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About this Book

For the student

This book is your introductory guide to linear algebra. It is divided into modules, and each module is
further divided into exposition, practice problems, and core exercises.

The exposition is easy to find—it’s the text that starts each module and explains the big ideas of linear
algebra. The practice problems immediately follow the exposition and are there so you can practice with
concepts you’ve learned. Following the practice problems are the core exercises. The core exercises build
up, through examples, the concepts discussed in the exposition.

To optimally learn from this text, you should:

• Start each module by reading through the exposition to get familiar with the main ideas and linear
algebra terminology.

• Work through the core exercises to develop an understanding and intuition behind the main ideas
and their subtleties.

• Re-read the exposition and identify which concepts each core exercise connects with.

• Work through the practice problems. These will serve as a check on whether you’ve understood the
main ideas well enough to apply them.

The core exercises. Most (but not all) core exercises will be worked through during lecture time, and
there is space for you to work provided after each of the core exercises. The point of the core exercises is
to develop the main ideas of linear algebra by exploring examples. When working on core exercises, think
“it’s the journey that matters not the destination”. The answers are not the point! If you’re struggling,
keep with it. The concepts you struggle with you remember well, and if you look up the answer, you’re
likely to forget just a few minutes later.

So many definitions. A big part of linear algebra is learning precise and technical language.1 There are
many terms and definitions you need to learn, and by far the best way to successfully learn these terms is
to understand where they come from, why they’re needed, and practice using them. That is, don’t try
to memorize definitions word for word. Instead memorize the idea and reconstruct the definition; go
through the core exercises and identify which definitions appear where; and explain linear algebra to
others using these technical terms.

Contributing to the book. Did you find an error? Do you have a better way to explain a linear algebra
concept? Please, contribute to this book! This book is open-source, and we welcome contributions
and improvements. To contribute to/fix part of this book, make a Pull Request or open an Issue at
https://github.com/siefkenj/IBLLinearAlgebra. If you contribute, you’ll get your name added to
the contributor list.

For the instructor

This book is designed for a one-semester introductory linear algebra course with a focus on geometry
(MAT223 at the University of Toronto). It has not been designed for an “intro to proofs”-style course, but
could be adapted for one.

Unlike a traditional textbook that is grouped into chapters and sections by subject, this book is grouped
into modules. Each module contains exposition about a subject, practice problems (for students to work on
by themselves), and core exercises (for students to work on with your guidance). Modules group related

1Beyond three dimensions, things get very confusing very quickly. Having precise definitions allows us to make arguments that
rely on logic instead of intuition; and logic works in all dimensions.

https://github.com/siefkenj/IBLLinearAlgebra


concepts, but the modules have been designed to facilitate learning linear algebra rather than to serve as
a reference. For example, information about change-of-basis is spread across several non-consecutive
modules; each time change-of-basis is readdressed, more detail is added.

Using the book. This book has been designed for use in large active-learning classrooms driven by a
think, pair-share/small-group-discussion format. Specifically, the core exercises (these are the problems
which aren’t labeled “Practice Problems” and for which space is provided to write answers) are designed
for use during class time.

A typical class day looks like:

1. Student pre-reading. Before class, students will read through the relevant module.

2. Introduction by instructor. This may involve giving a definition, a broader context for the day’s
topics, or answering questions.

3. Students work on problems. Students work individually or in pairs/small groups on the prescribed
core exercise. During this time the instructor moves around the room addressing questions that
students may have and giving one-on-one coaching.

4. Instructor intervention. When most students have successfully solved the problem, the instructor
refocuses the class by providing an explanation or soliciting explanations from students. This is
also time for the instructor to ensure that everyone has understood the main point of the exercise
(since it is sometimes easy to miss the point!).

If students are having trouble, the instructor can give hints and additional guidance to ensure
students’ struggle is productive.

5. Repeat step 3.

Using this format, students are thinking (and happily so) most of the class. Further, after struggling with
a question, students are especially primed to hear the insights of the instructor.

Conceptual lean. The core exercises are geared towards concepts instead of computation, though some core
exercises focus on simple computation. They also have a geometric lean. Vectors are initially introduced
with familiar coordinate notation, but eventually, coordinates are understood to be representations of
vectors rather than “true” geometric vectors, and objects like the determinant are defined via oriented
volumes rather than formulas involving matrix entries.

Specifically lacking are exercises focusing on the mechanical skills of row reduction and computing matrix
inverses. Students must practice these skills, but they require little instructor intervention and so can be
learned outside of lecture (which is why core exercises don’t focus on these skills).

How to prepare. Running an active-learning classroom is less scripted than lecturing. The largest
challenges are: (i) understanding where students are at, (ii) figuring out what to do given the current
understanding of the students, and (iii) timing.

To prepare for a class day, you should:

1. Strategize about learning objectives. Figure out what the point of the day’s lesson is and brain
storm some examples that would illustrate that point.

2. Work through the core exercises.

3. Reflect. Reflect on how each core exercise addresses the day’s goals. Compare with the examples
you brainstormed and prepare follow-up questions that you can use in class to test for understanding.

4. Schedule. Write timestamps next to each core exercise indicating at what minute you hope to start
each exercise. Give more time for the exercises that you judge as foundational, and be prepared to
triage. It’s appropriate to leave exercises or parts of exercises for homework, but change the order
of exercises at your peril—they really do build on each other.

A typical 50 minute class is enough to get through 2–3 core exercises (depending on the difficulty),
and class observations show that class time is split 50/50 between students working and instructor
explanations.
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Sets, Vectors & Notation

In this module you will learn

� The basics of sets and set-builder notation.

� The definition of vectors and how they relate to points.

� Column vector notation and how to represent vectors in drawings.

� How to compute linear combinations of vectors and use systems of linear equations to answer questions
about linear combinations of vectors.

Sets
Modern mathematics makes heavy use of sets. A set is an unordered collection of distinct objects. We won’t try
and pin it down more than this—our intuition about collections of objects will suffice.2 We write a set with
curly-braces { and } and list the objects inside. For instance

{1,2, 3}.

This would be read aloud as “the set containing the elements 1, 2, and 3”. Things in a set are called elements,
and the symbol ∈ is used to specify that something is an element of a set. In contrast, /∈ is used to specify
something is not an element of a set. For example,

3 ∈ {1,2, 3} 4 /∈ {1,2, 3}.

Sets can contain mixtures of objects, including other sets. For example,

{1,2, a, {−70,∞}, x}

is a perfectly valid set.

It is tradition to use capital letters to name sets. So we might say A= {6, 7, 12} or X = {7}. However there are
some special sets which already have names/symbols associated with them. The empty set is the set containing
no elements and is written ; or {}. Note that {;} is not the empty set—it is the set containing the empty set! It
is also traditional to call elements of a set points regardless of whether you consider them “point-like”.

Operations on Sets
If the set A contains all the elements that the set B does, we call B a subset of A. Conversely, we call A a superset
of B.

Subset & Superset. The set B is a subset of the set A, written B ⊆ A, if for all b ∈ B we also have b ∈ A. In
this case, A is called a superset of B.a

aSome mathematicians use the symbol ⊂ instead of ⊆.

Some simple examples are {1,2,3} ⊆ {1,2,3,4} and {1,2,3} ⊆ {1,2,3}. There’s something funny about that
last example, though. Those two sets are not only subsets/supersets of each other, they’re equal. As surprising
as it seems, we actually need to define what it means for two sets to be equal.

Set Equality. The sets A and B are equal, written A= B, if A⊆ B and B ⊆ A.

Having a definition of equality to lean on will help us when we need to prove things about sets.

Example. Let A be the set of numbers that can be expressed as 2n for some whole number n, and let B be
the set of numbers that can be expressed as m+ 1 where m is an odd whole number. We will show A= B.

First, let us show A⊆ B. If x ∈ A, then x = 2n for some whole number n. Therefore

x = 2n= 2(n− 1) + 1+ 1= m+ 1

where m= 2(n− 1) + 1 is, by definition, an odd number. Thus x ∈ B, which proves A⊆ B.

2When you pursue more rigorous math, you rely on definitions to get yourself out of philosophical jams. For instance, with our definition
of set, consider “the set of all sets that don’t contain themselves”. Such a set cannot exist! This is called Russel’s Paradox, and shows that if
we start talking about sets of sets, we may need more than intuition.

1 © Jason Siefken, 2015–2024
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Now we will show B ⊆ A. Let x ∈ B. By definition, x = m+ 1 for some odd m. By the definition of oddness,
m= 2k+ 1 for some whole number k. Thus

x = m+ 1= (2k+ 1) + 1= 2k+ 2

= 2(k+ 1) = 2n,

where n= k+ 1, and so x ∈ A. Since A⊆ B and B ⊆ A, by definition A= B.

Set-builder Notation
Specifying sets by listing all their elements can be a hassle, and if there are an infinite number of elements, it’s
impossible! Fortunately, set-builder notation solves these problems. If X is a set, we can define a subset

Y = {a ∈ X : some rule involving a},

which is read “Y is the set of a in X such that some rule involving a is true.” If X is intuitive, we may omit
it and simply write Y = {a : some rule involving a}.3 You may equivalently use “|” instead of “:”, writing
Y = {a | some rule involving a}.

There are also some common operations we can do with two sets.

Unions & Intersections. Let X and Y be sets. The union of X and Y and the intersection of X and Y are
defined as follows.

(union) X ∪ Y = {a : a ∈ X or a ∈ Y }.

(intersection) X ∩ Y = {a : a ∈ X and a ∈ Y }.

For example, if A= {1,2,3} and B = {−1,0,1,2}, then A∩ B = {1,2} and A∪ B = {−1,0,1,2,3}. Set unions
and intersections are associative, which means it doesn’t matter how you apply parentheses to an expression
involving just unions or just intersections. For example (A∪ B)∪ C = A∪ (B ∪ C), which means we can give an
unambiguous meaning to an expression like A∪ B ∪ C (just put the parentheses wherever you like). But watch
out, (A∪ B)∩ C means something different than A∪ (B ∩ C)!

Some common sets have special notation:

;= {}, the empty set

N= {0,1, 2,3, . . .}= {natural numbers}
Z= {. . . ,−3,−2,−1,0, 1,2, 3, . . .}= {integers}
Q= {rational numbers}
R= {real numbers}
Rn = {vectors in n-dimensional Euclidean space}

Vectors & Scalars
A scalar number (also referred to as a scalar or just an ordinary number) models a relationship between quantities.
For example, a recipe might call for six times as much flour as sugar. In contrast, a vector models a relationship
between points. For example, the store might be 2km East and 4km North from your house. In this way, a vector
may be thought of as a displacement with a direction and a magnitude.4

Given points P = (1, 1) and Q = (3, 2), we specify the displacement from P to Q as a vector
−→
PQ whose magnitude

is
p

5 (as given by the Pythagorean theorem) and whose direction is specified by a directed line segment from
P to Q.

3If you want to get technical, to make this notation unambiguous, you define a universe of discourse. That is, a set U containing every
object you might want to talk about. Then {a : some rule involving a} is short for {a ∈ U : some rule involving a}.

4Though in this book we will treat vectors as geometric objects relating to Euclidean space, they are much more general. For instance,
someone’s internet browsing habits could be described by a vector—the topics they find most interesting might be the “direction” and the
amount of time they browse might be the “magnitude.”

2 © Jason Siefken, 2015–2024
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Vector Notation
There are many ways to represent vector quantities in writing. If we have two points, P and Q, we write

−→
PQ

to represent the vector from P to Q. Absent points, a bold-faced letter (like a) or an arrow over a letter (like
~a) are the most common vector notations. In this text, we will use ~a to represent a vector. The notation ‖~a‖
represents the magnitude of the vector ~a, which is sometimes called the norm or length of ~a.

Graphically, we may represent vectors as directed line segments (a line segment with an arrow at one end),
however we must take care to distinguish between the picture we draw and the “true” vector. For example,
directed line segments always start somewhere, but a vector models a displacement and has no sense of “origin”.

Consider the following: for the points A= (1, 1), B = (3, 2), X = (1, 0), and Y = (3, 1), define the vectors ~a =
−→
AB

and ~x =
−→
X Y .

−1 1 2 3 4 5

−1

1

2

3

~a =
−→
AB

~x =
−→
X Y

Are these the same or different vectors? As directed line segments, they are different because they are at
different locations in space. However, both ~a and ~x have the same magnitude and direction. Thus, ~a = ~x
despite the fact that A 6= X .5

Takeaway. A vector is not the same as a line segment and a vector by itself has no “origin”.

Vectors and Points
The distinction between vectors and points is sometimes nebulous because the two are so closely related. A point
in Euclidean space specifies an absolute position whereas a vector specifies a displacement (i.e., a magnitude

and direction). However, given a point P, one associates P with the vector ~p =
−→
OP, where O is the origin.

