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Abstract 

Keywords

This paper proposes a hybrid aperture sensing (HAS) technology based on wireless networks, which utilizes the mobility of 
terminal nodes in the network to form virtual apertures and combines them with the real physical apertures of base stations 
to form hybrid aperture. By reusing the (uplink or downlink) air interface resources between base stations (real apertures) 
and terminals (virtual apertures), HAS significantly enhances the sensing resolution and enables the fusion of 3D point 

clouds from multiple network nodes, resulting in a digital twin environment model that corresponds to the physical world. 
The paper also explores the use of the reconstructed digital twin environment model for wireless communication channel 
prediction and clutter suppression in wireless sensing.

hybrid aperture sensing (HAS), environment reconstruction, digital twin, sensing-assisted communication, sensing-assisted 
localization, 6G
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Integrated sensing and communication (ISAC) as a highly 
promising feature for next-generation cellular networks, 

has been approved as one of the six major usage scenarios 
for IMT-2030 (6G) by ITU-R. In the scenario of ISAC, the 
cellular network infrastructures and devices not only 
serve as communication nodes for connectivity between 
people and things, but also as sensing nodes that help 
achieve environment imaging and reconstruction, high-
precision target localization and tracking, gesture and 
motion recognition, and other sensing functions. Among 
them, environment reconstruction serves as an enabling 

technology for digital twins [1], and will play an important 
role in future scenarios such as digital reconstruction of a 
physical world, target localization, and autonomous driving. 
From the perspective of measurement, 3D environment 
reconstruction�mainly�has� two� technical� routes:�optical�
and microwave radar. Lidar-based 3D environment 
reconstruction solutions are known for their high precision, 
but are expensive, involve time-consuming deployment, and 
require a long data update cycle. Recently, the introduction 

of deep learning technology has made rapid progress in 
reconstructing 3D images based on 2D optical images 
using neural networks [2], which has lower equipment 
requirements but still needs to calibrate camera positions 
and separately training for different categories of objects. 
Its generalization capability and outdoor performance still 
need�to�be�improved.�Researchers�in�the�radar�imaging�Ēeld�
have also conducted a lot of research on various imaging 
systems, such as vehicle-based and unmanned aerial 
vehicle-based 3D radar imaging systems [3–5], which are 

less vulnerable to ambient lighting and weather conditions 
compared to optical methods and have a larger coverage 
area. Traditional solutions for reconstructing environments 
are typically deployed and calibrated independently, which 
places high requirements on processing capabilities of 
devices. This results in high costs in terms of deployment, 
data update, and maintenance, failing to build ubiquitous 
digital twins in the future. To address this limitation, 
this paper proposes the hybrid aperture sensing (HAS) 

technology for next-generation wireless network, which fully 
utilizes the signal processing capabilities, data transmission 
capabilities, and positioning and synchronization capabilities 
of the network side, combines the terminal mobility, and 
does not require independent deployment and calibration, 
thus offering an on-demand, high-quality, and wide-
coverage digital twin environment model. To further 
enhance the capabilities of wireless communication and 
localization, the impact of the environment on wireless 

channels [6] has also received more attention, and this 
paper further investigates channel prediction and clutter 

suppression by using the reconstructed environment model 
and evaluates its performance preliminarily. The following 

sections� introduce�the�three�parts�of� the�article:� sensing-
based environment reconstruction, environment sensing-
assisted communication, and environment sensing-assisted 
localization.

1 Sensing-based Environment 
Reconstruction

1.1 Hybrid Aperture Sensing

The sensing mode of a typical cellular network can be 
divided�into�two�categories:�base�stations�(BSs)�only�sensing�

and BS-terminal joint sensing. This paper proposes a HAS-
based scheme, as shown in Figure 1, which adopts a joint 
bistatic sensing mode between BSs and mobile terminal. 
The BS side utilizes a real apertures antenna array to ensure 
the vertical resolution, while the mobile terminal, such as 
vehicles and UAVs, can form a virtual aperture to observe 
the environment, thereby achieving a larger field of view 
and higher horizontal resolution than BSs only sensing. The 
HAS-based solution also features reciprocity between uplink 

and downlink channels, allowing both uplink and downlink 
signals to be used for sensing. Considering that the BSs 
typically have stronger signal processing and transmission 
capabilities, this paper takes the uplink sensing, i.e., the BS 
receives and the mobile terminal transmits, as an example 
of�a�speciĒc�implementation�of�the�HAS-based�solution,�and�
analyzes and demonstrates the performance of the cellular 
network in 3D environment reconstruction, as well as the 
use of the reconstructed environment model to predict 
communication channels and assist in target localization.

