gVxqlPAOQC+js14orw5A+F+OoK5tDkAKvGgBLSwOQFeOej2p6g1AtIHQ+iipDUDRXW3IsWcNQDK1cx1JJg1ADBRYWPTkDED+xhu+uKMMQE5PkHmbYgxAgZejmqEhDECs9rQV0OALQIAR88IroAtAc6HCXblfC0CBKy6EfR8LQPiqXrZ83wpANzMdVrufCkBAiV2mPWAKQEqy0coHIQpAEXSGxx3iCUBvv4iAg6MJQNf8k7k8ZQlAxi/JFU0nCUDz424XuOkIQE3VuR+BrAhAlUGebqtvCECu0KkiOjMIQKj+5Tgw9wdA//DCjJC7B0B8ngrYXYAHQMQv3LKaRQdAn3yvk0kLB0DxiGDPbNEGQFziQpkGmAZAR748AxlfBkCztun9pSYGQN0CxViv7gVAJwdbwja3BUAEF4LIPYAFQAhCmtjFSQVALwTUP9ATBUCvsH0rXt4EQB9tV6lwqQRAMJLtpwh1BEAiRvn2JkEEQDQkx0fMDQRAlsOjLfnaA0Bd700erqgDQAJhbnLrdgNA2swUZrFFA0D1EDoZABUDQApVR5DX5AJAD+qhtDe1AkCJtztVIIYCQAwEKCeRVwJA/2U0xokpAkDOqYW1CfwBQCR5OGAQzwFAKpAFGp2iAUAaTOkfr3YBQOlezphFSwFAqnM7ll8gAUDXjgMV/PUAQJP1+P0ZzABAd2eiJriiAEDOdfJR1XkAQFzDADFwUQBAJPjEY4cpAEBFNNN5GQIAQPWaM+ZJtv8/HkZAgVBp/z9fp4yKQx3/P1FDC60f0v4/HqNieuGH/j+EoG9shT7+P9Pax+YH9v0/M+87OGWu/T/1EFmcmWf9P5ad6TyhIf0/4kt0M3jc/D+tk7mKGpj8P07vLkCEVPw/QJh3RbER/D8PYdqBnc/7PzNStNNEjvs/UK7nEaNN+z8/BkcNtA37P5IF/JFzzvo/n6LpaN2P+j+5XglZ7VH6P0xFwyifFPo/ilpAn+7X+T8yLLeF15v5P5A5sqhVYPk/jelP2WQl+T9WyHvuAOv4PxvIIMYlsfg/mENURs93+D8dgnle+T74P1yBXQigBvg/DcpKSb/O9z84GBUzU5f3P66iHOVXYPc/F89Ijckp9z9IJPpopPP2Px9O88XkvfY/Ego5A4eI9j8o1uiRh1P2P+A+BvbiHvY/gqw+x5Xq9T88kqOxnLb1P9/lWnb0gvU/9chF7JlP9T8iUJ0Aihz1P05YhbfB6fQ/klyVLD639D9lQ1eT/IT0P+0bvDf6UvQ/nMiGfjQh9D+VlqzlqO/zP1jFqwRVvvM/vgTYjDaN8z/q8pxJS1zzP+emtiCRK/M/lVdgEgb78j88Mnk5qMryP1R2n8t1mvI/3+9BGW1q8j8v7KeNjDryPzXI767SCvI/AjoEHj7b8T9LeoiWzavxPw==",
"encoding": "base64",
"path": [
"_data",
2,
"y",
"value"
]
},
{
"data": "MnW77n988T9PeoiWzavxPwY6BB4+2/E/OcjvrtIK8j8z7KeNjDryP+LvQRltavI/WHafy3Wa8j9AMnk5qMryP5lXYBIG+/I/7Ka2IJEr8z/y8pxJS1zzP8ME2Iw2jfM/W8WrBFW+8z+alqzlqO/zP6HIhn40IfQ/9Ru8N/pS9D9qQ1eT/IT0P5dclSw+t/Q/UliFt8Hp9D8tUJ0Aihz1P/7IReyZT/U/4+VadvSC9T9BkqOxnLb1P4isPseV6vU/6z4G9uIe9j8z1uiRh1P2Px0KOQOHiPY/I07zxeS99j9RJPpopPP2PyPPSI3JKfc/uaIc5Vdg9z9BGBUzU5f3PxLKSkm/zvc/ZYFdCKAG+D8ngnle+T74P6NDVEbPd/g/J8ggxiWx+D9byHvuAOv4P5npT9lkJfk/mzmyqFVg+T89LLeF15v5P4haQJ/u1/k/TEXDKJ8U+j+3XglZ7VH6P52i6Wjdj/o/kgX8kXPO+j8+BkcNtA37P06u5xGjTfs/M1K000SO+z8OYdqBnc/7Pz6Yd0WxEfw/U+8uQIRU/D+rk7mKGpj8P+JLdDN43Pw/lJ3pPKEh/T/zEFmcmWf9PzrvOzhlrv0/0drH5gf2/T+CoG9shT7+PxujYnrhh/4/WEMLrR/S/j9kp4yKQx3/Px1GQIFQaf8/9Zoz5km2/z9DNNN5GQIAQCb4xGOHKQBAX8MAMXBRAEDMdfJR1XkAQHVnoia4ogBAkvX4/RnMAEDajgMV/PUAQK5zO5ZfIAFA6V7OmEVLAUAZTOkfr3YBQC2QBRqdogFAJ3k4YBDPAUDRqYW1CfwBQANmNMaJKQJACgQoJ5FXAkCNtztVIIYCQBLqobQ3tQJADVVHkNfkAkD5EDoZABUDQN3MFGaxRQNAB2Fucut2A0Bh700erqgDQJTDoy352gNAOSTHR8wNBEAmRvn2JkEEQDKS7acIdQRAIm1XqXCpBEC0sH0rXt4EQDME1D/QEwVADEKa2MVJBUAJF4LIPYAFQCoHW8I2twVA4gLFWK/uBUC4tun9pSYGQEq+PAMZXwZAYeJCmQaYBkD1iGDPbNEGQKJ8r5NJCwdAxy/csppFB0CBngrYXYAHQAPxwoyQuwdArf7lODD3B0Cy0KkiOjMIQJpBnm6rbwhAUNW5H4GsCED4424XuOkIQMkvyRVNJwlA2/yTuTxlCUBzv4iAg6MJQBV0hscd4glAT7LRygchCkBEiV2mPWAKQEIzHVa7nwpA+6petnzfCkCGKy6EfR8LQHihwl25XwtAhRHzwiugC0C49rQV0OALQISXo5qhIQxAWk+QeZtiDEADxxu+uKMMQBgUWFj05AxAL7VzHUkmDUDWXW3IsWcNQL2B0PooqQ1AXo56PanqDUAUvGgBLSwOQPVfjqCubQ5ALqOzXiivDkD7gVxqlPAOQHnyt93sMQ9AOw+XvytzD0DFH2wES7QPQG5VUY9E9Q9AVIiLGQkbEEDAv6zZVjsQQKyxzmKIWxBATuQ5iZp7EEB+PFIbipsQQFB2L+JTuxBAmr44ovTaEEDPTMMbafoQQJHbswuuGRFAt9wiLMA4EUAqRAM1nFcRQMXDy9w+dhFAtlAi2aSUEUDgyYnfyrIRQE2VEaat0BFAXQkH5EnuEUB8dahSnAsSQGyc2a2hKBJA23HZtFZFEkDd6vgquGESQMKwUtjCfRJAOISDinOZEkDMHWMVx7QSQAJYvVO6zxJAim4LKErqEkDpHC19cwQTQKxmIUczHhNAVNK+g4Y3E0B+32o7alATQJSA0IHbaBNAql+VdteAE0DEtQ1GW5gTQLh77ilkrxNAWrv9ae/FE0DQx8Bc+tsTQIQjKGiC8RNAuNo4AoUGFEAqGbOx/xoUQE7CtQ7wLhRAAtNew1NCFEDnVGiMKFUUQEKrwTlsZxRAggIlrxx5FECvq6jkN4oUQAwuTOe7mhRAJtqA2aaqFEAsqq3z9rkUQLQ8roSqyBRALLhM8r/WFEBsZra5NeQUQO3Y6m8K8RRACmglwjz9FEDi4EB2ywgVQNA2FWu1ExVAqQ/PmPkdFUAjA0ERlycVQPxnLgCNMBVAB4uPq9o4FUCtLs9zf0AVQCozAdR6RxVA90kSYsxNFUBVmfDOc1MVQMM2reZwWBVAxmGWkMNcFUDfakrPa2AVQKI0w8BpYxVAwT9anr1lFUBhNcW8Z2cVQErlCoxoaBVAu7Bwl8BoFUDTXGCFcGgVQI1KRhd5ZxVA4hRoKdtlFUBumLOyl2MVQMVqhsSvYBVAdcptiiRdFUBvE99J91gVQFzG6GEpVBVAczTcSrxOFUDP4++VsUgVQEfD2uwKQhVA1EdoEco6FUCXjwXd8DIVQEaqR0CBKhVAlyhrQn0hFUCCF80A5xcVQKuOXa7ADRVAlfsLkwwDFUBfVi0LzfcUQKZu3IYE7BRA5oFUibXfFEAwT0ao4tIUQOPdJ4uOxRRAvS9/6ru3FECDGCiPbakUQI53lVGmmhRAkBEOGWmLFEC2SuXauHsUQCoDsJmYaxRAdNl1ZAtbFEAeGN9VFEoUQASVX5O2OBRAnspeTPUmFEBodF250xQUQLz4GBtVAhRAtuusuXzvE0Bm97LjTdwTQFV2Ye3LyBNATg6pL/q0E0BmmVEH3KATQEasFtR0jBNAXwjE98d3E0BLSVLV2GITQFUcBNCqTRNAMVGESkE4E0CNEgWmnyITQOuUYEHJDBNAXIk7eMH2EkCHoSmii+ASQDNx1BEryhJA1PgkFKOzEkDCI3Dv9pwSQAmDpuIphhJAF42HJD9vEkD0qNjiOVgSQMtJoEEdQRJAcl5lWuwpEkCLVnM7qhISQBP9IudZ+xFAL2YoU/7jEUDZK+ZnmswRQEUzxv8wtRFA6jGY5sSdEUBiJ/bYWIYRQFX+roPvbhFAbYQ3g4tXEUCV5iFjL0ARQNrbm53dKBFABKfzmpgREUBcEySxYvoQQAyPZyM+4xBAvYHSIS3MEEDF+/TIMbUQQI7WgyFOnhBARFwJIISHEEBsiZ2k1XAQQNn3pXpEWhBAg3+dWNJDEEBJluPfgC0QQKR0k5xRFxBA7QFjBUYBEEDODxP3vtYPQEZTXJU+qw9ADC68UQ2AD0DD5RRtLVUPQIq8G/2gKg9AmDFz7GkAD0B8RdT6idYOQOCTRr0CrQ5AXRFnntWDDkCbM73eA1sOQJhFHpWOMg5AaaQer3YKDkB2mZDxvOINQC+FEPlhuw1AHgSeOmaUDUBrtkEEym0NQL1Lv32NRw1As29TqbAhDUCiMX1kM/wMQCp60mgV1wxADyHfTFayDECpLg6F9Y0MQOLSnGTyaQxA+ZaWHkxGDEDjTNrGASMMQPg7J1MSAAxAngcynHzdC0DlysBeP7sLQEbhzTxZmQtADdOwvsh3C0Bt2kxUjFYLQGR0RFaiNQtAUXAxBwkVC0D47uCUvvQKQJDCkhnB1ApA9J87nQ61CkB+kckWpZUKQEocam2CdgpABonReaRXCkDtwYIHCTkKQOo4F9atGgpAzEmGmpD8CUD4jWsAr94JQOuYS6sGwQlAfpbWN5WjCUB4Rig9WIYJQAfTBE5NaQlAiQIS+nFMCUAPSAzPwy8JQLE491lAEwlAku9IKOX2CECR7Q/Jr9oIQEoFE86dvghAWOjqzKyiCEAi7hRg2oYIQCax/ickawhADSQKzIdPCEDOw4n7AjQIQICRtG6TGAhAkYKR5zb9B0A+G9oy6+EHQEns0yiuxgdAcbEgrn2rB0DY04S0V5AHQIcYpDs6dQdASki0USNaB0DsoyUUET8HQJf8QLABJAdAH067Y/MIB0DovT595O0GQNnm6FzT0gZAyl++dL63BkDDbxNJpJwGQEbo6XCDgQZAiSNEllpmBkCrKW12KEsGQKIENuLrLwZAV1EovqMUBkD9Hq4CT/kFQGc1L7zs3QVA3t0jC3zCBUCyTx0k/KYFQMfmw09siwVAqE3L6stvBUC5ytxlGlQFQNbid0VXOAVA7YjJIYIcBUCAFXqmmgAFQDRFcpKg5ARApoCXt5PIBEABtH/6c6wEQFP/HFJBkARAX4xhx/tzBEAX2dt0o1cEQA3JS4Y4OwRAZ9IwOLseBEBhnVHXKwIEQI9vPcCK5QNAz73HXtjIA0DiQX4tFawDQNbxGbVBjwNA9Tjri15yA0AD00FVbFUDQDWr0MBrOANAViEOil0bA0DqF5F3Qv4CQAoua1ob4QJAdoiADenDAkCAjN10rKYCQH3vCn1miQJA33xgGhhsAkAz9FZIwk4CQEVf2QhmMQJAEUCWYwQUAkDn81BlnvYBQNKoMx812QFAnz8ipsm7AUDRcw4SXZ4BQHKgTX3wgAFAsXbwA4VjAUDZ+BzDG0YBQPMJa9i1KAFAlN9DYVQLAUDuoER6+O0AQCV7pD6j0ABALnCex1WzAECBIt8rEZYAQHPc9n7WeABARg/Q0KZbAEBjgiotgz4AQPBnG5tsIQBAXYiSHGQEAEDQZslb1c7/P9xBt4oClf8/9NGWpVFb/z9XbFt+xCH/P2ulhdhc6P4/VldxaByv/j/fxq/SBHb+P9oPbqsXPf4/j/vndVYE/j/+W+ejwsv9P+7/T5Vdk/0//Eu4lyhb/T+afg7mJCP9P8ycSqhT6/w/nP8s87Wz/D+rcgnITHz8P+vNnhQZRfw/9O36shsO/D8i6GppVdf7PzFRd+rGoPs/XGfs1HBq+z/H6u2zUzT7P9ZpFv9v/vo/I8GhGsbI+j/OiaJXVpP6PxssQvQgXvo/+kYLHCYp+j86GT7oZfT5P1qULmDgv/k/ar2reZWL+T8C/G8ZhVf5P5z0mROvI/k/xIctLBPw+D/wjJwXsbz4PwLdVnuIifg/Ij5h7phW+D9YwPL54SP4P6wYGBpj8fc/qoZcvhu/9z88z3dKC433P03WABcxW/c/cGAkcowp9z+/hF+gHPj2PxVXPd3gxvY/jVMXXNiV9j+gEthIAmX2PyTQv8hdNPY/b04q++kD9j9woFX6pdP1P8hnKdyQo/U/PRP+sqlz9T9SrmOO70P1P2vS53thFPU/2U3ah/7k9D8OFhC+xbX0P5YdpCq2hvQ/ham12s5X9D+uwyPdDin0P5trRUN1+vM/PiqeIQHM8z/6r46QsZ3zPwIpAa2Fb/M/UfYQmXxB8z+Ufq18lRPzPyvNN4bP5fI/1bka6ym48j/jV13oo4ryP8VvL8M8XfI/WMlvyfMv8j/IEixSyALyP9MyGr651fE/zdoKeMeo8T90MFX18HvxP6ZrO7Y1T/E/XUlIRpUi8T/uOKU8D/bwPzotaTyjyfA/uf/f9FCd8D+hV8ohGHHwPw==",
"encoding": "base64",
"path": [
"_data",
3,
"y",
"value"
]
},
{
"data": "8Zc8zDcB0D/WT52i+KTQPxISEhISEtI/y9ABuz3W0j+nzq895LLSP+RM/k6Qa80/2djY2NjYyD9re1IzZPTQP4rHEEYT89A/SQ9Uzm7hxz9Q3+K1YgnFP5IkSZIkSdQ/v0IfFcmO2T/5i5xhwaXSP0diiZKfotE/dQrnhWUFwD84bysmjgjHP4B7sV/jOtg/ZykPSoeouT8GcMQeov3VP0x7IgPp/dE/+D6Xhe9zyT/I4HwMzsfQP5NGteUqadQ/",
"encoding": "base64",
"path": [
"_data",
4,
"x",
"value"
]
},
{
"data": "CLThGWT/5z8VWLGug63nP/f29vb29uY/mhd/IuGU5j+tGCjhjabmP8dsQOwbpeg/ysnJycnJ6T9LwlbmzYXnPzuc91x2huc/LvxqTKQH6j8sSIdSp73qP7dt27Zt2+U/oV5wdZs44z8EujFPH63mP91OuzawLuc/Yz2Gnqb+6z8yJHV23D3qP0BCJ1CO4uM/0xq+Fu/K7D/9x53wLgHlP1rCbn4LAec/QjCaHgSj6T+cj8H5GJznP7dcJY1qy+U/",
"encoding": "base64",
"path": [
"_data",
5,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autobinx": false,
"histnorm": "probability density",
"legendgroup": "Python 2",
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"opacity": 0.7,
"type": "histogram",
"uid": "b42ecaf6-dafe-11e8-aa4f-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"xaxis": "x",
"xbins": {
"end": 0.39933993399339934,
"size": 0.05,
"start": 0.10022779043280182
},
"yaxis": "y"
},
{
"autobinx": false,
"histnorm": "probability density",
"legendgroup": "Python 3",
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"opacity": 0.7,
"type": "histogram",
"uid": "b42ecaf7-dafe-11e8-8e9b-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"xaxis": "x",
"xbins": {
"end": 0.8997722095671982,
"size": 0.05,
"start": 0.6006600660066007
},
"yaxis": "y"
},
{
"legendgroup": "Python 2",
"marker": {
"color": "#386df9"
},
"mode": "lines",
"name": "Python 2",
"showlegend": false,
"type": "scatter",
"uid": "b42ecaf8-dafe-11e8-a1ca-0c54159b97f0",
"x": [
0.10022779043280182,
0.10082601471992302,
0.10142423900704421,
0.10202246329416541,
0.1026206875812866,
0.1032189118684078,
0.10381713615552898,
0.10441536044265018,
0.10501358472977138,
0.10561180901689257,
0.10621003330401377,
0.10680825759113496,
0.10740648187825616,
0.10800470616537736,
0.10860293045249855,
0.10920115473961975,