Similarly, we associate the vector ~v with the point V so that
−→
OV = ~v. Thus, we have a way to unambiguously go

back and forth between vectors and points.6 As such, we will treat vectors and points interchangeably.

Takeaway. Vectors and points can and will be treated interchangeably.

Vector Arithmetic
Vectors provide a natural way to give directions. For example, suppose ~e1 points one kilometer eastwards and

5Some theories use rooted vectors instead of vectors as the fundamental object of study. A rooted vector represents a magnitude, direction,
and a starting point. And, as rooted vectors, ~a 6= ~x (from the example above). But for us, vectors will always be unrooted, even though our
graphical representations of vectors might appear rooted.

6Mathematically, we say there is an isomorphism between vectors and points (once an origin is fixed, of course!).

3 © Jason Siefken, 2015–2024
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~e2 points one kilometer northwards. Now, if you were standing at the origin and wanted to move to a location
3 kilometers east and 2 kilometers north, you might say: “Walk 3 times the length of ~e1 in the ~e1 direction and
2 times the length of ~e2 in the ~e2 direction.” Mathematically, we express this as

3~e1 + 2~e2.

Of course, we’ve incidentally described a new vector. Let P be the point at 3-east and 2-north. Then

−→
OP = 3~e1 + 2~e2.

If the vector ~r points north but has a length of 10 kilometers, we have a similar formula:

−→
OP = 3~e1 +

1
5
~r,

and we have the relationship ~r = 10~e2. Our notation here is very suggestive. Indeed, if we could make sense of
“α~v” (scalar multiplication) and “~v + ~w” (vector addition) for any scalar α and any vectors ~v and ~w, we could
do algebra with vectors.

We will define scalar multiplication intuitively: For a vector ~v and a scalar α > 0, the vector ~w = α~v is the vector
pointing in the same direction as ~v but with length scaled by α. That is, ‖~w‖ = α‖~v‖. Similarly, −~v is the vector
of the same length as ~v but pointing in the exact opposite direction.

2~v~v

−
1
2
~v

For two vectors ~u and ~v, the sum ~w = ~u+ ~v represents the displacement vector created by first displacing along
~u and then displacing along ~v.

~u

~v

~w= ~u+ ~v

Takeaway. You add vectors tip to tail and you scale vectors by changing their length.

Now, there is one snag. What should ~v + (−~v) be? Well, first we displace along ~v and then we displace in the
exact opposite direction by the same amount. So, we have gone nowhere. This corresponds to a displacement
with zero magnitude. But, what direction did we displace? Here we make a philosophical stand.

Zero Vector. The zero vector, notated as ~0, is the vector with no magnitude.

We will be pragmatic about the direction of the zero vector and say, the zero vector does not have a well-defined
direction.7 That means sometimes we consider the zero vector to point in every direction and sometimes we
consider it to point in no directions. It depends on our mood—but we must never talk about the direction of the
zero vector, since it’s not defined.

Formalizing, for vectors ~u, ~v, ~w, and scalars α and β , the following laws are always satisfied:

(~u+ ~v) + ~w= ~u+ (~v + ~w) (Associativity)

~u+ ~v = ~v + ~u (Commutativity)

α(~u+ ~v) = α~u+α~v (Distributivity)

and

(αβ)~v = α(β~v) (Associativity II)

(α+ β)~v = α~v + β~v (Distributivity II)

7In the mathematically precise definition of vector, the idea of “magnitude” and “direction” are dropped. Instead, a set of vectors is
defined to be a set over which you can reasonably define addition and scalar multiplication.

4 © Jason Siefken, 2015–2024
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Indeed, if we intuitively think about vectors in flat (Euclidean) space, all of these properties are satisfied.8 From
now on, these properties of vector operations will be considered the laws (or axioms) of vector arithmetic.

We group scalar multiplication and vector addition under one name: linear combinations.

Linear Combination. A linear combination of the vectors ~v1, ~v2, . . . , ~vn is a vector

~w= α1~v1 +α2~v2 + · · ·+αn~vn.

The scalars α1,α2, . . . ,αn are called the coefficients of the linear combination.

Coordinates and the Standard Basis
Consider the standard, flat, Euclidean plane (which is notated by R2). A coordinate system for R2 is a way to
assign a unique pair of numbers to every point in R2. Though there are infinitely many coordinate systems we
could choose for the plane, there is one standard one: the x y-coordinate system depicted below (which you’re
already familiar with).

−1 1 2 3

−1

1

2

x

y

Standard Coordinate System

−1 1 2 3

−1

1

2

x

y

~e1

~e2

In conjunction with the standard coordinate system, there are also standard basis vectors. The vector ~e1 always
points one unit in the direction of the positive x-axis and ~e2 always points one unit in the direction of the
positive y-axis.

Using the standard basis, we can represent every point (or vector) in the plane as a linear combination. If the

point P has x y-coordinates (α,β), then
−→
OP = α~e1+β~e2. Not only that, but this is the only way to represent the

vector
−→
OP as a linear combination of ~e1 and ~e2.

Takeaway. Every vector in R2 can be written uniquely as a linear combination of the standard basis vectors.

For a vector ~w = α~e1 + β~e2, we call the pair (α,β) the standard coordinates of the vector ~w. There are many
equivalent notations used to represent a vector in coordinates.

(α,β) parentheses
〈α,β〉 angle brackets
�

α β
�

square brackets in a row (a row matrix/row vec-
tor)

�

α
β

�

square brackets in a column (a column ma-
trix/column vector)

Coordinates and vectors go hand in hand, and we will often write

~v =
�

α
β

�

as a shorthand for “~v = α~e1 + β~e2”.

Solving Problems with Coordinates

Coordinates allow for vector arithmetic to be carried out in a mechanical way. Suppose ~u=
�

a
b

�

and ~v =
�

x
y

�

.

8If we deviate from flat space, some of these rules are no longer respected. Consider moving 100 kilometers north then 100 kilometers
east on a sphere. Is this the same as moving 100 kilometers east and then 100 kilometers north?

5 © Jason Siefken, 2015–2024
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Then,

~u= ~v ⇐⇒
�

a
b

�

=
�

x
y

�

⇐⇒ a = x and b = y.

Further,

~u+ ~v =
�

a
b

�

+
�

x
y

�

=
�

a+ x
b+ y

�

and t~u= t
�

a
b

�

=
�

ta
t b

�

for any scalar t.

Using these rules, otherwise complicated questions about vectors can be reduced to simple algebra questions.9

Example. Let ~x = ~e1 − ~e2, ~y = 3~e1 − ~e2, and ~r = 2~e1 + 2~e2. Is ~r a linear combination of ~x and ~y?

By definition, ~r is a linear combination of ~x and ~y if there exist scalars a and b such that

~r = a~x + b~y .

Rewriting everything in coordinates, we see this is equivalent to the equation

�

2
2

�

= a
�

1
−1

�

+ b
�

3
−1

�

=
�

a+ 3b
−a− b

�

.

Therefore, we need to determine if the system of equations

�

a+ 3b = 2

−a− b = 2

has a solution. After solving, we find a = −4 and b = 2 is the only solution. Thus, ~r is a linear combination
of ~x and ~y . More specifically,

~r = −4~x + 2~y .

Higher Dimensions
We coordinatize three dimensional space (notated by R3) by constructing x , y, and z axes. Again, R3 has
standard basis vectors ~e1, ~e2, and ~e3 which each point one unit along the x , y , and z axes, respectively.

Since we live in three dimensional space, its study has a long history, and many notations for the standard basis
of three dimensional space are in use. This text will use ~e1, ~e2, ~e3, but other common notations include:

x̂ ŷ ẑ
ı̂ ̂ k̂
i j k
~e1 ~e2 ~e3

Beyond three dimensions, drawing pictures becomes hard, but we can still use vectors. We use Rn to notate
n-dimensional Euclidean space. The standard basis for Rn is ~e1, ~e2, . . . , ~en. Again, every vector in Rn can be
written uniquely as a linear combination of the standard basis, and a coordinate representation of a vector in
Rn is a list of n scalars.

Example. Let ~x , ~y ∈ R3 be given by ~x = 2~e1 − ~e3 and ~y = 6~e2 + 3~e3. Compute ~z = ~x + 2~y .

~z = ~x + 2~y =





2
0
−1



+ 2





0
6
3



 =





2
0
−1



+





0
12
6



 =





2
12
5



 = 2~e1 + 12~e2 + 5~e3

Practice Problems

1 (a) Write the following vectors as column vectors.

i. 4~e1 − 3~e3 + 2~e2 − 2~e1 ∈ R3.
ii. ~e2 + ~e1 − 5~e2 ∈ R2.

(b) Write the following vectors as linear combinations
of ~e1, ~e2, and ~e3.

i.





1
−2

3



.

9So simple, that computers are able to answer billions of such questions a second as you play your favorite video game!
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ii.





−2
5
4



+





1
−2
−5



+





1
0
1



.

2 Compute

3











2
−1

1
1
0











+ (−2)











1
2
−7

3
0











+











−3
3
9
2
2











3H Decide if the vector is in the set. If it is, what value of the
parameters produce that vector?

(a)
�

5
−5

�

and the set

§

~v ∈ R2 : ~v = k
�

1
−1

�

for some k ∈ R
ª

(b)





−1
2
1



 and the set







~v ∈ R3 : ~v = i





−2
1
0



+ j





3
0
1



 for some i, j ∈ R







(c)
�

3
−1

�

and the set

§

~v ∈ R2 : ~v = k
�

−6
2

�

for some k ∈ R
ª

(d)
�

5
4

�

and the set

§

~v ∈ R2 : ~v = j
�

5
−4

�

for some j ∈ R
ª

(e)





2
1
−1



 and the set







~v ∈ R3 : ~v = r





1
−1

3



+





0
3
−7



 for some r ∈ R







(f)





1
0
1



 and the set







~v ∈ R3 : ~v = j





2
0
1



+ k





−3
−1

1



 for some j, k ∈ R







4 Draw the following subsets of R2 and then determine
which are equal or subsets of each other.

(a) A=
§

~v ∈ R2 : ~v = n
�

2
1

�

for some integer n ∈ Z
ª

(b) B =
§

~v ∈ R2 : ~v = t
�

4
2

�

for some t ∈ R
ª

(c) C =
§

~v ∈ R2 : ~v = n
�

4
2

�

for some integer n ∈ Z
ª

(d) D =
§

~v ∈ R2 : ~v = t
�

2
1

�

for some t ∈ R
ª

5 Let ~a =
�

1
2

�

, ~b =
�

2
4

�

, ~c = ~e1 + 3~e2, and ~d = ~a+ ~c.

(a) Is ~e1 a linear combination of ~a and ~b?

(b) Is ~d a linear combination of ~a and ~b?

(c) Is ~p =
�

1
1

�

a linear combination of ~a and ~c?

(d) Is ~q =
�

−3
3

�

a linear combination of ~a, ~b, ~c, and ~d?

6 Use set-builder notation to describe the following sets.

(a) The set of vectors in R2 whose coordinates are ra-
tional numbers.

(b) The set of vectors in R2 whose coordinates are irra-
tional numbers.

(c) Let P(~x) = −~x . The set {P(~e1), P(~e2)}.

7 Which of the following statements are true about the set
listed below? Justify your answers.

(a) Y, the y-axis in R3.

i. Y is a finite set.

ii. Let

A=
�

~a ∈ R3 : ~a = β~v for some ~v ∈ Y,β ∈ R
	

,

then A ⊆ Y.

iii. For all vectors ~v ∈ Y, we have ~v 6= ~0.

iv. For some vectors ~v ∈ Y, we have ~v 6= ~0.

v. For all vectors ~v ∈ Y, there exists a vector
~x ∈ Y such that ~x + ~v = ~e2.

vi. There exists a vector ~x ∈ Y such that for all
vectors ~v ∈ Y, we have ~x + ~v = ~e2.

(b) S, the set of vectors in R3 whose coordinates are
±3.

i. S is a finite set.

ii. Let

A=
�

~a ∈ R3 : ~a = β~v for some ~v ∈ S,β ∈ R
	

,

then A ⊆ S.

iii. For all vectors ~v ∈ S, we have ~v 6= ~0.

iv. For some vectors ~v ∈ S, we have ~v 6= ~0.

v. For all vectors ~v ∈ S, there exists a vector ~x ∈ S
such that ~x + ~v = ~0.

vi. There exists a vector ~x ∈ S such that for all
vectors ~v ∈ S, we have ~x + ~v = ~0.

8 For each of the following statements, determine whether
it is correct or not. If it is, prove it. Otherwise, give a
counterexample.