Figure 1 HAS-based solution
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First,� let's�brieēy�review�the�basic�principle�of�obtaining�a�
scattered point cloud C = { I (x,�y,�z)} by using back projection 

(BP) algorithm. More algorithm details are available in [7, 8].  
I�(x,�y,�z)�represents the scattering intensity at a spatial target 
point P�(x,�y,�z), and can be calculated from (1).

(1)

where , , ) represents the echo pulse compression 
result at a given virtual aperture position x , y , z ) 
and a given real aperture position x , y , z ). λ is the 
wavelength of the carrier.  represents the slant range 
between imaging target point P and the mobile node at 
position aV. rR represents the slant range between point P 

and real-aperture array element  of BSs. rV and rR can be 
expressed as

Then, the obtained point cloud  with a specific 
scattering intensity is filtered to obtain a point cloud 
representing the geometric shape of targets. Finally, a 3D 
environment model can be reconstructed by triangulating 
these points using a surface reconstruction algorithm, such 
as Poisson surface reconstruction [9], Ball Pivoting [10], 
Occupancy Networks [11], or DeepSDF [12].

1.2 Simulation Evaluation Result

This section describes a simulation scenario of environment 
sensing by using BS-terminal hybrid apertures where BSs 
function as receivers, and a vehicle and a UAV function as 
transmitters. Figure 2 shows that four BSs (BS1 to BS4) are 
deployed around the factory building (in red). A vehicle 
drives around the factory, while a UAV flies above the 
factory parallel to the ground.

In this simulation, the normal direction of the antenna 
arrays of BSs is parallel to the ground, and the array size is 
1 m x 0.5 m. The UAV forms a horizontal virtual aperture 
with an equivalent length of 3 m in the air. Similarly, the 
moving vehicle forms five horizontal virtual apertures in 
di󯿿erent�directions,�each�with�an�equivalent� length�of�3�m.�
These apertures are labeled V1 to V5 in Figure 2. The channel 
information between the transmitter and receiver can be 
obtained by using ray tracing method, and more channel 
data can be found in our open dataset, Sensiverse [13].

Figure 2 Simulation of HAS-based environment reconstruction
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The BSs, vehicles, and UAV operate at a center frequency 
of 10 GHz with a bandwidth of 400 MHz. Transmitted 

waveforms such as OFDM, OTFS, and FMCW can be used. 
Echo data is processed by using imaging algorithms to 
obtain imaging results of the target building. Figure 3 
shows the imaging results obtained through BS-mobile 
terminal pair sensing with the transmitted waveform set to 

OFDM. Due to visual angles and blocking, the coverage of 
each single pair of BS-mobile terminal sensing is limited, 

resulting in only partial imaging of the building. Therefore, 
the next step is to perform weighted fusion processing on 
the imaging results of each pair of BS-mobile terminal 
according to their coverage areas and corresponding 
theoretical resolutions.

Figure 3 Imaging results based on BS-mobile terminal sensing 
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(b) BS1-V1
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(c) BS1-V2
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(d) BS2-V5
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Figure 4 shows the fusion result of six groups of imaging 
point clouds. It can be seen that the fusion imaging result 
reēects�the�contour�of�the�target�building�quite�completely.

Figure 4 Fusion result of HAS-based imaging point clouds

It should be noted that while HAS can achieve higher-
resolution sensing results than BS only sensing, the time and 
frequency synchronization errors between transmitting and 
receiving�nodes�will�a󯿿ect�the�sensing�performance.�This� is�
a problem that needs to be further explored and studied in 
the future.

