Incorporating Monitors in Reactive Synthesis
without Paying the Price (Extended Abstract)

Shaun Azzopardil0000—0002—2165—-3698]
University of Gothenburg, Gothenburg, Sweden
{name.surname}@gu.se

Reactive synthesis has a high complexity, 2EXPTIME, which can make the
synthesis of real systems with large complex declarative specifications difficult.
However parts of a system may already exist or may be specified in a lower-level
modelling language. Synthesis can then instead be applied on the remaining part
of the specification. An interesting problem to consider is what level of knowledge
of the existing components is required for the new component’s synthesis.

We consider pre-existing components specified as rich symbolic automata
environment monitors (a lower-level specification language common in the run-
time verification community). These automata have a finite-set of states, and a
finite-set of variables, and can observe the environment (but not control it). The
symbolic transition function is defined between the states, but parametrised by
a guard on the variable values, and an action that transforms the variable val-
ues. The guard also can predicate on propositional environment events. Choosing
variable types that are infinite makes the representation exponentially more suc-
cinct than finite-state automata, at a cost. These automata have one initial state,
and possibly many final states. We call final states flagging, since we use them
to flag the point at which an LTL formula should be satisfied.

We consider their combination with LTL formulas in a sequential fashion (a
monitor triggers the component corresponding to the formula), and/or with rep-
etition (when the synthesised component finishes the monitoring starts again).
An interesting observation is that in the case of repetition we require the LTL
formula to be co-safety, otherwise it is unclear at which point, if any, should the
repetition occur. We then define the language for these combinations as follows,
where M is a monitor, ¢ is an LTL formula, and ¢ is a co-safety LTL formula:

m =M [(M;ep).

Note that the monitor and LTL formula only share the part of the trace when
the monitor flags (and the LTL formula starts holding).

To well-define repetition, we introduce the notion of tight satisfaction of an
LTL formula: a co-safety LTL formula is tightly satisfied by a finite trace that
satisfies the formula, but does not have a satisfying prefix. We also take care
to require, for example, that Xtrue is satisfied only by traces of length two.
When considering synthesis of these combinations, we define tight realisability
and tight controllers for co-safety LTL formulas, allowing the controllers to signal
immediately when a formula has been fulfilled for any given trace.

We analyse these combinations to identify when synthesis of LTL formulas
can be used without any knowledge of the monitors. This requires that the

2 S. Azzopardi

mazInSeqP(E) #n A mazInSeqQ(E) # n
— pCount := mazInSeqP(FE); qCount := maxInSeqQ(E)

start —>(qo

mazInSeqP(E) = n A maxInSeqQ(E) = m Q
qr

Fig.1. Event ordering in two buses, where mazInSeqX is a function that when
xCount = i returns i if £ does not contain x;t1, and otherwise returns the maxi-
mal j such x;41,Zit2,..., and z; are all in E.

underlying assumptions about the environment are stateless, and we then limit
them to simple invariants, transition invariants, and recurrence properties. If we
allow for transition assumptions one would need to keep track of the current
environment state while the monitor is running. We show how any realisable (in
general) LTL formula constrained in this way can be synthesised independently of
the monitor. Knowledge of the monitor however increases the space of realisable
specifications, e.g. given an LTL specification (b = false) A (a = ¢) (where
a and b are input events, while ¢ is an output event) this LTL specification is
realisable in the context of a monitor that only flags upon the event set {a}.

We give a symbolic procedure to produce a Mealy machine that satisfies
the required combination. This procedure can be represented as a symbolic au-
tomaton to avoid enumerating the whole state space, allowing for on-the-fly
controlling of the particular environment. We have implemented this in a tool
syMTri [2], that also allows model checking monitors using nuXmv [1].

This approach has been validated using case studies involving counting and
constraints over arbitrarily long sequence of events. For example, given a spec-
ification of the form (for n = 1) F(po A F(p1)) A F(go A F(q1)) < GF9,
in SYNTCOMP20 [3] all the tools timed out for n,m > 11. However, in our
approach the practitioner can simply model the problematic part (the left-hand
side) for a general n quite concisely using a symbolic automaton (see Fig. 1),
and leave the right-hand side for standard LTL synthesis.

This work illustrates how LTL synthesis can be combined with richer more
imperative contexts, increasing its scope. It has been carried out with Nir Piter-
man and Gerardo Schneider, and is to appear in ATVA 2021 [4] (a full version
with proofs can be found here [5]).

References

nuxmv, https://es-static.fbk.eu/tools/nuxmv/

symtri. http://github.com/dSynMa/syMTri

Syntcomp20, http://www.syntcomp.org/syntcomp-2020-results/

Azzopardi, S., Piterman, N., Schneider, G.: Incorporating monitors in reactive syn-
thesis without paying the price. In: ATVA 2021 (to appear)

5. Azzopardi, S., Piterman, N., Schneider, G.: Incorporating Monitors in Reactive
Synthesis without Paying the Price. arXiv e-prints arXiv:2107.00929 (Jul 2021)

W