0.10979937902674095,
0.11039760331386214,
0.11099582760098334,
0.11159405188810452,
0.11219227617522572,
0.11279050046234691,
0.11338872474946811,
0.1139869490365893,
0.1145851733237105,
0.1151833976108317,
0.1157816218979529,
0.11637984618507408,
0.11697807047219527,
0.11757629475931647,
0.11817451904643766,
0.11877274333355886,
0.11937096762068006,
0.11996919190780125,
0.12056741619492245,
0.12116564048204365,
0.12176386476916484,
0.12236208905628604,
0.12296031334340723,
0.12355853763052843,
0.12415676191764963,
0.12475498620477081,
0.12535321049189202,
0.12595143477901322,
0.1265496590661344,
0.1271478833532556,
0.1277461076403768,
0.12834433192749797,
0.1289425562146192,
0.12954078050174037,
0.13013900478886156,
0.13073722907598276,
0.13133545336310395,
0.13193367765022515,
0.13253190193734635,
0.13313012622446754,
0.13372835051158874,
0.13432657479870994,
0.13492479908583113,
0.13552302337295233,
0.13612124766007352,
0.13671947194719472,
0.13731769623431592,
0.13791592052143709,
0.1385141448085583,
0.1391123690956795,
0.13971059338280067,
0.14030881766992187,
0.14090704195704307,
0.14150526624416426,
0.14210349053128546,
0.14270171481840666,
0.14329993910552785,
0.14389816339264905,
0.14449638767977024,
0.14509461196689144,
0.14569283625401264,
0.14629106054113383,
0.14688928482825503,
0.14748750911537623,
0.14808573340249742,
0.14868395768961862,
0.14928218197673981,
0.149880406263861,
0.1504786305509822,
0.1510768548381034,
0.1516750791252246,
0.1522733034123458,
0.152871527699467,
0.1534697519865882,
0.15406797627370938,
0.15466620056083058,
0.15526442484795178,
0.15586264913507297,
0.15646087342219414,
0.15705909770931534,
0.15765732199643656,
0.15825554628355773,
0.15885377057067893,
0.15945199485780012,
0.16005021914492132,
0.16064844343204251,
0.1612466677191637,
0.1618448920062849,
0.1624431162934061,
0.1630413405805273,
0.1636395648676485,
0.16423778915476966,
0.16483601344189086,
0.16543423772901206,
0.16603246201613328,
0.16663068630325448,
0.16722891059037565,
0.16782713487749684,
0.16842535916461804,
0.16902358345173923,
0.16962180773886043,
0.17022003202598163,
0.17081825631310282,
0.17141648060022402,
0.17201470488734522,
0.1726129291744664,
0.1732111534615876,
0.1738093777487088,
0.17440760203583,
0.1750058263229512,
0.1756040506100724,
0.1762022748971936,
0.17680049918431479,
0.17739872347143598,
0.17799694775855718,
0.17859517204567837,
0.17919339633279957,
0.17979162061992077,
0.18038984490704196,
0.18098806919416316,
0.18158629348128436,
0.18218451776840555,
0.18278274205552675,
0.18338096634264794,
0.1839791906297691,
0.1845774149168903,
0.1851756392040115,
0.18577386349113273,
0.18637208777825393,
0.1869703120653751,
0.1875685363524963,
0.1881667606396175,
0.18876498492673868,
0.18936320921385988,
0.18996143350098105,
0.19055965778810227,
0.19115788207522347,
0.19175610636234466,
0.19235433064946586,
0.19295255493658703,
0.19355077922370822,
0.19414900351082942,
0.19474722779795062,
0.1953454520850718,
0.195943676372193,
0.1965419006593142,
0.1971401249464354,
0.1977383492335566,
0.1983365735206778,
0.198934797807799,
0.1995330220949202,
0.20013124638204138,
0.20072947066916258,
0.20132769495628378,
0.20192591924340497,
0.20252414353052617,
0.20312236781764736,
0.20372059210476856,
0.20431881639188976,
0.20491704067901095,
0.20551526496613215,
0.20611348925325335,
0.20671171354037454,
0.20730993782749574,
0.20790816211461693,
0.20850638640173813,
0.20910461068885933,
0.2097028349759805,
0.21030105926310172,
0.21089928355022292,
0.2114975078373441,
0.2120957321244653,
0.21269395641158648,
0.21329218069870767,
0.21389040498582887,
0.21448862927295007,
0.2150868535600713,
0.21568507784719246,
0.21628330213431365,
0.21688152642143485,
0.21747975070855605,
0.21807797499567722,
0.2186761992827984,
0.2192744235699196,
0.21987264785704083,
0.22047087214416203,
0.2210690964312832,
0.2216673207184044,
0.2222655450055256,
0.22286376929264679,
0.22346199357976798,
0.22406021786688918,
0.22465844215401037,
0.22525666644113157,
0.22585489072825277,
0.22645311501537396,
0.22705133930249516,
0.22764956358961635,
0.22824778787673755,
0.22884601216385875,
0.22944423645097994,
0.23004246073810114,
0.23064068502522234,
0.23123890931234353,
0.23183713359946473,
0.23243535788658592,
0.23303358217370712,
0.23363180646082832,
0.2342300307479495,
0.2348282550350707,
0.2354264793221919,
0.2360247036093131,
0.2366229278964343,
0.2372211521835555,
0.2378193764706767,
0.2384176007577979,
0.23901582504491908,
0.23961404933204028,
0.24021227361916142,
0.24081049790628267,
0.24140872219340387,
0.24200694648052506,
0.24260517076764626,
0.2432033950547674,
0.24380161934188865,
0.2443998436290098,
0.244998067916131,
0.2455962922032522,
0.24619451649037338,
0.24679274077749463,
0.24739096506461578,
0.24798918935173697,
0.24858741363885817,
0.24918563792597936,
0.24978386221310056,
0.25038208650022176,
0.25098031078734295,
0.25157853507446415,
0.25217675936158535,
0.25277498364870654,
0.25337320793582774,
0.25397143222294893,
0.25456965651007013,
0.2551678807971913,
0.2557661050843125,
0.2563643293714337,
0.2569625536585549,
0.2575607779456761,
0.2581590022327973,
0.2587572265199185,
0.2593554508070397,
0.2599536750941609,
0.2605518993812821,
0.2611501236684033,
0.2617483479555245,
0.2623465722426457,
0.2629447965297669,
0.2635430208168881,
0.26414124510400927,
0.2647394693911304,
0.26533769367825166,
0.26593591796537286,
0.26653414225249406,
0.26713236653961525,
0.2677305908267364,
0.26832881511385764,
0.2689270394009788,
0.26952526368810004,
0.2701234879752212,
0.2707217122623424,
0.2713199365494636,
0.27191816083658477,
0.272516385123706,
0.27311460941082716,
0.27371283369794835,
0.27431105798506955,
0.27490928227219075,
0.275507506559312,
0.27610573084643314,
0.27670395513355434,
0.27730217942067553,
0.27790040370779673,
0.2784986279949179,
0.2790968522820391,
0.2796950765691603,
0.2802933008562815,
0.2808915251434027,
0.2814897494305239,
0.2820879737176451,
0.2826861980047663,
0.2832844222918875,
0.2838826465790087,
0.2844808708661299,
0.2850790951532511,
0.2856773194403723,
0.2862755437274935,
0.28687376801461467,
0.28747199230173587,
0.28807021658885706,
0.28866844087597826,
0.28926666516309946,
0.28986488945022065,
0.29046311373734185,
0.29106133802446305,
0.29165956231158424,
0.29225778659870544,
0.29285601088582663,
0.2934542351729478,
0.294052459460069,
0.29465068374719017,
0.2952489080343114,
0.2958471323214326,
0.29644535660855376,
0.297043580895675,
0.29764180518279615,
0.2982400294699174,
0.29883825375703854,
0.29943647804415974,
0.300034702331281,
0.30063292661840213,
0.3012311509055234,
0.3018293751926445,
0.3024275994797657,
0.3030258237668869,
0.3036240480540081,
0.3042222723411293,
0.3048204966282505,
0.3054187209153717,
0.3060169452024929,
0.3066151694896141,
0.3072133937767353,
0.3078116180638565,
0.3084098423509777,
0.3090080666380989,
0.3096062909252201,
0.31020451521234127,
0.31080273949946247,
0.31140096378658366,
0.31199918807370486,
0.31259741236082605,
0.31319563664794725,
0.31379386093506845,
0.31439208522218964,
0.31499030950931084,
0.31558853379643204,
0.31618675808355323,
0.31678498237067443,
0.3173832066577956,
0.3179814309449168,
0.318579655232038,
0.31917787951915916,
0.3197761038062804,
0.3203743280934016,
0.3209725523805228,
0.321570776667644,
0.32216900095476514,
0.3227672252418864,
0.32336544952900753,
0.3239636738161288,
0.32456189810325,
0.3251601223903711,
0.32575834667749237,
0.3263565709646135,
0.32695479525173476,
0.3275530195388559,
0.3281512438259771,
0.3287494681130983,
0.3293476924002195,
0.32994591668734075,
0.3305441409744619,
0.3311423652615831,
0.3317405895487043,
0.3323388138358255,
0.33293703812294667,
0.33353526241006787,
0.33413348669718906,
0.33473171098431026,
0.33532993527143146,
0.33592815955855265,
0.33652638384567385,
0.33712460813279505,
0.33772283241991624,
0.33832105670703744,
0.33891928099415863,
0.33951750528127983,
0.340115729568401,
0.3407139538555222,
0.3413121781426434,
0.3419104024297646,
0.3425086267168858,
0.343106851004007,
0.3437050752911282,
0.3443032995782494,
0.3449015238653706,
0.3454997481524918,
0.346097972439613,
0.3466961967267342,
0.3472944210138554,
0.3478926453009765,
0.3484908695880978,
0.34908909387521897,
0.34968731816234017,
0.35028554244946136,
0.35088376673658256,
0.35148199102370375,
0.35208021531082495,
0.3526784395979461,
0.35327666388506734,
0.35387488817218854,
0.35447311245930974,
0.35507133674643093,
0.3556695610335521,
0.35626778532067327,
0.3568660096077945,
0.3574642338949157,
0.35806245818203686,
0.35866068246915805,
0.35925890675627925,
0.3598571310434005,
0.3604553553305217,
0.36105357961764284,
0.36165180390476404,
0.36225002819188523,
0.3628482524790065,
0.3634464767661277,
0.3640447010532488,
0.36464292534037,
0.3652411496274912,
0.36583937391461246,
0.3664375982017336,
0.3670358224888548,