(a) If A⊆ B, then A∩ B = A.

(b) If B ⊆ A, then A∩ B = A.

(c) If A⊆ B, then A∩ B 6= B.

(d) If B ⊆ A, then A∩ B 6= B.

(e) If C ⊆ A∩ B, then C ⊆ A.

(f) If C ⊆ A∪ B, then C ⊆ A.

(g) If C ⊆ A∪ B and C ⊆ B, then A∩ B ⊆ C .

7 © Jason Siefken, 2015–2024
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The Magic Carpet Ride

1 You are a young adventurer. Having spent most of your time in the mythical city of Oronto, you decide to
leave home for the first time. Your parents want to help you on your journey, so just before your departure,
they give you two gifts. Specifically, they give you two forms of transportation: a hover board and a magic
carpet. Your parents inform you that both the hover board and the magic carpet have restrictions in how
they operate:

We denote the restriction on the hover board’s movement by the vector
�

3
1

�

. By this

we mean that if the hover board traveled “forward” for one hour, it would move along
a “diagonal” path that would result in a displacement of 3 km East and 1 km North
of its starting location.

We denote the restriction on the magic carpet’s movement by the vector
�

1
2

�

. By this

we mean that if the magic carpet traveled “forward” for one hour, it would move
along a “diagonal” path that would result in a displacement of 1 km East and 2 km
North of its starting location.

Scenario One: The Maiden Voyage

Your Uncle Cramer suggests that your first adventure should be to go visit the wise man, Old Man Gauss.
Uncle Cramer tells you that Old Man Gauss lives in a cabin that is 107 km East and 64 km North of your
home.

Task:

Investigate whether or not you can use the hover board and the magic carpet to get to Gauss’s cabin. If
so, how? If it is not possible to get to the cabin with these modes of transportation, why is that the case?

9 © IOLA Team iola. math. vt. edu
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The Magic Carpet Ride, Hide and Seek

2 You are a young adventurer. Having spent most of your time in the mythical city of Oronto, you decide to
leave home for the first time. Your parents want to help you on your journey, so just before your departure,
they give you two gifts. Specifically, they give you two forms of transportation: a hover board and a magic
carpet. Your parents inform you that both the hover board and the magic carpet have restrictions in how
they operate:

We denote the restriction on the hover board’s movement by the vector
�

3
1

�

. By this

we mean that if the hover board traveled “forward” for one hour, it would move along
a “diagonal” path that would result in a displacement of 3 km East and 1 km North
of its starting location.

We denote the restriction on the magic carpet’s movement by the vector
�

1
2

�

. By this

we mean that if the magic carpet traveled “forward” for one hour, it would move
along a “diagonal” path that would result in a displacement of 1 km East and 2 km
North of its starting location.

Scenario Two: Hide-and-Seek

Old Man Gauss wants to move to a cabin in a different location. You are not sure whether Gauss is just
trying to test your wits at finding him or if he actually wants to hide somewhere that you can’t visit him.

Are there some locations that he can hide and you cannot reach him with these two modes of
transportation?

Describe the places that you can reach using a combination of the hover board and the magic carpet and
those you cannot. Specify these geometrically and algebraically. Include a symbolic representation using
vector notation. Also, include a convincing argument supporting your answer.

10 © IOLA Team iola. math. vt. edu

iola.math.vt.edu


Sets and Set Notation
Set

D
EF

IN
IT

IO
N

A set is a (possibly infinite) collection of items and is notated with curly braces (for example, {1, 2, 3}
is the set containing the numbers 1, 2, and 3). We call the items in a set elements.

If X is a set and a is an element of X , we may write a ∈ X , which is read “a is an element of X .”

If X is a set, a subset Y of X (written Y ⊆ X ) is a set such that every element of Y is an element of X .
Two sets are called equal if they are subsets of each other (i.e., X = Y if X ⊆ Y and Y ⊆ X ).

We can define a subset using set-builder notation. That is, if X is a set, we can define the subset

Y = {a ∈ X : some rule involving a},

which is read “Y is the set of a in X such that some rule involving a is true.” If X is intuitive, we may
omit it and simply write Y = {a : some rule involving a}. You may equivalently use “|” instead of “:”,
writing Y = {a | some rule involving a}.

D
EF

IN
IT

IO
N

Some common sets are

N= {natural numbers}= {non-negative whole numbers}.

Z= {integers}= {whole numbers, including negatives}.

R= {real numbers}.

Rn = {vectors in n-dimensional Euclidean space}.

3 3.1 Which of the following statements are true?

(a) 3 ∈ {1,2, 3}.
(b) 1.5 ∈ {1,2, 3}.
(c) 4 ∈ {1,2, 3}.
(d) “b”∈ {x : x is an English letter}.
(e) “ò”∈ {x : x is an English letter}.
(f) {1,2} ⊆ {1,2,3}.
(g) For some a ∈ {1,2, 3}, a ≥ 3.

(h) For any a ∈ {1,2, 3}, a ≥ 3.

(i) 1 ⊆ {1,2, 3}.
(j) {1,2, 3}= {x ∈ R : 1≤ x ≤ 3}.
(k) {1,2, 3}= {x ∈ Z : 1≤ x ≤ 3}.

11 © Jason Siefken, 2015–2024



4 Write the following in set-builder notation

4.1 The subset A⊆ R of real numbers larger than
p

2.

4.2 The subset B ⊆ R2 of vectors whose first coordinate is twice the second.

Unions & Intersections

D
EF

IN
IT

IO
N Let X and Y be sets. The union of X and Y and the intersection of X and Y are defined as follows.

(union) X ∪ Y = {a : a ∈ X or a ∈ Y }.

(intersection) X ∩ Y = {a : a ∈ X and a ∈ Y }.

5 Let X = {1,2,3} and Y = {2,3, 4,5} and Z = {4,5, 6}. Compute

5.1 X ∪ Y

5.2 X ∩ Y

5.3 X ∪ Y ∪ Z

5.4 X ∩ Y ∩ Z

12 © Jason Siefken, 2015–2024



6 Draw the following subsets of R2.

6.1 V =
§

~x ∈ R2 : ~x =
�

0
t

�

for some t ∈ R
ª

.

6.2 H =
§

~x ∈ R2 : ~x =
�

t
0

�

for some t ∈ R
ª

.

6.3 D =
§

~x ∈ R2 : ~x = t
�

1
1

�

for some t ∈ R
ª

.

6.4 N =
§

~x ∈ R2 : ~x = t
�

1
1

�

for all t ∈ R
ª

.

6.5 V ∪H.

6.6 V ∩H.

6.7 Does V ∪H = R2?

13 © Jason Siefken, 2015–2024



Vector Combinations
Linear Combination

D
EF

IN
IT

IO
N A linear combination of the vectors ~v1, ~v2, . . . , ~vn is a vector

~w= α1~v1 +α2~v2 + · · ·+αn~vn.

The scalars α1,α2, . . . ,αn are called the coefficients of the linear combination.

7 Let ~v1 =
�

1
1

�

, ~v2 =
�

1
−1

�

, and ~w= 2~v1 + ~v2.

7.1 Write ~w as a column vector. When ~w is written as a linear combination of ~v1 and ~v2, what are the
coefficients of ~v1 and ~v2?

7.2 Is
�

3
3

�

a linear combination of ~v1 and ~v2?

7.3 Is
�

0
0

�

a linear combination of ~v1 and ~v2?

7.4 Is
�

4
0

�

a linear combination of ~v1 and ~v2?

7.5 Can you find a vector in R2 that isn’t a linear combination of ~v1 and ~v2?

7.6 Can you find a vector in R2 that isn’t a linear combination of ~v1?

14 © Jason Siefken, 2015–2024



8 Recall the Magic Carpet Ride task where the hover board could travel in the direction ~h =
�

3
1

�

and the

magic carpet could move in the direction ~m=
�

1
2

�

.

8.1 Rephrase the sentence “Gauss can be reached using just the magic carpet and the hover board” using formal
mathematical language.

8.2 Rephrase the sentence “There is nowhere Gauss can hide where he is inaccessible by magic carpet and hover
board” using formal mathematical language.

8.3 Rephrase the sentence “R2 is the set of all linear combinations of ~h and ~m” using formal mathematical
language.
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Sets of Vectors, Lines & Planes

In this module you will learn

� How to draw a set of vectors making an appropriate choice of when to use line segments and when to use
dots to represent vectors.

� The vector form of lines and planes, including how to determine the intersection of lines and planes in
vector form.

� Restricted linear combinations and how to use them to represent common geometric objects (like line
segments or polygons).

With a handle on vectors, we can now use them to describe some common geometric objects: lines and planes.

Lines
Consider for a moment the line ` through the points P and Q. When P,Q ∈ R2, we can describe ` with an
equation of the form y = mx + b (provided it isn’t a vertical line), but if P,Q ∈ R3, it’s much harder to describe
` with an equation. We can solve this problem by using vectors.

Let ~d =
−→
PQ and consider the set of points (or vectors) ~x that can be expressed as

~x = t ~d + P

for t ∈ R. Geometrically, this is the set of all points we get by starting at P and displacing by some multiple of
~d. This is a line!

−1 1 2 3 4 5

−1

1

2

3

P

Q
~d

−1
3
~d + P

5
3
~d + P

−1 1 2 3 4 5

−1

1

2

3

P

Q
~d

−1
3
~d + P

5
3
~d + P

We simultaneously interpret this line as a set of points (the points that make up the line) and as a set of vectors
rooted at the origin (the vectors pointing from the origin to the line). Note that sometimes we draw vectors as
directed line segments. Other times, we draw each vector by marking only its ending point because drawing
each vector as a line segment would make it hard to see what is going on.

Which picture below do you think best represents `?

−1 1 2 3 4 5

−1

1

2

3
Vectors in ` as dots

−1 1 2 3 4 5

−1

1

2

3
Vectors in ` as arrows from (0,0)
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Takeaway. When drawing a picture depicting several vectors, make an appropriate choice (arrows, dots, or
a mix) so that the picture is clear.

The line ` described above can be written in set-builder notation as:

`= {~x : ~x = t ~d + P for some t ∈ R}.

Notice that in set-builder notation, we write “for some t ∈ R.” Make sure you understand why replacing “for
some t ∈ R” with “for all t ∈ R” would be incorrect.

Writing lines with set-builder notation all the time can be overkill, so we will allow ourselves to describe lines in
a shorthand called vector form.10

Vector Form of a Line. Let ` be a line and let ~d and ~p be vectors. If `= {~x : ~x = t ~d + ~p for some t ∈ R},
we say the vector equation

~x = t ~d + ~p

is ` expressed in vector form. The vector ~d is called a direction vector for `.

We can also use coordinates when writing a line in vector form. For example,
�

x
y

�

= t
�

d1
d2

�

+
�

p1
p2

�

corresponds to the line passing through
�

p1
p2

�

with
�

d1
d2

�

as a direction vector.

The “t” that appears in a vector form is called the parameter variable, and for this reason, some textbooks use
the term parametric form in place of “vector form”.

Writing a line in vector form requires only a point on the line and a direction for the line,11 which makes
converting from another form into vector form straightforward.

Example. Find vector form of the line ` ⊆ R2 with equation y = 2x + 3.

First, we find two points on `. By guess-and-check, we see P = (0,3) and Q = (1,5) are on `. Thus, a
direction vector for ` is given by

~d =
�

1
5

�

−
�

0
3

�

=
�

1
2

�

.

We may now express ` in vector form as
~x = t ~d + P

or, using coordinates, as
�

x
y

�

= t
�

1
2

�

+
�

0
3

�

.

It’s important to note that when we write a line in vector form, it is a specific shorthand notation. If we augment
the notation, we no longer have written a line in “vector form”.

Example. Let ` be a line, let ~d be a direction vector for `, and let ~p ∈ ` be a point on `. Writing

~x = t ~d + ~p

or
~x = t ~d + ~p where t ∈ R

specifies ` in vector form; both are shorthands for {~x : ~x = t ~d + ~p for some t ∈ R}. But,

~x = t ~d + ~p for some t ∈ R

and
~x = t ~d + ~p for all t ∈ R

10 y = mx + b form of a line is also shorthand. The line ` described by the equation y = mx + b is actually the set {(x , y) ∈ R2 :
y = mx + b}.

11Notice that a direction vector for a line ` is different than a vector in a line `.
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are logical statements about the vectors ~x , ~d, and ~p. These statements are either true or false; they do not
specify ` in vector form.

Similarly, the statement
`= t ~d + ~p

is mathematically nonsensical and does not specify ` in vector form. (On the left is a set and on the right is a
vector!)

Takeaway. Vector form is a specific shorthand for a set. If “extra” words or symbols are added to the vector
form, it stops being a shorthand.

