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Abstract—Content recommendation systems, also known as
recommenders, are pervasive and impact a significant portion of
users demands over the Internet. Although recommenders have
been primarily devised to account for users interests with respect
to the content catalog, mobile users are typically served by a
network that is unreliable and subject to losses and low QoS.
Can content recommenders compensate for low QoS? To answer
this question, we conducted experiments over the Internet, and
report our findings on (i) the characterization of QoS and (ii)
the compensation for low QoS. Our measurements suggest that
content that is far from the trends tends to be far from the user.
We quantify the extent at which unpopular content tends to be
served with lower QoS and establish a methodology to determine
the relationship between contents’ popularity and its physical
proximity to the users. Then, we verify that making requests a
bit trendier can hit much closer content. In particular, our results
suggest conditions under which a recommender can compensate
for low QoS, at zero costs for operators.
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I. INTRODUCTION

Content recommenders and caches are two fundamental
pillars in the Internet ecosystem. While recommenders such as
those used by Netflix influence a significant portion of users
demands, caches such as deployed by Akamai serve a vast
amount of content to end users. Caches reduce the load on
custodians, decrease the latency for users, and benefit network
infrastructure reducing the traffic over bottlenecks.

Given the benefits of caching, a significant effort has been
invested in order to improve cache performance. In particular,
similarity caching [1], [2] and cost-aware caching, including
QoS-aware [3], [4] and utility-driven caching [5], are some of
the various recent developments in that domain [6]–[8]. Such
advances, in turn, suggest novel opportunities but also pose
new challenges in the realm of content distribution.

The basic idea behind similarity caching and cost-aware
caching consists in determining both the similarity between
contents and the cost to serve and/or retrieve a content, and
then make decisions about which content to store and/or serve
based on such assessments. Clearly, the multiple dimensions
involved in the problem are intertwined, and optimal decisions
are non trivial. In particular, a user consuming a content not
stored in a local cache may experience low quality of service
(QoS), and may prefer to rely on a content recommender
to find a title that suits its expectations both in terms of
content and QoS, motivating our research question: can a
recommender compensate for low QoS?

In this paper, we report results on Internet measurements
indicating the feasibility of characterizing the QoS at which
different items can be served. Given such characterization,
and information about the content recommendation graph, we
present findings to support conditions under which we have
an affirmative answer to our main question.

Our methodology involves both network and recommender
measurements. Network measurements are used to collect
information about the delays incurred to consume different
videos. We refer to the approach used to assess those delays
as content-aware pings and traceroutes, as it involves first
identifying the host which will serve the desired content,
and then issuing a ping and a traceroute towards that
host to assess the corresponding delay. Then, we combine
information collected from such measurements together with
measurements of the recommendation graph. By sampling the
YouTube recommendation graph we learn which contents are
close to each other. Then, we bridge the gap between closeness
with respect to the nature of the content (content distance) and
with respect to host proximity (network distance) to draw our
main findings. We summarize our key contributions as follows.

Characterization: far from the trends, far from the user.
We quantify the extent at which unpopular content tends
to be served with lower QoS. In particular, we establish a
methodology to determine the relationship between contents’
popularity and its physical proximity to the users, combining
sampling of the recommendation graph and traceroutes in the
physical network. The proposed method allows us to determine
how popular a content has to be, to be closer to the user, and
it is instrumental for tuning recommenders.

Compensation: a bit trendier, much closer. Favoring
slightly trendier content while issuing recommendations (i.e.,
allowing a content distance between the requested content and
the served content) can significantly increase the proximity of
contents to users (i.e., decreasing network distance), positively
impacting QoS. In particular, our results suggest conditions
under which a recommender can compensate for low QoS, at
zero costs for the network admin.

Next, we introduce our measurement methodology. Then,
Sections III and IV report a characterization of delays towards
contents and the extent at which recommenders can compen-
sate for those delays, respectively. We present related work in
Section V, and Section VI concludes.
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Fig. 1. Measurement setup: (a) recommender measurements to retrieve
recommendation graph; (b) network measurements capture delays towards
contents.