0.367634046775976,
0.3682322710630972,
0.36883049535021845,
0.3694287196373396,
0.3700269439244608,
0.370625168211582,
0.3712233924987032,
0.37182161678582437,
0.37241984107294557,
0.37301806536006676,
0.37361628964718796,
0.37421451393430916,
0.37481273822143035,
0.37541096250855155,
0.37600918679567275,
0.37660741108279394,
0.3772056353699151,
0.37780385965703633,
0.37840208394415753,
0.3790003082312787,
0.3795985325183999,
0.38019675680552106,
0.3807949810926423,
0.3813932053797635,
0.3819914296668847,
0.3825896539540059,
0.38318787824112704,
0.3837861025282483,
0.3843843268153695,
0.3849825511024907,
0.38558077538961183,
0.386178999676733,
0.3867772239638542,
0.3873754482509755,
0.38797367253809667,
0.3885718968252178,
0.389170121112339,
0.3897683453994602,
0.39036656968658145,
0.3909647939737026,
0.3915630182608238,
0.392161242547945,
0.3927594668350662,
0.39335769112218744,
0.3939559154093086,
0.3945541396964298,
0.39515236398355097,
0.39575058827067217,
0.39634881255779336,
0.39694703684491456,
0.39754526113203575,
0.39814348541915695,
0.39874170970627815
],
"xaxis": "x",
"y": {
"dtype": "float64",
"shape": [
500
],
"value": {}
},
"yaxis": "y"
},
{
"legendgroup": "Python 3",
"marker": {
"color": "#12c8e6"
},
"mode": "lines",
"name": "Python 3",
"showlegend": false,
"type": "scatter",
"uid": "b42ecaf9-dafe-11e8-a86d-0c54159b97f0",
"x": [
0.6006600660066007,
0.6012582902937219,
0.6018565145808431,
0.6024547388679643,
0.6030529631550855,
0.6036511874422067,
0.6042494117293279,
0.6048476360164491,
0.6054458603035703,
0.6060440845906915,
0.6066423088778127,
0.6072405331649339,
0.6078387574520551,
0.6084369817391763,
0.6090352060262975,
0.6096334303134187,
0.6102316546005399,
0.610829878887661,
0.6114281031747822,
0.6120263274619034,
0.6126245517490246,
0.6132227760361458,
0.613821000323267,
0.6144192246103882,
0.6150174488975094,
0.6156156731846306,
0.6162138974717518,
0.616812121758873,
0.6174103460459942,
0.6180085703331154,
0.6186067946202366,
0.6192050189073578,
0.619803243194479,
0.6204014674816002,
0.6209996917687214,
0.6215979160558426,
0.6221961403429638,
0.622794364630085,
0.6233925889172062,
0.6239908132043274,
0.6245890374914486,
0.6251872617785696,
0.6257854860656908,
0.626383710352812,
0.6269819346399332,
0.6275801589270544,
0.6281783832141756,
0.6287766075012968,
0.629374831788418,
0.6299730560755392,
0.6305712803626604,
0.6311695046497816,
0.6317677289369028,
0.632365953224024,
0.6329641775111452,
0.6335624017982664,
0.6341606260853876,
0.6347588503725088,
0.63535707465963,
0.6359552989467512,
0.6365535232338724,
0.6371517475209936,
0.6377499718081148,
0.638348196095236,
0.6389464203823572,
0.6395446446694784,
0.6401428689565996,
0.6407410932437207,
0.641339317530842,
0.6419375418179631,
0.6425357661050843,
0.6431339903922055,
0.6437322146793267,
0.6443304389664479,
0.6449286632535691,
0.6455268875406903,
0.6461251118278115,
0.6467233361149327,
0.6473215604020539,
0.6479197846891751,
0.6485180089762963,
0.6491162332634175,
0.6497144575505387,
0.6503126818376599,
0.6509109061247811,
0.6515091304119023,
0.6521073546990235,
0.6527055789861447,
0.6533038032732659,
0.6539020275603871,
0.6545002518475083,
0.6550984761346295,
0.6556967004217507,
0.6562949247088719,
0.656893148995993,
0.6574913732831142,
0.6580895975702354,
0.6586878218573566,
0.6592860461444778,
0.659884270431599,
0.6604824947187202,
0.6610807190058414,
0.6616789432929626,
0.6622771675800838,
0.662875391867205,
0.6634736161543262,
0.6640718404414474,
0.6646700647285686,
0.6652682890156898,
0.665866513302811,
0.6664647375899322,
0.6670629618770534,
0.6676611861641746,
0.6682594104512958,
0.668857634738417,
0.6694558590255382,
0.6700540833126594,
0.6706523075997806,
0.6712505318869018,
0.671848756174023,
0.6724469804611442,
0.6730452047482653,
0.6736434290353865,
0.6742416533225077,
0.6748398776096289,
0.6754381018967501,
0.6760363261838712,
0.6766345504709925,
0.6772327747581137,
0.6778309990452349,
0.6784292233323561,
0.6790274476194772,
0.6796256719065984,
0.6802238961937196,
0.6808221204808408,
0.681420344767962,
0.6820185690550832,
0.6826167933422044,
0.6832150176293256,
0.6838132419164468,
0.684411466203568,
0.6850096904906892,
0.6856079147778104,
0.6862061390649316,
0.6868043633520527,
0.687402587639174,
0.6880008119262951,
0.6885990362134163,
0.6891972605005375,
0.6897954847876587,
0.6903937090747799,
0.6909919333619011,
0.6915901576490223,
0.6921883819361435,
0.6927866062232647,
0.6933848305103859,
0.6939830547975071,
0.6945812790846283,
0.6951795033717495,
0.6957777276588707,
0.6963759519459919,
0.6969741762331131,
0.6975724005202343,
0.6981706248073555,
0.6987688490944767,
0.6993670733815979,
0.6999652976687191,
0.7005635219558403,
0.7011617462429615,
0.7017599705300827,
0.7023581948172039,
0.702956419104325,
0.7035546433914462,
0.7041528676785674,
0.7047510919656886,
0.7053493162528098,
0.705947540539931,
0.7065457648270522,
0.7071439891141734,
0.7077422134012946,
0.7083404376884158,
0.708938661975537,
0.7095368862626582,
0.7101351105497794,
0.7107333348369006,
0.7113315591240218,
0.711929783411143,
0.7125280076982642,
0.7131262319853854,
0.7137244562725066,
0.7143226805596278,
0.714920904846749,
0.7155191291338702,
0.7161173534209914,
0.7167155777081126,
0.7173138019952338,
0.717912026282355,
0.7185102505694761,
0.7191084748565973,
0.7197066991437184,
0.7203049234308397,
0.7209031477179609,
0.7215013720050821,
0.7220995962922033,
0.7226978205793244,
0.7232960448664456,
0.7238942691535668,
0.724492493440688,
0.7250907177278092,
0.7256889420149304,
0.7262871663020516,
0.7268853905891728,
0.727483614876294,
0.7280818391634152,
0.7286800634505364,
0.7292782877376576,
0.7298765120247788,
0.7304747363119,
0.7310729605990212,
0.7316711848861424,
0.7322694091732636,
0.7328676334603847,
0.733465857747506,
0.7340640820346271,
0.7346623063217483,
0.7352605306088695,
0.7358587548959907,
0.7364569791831119,
0.7370552034702331,
0.7376534277573543,
0.7382516520444755,
0.7388498763315967,
0.7394481006187179,
0.7400463249058391,
0.7406445491929603,
0.7412427734800815,
0.7418409977672027,
0.7424392220543239,
0.7430374463414451,
0.7436356706285663,
0.7442338949156875,
0.7448321192028087,
0.7454303434899299,
0.7460285677770511,
0.7466267920641723,
0.7472250163512935,
0.7478232406384147,
0.7484214649255359,
0.749019689212657,
0.7496179134997782,
0.7502161377868994,
0.7508143620740206,
0.7514125863611418,
0.752010810648263,
0.7526090349353842,
0.7532072592225054,
0.7538054835096266,
0.7544037077967478,
0.755001932083869,
0.7556001563709902,
0.7561983806581114,
0.7567966049452326,
0.7573948292323538,
0.757993053519475,
0.7585912778065962,
0.7591895020937174,
0.7597877263808386,
0.7603859506679598,
0.760984174955081,
0.7615823992422022,
0.7621806235293234,
0.7627788478164446,
0.7633770721035658,
0.763975296390687,
0.7645735206778081,
0.7651717449649293,
0.7657699692520505,
0.7663681935391717,
0.7669664178262929,
0.7675646421134141,
0.7681628664005353,
0.7687610906876565,
0.7693593149747777,
0.7699575392618989,
0.7705557635490201,
0.7711539878361413,
0.7717522121232625,
0.7723504364103837,
0.7729486606975049,
0.7735468849846261,
0.7741451092717473,
0.7747433335588685,
0.7753415578459897,
0.7759397821331108,
0.7765380064202321,
0.7771362307073533,
0.7777344549944745,
0.7783326792815957,
0.7789309035687167,
0.779529127855838,
0.7801273521429591,
0.7807255764300804,
0.7813238007172016,
0.7819220250043227,
0.782520249291444,
0.7831184735785651,
0.7837166978656864,
0.7843149221528075,
0.7849131464399287,
0.7855113707270499,
0.7861095950141711,
0.7867078193012923,
0.7873060435884135,
0.7879042678755347,
0.7885024921626559,
0.7891007164497771,
0.7896989407368983,
0.7902971650240195,
0.7908953893111407,
0.7914936135982619,
0.7920918378853831,
0.7926900621725043,
0.7932882864596255,
0.7938865107467467,
0.7944847350338679,
0.795082959320989,
0.7956811836081102,
0.7962794078952314,
0.7968776321823526,
0.7974758564694738,
0.798074080756595,
0.7986723050437162,
0.7992705293308374,
0.7998687536179586,
0.8004669779050798,
0.801065202192201,
0.8016634264793222,
0.8022616507664434,
0.8028598750535646,
0.8034580993406858,
0.804056323627807,
0.8046545479149282,
0.8052527722020494,
0.8058509964891706,
0.8064492207762918,
0.807047445063413,
0.8076456693505342,
0.8082438936376554,
0.8088421179247766,
0.8094403422118978,
0.810038566499019,
0.8106367907861401,
0.8112350150732613,
0.8118332393603825,
0.8124314636475037,
0.8130296879346249,
0.8136279122217461,
0.8142261365088672,
0.8148243607959885,
0.8154225850831097,
0.8160208093702309,
0.8166190336573521,
0.8172172579444732,
0.8178154822315945,
0.8184137065187156,
0.8190119308058369,
0.819610155092958,
0.8202083793800792,
0.8208066036672005,
0.8214048279543216,
0.8220030522414429,
0.822601276528564,
0.8231995008156852,
0.8237977251028064,
0.8243959493899276,
0.8249941736770487,
0.8255923979641699,
0.8261906222512911,