But, why is vector form useful? For starters, every line can be expressed in vector form (you cannot write a
vertical line in y = mx + b form, and in R3, you would need two linear equations to represent a line). But, the
most useful thing about expressing a line in vector form is that you can easily generate points on that line.

Suppose ` can be represented in vector form as ~x = t ~d + ~p. Then, for every t ∈ R, the vector t ~d + ~p ∈ `. Not
only that, but as t ranges over R, all points on ` are “traced out”. Thus, we can find points on ` without having
to “solve” any equations.

The downside to using vector form is that it is not unique. There are multiple direction vectors and multiple
points for every line. Thus, merely by looking at the vector equation for two lines, it can be hard to tell if they’re
equal.

For example,

�

x
y

�

= t
�

1
2

�

+
�

0
3

�

,
�

x
y

�

= t
�

2
4

�

+
�

0
3

�

, and
�

x
y

�

= t
�

1
2

�

+
�

1
5

�

all represent the same line. In the second equation, the direction vector is parallel but scaled, and in the third
equation, a different point on the line was chosen.

Recall that in vector form, the variable t is called the parameter variable. It is an instance of a dummy variable.
In other words, t is a placeholder—just because “t” appears in two different vector forms, doesn’t mean it’s the
same quantity.

To drive this point home, let’s think about vector form in terms of the sets it specifies. Let ~d1, ~d2 6= ~0 and ~p1, ~p2
be vectors and define the lines

`1 = {~x : ~x = t ~d1 + ~p1 for some t ∈ R}

and

`2 = {~x : ~x = t ~d2 + ~p2 for some t ∈ R}.

These lines have vector forms ~x = t ~d1 + ~p1 and ~x = t ~d2 + ~p2. However, declaring that `1 = `2 if and only
if t ~d1 + ~p1 = t ~d2 + ~p2 does not make sense. Instead, as per the definition, `1 = `2 if `1 ⊆ `2 and `2 ⊆ `1. If
~x ∈ `1 then ~x = t ~d1 + ~p1 for some t ∈ R. If ~x ∈ `2 then ~x = t ~d2 + ~p2 for some possibly different t ∈ R. This can
get confusing really quickly. The easiest way to avoid confusion is to use different parameter variables when
comparing different vector forms.

Example. Determine if the lines `1 and `2, given in vector form as

~x = t
�

1
1

�

+
�

2
1

�

and ~x = t
�

2
2

�

+
�

4
3

�

,

are the same line.

To determine this, we need to figure out if ~x ∈ `1 implies ~x ∈ `2 and if ~x ∈ `2 implies ~x ∈ `1.

If ~x ∈ `1, then ~x = t
�

1
1

�

+
�

2
1

�

for some t ∈ R. If ~x ∈ `2, then ~x = s
�

2
2

�

+
�

4
3

�

for some s ∈ R. Thus if

t
�

1
1

�

+
�

2
1

�

= ~x = s
�

2
2

�

+
�

4
3

�
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always has a solution, `1 = `2. Moving everything to one side, we see

~0=
�

4
3

�

−
�

2
1

�

+ s
�

2
2

�

− t
�

1
1

�

=
�

2
2

�

+ s
�

2
2

�

− t
�

1
1

�

= (s+ 1)
�

2
2

�

−
t
2

�

2
2

�

= (s+ 1−
t
2
)
�

2
2

�

.

This equation has a solution whenever s + 1 − t/2 = 0 has a solution. Since for every s, the equation
s+ 1− t/2 = 0 has a solution, and for every t, the equation s+ 1− t/2 = 0 has a solution, we know `1 = `2.

Vector Form in Higher Dimensions
The geometry of lines in space (R3 and above) is a bit more complicated than that of lines in the plane. Lines
in the plane either intersect or are parallel. In space, we have to be careful about what we mean by “parallel
lines,” since lines with entirely different directions can still fail to intersect.12

Example. Consider the lines described by

~x = t(1,3,−2) + (1,2, 1)
~x = t(−2,−6,4) + (3,1, 0).

They have parallel directions since (−2,−6,4) = −2(1,3,−2). Hence, in this case, we say the lines are
parallel. (How can we be sure the lines are not the same?)

Example. Consider the lines described by

~x = t(1,3,−2) + (1,2, 1)
~x = t(0,2, 3) + (0,3, 9).

They are not parallel because neither of the direction vectors is a multiple of the other. They may or may not
intersect. (If they don’t, we say the lines are skew.) How can we find out? Mirroring our earlier approach,
we can set their equations equal and see if we can solve for a point of intersection after ensuring we give
their parametric variables different names. We’ll keep one parametric variable named t and name the
other one s. Thus, we want

~x = t(1, 3,−2) + (1,2, 1) = s(0,2, 3) + (0,3, 9),

which after collecting terms yields

(t + 1,3t + 2,−2t + 1) = (0,2s+ 3,3s+ 9).

12Recall that in Euclidean geometry two lines are defined to be parallel if they coincide or never intersect.
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Reading coordinate by coordinate, we get three equations

t + 1= 0

3t + 2= 2s+ 3

−2t + 1= 3s+ 9

in two unknowns s and t. This is an overdetermined system, and it may or may not have a solution. The first two
equations yield t = −1 and s = −2. Putting these values in the last equation yields (−2)(−1)+1 = 3(−2)+9,
which is indeed true. Hence, the equations are consistent, and the lines intersect. To find the point of
intersection, put t = −1 in the equation for the vector equation of the first line (or s = −2 in that for the
second) to obtain (0,−1,3).

Planes
Any two distinct points define a line. To define a plane, we need three points. But there’s a caveat: the three
points cannot be on the same line, otherwise they’d define a line and not a plane. Let A, B, C ∈ R3 be three
points that are not collinear and let P be the plane that passes through A, B, and C .

Just like lines, planes have direction vectors. For P, both ~d1 =
−→
AB and ~d2 =

−→
AC are direction vectors. Of course,

~d1, ~d2 and their multiples are not the only direction vectors for P. There are infinitely many more, including
~d1+ ~d2, and ~d1−7~d2, and so on. However, since a plane is a two-dimensional object, we only need two different
direction vectors to describe it.

Like lines, planes have a vector form. Using the direction vectors ~d1 =
−→
AB and ~d2 =

−→
AC , the plane P can be

written in vector form as





x
y
z



= t ~d1 + s~d2 + A.

A

~d1

~d2

Vector Form of a Plane. A plane P is written in vector form if it is expressed as

~x = t ~d1 + s~d2 + ~p

for some vectors ~d1 and ~d2 and point ~p. That is, P = {~x : ~x = t ~d1 + s~d2 + ~p for some t, s ∈ R}. The vectors
~d1 and ~d2 are called direction vectors for P.

Example. Describe the plane P ⊆ R3 with equation z = 2x + y + 3 in vector form.

To describe P in vector form, we need a point on P and two direction vectors for P. By guess-and-check, we
see the points

A=





0
0
3



 B =





1
0
5



 C =





0
1
4




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are all in P. Thus

~d1 = B − A=





1
0
2



 and ~d2 = C − A=





0
1
1





are both direction vectors for P. Since these vectors are not parallel, we can express P in vector form as

~x = t ~d1 + s~d2 + A= t





1
0
2



+ s





0
1
1



+





0
0
3



 .

Example. Find the line of intersection between P1 and P2 where the planes are given in vector form by

P1
︷ ︸︸ ︷

~x = t





1
1
0



+ s





−1
0
1



+





1
2
3



 and

P2
︷ ︸︸ ︷

~x = t





−1
0
2



+ s





1
2
1



+





0
0
3



 .

Just like in the example for lines, we are looking for points ~x that are in both planes. To keep from getting
mixed up, we’ll use a, b, c, and d as parameter variables. Therefore, we are looking for solutions to

a





1
1
0



+ b





−1
0
1



+





1
2
3



= ~x = c





−1
0
2



+ d





1
2
1



+





0
0
3



 .

Collecting terms, this is equivalent to the system of equations







a− b+ c − d = −1

a − 2d = −2

b− 2c − d = 0

.

This system is underdetermined (there are four variables and three equations). If P1 and P2 indeed intersect
in a line, we know there must be an infinite number of solutions to this system. After row reducing,a we see







a
b
c
d






=







r
r/2− 1
−1

r/2+ 1







is a solution for every r ∈ R. We can substitute these parameters into either of the original equations to get
an equation for the line of intersection. Picking the second one, we see

~x = c





−1
0
2



+ d





1
2
1



+





0
0
3



= −





−1
0
2



+ (
r
2
+ 1)





1
2
1



+





0
0
3



=
r
2





1
2
1



+





2
2
2





is in both planes for every r ∈ R. Therefore, we may express P1 ∩P2 in vector form as

~x = r





1/2
1

1/2



+





2
2
2



 .

aSee Appendix 1, System (14) and (15).

Restricted Linear Combinations
Using vectors, we can describe more than just lines and planes—we can describe all sorts of geometric objects.

Recall that when we write ~x = t ~d + ~p to describe the line `, what we mean is

`= {~x : ~x = t ~d + ~p for some t ∈ R}.

The line ` stretches off infinitely in both directions. But, what if we wanted to describe just a part of `? We can
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do this by placing additional restrictions on t. For example, consider the ray R and the line segment S:

R= {~x : ~x = t ~d + ~p for some t ≥ 0}

S = {~x : ~x = t ~d + ~p for some t ∈ [0,2]}

1 2 3 4

−1

1

2

3

R
~d

The ray R

1 2 3 4

−1

1

2

3

S
~d

The line segment S

We can also make polygons by adding restrictions to the vector form of a plane. Let ~a =
�

2
1

�

and ~b =
�

−1
1

�

and

consider the unit square U and the parallelogram P defined by

U = {~x : ~x = t~e1 + s~e2 for some t, s ∈ [0,1]}

P = {~x : ~x = t~a+ s~b for some t ∈ [0,1] and s ∈ [−1,1]}

−2 −1 1 2 3

−1

1

2

U

~e1

~e2

The unit square U

−2 −1 1 2 3

−1

1

2

P

~a~b

The parallelogram P

Each set so far is a set of linear combinations, and we have made different shapes by restricting the coefficients
of those linear combinations. There are two ways of restricting linear combinations that arise often enough to
get their own names.

Non-negative & Convex Linear Combinations.
Let ~w = α1~v1 +α2~v2 + · · ·+αn~vn. The vector ~w is called a non-negative linear combination of ~v1, ~v2, . . . , ~vn if

α1,α2, . . . ,αn ≥ 0.

The vector ~w is called a convex linear combination of ~v1, ~v2, . . . , ~vn if

α1,α2, . . . ,αn ≥ 0 and α1 +α2 + · · ·+αn = 1.

You can think of non-negative linear combinations as vectors you can arrive at by only displacing “forward”.
Convex linear combinations can be thought of as weighted averages of vectors (the average of ~v1, . . . , ~vn would
be the convex linear combination with coefficients αi =

1
n ). A convex linear combination of two vectors gives a

point on the line segment connecting them.

Example. Let ~a =
�

2
1

�

and ~b =
�

1
−1

�

and define

A= {~x : ~x is a convex linear combination of ~a and ~b}

= {~x : ~x = α~a+ (1−α)~b for some α ∈ [0,1]}.

Draw A.
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We know ~x = α~a+(1−α)~b ∈ A whenever α ∈ [0, 1]. If we rearrange the equation ~x = α~a+(1−α)~b, we see

~x = α~a−α~b+ ~b = α(~a− ~b) + ~b,

which looks like the vector form of a line which passes through ~b with direction ~a− ~b. However, we have
the additional restriction α ∈ [0,1], so A is only the part of that line which connects ~a and ~b.

−1 1 2 3

−1

1

2

~a = 1~a+ (1− 1)~b

1
3
~a+ (1−

1
3
)~b

2
3
~a+ (1−

2
3
)~b

~b = 0~a+ (1− 0)~b

−1 1 2 3

−1

1

2

A

~a

~b

Since A is an infinite collection of vectors, it’s better to draw vectors in A as dots rather than lines from the
origin.

Practice Problems

1 Express the following lines in vector form.

(a) `1 ⊆ R2 with equation 4x − 3y = −10.

(b) `2 ⊆ R2 which passes through the points A= (1, 1)
and B = (2,7).

(c) `3 ⊆ R2 which passes through ~0 and is parallel to
the line with equation 4x − 3y = −10.

(d) `4 ⊆ R3 which passes through the points A =
(−1,−1,0) and B = (2,3, 5).

(e) `5 ⊆ R3 which is contained in the yz-plane and
where the coordinates of every point in `5 satisfy
x + 2y − 3z = 5.

2 Express the following planes in vector form.

(a) P1 ⊆ R3 with equation 4x − z = 0.