1.3 Point Cloud Modeling and 
Performance Evaluation

Based on the environment imaging results of the previous 
section, we can reconstruct a precise geometric model 
(shown in Figure 5) that is easy to express, process, and 
transmit and contains physical characteristics. This model is 
crucial for various applications, including three-dimensional 
modeling in indoor and outdoor scenarios, wireless channel 
estimation, mixed reality, and digital twin.

The problem of reconstructing a geometric model on a 
point� cloud�can�be�described�as� follows:�given�a� set�of�
unordered three-dimensional points P = {p1, p2, ..., pn}, the 
goal is to reconstruct a mesh with clear geometric topology 
structure, Mesh = {V,E}, using a surface reconstruction 
algorithm, where V and E represent the coordinates of the 
mesh vertices and the connectivity relationships between 
them, respectively.

Figure 5 Reconstructed mesh model based on point clouds

Quality evaluation of the reconstructed mesh model 
typically involves comparing the difference between the 

sampling points in the reconstructed mesh model and the 
true value of scattering points. Common evaluation metrics 
include Chamfer Distance [14] and F-score [15], which are 
deĒned�as�follows:

(2)

1 and 2 respectively represent the sampling points of the 
reconstructed model and the true value of scattering points. 
To use the length dimension, this paper uses the square root 

of Chamfer Distance, i.e., 
√

Chamfer Distance  as one of the 
metrics for measuring the reconstruction quality. And

(3)

where ( ) and ( ) respectively represent the matching 
degree between the reconstructed model and the true 
value of scattering points with respect to a given distance 
threshold d,�and�are�deĒned�as�follows:

P (d) =
100

|S1|
x∈S1

min
y∈S2

�x− y�2 < d

R (d) =
100

|S2|
x∈S2

min
y∈S1

�x− y�2 < d

By leveraging the environment imaging results from 
the previous section as input and using the Poisson 
surface reconstruction algorithm, a geometric model 
is reconstructed based on the input point clouds, as 
shown in Figure 6. The reconstructed model is evaluated 

quantitatively using the 
√

Chamfer Distance  and F-score. 
As presented in Table 1, the reconstructed mesh model 

exhibits 
√

Chamfer Distance  of 0.96 m, and an F-score with 
a distance threshold of 1.5 m is 96. In contrast, the original 

input point clouds exhibit 
√

Chamfer Distance  of 1.18 m 
and an F-score of 94 using the same distance threshold. By 
comparing the quantitative error evaluation result in Table 1, 
it is evident that the reconstructed geometric model is more 
representative of the environment than the original point 

cloud, and the 
√

Chamfer Distance  and F-score values are 
better than those of imaging point clouds.

CD (S1, S2) =
1

|S1|
x∈S1

min
y∈S2

�x− y�22 +
1

|S2|
x∈S2

min
y∈S1

�x− y�22

F − score =
2P (d) ·R (d)

P (d) +R (d)

Figure 6 3D environment reconstruction result
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Table 1 Evaluating the environment reconstruction error

Performance Imaging Point 
Cloud

Reconstructed 
Model

√
Chamfer Distance 1.18 m 0.96 m

F-score (d = 1.5 m) 94 96

2 Environment Sensing-assisted 
Communication: Channel Prediction

A 3D reconstruction of the surrounding environment is 
obtained through 3D imaging and meshing. Let's assume 
that the objects are made of concrete. For a UE at a 
given location in the environment, multipath parameters 
{τn, An,AODn,ZODn,AOAn,ZOAn}  between a BS and 
the UE can be obtained by using wireless channel prediction 
methods such as electromagnetic calculation and ray 
tracing. These multipath parameters represent the delay, 

amplitude, azimuth angle of departure (AOD), zenith 
angle of departure (ZOD), azimuth angle of arrival (AOA), 
and zenith angle of arrival (ZOA) of the nth multipath, 
respectively. Based on these parameters, the frequency 
domain response of the channel can be further calculated.