0.8267888465384123,
0.8273870708255335,
0.8279852951126547,
0.8285835193997759,
0.8291817436868971,
0.8297799679740183,
0.8303781922611395,
0.8309764165482607,
0.8315746408353819,
0.8321728651225031,
0.8327710894096243,
0.8333693136967455,
0.8339675379838667,
0.8345657622709879,
0.8351639865581091,
0.8357622108452303,
0.8363604351323515,
0.8369586594194727,
0.8375568837065939,
0.8381551079937151,
0.8387533322808363,
0.8393515565679575,
0.8399497808550787,
0.8405480051421998,
0.841146229429321,
0.8417444537164422,
0.8423426780035634,
0.8429409022906846,
0.8435391265778058,
0.844137350864927,
0.8447355751520482,
0.8453337994391694,
0.8459320237262906,
0.8465302480134118,
0.847128472300533,
0.8477266965876542,
0.8483249208747754,
0.8489231451618966,
0.8495213694490178,
0.850119593736139,
0.8507178180232602,
0.8513160423103814,
0.8519142665975026,
0.8525124908846238,
0.853110715171745,
0.8537089394588662,
0.8543071637459874,
0.8549053880331086,
0.8555036123202298,
0.856101836607351,
0.8567000608944721,
0.8572982851815933,
0.8578965094687145,
0.8584947337558357,
0.8590929580429569,
0.8596911823300781,
0.8602894066171993,
0.8608876309043205,
0.8614858551914417,
0.8620840794785629,
0.8626823037656841,
0.8632805280528053,
0.8638787523399265,
0.8644769766270477,
0.8650752009141689,
0.8656734252012901,
0.8662716494884113,
0.8668698737755325,
0.8674680980626537,
0.8680663223497749,
0.8686645466368961,
0.8692627709240173,
0.8698609952111385,
0.8704592194982597,
0.8710574437853809,
0.871655668072502,
0.8722538923596233,
0.8728521166467444,
0.8734503409338656,
0.8740485652209868,
0.874646789508108,
0.8752450137952292,
0.8758432380823504,
0.8764414623694716,
0.8770396866565928,
0.8776379109437139,
0.8782361352308352,
0.8788343595179564,
0.8794325838050776,
0.8800308080921988,
0.8806290323793199,
0.8812272566664412,
0.8818254809535624,
0.8824237052406836,
0.8830219295278047,
0.8836201538149259,
0.8842183781020472,
0.8848166023891684,
0.8854148266762896,
0.8860130509634107,
0.8866112752505318,
0.8872094995376532,
0.8878077238247744,
0.8884059481118955,
0.8890041723990166,
0.8896023966861378,
0.8902006209732591,
0.8907988452603803,
0.8913970695475014,
0.8919952938346226,
0.8925935181217438,
0.8931917424088651,
0.8937899666959863,
0.8943881909831074,
0.8949864152702286,
0.8955846395573498,
0.896182863844471,
0.8967810881315922,
0.8973793124187134,
0.8979775367058346,
0.8985757609929558,
0.899173985280077
],
"xaxis": "x",
"y": {
"dtype": "float64",
"shape": [
500
],
"value": {}
},
"yaxis": "y"
},
{
"legendgroup": "Python 2",
"marker": {
"color": "#386df9",
"symbol": "line-ns-open"
},
"mode": "markers",
"name": "Python 2",
"showlegend": false,
"type": "scatter",
"uid": "b42ecafa-dafe-11e8-b5f2-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"xaxis": "x",
"y": [
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2",
"Python 2"
],
"yaxis": "y2"
},
{
"legendgroup": "Python 3",
"marker": {
"color": "#12c8e6",
"symbol": "line-ns-open"
},
"mode": "markers",
"name": "Python 3",
"showlegend": false,
"type": "scatter",
"uid": "b42ecafb-dafe-11e8-862f-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"xaxis": "x",
"y": [
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3"
],
"yaxis": "y2"
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"barmode": "overlay",
"hovermode": "closest",
"legend": {
"traceorder": "reversed"
},
"xaxis": {
"anchor": "y2",
"domain": [
0,
1
],
"zeroline": false
},
"yaxis": {
"anchor": "free",
"domain": [
0.35,
1
],
"position": 0
},
"yaxis2": {
"anchor": "x",
"domain": [
0,
0.25
],
"dtick": 1,
"showticklabels": false
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"5d7a51e92a4a4a5cb88118a85f4df8b2": {
"buffers": [
{
"data": "AAAAAAAAOUAAAAAAAAA7QAAAAAAAAD9AAAAAAAAAQEAAAAAAAIBAQAAAAAAAAENAAAAAAAAARkAAAAAAAABHQAAAAAAAgEhAAAAAAABAUkAAAAAAAEBUQAAAAAAAQFVAAAAAAACAV0AAAAAAAIBXQAAAAAAAQGNAAAAAAADgY0AAAAAAAABpQAAAAAAAcHFAAAAAAACAd0AAAAAAALB4QAAAAAAA0HhAAAAAAACAekAAAAAAAJCCQAAAAAAA8IxA",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
},
{
"data": "AAAAAAAAHEAAAAAAAAAkQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAoQAAAAAAAADNAAAAAAAAAOUAAAAAAAAA2QAAAAAAAAD9AAAAAAAAASEAAAAAAAIBAQAAAAAAAAERAAAAAAABAUUAAAAAAAIBCQAAAAAAAAFNAAAAAAACAVkAAAAAAAABWQAAAAAAAYGFAAAAAAABgZEAAAAAAAEBnQAAAAAAAAHpAAAAAAADgbUAAAAAAAJByQAAAAAAA4HxA",
"encoding": "base64",
"path": [
"_data",
1,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"name": "Data analysis",
"orientation": "h",
"type": "bar",
"uid": "b4c4f058-dafe-11e8-bbc3-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Machine learning",
"orientation": "h",
"type": "bar",
"uid": "b4c4f059-dafe-11e8-aa84-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"komodo ide",
"komodo editor",
"twisted",
"cherrypy",
"pyramid",
"bottle",
"kivy",
"aiohttp",
"web2py",
"tornado",
"other - write in",
"asyncio",
"pygame",
"six",
"tkinter",
"pillow",
"pyqt / pygtk / wxpython",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"flask",
"keras / theano / tensorflow / scikit-learn and similar",
"django",
"jupyter notebook",
"numpy / pandas / matplotlib / scipy and similar"
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"height": 1000,
"title": "Frameworks Usage among Data Analysis and Machine Learning Developers",
"yaxis": {
"automargin": true
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"5f049aa9a95f416fa380ebec847fe577": {
"buffers": [
{
"data": "BIwdKvlm5T+FhISEhITkP1z41ZhID+Q/xMPDw8PD4z/T0tLS0tLiPw==",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"line": {
"width": 2
},
"marker": {
"color": "#386df9"
},
"mode": "lines+markers",
"type": "scatter",
"uid": "b4d38c40-dafe-11e8-a7fb-0c54159b97f0",
"x": [
"2-7 people",
"8-12 people",
"21-40 people",
"13-20 people",
"More than 40 people"
],
"y": {
"dtype": "float64",
"shape": [
5
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Team scale VS Use ratio of Python 3"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"6c8e4616ef804d8cb08a1bf163d1cd65": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#ff1f10",
"#ff3e1f",
"#ff5c2f",
"#ff793e",
"#ff964f",
"#ffae5e",
"#f0c46c",
"#dcd67a",
"#c6e789",
"#b2f396",
"#9efaa2",
"#8bfeae",
"#74feba",
"#60fac5",
"#4df3ce",
"#38e7d7",
"#22d6e0",
"#0fc4e7",
"#06aeed",
"#1996f3",
"#3079f7",
"#445cfb",
"#583efd",
"#6c1fff"
]
},
"orientation": "h",
"type": "bar",
"uid": "b6d00298-dafe-11e8-b457-0c54159b97f0",
"x": [
2,
13,
21,
22,
28,
41,
46,
54,
61,
100,
136,
205,
206,
225,
235,
262,
382,
566,
601,
708,
775,
844,
1240,
1339
],
"y": [
"Rodeo",
"TextMate",
"Komodo Editor",
"Ninja-IDE",
"Komodo IDE",
"Aptana",
"NetBeans",
"Wing IDE",
"Gedit",
"Python Tools for Visual Studio (PTVS)",
"IntelliJ IDEA",
"Spyder",
"Other - Write In:",
"Eclipse + Pydev",
"Emacs",
"Jupyter Notebook",
"NotePad++",
"Atom",
"VS Code",
"IDLE",
"Vim",
"Sublime Text",
"PyCharm Community Edition",
"PyCharm Professional Edition"
]
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"height": 1000,
"margin": {
"r": 10
},
"title": "What is the main editor you use for your current python development?",
"yaxis": {
"automargin": true
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"72f8395612874257aa93abed33b1bb98": {
"buffers": [
{
"data": "Jg1teUlD6z972nraetrqPy23WYIMr+c/z5bqbKnO5j8VwutWIbzmP9WacIC65OQ/r4ztd/TK6D8=",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"line": {
"width": 2
},
"marker": {
"color": "#386df9"
},
"mode": "lines+markers",
"name": "Python 3",
"type": "scatter",
"uid": "b4e06b4c-dafe-11e8-8759-0c54159b97f0",
"x": [
"17 or younger",
"18-20",
"21-29",
"30-39",
"40-49",
"50-59",
"60 or older"
],
"y": {
"dtype": "float64",
"shape": [
7
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "The developers' age VS The use ratio of Python 3"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"7677a9405b0a413cb1c4e186ca495c64": {
"buffers": [
{
"data": "VVVVVVVV1T8cx3Ecx3HsP2QhC1nIQuY/AAAAAAAA8D8AAAAAAADwP0YXXXTRRec/AAAAAAAA8D9D/HHr8g7oP0YXXXTRRec/mpmZmZmZ6T8AAAAAAADgPwAAAAAAAOg/NpTXUF5D6T9VVVVVVVXlP+5phOWeRug/SQ9Uzm7h5z8AAAAAAADwPwAAAAAAAPA/VVVVVVVV1T8AAAAAAADwP5377AJiU+k/ZCELWchC5j8AAAAAAADwP1VVVVVVVeU/RotXPhGz6T8AAAAAAADwPwAAAAAAAPA/05ve9KY37T+Bn564OdnnP1VVVVVVVeU/AAAAAAAA8D8zMzMzMzPjPwAAAAAAAOA/AAAAAAAA5T9yHMdxHMfhPwAAAAAAAOA/lLovj60I6j+6ubm5ubnpPwAAAAAAAPA/AAAAAAAA7D9VVVVVVVXlP7dt27Zt2+Y/AAAAAAAA6D93d3d3d3fnP1VVVVVVVcU/UrgehetR6D9tlbiYrRLnPwAAAAAAAPA/AAAAAAAA8D/QusEU+azrPz42Oji5+Og/2Ymd2Imd6D9+DqkJxlvpP1VVVVVVVeU/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/U9aUNWVN6T8AAAAAAAAAANnK4D8xR+Y/OQUvp+Dl5D8AAAAAAADoPwAAAAAAAOA/TJHPusEU6T9hC7ZgC7bgP3lsRdBwUuc/AAAAAAAA8D+x3NMIyz3tPwAAAAAAAOg/q6qqqqqq6j85juM4juPoP6uqqqqqquo/AAAAAAAA4D8AAAAAAADwPwAAAAAAAPA/AAAAAAAAAACxEzuxEzvhPwAAAAAAAPA/AAAAAAAA6D8AAAAAAADwP1K4HoXrUeg/AAAAAAAA8D8AAAAAAADgPwAAAAAAAPA/AAAAAAAA4D9R6ciegajkPwAAAAAAAOA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/eQ3lNZTX4D9VVVVVVVXVPwAAAAAAAPA/xhhjjDHG6D9T1pQ1ZU3pP6WUUkoppeQ/VVVVVVVV5T8RERERERHpPwAAAAAAAOA/11prrbXW6j8AAAAAAADwPy2ms5jOYuo/AAAAAAAA8D9VVVVVVVXlP7dt27Zt2+Y/xhhjjDHG6D+W4RtRYNLpP3TRRRdddOE/AAAAAAAA8D/cpZ6M3y7lP66U39hm1Oo/AAAAAAAA6D8AAAAAAADwP7dt27Zt2+Y/AAAAAAAAAADCck8jLPfkP7dt27Zt2+Y/mpmZmZmZ6T8AAAAAAADqP1100UUXXew/EnfEHXFH7D9g1vtlvV/mP7dt27Zt2+Y/AAAAAAAA4D8iIiIiIiLqP1Lf2ajvbOQ/AAAAAAAA8D98GmG5pxHmPwAAAAAAAAAAAAAAAAAA5D+amZmZmZnpPwAAAAAAAPA/AAAAAAAA8D9VVVVVVVXlP/QFfUFf0Oc/AAAAAAAA8D8atpvlSWTqP6c3velNb+o/+nttxLr06D/4IcBuwkPnP3TRRRdddOE/AAAAAAAA8D8AAAAAAAAAANFFF1100eU/SZIkSZIk6T8AAAAAAADwPwAAAAAAAPA/HMdxHMdx7D8=",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"box": {