(b) P2 ⊆ R3 which passes through the points A =
(−1,−1,0), B = (2,3, 5), and C = (3,3, 3).

(c) P3 ⊆ R3 with equation 4x − 3y + z = −10.

(d) P4 ⊆ R3 which is parallel to the yz-plane and passes
through the point X = (1,−1,1).

(e) R2.

(f) P5 ⊆ R4 which passes through A = (1,−1,1,−1),
and where the coordinates of every point in P5

satisfy the equations x + y + 2z − w = 3 and
x + y + z +w= 0.

3 Let `1, `2, and `3 be described in vector form by

`1
︷ ︸︸ ︷

~x = t
�

1
1

�

+
�

1
3

�

`2
︷ ︸︸ ︷

~x = t
�

1
3

�

+
�

1
1

�

`3
︷ ︸︸ ︷

~x = t
�

2
2

�

+
�

2
4

�

.

(a) Determine which pairs of the lines `1, `2, and `3

intersect, coincide, or are parallel.

(b) What is `1 ∩ `2 ∩ `3?

4 Let P1 ⊆ R3 be the plane with equation x + 2y − z = 3.
Let P2 and ` be described in vector form by

P2
︷ ︸︸ ︷

~x = t





1
1
1



+ s





0
0
2



+





1
3
1



,

`
︷ ︸︸ ︷

~x = t





1
3
1



+





1
1
0



 .

(a) Find P1 ∩ `.

(b) Find P1 ∩P2.

(c) Find P2 ∩ `.

(d) Give an example of a plane P3 so that P3 ∩ ` is
empty.

(e) Does there exist a plane P ′2 that is parallel to P2,
but which does not intersect `? Why or why not?

5 Let ~a =
�

1
1

�

and ~b =
�

1
−1

�

. The goal of this question is to

produce a drawing of the set of convex linear combina-
tions of ~a and ~b.

(a) Let A be the set of all non-negative linear combina-
tions of ~a and ~b. Draw A.

(b) Let ` be the set

{α~a+ β~b : α,β ∈ R and α+ β = 1}

Rewrite ` in set-builder notation using only a single
variable t. (Hint: Let t be α.)

(c) Justify why ` is a line, and write ` in vector form.

(d) Draw both A and ` on the same grid. On a separate
grid, draw A∩ `.

(e) Write the A∩ ` in set-builder notation. How does
A∩ ` relate to convex linear combinations?

(f) Determine the endpoints of A∩ `.

6 Let ~a =
�

2
0

�

, ~b =
�

0
2

�

, and ~c =
�

−1
−1

�

. The goal of this

question is to produce a drawing of the set of convex
linear combinations of ~a, ~b, and ~c. This requires an un-
derstanding of the previous question.

(a) Let ~d =
�

1
1

�

. Write ~d as a convex linear combination

of ~a and ~b.
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(b) Let ~e =
�

0
0

�

. Write ~e as a convex linear combination

of ~c and ~d.

(c) Substituting the answer to (6a) into the answer to
part (6b), write ~e as a convex linear combination of
~a, ~b, and ~c.

(d) Draw and label ~a, ~b, ~c, ~d, and ~e on the same grid.

(e) Draw the set of convex linear combinations of ~a, ~b,
and ~c. Justify your answer.

7 Let ~x =
�

1
1

�

, ~y =
�

3
−1

�

and ~z =
�

−2
−2

�

. Draw the following

subsets of R2.

(a) All non-negative linear combinations of ~x and ~y .

(b) All non-negative linear combinations of ~x and ~z.

(c) All convex linear combinations of ~y and ~z.

(d) All convex linear combinations of ~x and ~z.

(e) All convex linear combinations of ~x , ~y and ~z.

8 Describe the sets in (7c) and (7d) in set-builder notation.

9 Determine if the points P = (−2,0) and Q = (0,−2)

are convex linear combinations of the vectors ~u =
�

1
4

�

,

~v =
�

−5
8

�

, and ~w =
�

−2
−6

�

. First solve this question by

drawing a picture. Then justify algebraically.
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Let ~w = α1~v1 + α2~v2 + · · · + αn~vn. The vector ~w is called a non-negative linear combination of
~v1, ~v2, . . . , ~vn if

α1,α2, . . . ,αn ≥ 0.

The vector ~w is called a convex linear combination of ~v1, ~v2, . . . , ~vn if

α1,α2, . . . ,αn ≥ 0 and α1 +α2 + · · ·+αn = 1.

9 Let

~a =
�

1
1

�

~b =
�

−1
1

�

~c =
�

0
1

�

~d =
�

0
2

�

~e =
�

−1
−1

�

.

9.1 Out of ~a, ~b, ~c, ~d, and ~e, which vectors are

(a) linear combinations of ~a and ~b?

(b) non-negative linear combinations of ~a and ~b?

(c) convex linear combinations of ~a and ~b?

9.2 If possible, find two vectors ~u and ~v so that

(a) ~a and ~c are non-negative linear combinations of ~u and ~v but ~b is not.

(b) ~a and ~e are non-negative linear combinations of ~u and ~v.

(c) ~a and ~b are non-negative linear combinations of ~u and ~v but ~d is not.

(d) ~a, ~c, and ~d are convex linear combinations of ~u and ~v.

Otherwise, explain why it’s not possible.
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Lines and Planes

10 Let L be the set of points (x , y) ∈ R2 such that y = 2x + 1.

10.1 Describe L using set-builder notation.

10.2 Draw L as a subset of R2.

10.3 Add the vectors ~a =
�

−1
−1

�

, ~b =
�

1
3

�

and ~d = ~b− ~a to your drawing.

10.4 Is ~d ∈ L? Explain.

10.5 For which t ∈ R is it true that ~a+ t ~d ∈ L? Explain using your picture.
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Vector Form of a Line
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Let ` be a line and let ~d and ~p be vectors. If `= {~x : ~x = t ~d + ~p for some t ∈ R}, we say the vector
equation

~x = t ~d + ~p

is ` expressed in vector form. The vector ~d is called a direction vector for `.

11 Let ` ⊆ R2 be the line with equation 2x + y = 3, and let L ⊆ R3 be the line with equations 2x + y = 3
and z = y .

11.1 Write ` in vector form. Is vector form of ` unique?

11.2 Write L in vector form.

11.3 Find another vector form for L where both “~d” and “~p” are different from before.
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12 Let A, B, and C be given in vector form by

A
︷ ︸︸ ︷

~x = t





1
2
3



+





0
0
1





B
︷ ︸︸ ︷

~x = t





−1
1
1



+





−1
1
2





C
︷ ︸︸ ︷

~x = t





2
−1

1



+





1
1
1



 .

12.1 Do the lines A and B intersect? Justify your conclusion.

12.2 Do the lines A and C intersect? Justify your conclusion.

12.3 Let ~p 6= ~q and suppose X has vector form ~x = t ~d + ~p and Y has vector form ~x = t ~d + ~q. Is it possible that
X and Y intersect?
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Vector Form of a Plane
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A plane P is written in vector form if it is expressed as

~x = t ~d1 + s~d2 + ~p

for some vectors ~d1 and ~d2 and point ~p. That is, P = {~x : ~x = t ~d1 + s~d2 + ~p for some t, s ∈ R}. The
vectors ~d1 and ~d2 are called direction vectors for P.

13 Recall the intersecting lines A and B given in vector form by

A
︷ ︸︸ ︷

~x = t





1
2
3



+





0
0
1





B
︷ ︸︸ ︷

~x = t





−1
1
1



+





−1
1
2



 .

Let P the plane that contains the lines A and B.

13.1 Find two direction vectors for P.

13.2 Write P in vector form.

13.3 Describe how vector form of a plane relates to linear combinations.

13.4 Write P in vector form using different direction vectors and a different point.
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14 Let Q ⊆ R3 be a plane with equation x + y + z = 1.

14.1 Find three points in Q.

14.2 Find two direction vectors for Q.

14.3 Write Q in vector form.
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Spans, Translated Spans, and Linear Independence/Dependence

In this module you will learn

� The definition of span and how to visualize spans.

� How to express lines/planes/volumes through the origin as spans.

� How to express lines/planes/volumes not through the origin as translated spans using set addition.

� Geometric and algebraic definitions of linear independence and linear dependence.

� How to find linearly independent subsets.

Let ~u=
�

1
1

�

and ~v =
�

1
−2

�

. Can the vector ~w=
�

2
5

�

be obtained as a linear combination of ~u and ~v?

By drawing a picture, the answer appears to be yes.

−1 1 2 3

−2

−1

1

2

3

4

5

~u

~v

~w

−1 1 2 3

−2

−1

1

2

3

4

5

3~u

−~v

~w

Algebraically, we can use the definition of a linear combination to set up a system of equations. We know ~w can
be expressed as a linear combination of ~u and ~v if and only if the vector equation

~w=
�

2
5

�

= α
�

1
1

�

+ β
�

1
−2

�

= α~u+ β~v

has a solution. By inspection, we see α= 3 and β = −1 solve this equation.

After initial success, we might ask the following: what are all the locations in R2 that can be obtained as a linear
combination of ~u and ~v? Geometrically, it appears any location can be reached. To verify this algebraically,
consider the vector equation

~x =
�

x
y

�

= α
�

1
1

�

+ β
�

1
−2

�

= α~u+ β~v. (1)

Here ~x represents an arbitrary point in R2. If equation (1) always has a solution,13 any vector in R2 can be
obtained as a linear combination of ~u and ~v.

We can solve this equation for α and β by considering the equations arising from the first and second coordinates.
Namely,

x = α+ β
y = α− 2β

13The official terminology would be to say that the equations are always consistent.

33 © Jason Siefken, 2015–2024



M
od

ul
e

3
–

Sp
an

s,
Tr

an
sla

te
d

Sp
an

s,
an

d
Li

ne
ar

In
de

pe
nd

en
ce

/D
ep

en
de

nc
e

Subtracting the second equation from the first, we get x − y = 3β and so β = (x − y)/3. Plugging β into the
first equation and solving, we get α= (2x + y)/3. Thus, equation (1) always has the solution

α=
1
3
(2x + y)

β =
1
3
(x − y).

There is a formal term for the set of vectors that can be obtained as linear combinations of others: span.

Span. The span of a set of vectors V is the set of all linear combinations of vectors in V . That is,

span V = {~v : ~v =α1~v1 +α2~v2 + · · ·+αn~vn for some ~v1, ~v2, . . . , ~vn ∈ V and scalars α1,α2, . . . ,αn}.

Additionally, we define span{}= {~0}.

We just showed above that span
§�

1
1

�

,
�

1
−2

�ª

= R2. Alternatively, we may use span as a verb and say the set
§�

1
1

�

,
�

1
−2

�ª

spans R2.

Example. Let ~u=
�

−1
2

�

and ~v =
�

1
−2

�

. Find span{~u, ~v}.

By the definition of span,

span{~u, ~v}= {~x : ~x = α~u+ β~v for some α,β ∈ R}.

We need to determine for which x and y the vector equation
�

x
y

�

= α
�

−1
2

�

+ β
�

1
−2

�

is consistent.

From the first and second coordinates, we get the system

x = −α+ β
y = 2α− 2β .

Adding 2 times the first equation to the second, we get 2x + y = 0 and so y = −2x . Therefore, if
�

x
y

�

makes

the above system consistent, we must have

�

x
y

�

=
�

t
−2t

�

= t~v

for some t. Thus,
span{~u, ~v}= {~x : ~x = t~v for some t}= span{~v},

which is a line through the origin with direction ~v.

Example. Let ~a =





1
2
1



, ~b =





0
1
0



, and ~c =





1
1
2



. Show that R3 = span{~a,~b,~c}.

If the equation

~x =





x
y
z



= α1





1
2
1



+α2





0
1
0



+α3





1
1
2



= α1~a+α2
~b+α3~c

is always consistent, then any vector in R3 can be obtained as a linear combination of ~a,~b, and ~c.
Reading off the coordinates, we get the system

x = α1 +α3

y = 2α1 +α2 +α3

z = α1 + 2α3.
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Solving this system, we see
α1 = 2x − z

α2 = −3x + y + z

α3 = −x + z

is always a solution (no matter the values of x , y , and z). Therefore, span{~a,~b,~c}= R3.

Representing Lines & Planes as Spans
If spans remind you of vector forms of lines and planes, your intuition is keen. Consider the line ` given in
vector form by

~x = t ~d + ~0.

The line ` passes through the origin, and if we unravel its definition, we see

`= {~x : ~x = t ~d + ~0 for some t ∈ R}= {~x : ~x = t ~d for some t ∈ R}= span{~d}.