TABLE I
DATASETS DESCRIPTORS

Country Videos (samples) CHR Unique URLs
BR 872 38% 167
CA 969 44% 211
FR 3360 71% 202
HK 1758 86% 203
IN 617 78% 162
US 1859 69% 281

II. METHODOLOGY

Next, we introduce our measurement methodology.
Goals. Popular and trending videos are known to be cached

close to users. In YouTube, in particular, a list of trending
contents is presented to users at their home page. Beyond such
remarkably trending contents, which other contents are cached
closer to users? How do different features, such as number
of views, impact closeness? And how do users profiles, e.g.,
reflected through their vantage points, impact delays towards
different contents?

Overview. We use YouTube API to access the recom-
mendation system and generate recommendation graphs for
each trending content by performing a Breadth-First Search
(BFS) through the network of recommendations [9]. Then, we
emulate a request towards each of the videos, and determine
the corresponding media server urls.

Let T be the set of trending videos considered as our seeds
for the BFS. We let |T | = 50, i.e., we consider the top-50 most
popular videos in each of the considered regions, and start a
BFS from each of those. The BFSs are executed up to a depth
of five hops in the recommendation graph, and accounting for
the first three videos in each of the observed recommendation
lists.

Is a video cached close to requester? We measured
network level features, using ping and traceroute towards video
servers, and group the videos into two clusters based on those
metrics. Let C denote an indicator variable, equal to 1 if
our measurements suggest that the video is cached close to
our measurement vantage point, and 0 otherwise. Then, we
computed correlations between C and metrics related to the
recommenders, that are introduced in the sequel.

Datasets. A summary of our dataset descriptors is pre-
sented in Table I. Our dataset collected from vantage points
in Rio de Janeiro, for instance, has 872 video samples and
167 unique hosts serving those videos, out of which 38% are
marked as low delay hosts. Content served by low delay hosts
is assumed to be cached close to users, i.e., C = 1.

A. Content distances by recommenders

We represent YouTube videos and their relations through a
recommendation graph G = (V, E). Thus, each video is repre-
sented by a node, and each recommendation is represented by
an edge, where (i, j) ∈ E if j appears in the recommendation
list of i.

We consider an abstraction of a surfer that navigates across
the nodes of the recommendation graph. The surfer begins at
the seed of the graph. The shortest path between each video
and the seed is referred to as the video depth. The position of
the video in its corresponding recommendation list is referred
to as the video width. Note that whereas the depth is oblivious
to the ordering at which videos appear in the recommendation
lists, width is sensitive to such ordering.

Recommender measurements. Next, consider a surfer
sample path. Each time the surfer visits a node, it produces
a sample. The sample comprises the identifier of the visited
video and its view count, together with its width and depth.
Such measures are collected in a passive manner, without
interfering with the network state (Figure 1(a)). Then, we
proceed with an active measurement of delays.

B. Host distances in the network

We have developed a software module to identify YouTube
media servers associated to each video in the recommendation
graph. Our module is similar to [10] wireshark webdevelop-
tools. It is important to note that the YouTube hosts returned
by our program are dependent on the network used when
collecting data. In this work, we focus on data collected in
Rio de Janeiro in an ISP’s network. After identifying hosts
associated to each sample, we perform traceroutes and record
the corresponding delays and path lengths (Figure 1(b)).

Feature summary. A sample is a tuple containing (a)
video identifier; (b) view counts; (c) width; (d) depth; (e)
host; (f) delay observations; (g) path length. Features are
summarized in Table II.

III. EXPERIMENTAL FINDINGS

Next, we report our experimental findings. Our experimental
goal is to characterize the relationship between the recommen-
dation graph and QoS metrics.

A. Bridging recommender and network

Next, we report correlations between recommender and
network metrics, bridging the collected measurements.