In  channel prediction based on the reconstructed 
environment, errors are inevitable due to inaccuracies in 
environment reconstruction and UE locations. Specifically, 
errors in environment reconstruction are primarily 
geometric errors of a 3D environment and errors in 
the electromagnetic parameters of materials. Errors in 
environment reconstruction can occur due to (1) a failure 
in perfectly reconstructing the environment and (2) a 
failure in real-time imaging for dynamic targets (such as 

vehicles or pedestrians) in the environment. UE locations 
in the environment are subject to dynamic changes, which 
presents challenges for accurate UE localization. In practice, 
only estimated UE locations can be used for prediction. This 
paper primarily focuses on examining the impact of errors 
in environment reconstruction.

To quantitat ively evaluate the impact of errors in 
environment reconstruction on channels, let's consider a 
frequency of 10 GHz as an example. Figure 7 depicts one 
BS located at a specific location and 500 UEs randomly 
distributed. Using the ray tracing method, we obtain 
multipath parameters for each BS–UE pair based on an ideal 
model and a reconstructed model. For statistical analysis, 

we only consider UEs with attenuation of the strongest path 

less than 110 dB (indicated by red points). Among these 
UEs, we reserve the multipaths for which energy attenuation 

is less than 20 dB when compared with the strongest path 
for each UE. This enables us to use the Chamfer Distance 
and compare the errors in multipath parameters for the two 
models. Figure 8 shows the multipath parameters obtained 
separately based on the two models, and the Chamfer 
Distance is used to compare the errors in these parameters.

Figure 7�Scenario�conĒguration�for�analysis�of�
errors in channel multipath prediction

Figure 8 Process for analyzing the channel prediction errors

Figure 9 shows the statistical results of the error analysis 
for the multi-path parameter prediction based on the 
reconstructed model. From the statistical results, it can be 
seen that the time delay error is within 3.5 ns for 90% of 
the cases, the AOA error is within 3 degrees for 90% of the 
cases, the AOD error is within 3 degrees for 90% of the 

cases, the ZOA error is within 1 degree for 90% of the cases, 
and the ZOD error is within 1 degree for 90% of the cases. 
The channel prediction result can be used to assist beam 
sweeping in communications, reducing the beam sweeping 
overhead.
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Figure 9 (a) Delay errors; (b) AOA errors;  
(c) AOD errors; (d) ZOA errors; (e) ZOD errors

3 Environment Sensing-assisted 
Localization: Clutter Suppression

In exist ing cellular networks, the primary focus of 

positioning and tracking of targets is on active devices, 
such as smartphones, vehicles, and UAVs. In the future, 
with the introduction of sensing functions, 6G networks 
will be able to provide positioning and tracking not only 
for active devices but also for passive targets. This will 
open up a range of new application scenarios, including 
but not limited to flight tracking of UAVs, UAV intrusion 
detection, localization and tracking of vehicles, detection of 

pedestrians and animals on highways, and communications 
assisted by sensing results of moving targets. This section 

takes passive targets as an example for analysis, and the 
mobile targets mentioned below refer to passive targets 
unless�speciĒed�otherwise.

Targets to be sensed and observation nodes are usually 

located on the ground or in a low-altitude environment, 
which makes ground clutter (echoes from the ground and 
surrounding�buildings)�a�signiĒcant�factor�that�a󯿿ects� the�
system sensing performance. This is especially true for 
detecting, localizing, and tracking small targets that move 
slowly in a low-altitude environment. The main problems 
faced�include:

1. Both�the�reēected�signals�of� the�targets�to�be�detected�
and the clutter reflected from surrounding buildings 
and the ground exist in the environment. If coherent 
accumulation is performed without any additional 
processing, strong side-lobe clutter may obscure targets, 
significantly reducing the target detection capability 
of BSs. Therefore, measures must be taken to suppress 

clutter and minimize its impact on target detection.

2. Targets that move at low speeds and have weak 
reflected energy. Moving targets in the environment 
mainly include vehicles, pedestrians, and UAVs. Among 

these, pedestrians move at a relatively low speed and 
have a small radar cross section (RCS), making them 
particularly susceptible to static side-lobe clutter. 
Consequently, detecting such targets requires a higher 
level of interference suppression capability.

