function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % cost of using theta as the parameter for linear regression to fit the % data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost and gradient of regularized linear % regression for a particular choice of theta. % % You should set J to the cost and grad to the gradient. % h = X * theta; reg = (lambda / (2 * m)) * sum(theta(2:end) .^ 2); J = (1 / (2 * m)) * sum((h - y) .^ 2) + reg; %grad(1, 1) = (1 / m) * sum((h - y) .* X(:, 1)); %grad(2, 1) = (1 / m) * sum((h - y) .* X(:, 2)) + (lambda / m) * theta(2, 1); %grad; temp = (h - y)' * X; grad = (1 / m) * temp' + (lambda / m) .* theta; grad(1) = (1 / m) * ((h - y)' * X(:, 1)); % ========================================================================= grad = grad(:); end