Similarly, if P is a plane given in vector form by

~x = t ~d1 + s~d2 + ~0,

then
P = {~x : ~x = t ~d1 + s~d2 for some t, s ∈ R}= span{~d1, ~d2}.

If the “~p” in our vector form is ~0, then that vector form actually defines a span. This means (if you accept that
every line/plane through the origin has a vector form) that every line/plane through the origin can be written
as a span. Conversely, if X = span{~v1, . . . , ~vn} is a span, we know ~0 = 0~v1 + · · ·+ 0~vn ∈ X , and so every span
passes through the origin.

As it turns out, spans exactly describe points, lines, planes, and volumes14 through the origin.

Example. The line `1 ⊆ R2 is described by the equation x +2y = 0 and the line `2 ⊆ R2 is described by the
equation 4x − 2y = 6. If possible, describe `1 and `2 using spans.

We can express `1 in vector form by

~x = t
�

2
−1

�

+ ~0,

and so

`1 = span
§�

2
−1

�ª

.

However, `2 does not pass through ~0, and so `2 cannot be written as a span.

Takeaway. Lines and planes through the origin, and only lines and planes through the origin, can be
expressed as spans.

Set Addition
We’re going to work around the fact that only objects which pass through the origin can be written as spans, but
first let’s take a detour and learn about set addition.

Set Addition. If A and B are sets of vectors, then the set sum of A and B, denoted A+ B, is

A+ B = {~x : ~x = ~a+ ~b for some ~a ∈ A and ~b ∈ B}.

Set sums are very different than regular sums despite using the same symbol, “+”.15 However, they are very
useful. Let C = {~x ∈ R2 : ‖~x‖= 1} be the unit circle centered at the origin, and consider the sets

X = C + {~e2} Y = C + {3~e1,~e2} Z = C + {~0,~e1,~e2}.

Rewriting, we see X = {~x + ~e2 : ‖~x‖= 1} is just C translated by ~e2. Similarly, Y = {~x + ~v : ‖~x‖= 1 and ~v =
3~e1 or ~v = ~e2} = (C + {3~e1})∪ (C + {~e2}), and so Y is the union of two translated copies of C .16 Finally, Z is the
union of three translated copies of C .

14We use the word volume to indicate the higher-dimensional analogue of a plane.
15For example, A+ {}= {}, which might seem counterintuitive for an “addition” operation.
16If you want to stretch your mind, consider what C + C is as a set.
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−1 1

−1

1

2

X

−1 1 2 3 4

−1

1

2

Y
−1 1 2

−1

1

2

Z

Translated Spans
Set addition allows us to easily create parallel lines and planes by translation. For example, consider the lines `1

and `2 given in vector form as ~x = t ~d and ~x = t ~d + ~p, respectively, where ~d =
�

2
1

�

and ~p =
�

−1
1

�

. These lines

differ from each other by a translation. That is, every point in `2 can be obtained by adding ~p to a corresponding
point in `1. Using the idea of set addition, we can express this relationship by the equation

`2 = `1 + {~p}.

−1 1 2 3 4

−1

1

2

3

`1

`2 = `1 + {~p}

~p
−1 1 2 3 4

−1

1

2

3

`1

3
2
~d ∈ `1

~p

3
2
~d + ~p ∈ `2

Note: it would be incorrect to write “`2 = `1 + ~p”. Because `1 is a set and ~p is not a set, “`1 + ~p” does not make
mathematical sense.

Example. Recall `2 ⊆ R2 is the line described by the equation 4x − 2y = 6. Describe `2 as a translated
span.

We can express `2 in vector form with the equation

~x = t
�

1
2

�

+
�

1
−1

�

.

Therefore,

`2 = span
§�

1
2

�ª

+
§�

1
−1

�ª

.

We can now see translated spans provide an alternative notation to vector form for specifying lines and planes.
If Q is described in vector form by

~x = t ~d1 + s~d2 + ~p,

then
Q = span{~d1, ~d2}+ {~p}.

Takeaway. All lines and planes, whether through the origin or not, can be expressed as translated spans.

Linear Independence & Linear Dependence
Let

~u=





1
0
0



 ~v =





0
1
0



 ~w=





1
1
0



 .
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Since ~w = ~u + ~v, we know that ~w ∈ span{~u, ~v}. Geometrically, this is also clear because span{~u, ~v} is the
x y-plane in R3 and ~w lies on that plane.

What about span{~u, ~v, ~w}? Intuitively, since ~w is already a linear combination of ~u and ~v, we can’t get anywhere
new by taking linear combinations of ~u, ~v, and ~w compared to linear combinations of just ~u and ~v. So
span{~u, ~v}= span{~u, ~v, ~w}.

Can we prove this from the definitions? Yes! Suppose ~r ∈ span{~u, ~v, ~w}. By definition,

~r = α~u+ β~v + γ~w

for some α,β ,γ ∈ R. Since ~w= ~u+ ~v, we see

~r = α~u+ β~v + γ(~u+ ~v) = (α+ γ)~u+ (β + γ)~v ∈ span{~u, ~v}.

Thus, span{~u, ~v, ~w} ⊆ span{~u, ~v}. Conversely, if ~s ∈ span{~u, ~v}, by definition,

~s = a~u+ b~v = a~u+ b~v + 0~w

for some a, b ∈ R, and so ~s ∈ span{~u, ~v, ~w}. Thus span{~u, ~v} ⊆ span{~u, ~v, ~w}. We conclude span{~u, ~v} =
span{~u, ~v, ~w}.

In this case, ~w was a redundant vector—it wasn’t needed for the span. When a set contains a redundant vector,
we call the set linearly dependent.

Linearly Dependent & Independent (Geometric).
We say the vectors ~v1, ~v2, . . . , ~vn are linearly dependent if for at least one i,

~vi ∈ span{~v1, ~v2, . . . , ~vi−1, ~vi+1, . . . , ~vn}.

Otherwise, they are called linearly independent.

We will also refer to sets of vectors (for example {~v1, . . . , ~vn}) as being linearly independent or linearly dependent.
For technical reasons, we didn’t state the definition in terms of sets.17

The geometric definition of linear dependence says that the vectors ~v1, . . . , ~vn are linearly dependent if you can
remove at least one vector without changing the span. In other words, ~v1, . . . , ~vn are linearly dependent if there
is a redundant vector.

Example. Let ~a =
�

1
2

�

, ~b =
�

2
3

�

, ~c =
�

4
6

�

, and ~d =
�

4
5

�

. Determine whether {~a,~b,~c, ~d} is linearly

independent or linearly dependent.

By inspection, we see ~c = 2~b. Therefore,

span{~a,~b,~c, ~d}= span{~a,~b, ~d},

and so {~a,~b,~c, ~d} is linearly dependent.

Example. The planes P and Q are given in vector form by

P
︷ ︸︸ ︷

~x = t





1
2
1



+ s





2
2
1



 and

Q
︷ ︸︸ ︷

~x = t





3
4
2



+ s





2
2
1



 .

Determine if P and Q are the same plane.

We could answer this question using techniques from Module 2, but for variety, let’s see if we can answer the
question using spans and linear dependence.

Let ~a1 =





1
2
1



 and ~a2 =





2
2
1



 be direction vectors for P and let ~b1 =





3
4
2



 and ~b2 =





2
2
1



 be direction vectors

for Q and notice P = span{~a1, ~a2} and Q= span{~b1,~b2}.
By definition P =Q if (i) every point in P is a point in Q and (ii) every point in Q is a point in P.

17The issue is, every element of a set is unique. Clearly, the vectors ~v and ~v are linearly dependent, but {~v, ~v} = {~v}, and so {~v, ~v} is
technically a linearly independent set. This issue would be resolved by talking about multisets instead of sets, but it isn’t worth the hassle.
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Focusing on (i), let ~p = t~a1 + s~a2 ∈ P be an arbitrary point in P. We need to show ~p ∈Q. Since {~b1,~b2} is
linearly independent and Q= span{~b1,~b2}, showing ~p ∈Q is equivalent to showing {~p,~b1,~b2} is a linearly
dependent set.
To see this, start by observing

{~a1,~b1,~b2} and {~a2,~b1,~b2}

are both linearly dependent sets: ~a1 = ~b1−~b2 ∈ span{~b1,~b2} and ~a2 = ~b2 ∈ span{~b1,~b2}. Therefore, ~a1 ∈Q
and ~a2 ∈Q. Since both ~a1 and ~a2 are in Q and Q= span{~b1,~b2} is itself a span, we know that every linear
combination of ~a1 and ~a2 must be in Q. In particular, ~p = t~a1 + s~a2 ∈Q, which is what we wanted to show.
We can show (ii) similarly by observing that ~b1 ∈ P and ~b2 ∈ P and so any point ~q = t~b1 + s~b2 ∈ Q must
also be in P.

We can also think of linear independence/dependence from an algebraic perspective. Suppose the vectors ~u, ~v,
and ~w satisfy

~w= ~u+ ~v. (2)

The set {~u, ~v, ~w} is linearly dependent since ~w ∈ span{~u, ~v}, but equation (2) can be rearranged to get

~0= ~u+ ~v − ~w. (3)

Here we have expressed ~0 as a linear combination of ~u, ~v, and ~w. By itself, this is nothing special. After all,
we know ~0= 0~u+ 0~v + 0~w is a linear combination of ~u, ~v, and ~w. However, the right side of equation (3) has
non-zero coefficients, which makes the linear combination non-trivial.

Trivial Linear Combination.
The linear combination α1~v1 + · · ·+ αn~vn is called trivial if α1 = · · · = αn = 0. If at least one αi 6= 0, the
linear combination is called non-trivial.

We can always write ~0 as a linear combination of vectors if we let all the coefficients be zero, but it turns out we
can only write ~0 as a non-trivial linear combination of vectors if those vectors are linearly dependent. This is
the inspiration for another definition of linear independence/dependence.

Linearly Dependent & Independent (Algebraic).
The vectors ~v1, ~v2, . . . , ~vn are linearly dependent if there is a non-trivial linear combination of ~v1, . . . , ~vn that
equals the zero vector. Otherwise they are linearly independent.

The idea of a “redundant vector” coming from the geometric definition of linear dependence is easy to visualize,
but it can be hard to prove things with—checking for linear independence with the geometric definition involves
verifying for every vector that it is not in the span of the others. The algebraic definition on the other hand is
less obvious, but the reasoning is easier. You only need to analyze solutions to one equation!

Example. Let ~u =
�

1
2

�

, ~v =
�

2
3

�

, and ~w =
�

4
5

�

. Use the algebraic definition of linear independence to

determine whether {~u, ~v, ~w} is linearly independent or dependent.

We need to determine if there is a non-trivial solution to

x~u+ y~v + z ~w= ~0.

This vector equation is equivalent to the system of equations

�

x + 2y + 4z = 0

2x + 3y + 5z = 0
.

Solving this system using row reduction, we see the complete solution set can be expressed as




x
y
z



= t





2
−3

1



 .

In particular, (x , y, z) = (2,−3,1) is a non-trivial solution to this system. Therefore {~u, ~v, ~w} is linearly
dependent.

Theorem. The geometric and algebraic definitions of linear independence are equivalent.
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Proof. To show the two definitions are equivalent, we need to show that geometric =⇒ algebraic and
algebraic =⇒ geometric.

(geometric =⇒ algebraic) Suppose ~v1, . . . , ~vn are linearly dependent by the geometric definition. That means
that for some i, we have

~vi ∈ span{~v1, . . . , ~vi−1, ~vi+1, . . . , ~vn}.

Fix such an i. Then, by the definition of span we know

~vi = α1~v1 + · · ·+αi−1~vi−1 +αi+1~vi+1 + · · ·+αn~vn,

and so
~0= α1~v1 + · · ·+αi−1~vi−1 − ~vi +αi+1~vi+1 + · · ·+αn~vn.

This must be a non-trivial linear combination because the coefficient of ~vi is −1 6= 0. Therefore, ~v1, . . . , ~vn is
linearly dependent by the algebraic definition.

(algebraic =⇒ geometric) Suppose ~v1, . . . , ~vn are linearly dependent by the algebraic definition. That means
there exist α1, . . . ,αn, not all zero, so that

~0= α1~v1 + · · ·+αn~vn.

Fix i so that αi 6= 0 (why do we know there is such an i?). Rearranging we get

−αi~vi = α1~v1 + · · ·+αi−1~vi−1 +αi+1~vi+1 + · · ·+αn~vn,

and since αi 6= 0, we can multiply both sides by −1
αi

to get

~vi =
−α1

αi
~v1 + · · ·+

−αi−1

αi
~vi−1 +

−αi+1

αi
~vi+1 + · · ·+

−αn

αi
~vn.