Next, we will illustrate the performance of mobile target 
sensing based on a monostatic BS using a simulation 
example. 

In the simulation, the carrier frequency is set to 10 GHz, 

and the bandwidth is set to 100 MHz. The BS use angle 
and range measurements to locate the target, with a 
single transmitting element and 1024 receiving elements 
conĒgured� in�a� two-dimensional�uniform�planar�array.�The�
receiving elements are spaced at a distance of λ /2, where λ 
is�the�wavelength�of�the�signal,�and�the�conĒguration�can�be�
equivalent to two mutually perpendicular 32-element receive 
uniform linear arrays using MIMO technology, without 
a󯿿ecting� the�analysis� results.�The�32�x�32�element�array� is�
placed on the YZ plane, with its normal direction along (1,0,0) 

to cover the moving target. Based on monostatic BS sensing, 
the target's angle, range, and speed information can be 
obtained.
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The target moves along a straight line at a constant speed, 
with a trajectory length of 30 m. In this example, we use 
a cylindrical target with a radius and height of 3 m as an 
extended� target.�The�signal�processing�ēowchart� is�shown�
in Figure 10, and it should be noted that an environment-
assisted module is added compared to traditional methods 
(such as ECA , extensive cancellation algorithm). The 
reēected�signal�in�the�frequency�domain�can�be�represented�
as Y(f )  = S( f )*H(f ), where S(f ) is the Fourier transform of 
the transmitted waveform s(t), and H(f ) is the frequency-
domain response of the channel. After obtaining the echo 
data, the target angle, range, and Doppler information 
can�be�obtained�through�signal�processing,�and�Ēnally,�the�
target localization information can be obtained.

Figure 10 Flow of signal processing for detecting moving targets

As previously mentioned, wireless sensing can be used to 
obtain an environment reconstruction result. This result and 
the transceiver location can be used to obtain multipath 
information by using channel prediction algorithms such as 
electromagnetic calculation and ray tracing. By relying on 
multipath estimation for the static environment, background 
clutter can be suppressed based on the environment 
information.

√
Chamfer Distance  

to quantitatively evaluate the accuracy of target localization. 
Assuming that the true scattering point coordinates of the 
target are S1 (as shown in red line in Figure 11), and the 
detected target localization coordinates are S2 (as shown in 

blue point in Figure 11), the error of the target localization 

is 1.73 m when not using the reconstructed environment 
prior information, and 1.07 m when using the reconstructed 

environment prior information. Figure 11c shows the 
corresponding detection results. It can be seen that using 
the prior information of the reconstructed environment can 
detect more points. Without using the prior information of 
the reconstructed environment, some target points will be 
buried by environmental echoes.
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Figure 11 (a) Detection result without using prior information of 
the reconstructed environment; (b) Detection result using prior 
information of the reconstructed environment; (c) Projection 

of the localization results on a two-dimensional plane
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4 Conclusions

This paper outlines an end-to-end solution covering HAS, 

digital twin environment reconstruction, and digital twin-
assisted communication and localization. We evaluated 
the performance in environment reconstruction, parameter 
estimation, and target localization by simulation. The 
simulation results demonstrate that HAS enables submeter-
level high-precision environment reconstruction in large 
urban scenarios on 10 GHz (centimeter waves). Based on 
the reconstructed environment model, ray tracing is used 
to predict the channels of UEs at different locations. In 
addition, we provided the cumulative distribution functions 

(CDFs) for errors in terms of delay and angles. Furthermore, 
the reconstructed environment model is used to enhance 
the detection of extended moving targets. By using 
environment-assisted clutter suppression, we improved 
the localization accuracy by approximately 40% compared 
to the traditional ECA approach. It should be noted that 
non-ideal factors, such as bistatic synchronization errors 
and changes in surface materials of buildings, were not 
considered in the simulation presented in this paper. To 

ensure high precision in the digital twin, several technical 
aspects, such as mitigating the impact of non-ideal factors 
and�extracting�the�electromagnetic�scattering�coeĎcients�of�
object surfaces, need to be further explored.
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