"visible": true
},
"fillcolor": "#386df9",
"line": {
"color": "black"
},
"meanline": {
"visible": true
},
"opacity": 0.6,
"type": "violin",
"uid": "b5b17a66-dafe-11e8-b186-0c54159b97f0",
"x0": "Total Bill",
"y": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Use ratio of Python 3 in the world",
"yaxis": {
"zeroline": false
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"789ed10bb9234a6b8dba8ae3e2d8c49b": {
"buffers": [
{
"data": "VVVVVVVV1T8cx3Ecx3HsP2QhC1nIQuY/AAAAAAAA8D8AAAAAAADwP0YXXXTRRec/AAAAAAAA8D9D/HHr8g7oP0YXXXTRRec/mpmZmZmZ6T8AAAAAAADgPwAAAAAAAOg/NpTXUF5D6T9VVVVVVVXlP+5phOWeRug/SQ9Uzm7h5z8AAAAAAADwPwAAAAAAAPA/VVVVVVVV1T8AAAAAAADwP5377AJiU+k/ZCELWchC5j8AAAAAAADwP1VVVVVVVeU/RotXPhGz6T8AAAAAAADwPwAAAAAAAPA/05ve9KY37T+Bn564OdnnP1VVVVVVVeU/AAAAAAAA8D8zMzMzMzPjPwAAAAAAAOA/AAAAAAAA5T9yHMdxHMfhPwAAAAAAAOA/lLovj60I6j+6ubm5ubnpPwAAAAAAAPA/AAAAAAAA7D9VVVVVVVXlP7dt27Zt2+Y/AAAAAAAA6D93d3d3d3fnP1VVVVVVVcU/UrgehetR6D9tlbiYrRLnPwAAAAAAAPA/AAAAAAAA8D/QusEU+azrPz42Oji5+Og/2Ymd2Imd6D9+DqkJxlvpP1VVVVVVVeU/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/U9aUNWVN6T8AAAAAAAAAANnK4D8xR+Y/OQUvp+Dl5D8AAAAAAADoPwAAAAAAAOA/TJHPusEU6T9hC7ZgC7bgP3lsRdBwUuc/AAAAAAAA8D+x3NMIyz3tPwAAAAAAAOg/q6qqqqqq6j85juM4juPoP6uqqqqqquo/AAAAAAAA4D8AAAAAAADwPwAAAAAAAPA/AAAAAAAAAACxEzuxEzvhPwAAAAAAAPA/AAAAAAAA6D8AAAAAAADwP1K4HoXrUeg/AAAAAAAA8D8AAAAAAADgPwAAAAAAAPA/AAAAAAAA4D9R6ciegajkPwAAAAAAAOA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/eQ3lNZTX4D9VVVVVVVXVPwAAAAAAAPA/xhhjjDHG6D9T1pQ1ZU3pP6WUUkoppeQ/VVVVVVVV5T8RERERERHpPwAAAAAAAOA/11prrbXW6j8AAAAAAADwPy2ms5jOYuo/AAAAAAAA8D9VVVVVVVXlP7dt27Zt2+Y/xhhjjDHG6D+W4RtRYNLpP3TRRRdddOE/AAAAAAAA8D/cpZ6M3y7lP66U39hm1Oo/AAAAAAAA6D8AAAAAAADwP7dt27Zt2+Y/AAAAAAAAAADCck8jLPfkP7dt27Zt2+Y/mpmZmZmZ6T8AAAAAAADqP1100UUXXew/EnfEHXFH7D9g1vtlvV/mP7dt27Zt2+Y/AAAAAAAA4D8iIiIiIiLqP1Lf2ajvbOQ/AAAAAAAA8D98GmG5pxHmPwAAAAAAAAAAAAAAAAAA5D+amZmZmZnpPwAAAAAAAPA/AAAAAAAA8D9VVVVVVVXlP/QFfUFf0Oc/AAAAAAAA8D8atpvlSWTqP6c3velNb+o/+nttxLr06D/4IcBuwkPnP3TRRRdddOE/AAAAAAAA8D8AAAAAAAAAANFFF1100eU/SZIkSZIk6T8AAAAAAADwPwAAAAAAAPA/HMdxHMdx7D8=",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
},
{
"data": "1BUIonB2xT9VjR8D5nvFP3ZpKyN6fsU/Q6ykWjB+xT/1BqRdDXvFP+C0CDgXdcU/4GOTSFVsxT/PX/o60GDFP39a/QCSUsU/jkSAyqVBxT/NvbX8Fy7FP2urYij2F8U/43xF/07/xD9/lqxIMuTEP7s2SNWwxsQ/w/pEctymxD8j47zbx4TEPxNmja6GYMQ/ubOhWS06xD+61sAO0RHEPzjK77KH58M/5/l3zme7wz+d5qJ8iI3DPw3ZO1sBXsM/AKfoeeoswz/gkmpJXPrCPx482IpvxsI/eW/hPj2Rwj9maS2V3lrCPxHM49tsI8I/WiRwbwHrwT9RYI+qtbHBPz0Ottaid8E/ZJ3dHOI8wT++K8Z2jAHBP4ytuaC6xcA/2G/cC4WJwD99HBbRA03AP2OBnaROEMA/3ddglPmmvz9D4f8TSi2/P3brsEy7s74/a6EXpHg6vj+9dEVPrMG9P4ids0J/Sb0/cHraIxnSvD/geGo8oFu8P3SOKG855rs/ETVuLghyuz88ykp0Lv+6PxsvQrzMjbo//Y+i/gEeuj9eVmmt66+5P4l1rbKlQ7k/woeDcErZuD8EjU7C8nC4P+OTbv+1Crg/fyY9/6mmtz8DBkYe40S3P/yNqUR05bY/0wiV7W6Itj/KTrwv4y22P+M9v8bf1bU/1u5kHXKAtT8hBpZYpi21Pwkf/2KH3bQ/qxBE+R6QtD8ytKy2dUW0P5PdMyKT/bM/4mXhu324sz/9dVgKO3azP9Gyg6jPNrM/s31JUz/6sj/RLTP3jMCyPzv28r26ibI/GBm1G8pVsj+wDSrcuySyP3pfOC+Q9rE/L0JGtUbLsT9jIQyL3qKxPwrR4lRWfbE/KnGBSaxasT/hkyA83jqxP6G8+aXpHbE/N+Abr8sDsT96JY82geywPxvCw9kG2LA/LW1J+1jGsD98fc7Ic7ewPydkZ0BTq7A/ycYgNfOhsD9ECeBST5uwP2eXlyFjl7A/KrPVByqWsD968bVMn5ewP+HhPhm+m7A/j582eYGisD+pMnpb5KuwP5C+5JHht7A/b3LU0HPGsD8VE1yuldewP9W3MKFB67A/yftj/3EBsT/9bPv8IBqxP6FrdqpINbE/QfRT8+JSsT/C+Kmc6XKxP4vw30NWlbE/gS+eXSK6sT9qVQM1R+GxP93IMOu9CrI/OrM+d382sj8cUKemhGSyP12kOB7GlLI/BNCaWzzHsj8LMHi33/uyP/9pU2ioMrM/IkQWho5rsz/N22IOiqazP3Rhr+mS47M/MwEz8aAitD8RC6n1q2O0PyDE7carprQ/spR2PJjrtD8dgKU+aTK1P2oD9tAWe7U/Dp7/HJnFtT+QaUh+6BG2P39B4I79X7Y/fBy7NNGvtj/4Vb+vXAG3P7/OeqiZVLc/2flvP4Kptz9EJOocEQC4PyuQRoFBWLg/PVaeVQ+yuD/wbrs8dw25P8TLQaR2ark/ygj01QvJuT8m/fkINim6P75MDnP1iro/jxx3WUvuuj++La0hOlO7P8btk2HFubs/EHok7/EhvD88M23vxYu8P6NDx+RI97w/WXEjvINkvT8wuU/ZgNO9PymDFyJMRL4/McUgCPO2vj+EHGmRhCu/PzPPRl8Ror8/8Fzp2VUNwD/mvNC6s0rAP2/M2RgticA/zBTDjc3IwD8ri5eFoQnBP6k1uTy2S8E/RwbgvBmPwT+O0gXZ2tPBPx+LOSgJGsI//ihV/7Rhwj8rJ5Np76rCP7DRASDK9cI/yDDUf1dCwz+04ZF/qpDDPwHFKKPW4MM/sQTl7u8yxD+LmVXZCofEP2ocJTw83cQ/WFnwQ5k1xT/vwSVfN5DFP9GB+iss7cU/JpeDZY1Mxj/z6ALQcK7GP4XjeSTsEsc/iKSU+xR6xz9NMQK4AOTHP/yUT3DEUMg/rg9d2HTAyD+/uIUqJjPJPyAUkxDsqMk/UiCXjNkhyj9DSsjhAJ7KP79/e31zHcs/dEBZ4EGgyz/5F+uHeybMP25Nn9gusMw/KdZgCGk9zT98seEJNs7NP2LFtXigYs4/tR5chrH6zj9QGFTocJbPPyayrWPyGtA/xaD414hs0D92Jh1C/b/QP7qsrzdQFdE/Y0ZAbYFs0T/UVKqxj8XRP3t6Rep4INI/RT8CEDp90j+o6Hstz9vSPzwRCF4zPNM/goXLzWCe0z9C19q6UALUP9Lya3f7Z9Q/hNEcbVjP1D/gJlIhXjjVP6qdrzoCo9U/pemphzkP1j8qmTEG+HzWPxo1dOww7NY/NdqvstZc1z/mERQe287XPzFNqUwvQtg/Gv42wsO22D+k7h52iCzZP70VI+Jso9k/RdkJEmAb2j+OXxO0UJTaP39SMSotDts/j0Pxm+OI2z+/uggJYgTcP8PkcFyWgNw/idT+f2793D8zWmRw2HrdP3yahFHC+N0/F80Ggxp33j8N3RC1z/XeP3MXE/3QdN8//ZeN6g303z/J5ttNuzngP9cV+eh9eeA/4/70gke54D83pqs9EfngP3dtHqrUOOE/VD7J0Yt44T++KqE/MbjhPykGsQjA9+E/p8NI1DM34j/ku7TjiHbiP7tjchm8teI//2/Y/8r04j/c4yjPszPjP9EVBHN1cuM/nVE0jw+x4z+9ZMqDgu/jP/cShHDPLeQ/Ni12N/hr5D8yyfR+/6nkP7LktLLo5+Q/xZQjBLgl5T9Wuu9pcmPlP5EVxJ4doeU/dHUwH8De5T+LpsEmYRzmPzWsSKwIWuY/KbhSXb+X5j+iO9SYjtXmP6FTCmmAE+c/t7OWfJ9R5z8ZEtse94/nP6bvmS+Tzuc/wWnjGYAN6D/0jVXKykzoP5JpuKSAjOg/zMf+eK/M6D89PrV3ZQ3pPyfK6SWxTuk/ZtaWUKGQ6T8bC53/RNPpP8DBV2irFuo/pmfY3+Na6j+uc9XM/Z/qP/fkWZkI5uo/QH5CpBMt6z8oIZYyLnXrP4HMxmBnvus/Kc/oE84I7D8Pwe3qcFTsP8LE8C9eoew/AHGhyaPv7D/altosTz/tP2DWcU5tkO0/hKxMlQrj7T/0RcfMMjfuP+P+eBfxjO4/mAJi4k/k7j9V/ozYWD3vP3RRL9cUmO8/6o9R4ov07z8GyASNYinwPzZLJ1hjWfA/0sO370qK8D8yKplwG7zwP8+PUXPW7vA/+m9MCH0i8T+JQnq0D1fxP5dyT26OjPE/8H0km/jC8T9HoPgMTfrxP24PmACKMvI/tW8mHK1r8j/fyw1us6XyP8oBUmyZ4PI/iT5I9Foc8z/Jz7FK81jzP9Y/ORxdlvM/NGVQfpLU8z9gxG3wjBP0P6hfp11FU/Q/Cc+oHrST9D+BQAL80NT0P+XJzTCTFvU/mESobfFY9T+wv/rb4Zv1P8VtkSFa3/U/8NJ8ZE8j9j9B2jlPtmf2Px5kHRWDrPY/7cr/dqnx9j/70CTIHDf3P0hfXPPPfPc/2HpYgLXC9z921jSZvwj4PyJqLBDgTvg/1oN5ZQiV+D85zlzNKdv4P3XcRzY1Ifk/aNgnTxtn+T+DCM2NzKz5P3/1azU58vk/VxQ1XVE3+j/27v/2BHz6P+bjBtZDwPo/s66wtf0D+z+SCGVAIkf7PzXLaRahifs/bBzG1GnL+z+iQykcbAz8P6zl0peXTPw/33l6BNyL/D/T5TM3Kcr8P8VATyRvB/0/ntQx5p1D/T9YgybEpX79P/DIIzl3uP0/R5yF+gLx/T+qfrn+OSj+PxsR24MNXv4/eYk/Fm+S/j/daO6WUMX+P/zQBUKk9v4/QdUItVwm/z+KIBb1bFT/P/I+BXXIgP8/JdRoG2Or/z+4+HNIMdT/P8rtwNsn+/8/CqL7HB4QAED8wicpsiEAQKUv+VFLMgBAM5aYIeVBAEAU4kpve1AAQHOf42EKXgBAGbIgco5qAEByLO5sBHYAQAoHkXVpgABAmXG3B7uJAEAAa2359pEAQENH9HwbmQBA/cB7IiefAEC8LbvZGKQAQPtmafPvpwBAj/SRIqyqAEDnAcZ9TawAQDamJ4DUrABAbAdOCkKsAEAO4ABjl6oAQM71yTfWpwBAbRBbnQCkAEA0C8cPGZ8AQPmgjHIimQBAGKBxECCSAEB6QC2bFYoAQNpj4CoHgQBANpxaPfl2AEAO5iq18GsAQI0be9jyXwBAfTy1TwVTAEA1wvEjLkUAQGpSLr1zNgBAQEJM4NwmAECne9ascBYAQFB5jpo2BQBAfGKA7Wzm/z8a2rnC8MD/P2BrupMJmv8/30PU18hx/z81BJ2XQEj/P5AdYWWDHf8/m9wpVaTx/j+WJFj0tsT+P2Y91kDPlv4/c3XjnwFo/j9Ju3zUYjj+P/GzZfUHCP4/sTTWYgbX/T99bNC7c6X9P+hnJNNlc/0/iwAmpPJA/T/UpRpHMA79P7bQZOU02/w/Z01zrRao/D985nrG63T8P/dRAUTKQfw/EZlAGcgO/D9GhmoM+9v7P8zy06l4qfs/6RgQN1Z3+z/aVASmqEX7P4kA/YeEFPs//VDMAP7j+j8WUfy5KLT6P7JGHdYXhfo/C/U55N1W+j+7UnvTjCn6P01jBec1/fk/kvUWqunR+T9EE3bkt6f5P7PvMo+vfvk/sxvLyd5W+T8CtrbPUjD5Pws1ae4XC/k/RETPeznn+D/vA1PNwcT4PxPCby+6o/g/uAXe3SqE+D9ReGD8Gmb4P57oOZCQSfg/xUBUepAu+D9I5B9yHhX4Pzd2MgE9/fc/M46rf+3m9z+9XGURMNL3Pxmx9qMDv/c/yDyL7WWt9z+fT5ZsU533P1WgY2jHjvc/GgaJ8ruB9z+JUDvpKXb3P9+uh/oIbPc/SlNyqE9j9z8NOPpN81v3P6EeASXoVfc/uBAWTSFR9z+e1x/TkE33P7oJ5LknS/c/LnZmA9ZJ9z+b4Ru7ikn3P7Mv6gA0Svc/kELvFL9L9z+5BgdkGE73P7VVCJUrUfc/1pCvluNU9z/qEi2uKln3PwDcTIbqXfc/UCcsPwxj9z9Z8HB+eGj3P93K9n8Xbvc/x93jJtFz9z+mRBgPjXn3P0Cg6Z4yf/c/2y0cGamE9z+JXAqv14n3P0qF65Kljvc/OicqCvqS9z/b2Ll/vJb3Py78XJbUmfc/DzPKOiqc9z8VlKG1pZ33PxewIb0vnvc/3Z+MhrGd9z82hi3XFJz3P3477xREmfc/tjF1ViqV9z+DC6hys4/3P8bcpw/MiPc/D5gWsWGA9z9Tyq3FYnb3P2ZxE7S+avc/Q3Xi5mVd9z9FFdzXSU73P5lvOBpdPfc/XysNZJMq9z9kOcKW4RX3P2OXjcY9//Y/kv3vQJ/m9j9/Zi2S/sv2Pw==",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
},
{