Let V and A denote the video view counts and age, and
let N be an indicator variable, equal to 1 if the video is
in the native language of the region wherein our vantage
point was located, and 0 otherwise. We observed correlations



TABLE II
DESCRIPTION OF COLLECTED FEATURES PER SAMPLE

feature description
Recommender and recommendation graph features

I, video identifier YouTube video unique identifier
V, view counts number of views, since video creation
W, width position of video recommendation list
D, depth number of hops to seed of recommendation graph

QoS and network related features
H, host host serving video I
L, path length length of path (number of hops) to H
P, ping values vector of 10 delay observations collected with ping
E(P ), mean delay average of ping values
C, cached close? equals 1 if E(P ) is “small”, 0 otherwise

between C and the above three variables of 0.18, 0.12 and
0.13, respectively. Such correlations indicate the extent at
which more popular content is cached closer to our vantage
points. In particular, the correlation between video language
and caching suggests that the recommendation of videos in
native languages may favor not only users interests but also
higher QoS.

Let W and D be the video width and depth, respectively.
We observed negative correlations of -0.19 and -0.23 between
C and the above two metrics, respectively. Such correlations
quantify the tendency that videos closer to the root of the
recommender graph are closer in the cache network.

B. A few hosts serve most of the content

We found that different video links have significant overlap
in their URLs, referring to machines stored in the same
datacenter. To illustrate that point, we consider the hosts
observed from our vantage points in Rio Janeiro. We observed
four common prefixes when issuing requests to top-trending
Brazilian contents from a vantage point in Rio de Janeiro: b8u,
8p8 and bg0. A fourth prefix, q4f, appeared in less than 5% of
our requests, and was associated to high delays, in the order
of 150ms (six times higher compared to the others).

• b8u and 8p8 correspond to low delay values, as observed
from pings issued from Rio de Janeiro. Delays are around
21ms and the corresponding standard deviations equal
0.28ms and 0.42ms;

• bg0 and q4f correspond to larger delays, around 28ms
and 150ms respectively. The corresponding standard de-
viations equal 11ms and 0.45ms.

In what follows, we refer to the aforementioned prefixes
simply as hosts, noting that they may subsume multiple
machines in the same domain. As hosts are distinguished into
two groups based on delays, we refer to those hosts as high
delay hosts and low delay hosts depending on the group they
fit. The corresponding videos served by those hosts are marked
as videos served by caches closer and farther away from users,
with C = 1 and C = 0, respectively.

C. A birds eye view across countries

Next, we present a birds eye view of our measurements. We
have run measurement campaigns across six countries. Each
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Fig. 2. Scaled delays versus recommender depth
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Fig. 3. Path lengths towards different hosts

country corresponds to one vantage point, and to its own set
of trendy contents.

Figure 2 shows the relationship between distance in the rec-
ommender graph against standardized delays, obtained using
the MinMaxScaler [11] so that standardized delay values
fall in the range between 0 and 1. In all the considered coun-
tries, moving deeper in the recommender graph corresponds to
higher delays. One of our aims in the remainder of the paper is
to further investigate and quantify this relationship, discussing
its implications for the design of recommenders.

Figure 3, in turn, shows the path lengths for hosts serving
contents in the six considered countries. It shows that hosts
are always up to thirteen hops from our vantage points, and
that the difference between the closest to furthest host is of at
least two hops.

Due to space limitations, in what follows we focus our
detailed analysis on the Brazilian measurements, noting that
all our results extend to the six considered countries.



TABLE III
MEDIAN PING VALUES (TIMES IN MILLISECONDS)

Target host with top-trending contents
Origin city Brazilian contents French contents
(SpeedChecker bg0 b8u fr1 5hn 4g5 fr2 25g
vantage point) Sao Paulo Rio de Janeiro Chartres I Chartres II
Sao Paulo 17 21 223 223
Rio de Janeiro 21 16 219 219
Athens 295 302 94 94
New York 333 331 334 403
Chartres 223 219 17 8

D. Accounting for multiple vantage points

Next, our goal is to further quantify the extent at which
unpopular content is impacted by slower-to-respond hosts.
To that aim, we consider top trending Brazilian and French
videos. Then, we ping hosts storing those contents from
different vantage points, leveraging the measurement infras-
tructure provided by SpeedChecker. We collect at least 10
measurements from each host, and report median values.