This shows that
~vi ∈ span{~v1, . . . , ~vi−1, ~vi+1, . . . , ~vn},

and so ~v1, . . . , ~vn is linearly dependent by the geometric definition. �

Linear Independence and Unique Solutions
The algebraic definition of linear independence can teach us something about solutions to systems of equations.

Recall the linearly dependent vectors

~u=





1
0
0



 ~v =





0
1
0



 ~w=





1
1
0





which satisfy the non-trivial relationship ~u+ ~v− ~w = ~0. Since ~u+ ~v− ~w = ~0 is a non-trivial relationship giving ~0,
we can use it to generate others. For example,

17(~u+ ~v − ~w) = 17~u+ 17~v − 17~w = 17~0 = ~0

−3(~u+ ~v − ~w) = −3~u− 3~v + 3~w = −3~0 = ~0
...

are all different non-trivial linear combinations that give ~0. In other words, if the equation α~u+β~v+γ~w = ~0 has
a non-trivial solution, it has infinitely many non-trivial solutions. Conversely, if the equation α~u+ β~v + γ~w= ~0
has infinitely many solutions, one of them has to be non-trivial!

Equations where one side is ~0 show up often and are called homogeneous equations.

Homogeneous System.
A system of linear equations or a vector equation in the variables α1, . . . , αn is called homogeneous if it
takes the form

α1~v1 +α2~v2 + · · ·+αn~vn = ~0,

where the right side of the equation is ~0.

This insight links linear independence and homogeneous systems together, and is encapsulated in the following
theorem.
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Theorem. The vectors ~v1, . . . , ~vn are linearly independent if and only if the homogeneous equation

α1~v1 + · · ·+αn~vn = ~0

has a unique solution.

This theorem has a practical application: suppose you wanted to decide if the vectors ~a, ~b, and ~c were linearly
dependent. You could (i) find a non-trivial solution to x~a+ y~b+z~c = ~0, or (ii) merely show that x~a+ y~b+z~c = ~0
has more than one solution. Sometimes one is easier than the other.

Linear Independence and Vector Form
The equation

~x = t1
~d1 + t2

~d2

represents a plane in vector form whenever ~d1 and ~d2 are non-zero, non-parallel vectors. In other words,
~x = t1

~d1 + t2
~d2 represents a plane whenever {~d1, ~d2} is linearly independent.

Does this reasoning work for lines too? The equation

~x = t ~d

represents a line in vector form precisely when ~d 6= ~0. And {~d} is linearly independent exactly when ~d 6= 0.

This reasoning generalizes to volumes. The equation

~x = t1
~d1 + t2

~d2 + t3
~d3

represents a volume in vector form exactly when {~d1, ~d2, ~d3} is linearly independent. To see this, suppose
{~d1, ~d2, ~d3} were linearly dependent. That means one or more vectors could be removed from {~d1, ~d2, ~d3}
without changing its span. Therefore, if {~d1, ~d2, ~d3} is linearly dependent ~x = t1

~d1 + t2
~d2 + t3

~d3 at best
represents a plane (though it could be a line or a point).

We now have a way of testing the validity of a vector-form representation of a line/plane/volume. Just check
whether the chosen direction vectors are linearly independent!

Takeaway. When writing an object in vector form, the direction vectors must always be linearly independent.

Practice Problems

1 Let A=











1
2
0



 ,





0
1
0



 ,





1
1
0











.

(a) Is A linearly independent or dependent?

(b) Describe the span of A.

(c) Can A be extended (i.e., can vectors be added to A)
so that A spans all of R3?

2 For each set below, determine whether it spans a point,
line, plane, volume, or other.

(a)
§�

1
1

�ª

(b)
§�

1
3

�

,
�

2
6

�ª

(c)
§�

2
4

�

,
�

4
2

�ª

(d)
§�

1
2

�

,
�

−1
−2

�ª

(e)
§�

1
2

�

,
�

−1
2

�ª

(f) {}

(g)
§�

1
2

�

,
�

2
3

�

,
�

3
4

�ª

(h)











5
4
−3



 ,





1
1
0



 ,





2
2
2











(i)











1
−2

0



 ,





4
−5

1











(j)











1
−2

0



 ,





4
−5

1



 ,





5
−7

1











3 (a) For each set in question 2, determine whether it is
linearly independent or dependent.

(b) Is the set











1
2
3



 ,





5
6
7



 ,





9
10
11



 ,





13
14
15











linearly in-

dependent or dependent?

(c) Can you find a set of n + 1 vectors in Rn that is
linearly independent? Explain.

4 (a) If possible, express the following lines inR2 as spans.
Otherwise, justify why the line cannot be expressed
as a span.

i. x = 0

ii. 2x + 3y = 0

iii. 5x − 4y = 0

40 © Jason Siefken, 2015–2024



M
od

ul
e

3
–

Sp
an

s,
Tr

an
sla

te
d

Sp
an

s,
an

d
Li

ne
ar

In
de

pe
nd

en
ce

/D
ep

en
de

nc
e

iv. −x − y = −1

v. 9x − 15y = 8

(b) For each line in question 4a that cannot be expressed
as a span, express it as a translated span.

(c) Each equation below specifies a line or a plane inR3.
If possible, express the specified line or plane as a
span. Otherwise, justify why it cannot be expressed
as a span.

i. 2x − y + z = 4

ii. x + 6y − z = 0

iii. x + 3z = 0

iv. y = 1

v. x = 0 and z = 0

vi. 2x − y = 2 and z = −1

(d) For lines or planes in question 4c that cannot be
expressed as spans, express as a translated span.

5 Determine if the following planes, expressed in vector
form, are the same plane.

(a) ~x = t
�

1
2

�

+ s
�

2
7

�

and ~x = t
�

3
5

�

+ s
�

8
4

�

.

(b) ~x = t





2
2
3



+ s





1
0
5



 and ~x = t





1
0
5



+ s





4
2

13



.

(c) ~x = t





1
2
1



+ s





2
2
1



 and ~x = t





0
1
0



+ s





1
2
1



.

6 Show that the set











2
0
7



 ,





1
1
1



 ,





6
4

11











is linearly de-

pendent in two ways. First, using the geometric definition
of linear dependence and then using the algebraic defini-
tion.

7 Choose vectors ~p, ~d1, ~d2, ~d3 in R4 such that the vector
equation ~x = t1

~d1 + t2
~d2 + t3

~d3 + ~p specifies:

(a) A hyperplane passing through the origin.

(b) A plane not passing through the origin.

(c) A line passing through the origin.

(d) The point (2,2,2, 3).

8 Classify the sets A= {} and B = {~0} as linearly indepen-
dent or dependent.

9 Let S =
§�

1
3

�

,
�

0
−1

�ª

and let T =
§�

−1
−1

�

,
�

0
2

�

,
�

0
0

�ª

.

Draw the sets S, T , and T + S.

10 Let S =
§�

1
1

�

,
�

0
−1

�

,
�

0
0

�ª

.

(a) Draw S, S + S, and (S + S) + S.

(b) Is (S + S) + S = S + (S + S)? Does the expression
S + S + S make sense?

(c) Draw S + S + S + S + · · ·.

11 Let D ⊆ R2 be the unit disk centered at the origin and let
L ⊆ R2 be the line segment from (0,0) to (0,2).

(a) How many points are in D, L, and D+ L?

(b) Draw D+ L.

(c) Find the area of D+ L.

(d) Suppose S ⊆ R2 makes a smiley face when drawn
and the “thickness” of each line composing this smi-
ley face is 0.01 units. Can you find a set A so that
the set S+A represents a smiley face where the lines
have a thickness of 0.05? If so, give an example of
such an A. Otherwise, explain why it is impossible.

12 Let ~v1, ~v2, ~v3 be vectors. For each of the following state-
ments, justify whether the statement is true or false.

(a) If ~v1 can be written as a linear combination of ~v2

and ~v3, then {~v1, ~v2, ~v3} is linearly dependent.

(b) If {~v1, ~v2, ~v3} is linearly dependent, then ~v1 can be
written as a linear combination of ~v2 and ~v3.

(c) If ~v1 = k~v2 for some real number k, then {~v1, ~v2} is
linearly dependent.

(d) If ~v1 is not a scalar multiple of ~v2, then {~v1, ~v2, ~v3}
is linearly independent.

(e) All spans contain ~0.
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Span

Span
D

EF
IN

IT
IO

N The span of a set of vectors V is the set of all linear combinations of vectors in V . That is,

span V = {~v : ~v =α1~v1 +α2~v2 + · · ·+αn~vn for some ~v1, ~v2, . . . , ~vn ∈ V and scalars α1,α2, . . . ,αn}.

Additionally, we define span{}= {~0}.

15 Let ~v1 =
�

1
1

�

, ~v2 =
�

1
−1

�

, and ~v3 =
�

2
2

�

.

15.1 Draw span{~v1}.
15.2 Draw span{~v2}.
15.3 Describe span{~v1, ~v2}.
15.4 Describe span{~v1, ~v3}.
15.5 Describe span{~v1, ~v2, ~v3}.
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16 Let `1 ⊆ R2 be the line with equation x − y = 0 and `2 ⊆ R2 the line with equation x − y = 4.

16.1 If possible, describe `1 as a span. Otherwise explain why it’s not possible.

16.2 If possible, describe `2 as a span. Otherwise explain why it’s not possible.

16.3 Does the expression span(`1) make sense? If so, what is it? How about span(`2)?
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Set Addition

D
EF

If A and B are sets of vectors, then the set sum of A and B, denoted A+ B, is

A+ B = {~x : ~x = ~a+ ~b for some ~a ∈ A and ~b ∈ B}.

17 Let A=
§�

1
2

�ª

, B =
§�

1
1

�

,
�

1
−1

�ª

, and `= span
§�

1
−1

�ª

.

17.1 Draw A, B, and A+ B in the same picture.

17.2 Is A+ B the same as B + A?

17.3 Draw `+ A.

17.4 Consider the line `2 given in vector form by ~x = t
�

1
−1

�

+
�

1
2

�

. Can `2 be described using only a span?

What about using a span and set addition?
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The Magic Carpet, Getting Back Home

18 Suppose you are now in a three-dimensional world for the carpet ride problem, and you have three modes
of transportation:

~v1 =





1
1
1



 ~v2 =





6
3
8



 ~v3 =





4
1
6





You are only allowed to use each mode of transportation once (in the forward or backward direction) for
a fixed amount of time (c1 on ~v1, c2 on ~v2, c3 on ~v3).

1. Find the amounts of time on each mode of transportation (c1, c2, and c3, respectively) needed to go
on a journey that starts and ends at home or explain why it is not possible to do so.

2. Is there more than one way to make a journey that meets the requirements described above? (In
other words, are there different combinations of times you can spend on the modes of transportation
so that you can get back home?) If so, how?

3. Is there anywhere in this 3D world that Gauss could hide from you? If so, where? If not, why not?

4. What is span











1
1
1



 ,





6
3
8



 ,





4
1
6











?
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Linearly Dependent & Independent (Geometric)

D
EF

IN
IT

IO
N We say the vectors ~v1, ~v2, . . . , ~vn are linearly dependent if for at least one i,

~vi ∈ span{~v1, ~v2, . . . , ~vi−1, ~vi+1, . . . , ~vn}.

Otherwise, they are called linearly independent.

19
Let ~u=





1
0
0



, ~v =





0
1
0



, and ~w=





1
1
0



.

19.1 Describe span{~u, ~v, ~w}.
19.2 Is {~u, ~v, ~w} linearly independent? Why or why not?

Let X = {~u, ~v, ~w}.

19.3 Give a subset Y ⊆ X so that span Y = span X and Y is linearly independent.

19.4 Give a subset Z ⊆ X so that span Z = span X and Z is linearly independent and Z 6= Y .
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Trivial Linear Combination
D

EF The linear combination α1~v1 + · · ·+αn~vn is called trivial if α1 = · · ·= αn = 0. If at least one αi 6= 0,
the linear combination is called non-trivial.

20
Recall ~u=





1
0
0



, ~v =





0
1
0



, and ~w=





1
1
0



.

20.1 Consider the linearly dependent set {~u, ~v, ~w} (where ~u, ~v, ~w are defined as above). Can you write ~0 as a
non-trivial linear combination of vectors in this set?

20.2 Consider the linearly independent set {~u, ~v}. Can you write ~0 as a non-trivial linear combination of vectors
in this set?

We now have an equivalent definition of linear dependence.
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Linearly Dependent & Independent (Algebraic)

D
EF The vectors ~v1, ~v2, . . . , ~vn are linearly dependent if there is a non-trivial linear combination of ~v1, . . . , ~vn

that equals the zero vector. Otherwise they are linearly independent.

21 21.1 Explain how the geometric definition of linear dependence (original) implies this algebraic one (new).