"data": "VVVVVVVV1T8cx3Ecx3HsP2QhC1nIQuY/AAAAAAAA8D8AAAAAAADwP0YXXXTRRec/AAAAAAAA8D9D/HHr8g7oP0YXXXTRRec/mpmZmZmZ6T8AAAAAAADgPwAAAAAAAOg/NpTXUF5D6T9VVVVVVVXlP+5phOWeRug/SQ9Uzm7h5z8AAAAAAADwPwAAAAAAAPA/VVVVVVVV1T8AAAAAAADwP5377AJiU+k/ZCELWchC5j8AAAAAAADwP1VVVVVVVeU/RotXPhGz6T8AAAAAAADwPwAAAAAAAPA/05ve9KY37T+Bn564OdnnP1VVVVVVVeU/AAAAAAAA8D8zMzMzMzPjPwAAAAAAAOA/AAAAAAAA5T9yHMdxHMfhPwAAAAAAAOA/lLovj60I6j+6ubm5ubnpPwAAAAAAAPA/AAAAAAAA7D9VVVVVVVXlP7dt27Zt2+Y/AAAAAAAA6D93d3d3d3fnP1VVVVVVVcU/UrgehetR6D9tlbiYrRLnPwAAAAAAAPA/AAAAAAAA8D/QusEU+azrPz42Oji5+Og/2Ymd2Imd6D9+DqkJxlvpP1VVVVVVVeU/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/U9aUNWVN6T8AAAAAAAAAANnK4D8xR+Y/OQUvp+Dl5D8AAAAAAADoPwAAAAAAAOA/TJHPusEU6T9hC7ZgC7bgP3lsRdBwUuc/AAAAAAAA8D+x3NMIyz3tPwAAAAAAAOg/q6qqqqqq6j85juM4juPoP6uqqqqqquo/AAAAAAAA4D8AAAAAAADwPwAAAAAAAPA/AAAAAAAAAACxEzuxEzvhPwAAAAAAAPA/AAAAAAAA6D8AAAAAAADwP1K4HoXrUeg/AAAAAAAA8D8AAAAAAADgPwAAAAAAAPA/AAAAAAAA4D9R6ciegajkPwAAAAAAAOA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/eQ3lNZTX4D9VVVVVVVXVPwAAAAAAAPA/xhhjjDHG6D9T1pQ1ZU3pP6WUUkoppeQ/VVVVVVVV5T8RERERERHpPwAAAAAAAOA/11prrbXW6j8AAAAAAADwPy2ms5jOYuo/AAAAAAAA8D9VVVVVVVXlP7dt27Zt2+Y/xhhjjDHG6D+W4RtRYNLpP3TRRRdddOE/AAAAAAAA8D/cpZ6M3y7lP66U39hm1Oo/AAAAAAAA6D8AAAAAAADwP7dt27Zt2+Y/AAAAAAAAAADCck8jLPfkP7dt27Zt2+Y/mpmZmZmZ6T8AAAAAAADqP1100UUXXew/EnfEHXFH7D9g1vtlvV/mP7dt27Zt2+Y/AAAAAAAA4D8iIiIiIiLqP1Lf2ajvbOQ/AAAAAAAA8D98GmG5pxHmPwAAAAAAAAAAAAAAAAAA5D+amZmZmZnpPwAAAAAAAPA/AAAAAAAA8D9VVVVVVVXlP/QFfUFf0Oc/AAAAAAAA8D8atpvlSWTqP6c3velNb+o/+nttxLr06D/4IcBuwkPnP3TRRRdddOE/AAAAAAAA8D8AAAAAAAAAANFFF1100eU/SZIkSZIk6T8AAAAAAADwPwAAAAAAAPA/HMdxHMdx7D8=",
"encoding": "base64",
"path": [
"_data",
2,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autobinx": false,
"histnorm": "probability density",
"legendgroup": "Python 3",
"marker": {
"color": "#386df9"
},
"name": "Python 3",
"opacity": 0.7,
"type": "histogram",
"uid": "b53ba6e2-dafe-11e8-8c5c-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
148
],
"value": {}
},
"xaxis": "x",
"xbins": {
"end": 1,
"size": 0.05,
"start": 0
},
"yaxis": "y"
},
{
"legendgroup": "Python 3",
"marker": {
"color": "#386df9"
},
"mode": "lines",
"name": "Python 3",
"showlegend": false,
"type": "scatter",
"uid": "b53bcdf0-dafe-11e8-ad3c-0c54159b97f0",
"x": [
0,
0.002,
0.004,
0.006,
0.008,
0.01,
0.012,
0.014,
0.016,
0.018,
0.02,
0.022,
0.024,
0.026,
0.028,
0.03,
0.032,
0.034,
0.036,
0.038,
0.04,
0.042,
0.044,
0.046,
0.048,
0.05,
0.052,
0.054,
0.056,
0.058,
0.06,
0.062,
0.064,
0.066,
0.068,
0.07,
0.072,
0.074,
0.076,
0.078,
0.08,
0.082,
0.084,
0.086,
0.088,
0.09,
0.092,
0.094,
0.096,
0.098,
0.1,
0.102,
0.104,
0.106,
0.108,
0.11,
0.112,
0.114,
0.116,
0.118,
0.12,
0.122,
0.124,
0.126,
0.128,
0.13,
0.132,
0.134,
0.136,
0.138,
0.14,
0.142,
0.144,
0.146,
0.148,
0.15,
0.152,
0.154,
0.156,
0.158,
0.16,
0.162,
0.164,
0.166,
0.168,
0.17,
0.172,
0.174,
0.176,
0.178,
0.18,
0.182,
0.184,
0.186,
0.188,
0.19,
0.192,
0.194,
0.196,
0.198,
0.2,
0.202,
0.204,
0.206,
0.208,
0.21,
0.212,
0.214,
0.216,
0.218,
0.22,
0.222,
0.224,
0.226,
0.228,
0.23,
0.232,
0.234,
0.236,
0.238,
0.24,
0.242,
0.244,
0.246,
0.248,
0.25,
0.252,
0.254,
0.256,
0.258,
0.26,
0.262,
0.264,
0.266,
0.268,
0.27,
0.272,
0.274,
0.276,
0.278,
0.28,
0.282,
0.284,
0.286,
0.288,
0.29,
0.292,
0.294,
0.296,
0.298,
0.3,
0.302,
0.304,
0.306,
0.308,
0.31,
0.312,
0.314,
0.316,
0.318,
0.32,
0.322,
0.324,
0.326,
0.328,
0.33,
0.332,
0.334,
0.336,
0.338,
0.34,
0.342,
0.344,
0.346,
0.348,
0.35,
0.352,
0.354,
0.356,
0.358,
0.36,
0.362,
0.364,
0.366,
0.368,
0.37,
0.372,
0.374,
0.376,
0.378,
0.38,
0.382,
0.384,
0.386,
0.388,
0.39,
0.392,
0.394,
0.396,
0.398,
0.4,
0.402,
0.404,
0.406,
0.408,
0.41,
0.412,
0.414,
0.416,
0.418,
0.42,
0.422,
0.424,
0.426,
0.428,
0.43,
0.432,
0.434,
0.436,
0.438,
0.44,
0.442,
0.444,
0.446,
0.448,
0.45,
0.452,
0.454,
0.456,
0.458,
0.46,
0.462,
0.464,
0.466,
0.468,
0.47,
0.472,
0.474,
0.476,
0.478,
0.48,
0.482,
0.484,
0.486,
0.488,
0.49,
0.492,
0.494,
0.496,
0.498,
0.5,
0.502,
0.504,
0.506,
0.508,
0.51,
0.512,
0.514,
0.516,
0.518,
0.52,
0.522,
0.524,
0.526,
0.528,
0.53,
0.532,
0.534,
0.536,
0.538,
0.54,
0.542,
0.544,
0.546,
0.548,
0.55,
0.552,
0.554,
0.556,
0.558,
0.56,
0.562,
0.564,
0.566,
0.568,
0.57,
0.572,
0.574,
0.576,
0.578,
0.58,
0.582,
0.584,
0.586,
0.588,
0.59,
0.592,
0.594,
0.596,
0.598,
0.6,
0.602,
0.604,
0.606,
0.608,
0.61,
0.612,
0.614,
0.616,
0.618,
0.62,
0.622,
0.624,
0.626,
0.628,
0.63,
0.632,
0.634,
0.636,
0.638,
0.64,
0.642,
0.644,
0.646,
0.648,
0.65,
0.652,
0.654,
0.656,
0.658,
0.66,
0.662,
0.664,
0.666,
0.668,
0.67,
0.672,
0.674,
0.676,
0.678,
0.68,
0.682,
0.684,
0.686,
0.688,
0.69,
0.692,
0.694,
0.696,
0.698,
0.7,
0.702,
0.704,
0.706,
0.708,
0.71,
0.712,
0.714,
0.716,
0.718,
0.72,
0.722,
0.724,
0.726,
0.728,
0.73,
0.732,
0.734,
0.736,
0.738,
0.74,
0.742,
0.744,
0.746,
0.748,
0.75,
0.752,
0.754,
0.756,
0.758,
0.76,
0.762,
0.764,
0.766,
0.768,
0.77,
0.772,
0.774,
0.776,
0.778,
0.78,
0.782,
0.784,
0.786,
0.788,
0.79,
0.792,
0.794,
0.796,
0.798,
0.8,
0.802,
0.804,
0.806,
0.808,
0.81,
0.812,
0.814,
0.816,
0.818,
0.82,
0.822,
0.824,
0.826,
0.828,
0.83,
0.832,
0.834,
0.836,
0.838,
0.84,
0.842,
0.844,
0.846,
0.848,
0.85,
0.852,
0.854,
0.856,
0.858,
0.86,
0.862,
0.864,
0.866,
0.868,
0.87,
0.872,
0.874,
0.876,
0.878,
0.88,
0.882,
0.884,
0.886,
0.888,
0.89,
0.892,
0.894,
0.896,
0.898,
0.9,
0.902,
0.904,
0.906,
0.908,
0.91,
0.912,
0.914,
0.916,
0.918,
0.92,
0.922,
0.924,
0.926,
0.928,
0.93,
0.932,
0.934,
0.936,
0.938,
0.94,
0.942,
0.944,
0.946,
0.948,
0.95,
0.952,
0.954,
0.956,
0.958,
0.96,
0.962,
0.964,
0.966,
0.968,
0.97,
0.972,
0.974,
0.976,
0.978,
0.98,
0.982,
0.984,
0.986,
0.988,
0.99,
0.992,
0.994,
0.996,
0.998
],
"xaxis": "x",
"y": {
"dtype": "float64",
"shape": [
500
],
"value": {}
},
"yaxis": "y"
},
{
"legendgroup": "Python 3",
"marker": {
"color": "#386df9",
"symbol": "line-ns-open"
},
"mode": "markers",
"name": "Python 3",
"showlegend": false,
"type": "scatter",
"uid": "b53bd112-dafe-11e8-8c63-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
148
],
"value": {}
},
"xaxis": "x",
"y": [
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3",
"Python 3"
],
"yaxis": "y2"
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"barmode": "overlay",
"hovermode": "closest",
"legend": {
"traceorder": "reversed"
},
"title": "Use ratio of Python 3 in the world",
"xaxis": {
"anchor": "y2",
"domain": [
0,
1
],
"zeroline": false
},
"yaxis": {
"anchor": "free",
"domain": [
0.35,
1
],
"position": 0
},
"yaxis2": {
"anchor": "x",
"domain": [
0,
0.25
],
"dtick": 1,
"showticklabels": false
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"7f579a6b5423445baff453371f12a961": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "8de013f8-db01-11e8-bf91-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 2,
"_layout": {
"geo": {
"projection": {
"rotation": {
"lat": -42.41083366639553,
"lon": 55.673285282945145
},
"type": "orthographic"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"89aa76ee9b294ffb8adb97f2057d5f85": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"hoverinfo": "label+value",
"labels": [
"Python 3",
"Python 2"
],
"marker": {
"colors": [
"#386df9",
"#12c8e6"
]
},
"rotation": 0,
"type": "pie",
"uid": "aedf3d94-dafe-11e8-9ffd-0c54159b97f0",
"values": [
6046,
2066
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Python 2 VS Python 3"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"8bec8f7814d14818b75199298b23885e": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#6c1fff",
"#583efd",
"#445cfb",
"#3079f7",
"#1996f3",
"#06aeed",
"#0fc4e7",
"#22d6e0",
"#38e7d7",
"#4df3ce",
"#60fac5",
"#74feba",
"#8bfeae",
"#9efaa2",
"#b2f396",
"#c6e789",
"#dcd67a",
"#f0c46c",
"#ffae5e",
"#ff964f",
"#ff793e",
"#ff5c2f",
"#ff3e1f",
"#ff1f10"
]
},
"type": "bar",
"uid": "b1026a3e-dafe-11e8-b52e-0c54159b97f0",
"x": [
"django",
"numpy / pandas / matplotlib / scipy and similar",
"requests",
"flask",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"asyncio",
"other - write in",
"six",
"tornado",
"aiohttp",
"kivy",
"web2py",
"twisted",
"bottle",
"pyramid",
"cherrypy",
"komodo ide",
"komodo editor"
],
"y": [
3363,
3163,
2769,
2607,
1960,
1740,
1360,
1257,
1129,
938,
791,
759,
649,
626,
510,
439,
389,
332,
303,
282,
278,
224,
185,
164
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Framework Usage"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"8d468b6f4d314313b6be55cc05d296c0": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "cb2fc4c6-db01-11e8-8932-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 2,
"_layout": {
"geo": {
"center": {
"lat": 0,
"lon": 0
},
"projection": {
"rotation": {
"lon": 0
},
"scale": 0.5,
"type": "mercator"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"96696ed4cdb34955ac06e72d2a87e400": {
"buffers": [
{
"data": "AAAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAALAAAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAAGAAAABkAAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAAAmAAAAJwAAACgAAAApAAAAKgAAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAADQAAAA1AAAANgAAADcAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAAA+AAAAPwAAAEAAAABBAAAAQgAAAEMAAABEAAAARQAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAUQAAAFIAAABTAAAAVAAAAFUAAABWAAAAVwAAAFgAAABZAAAAWgAAAFsAAABcAAAAXQAAAF4AAABfAAAAYAAAAGEAAABiAAAAYwAAAA==",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
},
{