Table III illustrates our results. To produce Table III, we
consider the Brazlian and French top-trending videos and ping
their closest hosts, from vantage points in Brazil, Greece, USA
and France. We group samples according to whether they
are associated with slower-to-respond or fast-to-respond hosts,
using the methodology described in the previous section.

Clearly, the lowest delays for the top trending contents are
obtained in the corresponding regions. As the difference in
delays can be of an order of magnitude, those results illustrate
that recommenders can have a potentially significant impact
on the experienced QoS.

IV. CAN RECOMMENDERS COMPENSATE FOR LOW QOS?

Next, we leverage the QoS characterization introduced in
the previous section to establish conditions under which con-
tent recommennders can compensate for low QoS. First, we
indicate that a decision tree can capture delays based on data
collected from the recommendation graph. Then, we illustrate
a simple mechanism for recommenders to leverage knowledge
about delays to compensate for low QoS.

A. From content recommendation graphs to network metrics

In this section we aim at answering the following ques-
tion: is it feasible to assess delays (QoS) solely based on
recommeder features? An affirmative answer to such question
can significantly simplify the design of QoS-aware recom-
menders, as in this case the distance of contents in the
recommender graph can be taken as a proxy to QoS metrics.

Figure 5 shows a decision tree (DT) that serves to illustrate
the feasibility of classifying contents as a function of the
corresponding QoS at which they are served, solely based on
their view counts, published date and on their position in the
recommendation graph. The training and test sets were setup in
a way such that the two target classes (C = 1 and C = 0) are
balanced, i.e., 50% of the samples correspond to each class.

Each node of the tree corresponds to a decision. The
root node corresponds to the decision which entails largest
discriminatory power, and consists of classifying videos based

on their depth in the recommender graph. If depth is lower
than 4, a fraction of 70% of the videos are served with high
QoS (low ping values, C = 0). Alternatively, if the view count
is larger than 2,42 million views, the content is classified as
served with high QoS (low ping values and C = 0). Finally,
if the age of the video is larger than one month, it is assumed
not to be cached (flash crowds towards recent content are not
captured in this simple DT).

Despite its simplicity, the presented DT already corresponds
to an accuracy, precision and recall of 0.72, 0.63 and 0.88,
respectively.

B. From network metrics to novel content recommendations

Next, we consider the extent at which QoS-aware recom-
menders can compensate for low QoS. Figure 4(a) shows the
relationships between recommender features (width, depth and
view counts) and QoS (ping values). Each point corresponds
to a content. The orange (resp., blue) points correspond to
contents served by high ping (resp., low ping) hosts. Note
that “close” to an orange point we typically have multiple
blue points, corresponding to low ping values. Points which
are “close” to each other in that figure are near each other in
the recommendation graph, suggesting that the recommender
can compensate for low QoS.

To further illustrate the feasibility of determining which
contents can be served with high QoS, Figure 4(b) shows how
view counts and depth impact QoS. Figure 4(b) shows a clear
phase transition when depth grows beyond 2, suggesting that
contents in levels 1 and 2 can be safely assumed to have low
ping values. A recommender can leverage that phase transition
to tune the order of suggested contents, compensating for low
QoS.

C. Recommenders against low QoS

To answer our main research question, we conduct exper-
iments simulating scenarios in which a user randomly starts
selecting one of the most trending videos, followed by videos
from subsequent recommendation lists. These lists are pre-
sented in 2 ways: (i) the original order, i.e., like they would be
in YouTube and (ii) according to an algorithm that prioritizes
cached videos, the Cache-Aware & BFS-related Recommen-
dations (CABaRet) [9]. CABaRet recommendations replace
some non-cached videos by cached counterparts, and order the
videos in a way that cached videos are preferably presented
at the top of the recommendation lists.

To determine whether a video is cached or not, we lever-
age our measurements as described in the previous section.
In particular, we use the inferred indicator C to determine
whether a video is cached, and to eventually increment hit
counts. While the authors of the CABaRet algorithm assumed,
shrewdly, that the top 50 trending videos were cached, our
measurements allow the application of CABaRet algorithm
with more information regarding the network conditions of
the media servers.

