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Abstract
Sleep can be classified into four stages: N1, N2, N3, and REM sleep. While sleep stage

classification models do exist, they often do not generalize well to patients with sleep apnea. The
goal of our project is to build a sleep stage classifier specifically for people with sleep apnea and
understand how it differs from the normal sleep stage. We then explore whether or not the
inclusion and featurization of ECG data will improve the performance of our model. Without
ECG signals, our model achieves an accuracy rate of 87.14% in the validation set; and
surprisingly, our model’s accuracy rate decreases to 82.08% in the validation set.

Introduction
Obstructive sleep apnea (OSA), the more common form of sleep apnea, is a sleeping

disorder in which breathing stops and starts intermittently. This is caused when muscles in the
throat get relaxed, narrowing the airway and hampering the breathing for 10 seconds or longer.
This causes blood oxygen concentration to decrease and a buildup of carbon dioxide. Such
sudden drops in oxygen levels cause sudden increases in heart rate and blood pressure, resulting
in repeated, transient strains on the cardiovascular system. OSA increases the risk of stroke, and
the risk of irregular heart rhythms, or arrhythmias; both stroke and arrhythmias have the potential
to cause sudden death.

Sleeping is not uniform and consists of four stages: N1, N2, N3, and REM sleep. The
analysis of sleep stages is essential for understanding and diagnosing sleep-related diseases, such
as insomnia, narcolepsy, and sleep apnea; however, sleep stage classification often does not
generalize to patients with sleep apnea. The goal of our project is to build a sleep stage classifier
specifically for people with sleep apnea and understand how it differs from the normal sleep
stage. We will then explore whether or not the inclusion and featurization of ECG data will
improve the performance of our model. The thought process behind this is that ECG readings can
indicate obstructive events during sleep, which gives information about the patient’s sleep state.

Previous Work
Currently, sleep stage scoring is still typically done by hand, requiring a human to label

each 30 second epoch based on predefined rules [1]. Because of this, the current method of
scoring is somewhat subjective, with human scorers only agreeing 83% of the time [2]. Even
individual scorers only have about 90% agreement with themselves when presented with the
same signal at different times [3].



Motivation and Goals
There has been previous work on sleep band classification, but those models often do not

generalize well to patients with sleep apnea. In particular we suspect that utilizing ECG data may
improve our model’s performance; this is because patients with sleep apnea frequently wake
during their sleep cycle. These obstructive events can be identified using ECG data and,
therefore, considered by the model.

Our project aims to further explore the relationship between sleep stages and OSA by
using polysomnography data made available from previous studies, which includes EEG
(electroencephalogram), ECG (electrocardiogram), EOG (electrooculography), and EMG
(electromyography) signals gathered from a mixture of healthy individuals and individuals with
OSA.

Data
The data we have chosen to work with comes from the National Sleep Research Resource

(NSRR). Specifically, we used the Sleep Heart Health Study (SHHS) which consists of two visits
and the respective overnight polysomnography data which “records your brain waves, the
oxygen level in your blood, heart rate and breathing, as well as eye and leg movements” [4].
Since the second visit has less participants and was done more recently, to make sure we had a
more reliable and complete dataset, we continued with the second visit (SHHS 2). This visit
consists of 3,295 subjects along with their demographics.

Each individual has a 9-hour recording of EEG, EOG, EMG, and ECG signals in 30
second periods. The image below represents the raw polysomnography recordings and the
following image graphs the signal recordings over time.



Feature Extraction

A) ECG, EOG, EMG signals and demographics Feature Extraction
In order to extract features from EEG, EMG, EOG signals and the demographics of

individuals, we followed the preprocessing and feature extraction process found in the YASA
Github, which is an open source and free Python library. For each night, the models extract a
single central EEG, left EOG, chin EMG, then downsamples these signals to 100 Hz and
band-pass filtered them between 0.40 Hz and 0.30 Hz.

From these signals, features were extracted in two forms: time-domain and
frequency-domain. Time-domain features comprise standard descriptive statistics such as
standard deviation, interquartile range, skewness, and kurtosis of the signal. Frequency-domain
features were extracted from the periodogram of the signal including the relative spectral power
in bands, the absolute power of band signals, and power ratios.

While human experts take consecutive epochs into consideration in the scoring sleep
process, common machine learning algorithms today rely only on each individual epoch. To seek
the contextual temporal information, the YASA model adopts a smoothing approach using 2
rolling windows: “a 7.5 minutes centered and triangular-weighted rolling average and a rolling
average of the last 2 minutes prior to the current epoch” [7]. This rolling average method



overcomes the previous dilemma by incorporating the past signal information and makes the
feature extraction results more reliable.

ECG signal Feature Extraction
The library we used to extract ECG features is SleepECG. It provides tools for sleep

stage classification when EEG signals aren't available in the dataset, which is still the most
common way to determine sleep stage. Because this library is half finished and we already have
read the data and done the data cleaning part in the previous part, we mainly just use the feature
extraction from the module to featurize our ECG data.