"data": "ahSmIN417D+SYpH9SjbgPygMldF7B8Q/TiDAVu8Z6D+stT/VNpzRP/iEHY48ZbY/TrcAAV6o2j9HN4sPo+3lP57Fdl1joOs/NEdod0frwD9swB1nxv3kP6gNrk0z8N4/2543TmIh6T9F5j+1Wt/pPwjpppQVC+o/Rvefrytv6T+cHZPvtwfmP0D+yn9O84U/4KS9ANg16z9liO2FfW7qP1LQclh7OtQ/a6zuQRub6T+Ejt+H0KPuP6sVzmU1nuE/CGsvt6ALuT+CfAyxfU/iP8SORzddaN4/EGBAQ1Tu2D/ImtT4/orpP8x3pXJ9x8k/yiyBp2hR1T+grmV6+X+RP0a6YTyrUeA/GlsyrmwY7D9kgQGKacDDP0Au5JeV2Ok/wJG/zE39ij/2nIm6D8faP0NQwzdqxeI/tOeEeNPB3j/ql7RlwM3nP0JtrNjgbec/oJUu90mZ0D+4xocQTeHBP+YcziJgVt8/7mHidUI97D+epCpcmMLtPxSng+2g4+s/brRHv69q4T/pEhyUvLLnP2DPOneGr78/YNY6Ng3K1j/QXyFySIvGP4KxNeSz4OA/qlVZ+uVv0j8cEPAw7ODWP2JKDD8kcuA/ZCzaa+2i5j/KCBGpQZTUP0YAlEgkktM/tS56Ai+s4T86IfDn60bVP8IOQcfD/OA/1A3ExJXyzT8eWEhcSrnrP+Pj7LhoTOY/iVfs3P0N4z93xm9tXbToPy9lloII3+s/4MK+wLNy3j+t3RyCQj/kP7s7s7bBFew/1fqNGtFy7T8sDfyAMO3EP/iEqfLo3d8/cDa01F8+5T8xFvpXxBTjP7FfkzWeIes/+Nys7Ezkuj9AD9KYmdXFP5dNX8R73ug/ZGzUE9MC5z8pxX8dv8voP6nhh2SB3uY/P7MLOQ5S7z/8QT/nYHrNP8efcCt9GeE/bBS0G8YL4z9guEOOSGGkPyh7vcT06es/ADZZlOtDgT/MnSeYIpPHP612/kKNWOE/2BtFEGNy5j9hSKGX+KbnP4SMTcLBssY/vGdOcmKywT8iiPO9YuTRP+zTATCEStA/Gm75xeSu4j8=",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "red"
},
"mode": "lines+markers",
"type": "scatter",
"uid": "a8c2b606-dafe-11e8-99b2-0c54159b97f0",
"x": {
"dtype": "int32",
"shape": [
100
],
"value": {}
},
"y": {
"dtype": "float64",
"shape": [
100
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "散点+折线"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"9c8e3f7486374a71b249383ac7de40b2": {
"buffers": [
{
"data": "v0IfFcmO2T+Ae7Ff4zrYPwZwxB6i/dU/k0a15Spp1D+SJEmSJEnUP8vQAbs91tI/p86vPeSy0j/5i5xhwaXSPxISEhISEtI/THsiA+n90T9HYomSn6LRP2t7UjNk9NA/iscQRhPz0D/I4HwMzsfQP9ZPnaL4pNA/8Zc8zDcB0D/kTP5OkGvNP/g+l4Xvc8k/2djY2NjYyD9JD1TObuHHPzhvKyaOCMc/UN/itWIJxT91CueFZQXAP2cpD0qHqLk/",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
},
{
"data": "oV5wdZs44z9AQidQjuLjP/3HnfAuAeU/t1wljWrL5T+3bdu2bdvlP5oXfyLhlOY/rRgo4Y2m5j8EujFPH63mP/f29vb29uY/WsJufgsB5z/dTrs2sC7nP0vCVubNhec/O5z3XHaG5z+cj8H5GJznPxVYsa6Drec/CLThGWT/5z/HbEDsG6XoP0Iwmh4Eo+k/ysnJycnJ6T8u/GpMpAfqPzIkdXbcPeo/LEiHUqe96j9jPYaepv7rP9Mavhbvyuw/",
"encoding": "base64",
"path": [
"_data",
1,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"mode": "markers",
"name": "Python 2",
"orientation": "h",
"type": "scatter",
"uid": "b470199c-dafe-11e8-b978-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"twisted",
"six",
"other - write in",
"komodo ide",
"cherrypy",
"bottle",
"web2py",
"pyramid",
"tornado",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"pillow",
"pyqt / pygtk / wxpython",
"komodo editor",
"flask",
"django",
"numpy / pandas / matplotlib / scipy and similar",
"jupyter notebook",
"keras / theano / tensorflow / scikit-learn and similar",
"tkinter",
"kivy",
"pygame",
"asyncio",
"aiohttp"
]
},
{
"marker": {
"color": "#12c8e6"
},
"mode": "markers",
"name": "Python 3",
"orientation": "h",
"type": "scatter",
"uid": "b470199d-dafe-11e8-9cf3-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"twisted",
"six",
"other - write in",
"komodo ide",
"cherrypy",
"bottle",
"web2py",
"pyramid",
"tornado",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"requests",
"pillow",
"pyqt / pygtk / wxpython",
"komodo editor",
"flask",
"django",
"numpy / pandas / matplotlib / scipy and similar",
"jupyter notebook",
"keras / theano / tensorflow / scikit-learn and similar",
"tkinter",
"kivy",
"pygame",
"asyncio",
"aiohttp"
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"height": 1000,
"margin": {
"r": 10
},
"title": "Python 2 and Python 3 Usage among Frameworks",
"yaxis": {
"automargin": true
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"9ce677d743e4463da4065e2f91bc5b14": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "d4701a52-db01-11e8-ba1f-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_layout": {
"geo": {
"projection": {
"type": "equirectangular"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"9e1e0a8267094e59bdcadd43603a6bc7": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#ff1f10",
"#ff3e1f",
"#ff5c2f",
"#ff793e",
"#ff964f",
"#ffae5e",
"#f0c46c",
"#dcd67a",
"#c6e789",
"#b2f396",
"#9efaa2",
"#8bfeae",
"#74feba",
"#60fac5",
"#4df3ce",
"#38e7d7",
"#22d6e0",
"#0fc4e7",
"#06aeed",
"#1996f3",
"#3079f7",
"#445cfb",
"#583efd",
"#6c1fff"
]
},
"orientation": "h",
"type": "bar",
"uid": "b6bbe0a2-dafe-11e8-aaeb-0c54159b97f0",
"x": [
71,
132,
139,
163,
164,
185,
218,
349,
405,
548,
578,
611,
697,
751,
1048,
1581,
1740,
1820,
1854,
2069,
2070,
2468,
2762,
3061
],
"y": [
"rodeo",
"ninja-ide",
"textmate",
"aptana",
"komodo editor",
"komodo ide",
"wing ide",
"netbeans",
"other - write in",
"gedit",
"python tools for visual studio (ptvs)",
"emacs",
"intellij idea",
"spyder",
"eclipse + pydev",
"vs code",
"jupyter notebook",
"idle",
"notepad++",
"pycharm professional edition",
"atom",
"vim",
"sublime text",
"pycharm community edition"
]
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"height": 1000,
"margin": {
"r": 10
},
"title": "What editor(s)/IDE(s) have you considered for use in your Python development?",
"yaxis": {
"automargin": true
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"a2e1098e87d84e40b787b7d5d5184e0d": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#6c1fff",
"#583efd",
"#445cfb",
"#3079f7",
"#1996f3",
"#06aeed",
"#0fc4e7",
"#22d6e0",
"#38e7d7",
"#4df3ce",
"#60fac5",
"#74feba",
"#8bfeae",
"#9efaa2",
"#b2f396",
"#c6e789",
"#dcd67a",
"#f0c46c",
"#ffae5e",
"#ff964f",
"#ff793e",
"#ff5c2f",
"#ff3e1f",
"#ff1f10"
]
},
"orientation": "v",
"type": "bar",
"uid": "b6c490d8-dafe-11e8-87ff-0c54159b97f0",
"x": [
"pycharm community edition",
"sublime text",
"vim",
"atom",
"pycharm professional edition",
"notepad++",
"idle",
"jupyter notebook",
"vs code",
"eclipse + pydev",
"spyder",
"intellij idea",
"emacs",
"python tools for visual studio (ptvs)",
"gedit",
"other - write in",
"netbeans",
"wing ide",
"komodo ide",
"komodo editor",
"aptana",
"textmate",
"ninja-ide",
"rodeo"
],
"y": [
3061,
2762,
2468,
2070,
2069,
1854,
1820,
1740,
1581,
1048,
751,
697,
611,
578,
548,
405,
349,
218,
185,
164,
163,
139,
132,
71
]
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "What editor(s)/IDE(s) have you considered for use in your Python development?"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"ac6f76fec5544fbc86b877b127451feb": {
"buffers": [
{
"data": "8Zc8zDcB0D/WT52i+KTQPxISEhISEtI/y9ABuz3W0j+nzq895LLSP+RM/k6Qa80/2djY2NjYyD9re1IzZPTQP4rHEEYT89A/SQ9Uzm7hxz9Q3+K1YgnFP5IkSZIkSdQ/v0IfFcmO2T/5i5xhwaXSP0diiZKfotE/dQrnhWUFwD84bysmjgjHP4B7sV/jOtg/ZykPSoeouT8GcMQeov3VP0x7IgPp/dE/+D6Xhe9zyT/I4HwMzsfQP5NGteUqadQ/",
"encoding": "base64",
"path": [
"_data",
0,
"x",
"value"
]
},
{
"data": "CLThGWT/5z8VWLGug63nP/f29vb29uY/mhd/IuGU5j+tGCjhjabmP8dsQOwbpeg/ysnJycnJ6T9LwlbmzYXnPzuc91x2huc/LvxqTKQH6j8sSIdSp73qP7dt27Zt2+U/oV5wdZs44z8EujFPH63mP91OuzawLuc/Yz2Gnqb+6z8yJHV23D3qP0BCJ1CO4uM/0xq+Fu/K7D/9x53wLgHlP1rCbn4LAec/QjCaHgSj6T+cj8H5GJznP7dcJY1qy+U/",
"encoding": "base64",
"path": [
"_data",
1,
"x",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"orientation": "h",
"type": "bar",
"uid": "b151c530-dafe-11e8-a45a-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
]
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"orientation": "h",
"type": "bar",
"uid": "b151c531-dafe-11e8-a17c-0c54159b97f0",
"x": {
"dtype": "float64",
"shape": [
24
],
"value": {}
},
"y": [
"django",
"flask",
"tornado",
"bottle",
"web2py",
"numpy / pandas / matplotlib / scipy and similar",
"keras / theano / tensorflow / scikit-learn and similar",
"pillow",
"pyqt / pygtk / wxpython",
"tkinter",
"pygame",
"cherrypy",
"twisted",
"pyramid",
"requests",
"asyncio",
"kivy",
"six",
"aiohttp",
"other - write in",
"cloud platforms (google app engine, aws, rackspace, heroku and similar)",
"jupyter notebook",
"komodo editor",
"komodo ide"
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"height": 1000,
"title": "Python 2 and Python 3 Usage among Frameworks",
"yaxis": {
"automargin": true
}
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"ac93e31916de49e9ae50e8c243dbf6c9": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "641e8ef6-db01-11e8-b193-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 15,
"_layout": {
"geo": {
"center": {
"lat": 0,
"lon": 0
},
"projection": {
"rotation": {
"lon": 0
},
"scale": 1,
"type": "equirectangular"
},
"showcoastlines": false,
"showframe": false
},
"margin": {
"l": 0
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"b16a4fe139d3430395f6ea0027424c24": {
"buffers": [
{
"data": "ELx/Int40T9Naj6AnXHTP/7Awo6MTdA/GhBK7hQtzD8HJxcfGx3MP44RTPR3sso/Rq2BnGSuxD8m1Y7OpNrRP6p5kLt+tsg/59KhBrszyT8=",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
},
{
"data": "+CHAbsJD5z/ZyuA/MUfmP4Gfnrg52ec/+nttxLr06D8+Njo4ufjoP5377AJiU+k/rpTf2GbU6j9tlbiYrRLnP5bhG1Fg0uk/RotXPhGz6T8=",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "bar",
"uid": "b527fb50-dafe-11e8-a12f-0c54159b97f0",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": {
"dtype": "float64",
"shape": [
10
],
"value": {}
}
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "bar",