Thus, we compare the cache-hit ratio (CHR) produced by
YouTube’s lists of recommendations against the lists generated
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by CABaRet. To that aim, we vary the mechanism through
which users select a video from a recommendation list,
considering two alternatives: uniform and Zipf. The uniform
distribution assumes users select videos uniformly at random,
whereas the Zipf distribution captures a preference towards
videos ranked in top positions [12]. We also vary the two main
CABaRet parameters: maximum depth (D̃) and maximum
width (W̃ ). Larger values correspond to broader searches
for cached contents in the recommendation graph, providing
more flexibility for recommenders to compensate for QoS.
In particular, when D̃ = 1 CABaRet only reorders the
recommendations, whereas for D̃ = 2 it also replaces some
non-cached videos by cached alternatives.

Figure 6 shows that CABaRet easily achieves a higher
CHR than Youtube baseline. When the request workload is
uniform, CABaRet requires larger D̃ and W̃ to show its
benefits. This is because both replacements and reorderings
of recommendations affect CHR under the Zipf workload,
whereas the uniform workload is insensitive to reorderings.

Summary. Combining recommender and network mea-
surements, we learned that recommendation reorderings are
sufficient to increase CHR from 0.64 to 0.89 under a Zipf

workload. Diminishing returns are gained by allowing for
replacements of recommendations, in addition to reorderings.
In particular, allowing for replacements of videos that are at
most two hops away in the recommendation graph suffices to
reach a CHR of 0.98.

V. RELATED WORK

There is a large body of work on recommenders and QoS,
and on their interplay [9], [13]. However, to the best of our
knowledge there has been no measurements to assess the
extent at which recommenders can compensate for low QoS.

Content recommenders are sensitive to the user context [14],
[15]. The user context is typically understood as the day of
the week, the place where the user is consuming its contents,
or even the device. In this paper, we considered a novel
dimension of context, namely, QoS. We have shown that it
is feasible to characterize and quantify QoS per content, and
that a recommender can benefit from such characterization. In
particular, our work is complementary to the state of the art in
recommendation systems [16], as our insights can be coupled
to existing recommenders [17]–[21].

It is well known that proxy caches are a cheap and effective
solution to counter bottlenecks in networked systems [22]–
[24]. In particular, they are the first choice before considering a
costly upgrade of the network infrastructure [25]. In this paper,
we have experimentally shown that content recommenders can
catalyze the benefits of caching, further increasing its potential
at virtually zero costs. In [10], [26] the authors investigate
statistical properties of the paths towards contents in Youtube
and Netflix. In this paper, we build on such measurements,
and consider how a content recommender can leverage those
to benefit the users.

There has been a recent surge in interest in the relationship
between cache networks and recommendation systems [9],
[27], [28]. Optimal allocations in cache networks typically
require knowing the cost-to-go, i.e., the cost incurred by a
miss up until finding the content at the closest cache [29].
The methodology considered in this paper to characterize
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QoS at content level can be used for those purposes, as
well as to parametrize content recommenders. The interplay
between QoS and recommenders involves both human-related
and network-related elements. CABaRet [9] comprises a con-
ceptual framework to capture those factors in an integrated
fashion. In this paper, we report proof-of-concept network
measurements that are complementary to CABaRet.

VI. CONCLUSION

Content recommenders play a fundamental role in the way
content is consumed over the Internet. Nonetheless, they are
typically devised without accounting for one of the most
critical aspects of the Internet infrastructure, namely, its best
effort nature. In this paper, we embrace the delays incurred by
content requests in the Internet environment and characterize
QoS-related metrics in a per-content basis. While doing so,
we observed that the recommenders have significant flexibility
with respect to the available contents to be offered and their
corresponding QoS levels. We found that contents that are
found at depth one or two are cached closed to users with
very high probability, suggesting a simple heuristic to favor
QoS while satisfying users interests with an increased overall
QoE. In future work, we plan to integrate the insights collected
in this work together with experiments with real subjects to
assess their sensitivity to recommendations adjusted based on
QoS-related features.
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