The ECG feature extraction process is based on the heart rate variability features. The
SleepECG module provides 26 time domain features and 7 frequency domain features. All the
time domain features are derived from the normal to normal (NN) intervals, successive
differences between NN intervals, and Poincare plot. As the figure shows on the right, the
normal to normal interval is the intervals
between normal R-peaks. The difference
between the NN interval and RR interval is
subtle; and an abnormal R-peaks can occur
when there is “the presence of recurring
arrhythmic events (also known as cardiac
dysrhythmia or irregular heartbeats), as well as
erroneous beat detection due to low signal
quality” [5]. In a time-series, the Poincare plot
depicts the correlation between two consecutive
data points. In our case, it is a certain NN
interval on the x-axis versus NN(n + 1) (the succeeding NN  interval) on the y-axis. Derived
from the three measures, SleepECG allows us to extract time domain features such as the
average, maximum, minimum of NN intervals. SleepECG also provides a method to extract
frequency domain features by using Welch’s method to power spectral density [8]. Some
examples of ECG frequency-domain features are the variance of NN intervals over the temporal
segment, power in very low/low/high frequency range etc.

Model
The LGBM algorithm is a fast, distributed, high performance gradient boosted

framework based on decision tree algorithms [6]. It is a relatively new algorithm that is
challenging and outperforming existing algorithms. Most decision tree algorithms grow by
level-wise. That is, they grow horizontally. However, LGBM is unique because it grows
leaf-wise or vertically. It will choose the leaf with the max delta loss to grow which can reduce
more loss. The visual below helps to explain the difference in growth:



The advantages of this algorithm is that it has fast training speed, higher efficiency, lower
memory usage, better accuracy, support of GPU learning, and handles large-scale data. On the
other hand, the disadvantages are that it is sensitive to overfitting and doesn’t work well with
small datasets.

Results
Our first model without ECG data featurized had a total of 151 features while our second

model with ECG data had a total 184 features. Our training and validation accuracy in the table
below shows that the first model without ECG performed better than the model with ECG
features.

Furthermore, a confusion matrix allows us to look more closely into the accuracies within
each sleep stage. It shows us the accuracy between the predicted sleep stage and the actual sleep
stage. Below, the left matrix represents the first model without ECG signals, and the right matrix
represents the model with ECG signals. The scores show that both models performed fairly well
for N2 and W (Wake) sleep stage classification. However, it is clear that the model with ECG
features performed worse than the model without ECG features particularly in stages N3 and R
(REM). It's also important to note that both models performed poorly when classifying sleep
stage N1. This is a known issue present in previous sleep stage classification models, and could
be a possible future work to discover or improve in the model.



Next, these graphs show the feature importance for the models. This first graph below is
for the model without ECG data featurized. It is clear that the most important features come from
EOG and EEG signals. It is interesting to note that while time elapsed was an important feature
for the existing YASA model, it is not nearly as important in our model (ranked 51 in
importance). For normal patients during a night of sleep, the periods of REM sleep towards the
beginning are shorter and periods toward the end are longer. This suggests that how long the
patient has been asleep affects their current sleep state; hence, its feature importance in the
previous model. Since our models only deal with sleep apnea patients, it is possible that because
their sleep is frequently interrupted, their sleep doesn’t develop over time in the same way that
healthy sleepers do. This would explain why the total time elapsed lacks importance in our
models.



This next graph is for the model that includes ECG features. Although features extracted
from ECG data are in the top 3 most important here, its importance is relatively low compared to
the first two features which come from EOG and EMG data. Interestingly, the second model
seems to rely heavily on one or two features, which can explain its decrease in performance. This
may have been caused by the fact that we added too many new features, which increased the
search space for our model. As a result, our model only found a very small subset of features to
focus on in order to make predictions.

The last figure below shows the F1-scores by sleep stage of both models. The F1-score is
the harmonic mean of the precision and recall of a classifier, which allows us to compare the
performance of these models. The left plot is for the model without ECG data and the right plot
is for the model with ECG data. Once again, the figure shows that both models struggle with N1
sleep stage classification. Noticeably, the model with ECG data struggles to classify the N3 sleep
stage much more than the original model without ECG data.



Conclusion
To our surprise, the inclusion of features extracted from ECG data did not improve the

model's performance. The model with ECG features performed roughly 5-6% worse in training
and validation accuracy compared to the original model without ECG features. This means that
our featurization of ECG data did not help the model classify sleep stages for patients with sleep
apnea. Even though our findings did not match our hypothesis, our work was still important for
future research within the area of sleep analysis or sleep stage classifying. Our findings may help
direct others to exclude ECG signals in their models or dive deeper into the reasoning behind
why ECG signals may not work so well. Furthermore, a potential future research could be
improving N1 sleep stage classification as we mentioned earlier.

Limitations and Discussion
Feature Extraction: While YASA implements a temporal time window to incorporate

contextual temporal information, the SleepECG which is the library we used to extract the ECG
features does adopt the rolling average method. The feature extraction of ECG still follows an
old-school approach by focusing on what happened in each epoch and treating each epoch
independently. In further studies, the temporal time window and the rolling average can be
applied to extract ECG features, which make them more informative and reliable.

Model Selection: Different models can be implemented in further studies. In our project,
we choose to use the LGBM algorithm, which is based on decision trees and supports the
computation of large amounts of input data. Our project provides a baseline for model
comparison, and further models or deep learning algorithms might improve the performance of
classifying sleep stages even more.
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