"uid": "b527fb51-dafe-11e8-a249-0c54159b97f0",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": {
"dtype": "float64",
"shape": [
10
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Python 2 and Python 3 Usage among Different Countries"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"b16eeb80aa1e43b2b34332624d4a5171": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "b072401c-db01-11e8-baab-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 3,
"_layout": {
"geo": {
"center": {
"lat": 24.342663357974615,
"lon": 36.58662091521644
},
"projection": {
"rotation": {
"lon": 36.58662091521644
},
"scale": 1.4142135623730947,
"type": "natural earth"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"b9fa9309f53140cebfd0d57b9dac9830": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "800c1f12-db01-11e8-b022-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_layout": {
"geo": {
"projection": {
"type": "equirectangular"
},
"showcoastlines": false,
"showframe": false
},
"margin": {
"l": 0
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"ba9b2d1292064bbf8abfd7c9d900b162": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "5dfb7750-daff-11e8-a3e4-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_layoutDelta": {},
"_js2py_pointsCallback": {},
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_traceDeltas": {},
"_js2py_update": {},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {}
}
},
"c0ddefe3363e40b68a91bb5036b8dc4f": {
"buffers": [
{
"data": "4LfOVMDYzT/GGGOMMcbIPw==",
"encoding": "base64",
"path": [
"_data",
0,
"y",
"value"
]
},
{
"data": "CFLM6s+J6D/OOeecc87pPw==",
"encoding": "base64",
"path": [
"_data",
1,
"y",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": "#386df9"
},
"name": "Python 2",
"type": "bar",
"uid": "b0f57818-dafe-11e8-9d37-0c54159b97f0",
"x": [
"Data analysis",
"Machine learning"
],
"y": {
"dtype": "float64",
"shape": [
2
],
"value": {}
}
},
{
"marker": {
"color": "#12c8e6"
},
"name": "Python 3",
"type": "bar",
"uid": "b0f57819-dafe-11e8-825d-0c54159b97f0",
"x": [
"Data analysis",
"Machine learning"
],
"y": {
"dtype": "float64",
"shape": [
2
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"dba20afba295488c89a8488def2bc9a1": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#5247fc",
"#2489f5",
"#0ac0e8",
"#3ae8d6",
"#68fcc1",
"#96fca7",
"#c4e88a",
"#f4c069",
"#ff8947",
"#ff4724"
]
},
"type": "bar",
"uid": "b4edfeb4-dafe-11e8-babc-0c54159b97f0",
"x": [
"United States",
"United Kingdom",
"Canada",
"Germany",
"Poland",
"Mexico",
"Italy",
"Belgium",
"Venezuela",
"South Africa"
],
"y": [
56,
7,
6,
6,
2,
2,
2,
2,
2,
2
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Top 10 countries of # of the developers whose age are 60+"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
},
"dbf1546955eb4e76a5849c6ef76e9883": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "852ec93e-db01-11e8-956f-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_pointsCallback": {},
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_layout": {
"geo": {
"projection": {
"type": "equirectangular"
},
"showcoastlines": false,
"showframe": false
},
"title": "Python 3 in the world"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 0
}
},
"e5b7e9bebc8443b2b2dc292e45394d59": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_js2py_layoutDelta": {},
"_js2py_pointsCallback": {},
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_traceDeltas": {},
"_js2py_update": {},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {}
}
},
"f0b5c07276d749058f5d0c94f985f20c": {
"buffers": [
{
"data": "qqqqqqqqQECO4ziO4zhWQBaykIUsZFFAAAAAAAAAWUAAAAAAAABZQC+66KKLLlJAAAAAAAAAWUAUDfHHrctSQC+66KKLLlJAAAAAAAAAVEAAAAAAAABJQAAAAAAAwFJAymsor6G8U0CqqqqqqqpQQMJyTyMs91JA8asxkR6oUkAAAAAAAABZQAAAAAAAAFlAqqqqqqqqQEAAAAAAAABZQJMkSZIkyVNAFrKQhSxkUUAAAAAAAABZQKqqqqqqqlBAz2S0eOUTVEAAAAAAAABZQAAAAAAAAFlAvelNb3rTVkCd7DsYtaFSQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABOQAAAAAAAAElAAAAAAABoUEByHMdxHMdLQAAAAAAAAElAxEndl8dWVEAZGRkZGRlUQAAAAAAAAFlAAAAAAADgVUCqqqqqqqpQQLdt27Zt21FAAAAAAADAUkBVVVVVVVVSQKqqqqqqqjBAAAAAAAAAU0C9NFCflwZSQAAAAAAAAFlAAAAAAAAAWUDyWTeYIp9VQGB67bNQglNAshM7sRM7U0BSE4y3ss9TQKqqqqqqqlBAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlAcUfcEXfEU0AAAAAAAAAAAHqe53meZ1FAFbycgpdTUEAAAAAAAMBSQAAAAAAAAElAgynyWTeYU0DIcRzHcRxKQL88tiJoOFJAAAAAAAAAWUBqhOWeRthWQAAAAAAAwFJAVlVVVVXVVEAdx3Ecx3FTQFZVVVVV1VRAAAAAAAAASUAAAAAAAABZQAAAAAAAAFlAAAAAAAAAAADFTuzETuxKQAAAAAAAAFlAAAAAAADAUkAAAAAAAABZQAAAAAAAAFNAAAAAAAAAWUAAAAAAAABJQAAAAAAAAFlAAAAAAAAASUBH9gxEpSNQQAAAAAAAAElAAAAAAAAAWUAAAAAAAABZQAAAAAAAAFlADeU1lNdQSkCqqqqqqqpAQAAAAAAAAFlAW2uttdZaU0BxR9wRd8RTQCGEEEIIIVBAqqqqqqqqUEBVVVVVVZVTQAAAAAAAAElA+N577733VEAAAAAAAABZQNNZTGcxnVRAAAAAAAAAWUCqqqqqqqpQQLdt27Zt21FAW2uttdZaU0A9yF0/WyxUQEUXXXTRRUtAAAAAAAAAWUCU8dulnoxQQCisblnw9VRAAAAAAADAUkAAAAAAAABZQLdt27Zt21FAAAAAAAAAAACoEZZ7GmFQQLdt27Zt21FAAAAAAAAAVEAAAAAAAFBUQOmiiy66KFZABn1BX9AXVkB7v6z3y3pRQLdt27Zt21FAAAAAAAAASUCrqqqqqmpUQPBs1Hc26k9AAAAAAAAAWUCx3NMIyz1RQAAAAAAAAAAAAAAAAABAT0AAAAAAAABUQAAAAAAAAFlAAAAAAAAAWUCqqqqqqqpQQKesKWvKmlJAAAAAAAAAWUBEpmG7WZ5UQHrTm970plRA24h16TF/U0CKGobm7yxSQEUXXXTRRUtAAAAAAAAAWUAAAAAAAAAAAIsuuuiiC1FASZIkSZKkU0AAAAAAAABZQAAAAAAAAFlAjuM4juM4VkA=",
"encoding": "base64",
"path": [
"_data",
0,
"z",
"value"
]
}
],
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"autocolorscale": false,
"colorbar": {
"ticksuffix": "%",
"title": "Percent"
},
"colorscale": "YlGnBu",
"locationmode": "country names",
"locations": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"marker": {
"line": {
"color": "rgb(180,180,180)",
"width": 0.5
}
},
"reversescale": true,
"text": [
"Afghanistan",
"Albania",
"Algeria",
"Andorra",
"Antigua and Barbuda",
"Argentina",
"Armenia",
"Australia",
"Austria",
"Azerbaijan",
"Bahamas, The",
"Bahrain",
"Bangladesh",
"Barbados",
"Belarus",
"Belgium",
"Belize",
"Benin",
"Bolivia",
"Bosnia and Herzegovina",
"Brazil",
"Bulgaria",
"Cambodia",
"Cameroon",
"Canada",
"Cape Verde",
"Chad",
"Chile",
"China",
"Colombia",
"Congo, Democratic Republic of the",
"Costa Rica",
"Cote d'Ivoire",
"Croatia",
"Cuba",
"Cyprus",
"Czech Republic",
"Denmark",
"Dominica",
"Dominican Republic",
"Ecuador",
"Egypt",
"El Salvador",
"Estonia",
"Ethiopia",
"Finland",
"France",
"Gabon",
"Gambia, The",
"Georgia",
"Germany",
"Ghana",
"Greece",
"Guatemala",
"Haiti",
"Honduras",
"Hong Kong",
"Hungary",
"Iceland",
"India",
"Indonesia",
"Iran",
"Iraq",
"Ireland",
"Israel",
"Italy",
"Jamaica",
"Japan",
"Jordan",
"Kazakhstan",
"Kenya",
"Kuwait",
"Kyrgyzstan",
"Latvia",
"Lebanon",
"Libya",
"Lithuania",
"Luxembourg",
"Macedonia",
"Madagascar",
"Malaysia",
"Maldives",
"Malta",
"Mauritania",
"Mauritius",
"Mexico",
"Moldova",
"Monaco",
"Mongolia",
"Montenegro",
"Morocco",
"Myanmar",
"Namibia",
"Nepal",
"Netherlands",
"New Zealand",
"Nicaragua",
"Nigeria",
"North Korea",
"Norway",
"Oman",
"Pakistan",
"Panama",
"Paraguay",
"Peru",
"Philippines",
"Poland",
"Portugal",
"Qatar",
"Romania",
"Russia",
"Rwanda",
"San Marino",
"Saudi Arabia",
"Senegal",
"Serbia",
"Singapore",
"Slovakia",
"Slovenia",
"South Africa",
"South Korea",
"Spain",
"Sri Lanka",
"Sudan",
"Sweden",
"Switzerland",
"Syria",
"Taiwan",
"Tajikistan",
"Tanzania",
"Thailand",
"Timor-Leste",
"Togo",
"Tunisia",
"Turkey",
"Uganda",
"Ukraine",
"United Arab Emirates",
"United Kingdom",
"United States",
"Uruguay",
"Uzbekistan",
"Vanuatu",
"Venezuela",
"Vietnam",
"Yemen",
"Zambia",
"Zimbabwe"
],
"type": "choropleth",
"uid": "33529512-db01-11e8-86ff-0c54159b97f0",
"z": {
"dtype": "float64",
"shape": [
148
],
"value": {}
}
}
],
"_js2py_layoutDelta": {},
"_js2py_pointsCallback": {},
"_js2py_relayout": {},
"_js2py_restyle": {},
"_js2py_traceDeltas": {},
"_js2py_update": {},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_relayout": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {}
}
},
"f89415caa42b4883b8b35c9e0e537ea7": {
"model_module": "plotlywidget",
"model_module_version": "^0.4.0",
"model_name": "FigureModel",
"state": {
"_data": [
{
"marker": {
"color": [
"#5247fc",
"#2489f5",
"#0ac0e8",
"#3ae8d6",
"#68fcc1",
"#96fca7",
"#c4e88a",
"#f4c069",
"#ff8947",
"#ff4724"
]
},
"type": "bar",
"uid": "b5177fc0-dafe-11e8-99de-0c54159b97f0",
"x": [
"United States",
"India",
"China",
"United Kingdom",
"Germany",
"Brazil",
"Russia",
"France",
"Poland",
"Canada"
],
"y": [
1638,
1343,
710,
521,
417,
383,
281,
261,
223,
219
]
}
],
"_js2py_pointsCallback": {},
"_js2py_restyle": {},
"_js2py_update": {},
"_last_layout_edit_id": 1,
"_layout": {
"autosize": true,
"title": "Top 10 countries of # of the developers"
},
"_py2js_addTraces": {},
"_py2js_animate": {},
"_py2js_deleteTraces": {},
"_py2js_moveTraces": {},
"_py2js_removeLayoutProps": {},
"_py2js_removeTraceProps": {},
"_py2js_restyle": {},
"_py2js_update": {},
"_view_count": 1
}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}