21.2 Explain how this algebraic definition of linear dependence (new) implies the geometric one (original).

Since we have geometric def =⇒ algebraic def, and algebraic def =⇒ geometric def ( =⇒ should
be read aloud as ‘implies’), the two definitions are equivalent (which we write as algebraic def ⇐⇒
geometric def).
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22 Suppose for some unknown ~u, ~v, ~w, and ~a,

~a = 3~u+ 2~v + ~w and ~a = 2~u+ ~v − ~w.

22.1 Could the set {~u, ~v, ~w} be linearly independent?

Suppose that
~a = ~u+ 6~r − ~s

is the only way to write ~a using ~u,~r,~s.

22.2 Is {~u,~r,~s} linearly independent?

22.3 Is {~u,~r} linearly independent?

22.4 Is {~u, ~v, ~w,~r} linearly independent?
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Linear Independence and Dependence, Creating Examples

23
1. Fill in the following chart keeping track of the strategies you used to generate examples.

Linearly independent Linearly dependent

A set of 2 vectors in R2

A set of 3 vectors in R2

A set of 2 vectors in R3

A set of 3 vectors in R3

A set of 4 vectors in R3

2. Write at least two generalizations that can be made from these examples and the strategies you
used to create them.
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Dot Products & Normal Forms

In this module you will learn

� Geometric and algebraic definitions of the dot product.

� How dot products relate to the length of a vector and the angle between two vectors.

� The normal form of lines, planes, and hyperplanes.

Let ~a and ~b be vectors rooted at the same point and let θ denote the smaller of the two angles between them
(so 0≤ θ ≤ π). The dot product of ~a and ~b is defined to be

~a · ~b = ‖~a‖‖~b‖ cosθ .

We will call this the geometric definition of the dot product.

~a

~b

θ
~a

~b

θ

The dot product is also sometimes called the scalar product because the result is a scalar.

Algebraically, we can define the dot product in terms of coordinates:









a1
a2
...

an









·









b1
b2
...

bn









= a1 b1 + a2 b2 + · · ·+ an bn.

We will call this the algebraic definition of the dot product.

By switching between algebraic and geometric definitions, we can use the dot product to find quantities that
are otherwise difficult to find.

Example. Find the angle between the vectors ~v = (1,2, 3) and ~w= (1,1,−2).

From the algebraic definition of the dot product, we know

~v · ~w= 1(1) + 2(1) + 3(−2) = −3.

From the geometric definition, we know

~v · ~w= ‖~v‖‖~w‖ cosθ =
p

14
p

6cosθ = 2
p

21cosθ .

Equating the two definitions of ~v · ~w, we see

cosθ =
−3

2
p

21

and so θ = arccos
� −3

2
p

21

�

.

The dot product has several interesting properties. Since the angle between ~a and itself is 0, the geometric
definition of the dot product tells us

~a · ~a = ‖~a‖‖~a‖ cos0= ‖~a‖2.

In other words,
‖~a‖=
p

~a · ~a,
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and so dot products can be used to compute the length of vectors.18

From the algebraic definition of the dot product, we can deduce several distributive laws. Namely, for any
vectors ~a, ~b, and ~c and any scalar k we have

(~a+ ~b) · ~c = ~a · ~c + ~b · ~c ~a · (~b+ ~c) = ~a · ~b+ ~a · ~c

(k~a) · ~b = k(~a · ~b) = ~a · (k~b)
and

~a · ~b = ~b · ~a.

Orthogonality
Recall that for vectors ~a and ~b, the relationship ~a ·~b = 0 can hold for two reasons: (i) either ~a = ~0, ~b = ~0, or both
or (ii) ~a and ~b meet at 90◦. Thus, the dot product can be used to tell if two vectors are perpendicular. There is
some strangeness with the zero vector here, but it turns out this strangeness simplifies our lives mathematically.

Orthogonal. Two vectors ~u and ~v are orthogonal to each other if ~u · ~v = 0. The word orthogonal is
synonymous with the word perpendicular.

The definition of orthogonal encapsulates both the idea of two vectors forming a right angle and the idea of one
of them being ~0.

Before we continue, let’s pin down exactly what we mean by the direction of a vector. There are many ways we
could define this term, but we’ll go with the following.

Direction. The vector ~u points in the direction of the vector ~v if ~u = k~v for some scalar k. The vector ~u
points in the positive direction of ~v if ~u= k~v for some positive scalar k.

The vector 2~e1 points in the direction of ~e1 since 1
2 (2~e1) = ~e1. Since 1

2 > 0, 2~e1 also points in the positive
direction of ~e1. In contrast, −~e1 points in the direction ~e1 but not the positive direction of ~e1.

When it comes to the relationship between two vectors, there are two extremes: they point in the same direction,
or they are orthogonal. The dot product can be used to tell you which of these cases you’re in, and more than
that, it can tell you to what extent one vector points in the direction of another (even if they don’t point in the
same direction).

Example. Let ~a =
�

1
2

�

, ~b =
�

3
3

�

, ~c =
�

2
1

�

, and ~v =
�

3
4

�

. Which vector out of ~a, ~b, and ~c has a direction

closest to the direction of ~v?

We would like to know when θ , the angle between a pair of the given vectors, is smallest. This is equivalent
to finding when cosθ is closest to 1 (since cos 0 = 1). By equating the geometric and algebraic definitions of
the dot product, we know

cosθ =
~p · ~q
‖~p‖‖~q‖

.

Let α, β , and γ be the angles between the vector ~v and the vectors ~a, ~b, ~c, respectively. Computing, we find

cosα=
3+ 8

5
p

5
=

11
p

5
25

≈ 0.9838699101

cosβ =
9+ 12

5
p

18
=

7
p

2
10
≈ 0.989949437

cosγ=
6+ 4

5
p

5
=

2
p

5
5
≈ 0.894427191.

Since cosβ is the closest to 1, we know ~b has a direction closest to that of ~v.

Normal Form of Lines and Planes
Let ~n=
�

1
2

�

. If a vector ~v =
�

v1
v2

�

is orthogonal to ~n, then

~n · ~v = v1 + 2v2 = 0,
18Oftentimes in non-geometric settings, the dot product between two vectors is defined first and then the length of ~a is actually defined to

be
p

~a · ~a.
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and so v1 = −2v2. In other words, ~v is orthogonal to ~n exactly when ~v ∈ span
§�

−2
1

�ª

. What have we learned?

The set of all vectors orthogonal to ~n forms a line ` = span
§�

−2
1

�ª

. In this case, we call ~n a normal vector for `.

−3 −2 −1 1 2 3

−2

−1

1

2

~n

`= span
§�

−2
1

�ª

Normal Vector. A normal vector to a line (or plane or hyperplane) is a non-zero vector that is orthogonal
to all direction vectors for the line (or plane or hyperplane).

In R2, normal vectors provide yet another way to describe lines, including lines which don’t pass through the
origin.

Let ~n=
�

1
2

�

as before, and fix ~p =
�

1
1

�

. If we draw the set of all vectors orthogonal to ~n but root all the vectors

at ~p, again we get a line, but this time the line passes through ~p.

−2 −1 1 2 3 4

−1

1

2

3

~n

~p
`2 = span
§�

−2
1

�ª

+
§�

1
1

�ª

In fact, the line we get is `2 = span
§�

−2
1

�ª

+
§�

1
1

�ª

= `+ {~p}, which is just ` (the parallel line through the

origin) translated by ~p.

Let’s relate this to dot products and normal vectors. By definition, for every ~v ∈ `, we have ~n · ~v = 0. Since `2 is
a translate of ` by ~p, we deduce the relationship that for every ~v ∈ `2,

~n · (~v − ~p) = 0.

When a line is expressed as above, we say it is expressed in normal form.

Normal Form of a Line.
A line ` ⊆ R2 is expressed in normal form if there exist vectors ~n 6= ~0 and ~p so that ` is the solution set to
the equation

~n · (~x − ~p) = 0.

The equation ~n · (~x − ~p) = 0 is called the normal form of `.

Though the definition doesn’t explicitly state it, if a line ` ∈ R2 is expressed in normal form as ~n · (~x − ~p) = 0,
then ~n is necessarily a normal vector for `. (Think about what the solution set to ~n · (~x − ~p) = 0 would be if ~n
happened to be ~0!)
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What about in R3? Fix a non-zero vector ~n ∈ R3 and let Q ⊆ R3 be the set of vectors orthogonal to ~n. Q is a
plane through the origin, and again, we call ~n a normal vector of the plane Q.

~0

~d1

~d2

~n

In a similar way to the line, Q is the set of solutions to ~n · ~x = 0. And, for any ~p ∈ R3, the translated plane
Q+ {~p} is the solution set to

~n · (~x − ~p) = 0.

Thus, we see planes in R3 have a normal form just like lines in R2 do.

Example. Find vector form and normal form of the plane P passing through the points A = (1,0,0),
B = (0,1, 0) and C = (0,0, 1).

To find vector form of P, we need a point on the plane and two direction vectors. We have three points on
the plane, so we can obtain two direction vectors by subtracting these points in different ways. Let

~d1 =
−→
AB =





−1
1
0



 ~d2 =
−→
AC =





−1
0
1



 .

Using the point A, we may now express P in vector form by




x
y
z



= t





−1
1
0



+ s





−1
0
1



+





1
0
0



 .

To write P in normal form, we need to find a normal vector for P. By inspection, we see that ~n= (1, 1, 1) is
a normal vector to P. (If we weren’t so insightful, we could also solve the system ~n · ~d1 = 0 and ~n · ~d2 = 0 to
find a normal vector.) Now, we may express P in normal form as





1
1
1



 ·









x
y
z



−





1
0
0







= 0.

In R2, only lines have a normal form, and in R3 only planes have a normal form. In general, we call objects in
Rn which have a normal form hyperplanes.

Hyperplane. The set X ⊆ Rn is called a hyperplane if there exists ~n 6= ~0 and ~p so that X is the set of solutions
to the equation

~n · (~x − ~p) = 0.

Hyperplanes always have dimension one less than the space they’re contained in. So, hyperplanes in R2 are
(one-dimensional) lines, hyperplanes in R3 are regular (two-dimensional) planes, and hyperplanes in R4 are
(three-dimensional) volumes.
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Hyperplanes and Linear Equations
Suppose ~n, ~p ∈ R3 and ~n 6= ~0. Then, solutions to

~n · (~x − ~p) = 0

define a plane P. But, ~n · (~x − ~p) = 0 if and only if

~n · ~x = ~n · ~p = α.

Since ~n and ~p are fixed, α is a constant. Expanding using coordinates, we see

~n · (~x − ~p) = ~n · ~x −α= nx x + ny y + nzz −α= 0

and so P is the set of solutions to
nx x + ny y + nzz = α. (4)

Equation (4) is sometimes called scalar form of a plane. For us, it will not be important to distinguish between
scalar and normal form, but what is important is that we can use the row reduction algorithm to write the
complete solution to (4), and this complete solution will necessarily be written in vector form.

Example. Let Q ⊆ R3 be the plane passing through ~p and with normal vector ~n where

~p =





1
1
0



 and ~n=





1
1
1



 .

Write Q in vector form.

We know Q is the set of solutions to ~n · (~x − ~p) = 0. In scalar form, this equation becomes

~n · (~x − ~p) = ~n · ~x − ~n · ~p = x + y + z − 2= 0.

Rearranging, we see Q is the set of all solutions to

x + y + z = 2.

Using the row reduction algorithm to write the complete solution,a we get




x
y
z



= t





−1
1
0



+ s





−1
0
1



+





2
0
0



 .

aIn some sense, this is overkill because the equation corresponds to the augmented matrix
�

1 1 1 | 2
�

, which is already row
reduced.

Practice Problems

1 Compute the following dot products.

(a)
�

9
4

�

·
�

10
−3

�

(b)





1
36

2



 ·





0
0
1





(c)





7
6
−3



 ·









5
11
−1



+





−2
−6
−1









(d)











1
3
0
−5

5











·











1
2
2
1
2











(e)





1
2





2
5
4







 ·





1
0
−1





2 Compute the length of the following vectors.

(a)
�

2
0

�

(b)





1
2
3





(c) 4







5
−6
15

2







3 For each pair of vectors listed below, determine if the
angle between the vectors is greater than, less than, or
equal to 90◦.
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(a)
�

1
0

�

and
�

−3
4

�

(b)





1
0
1



 and





−5
4
−3





(c)





1
2
3



 and





−1
−1

2





4 For each vector, find two unit vectors orthogonal to it.

(a)
�

0
1

�

(b)
�

1
2

�

(c)





1
3
5





(d)





−13
−4

5





(e)







0
1
1
1
2







5 Compute the distance between the following pairs of vec-
tors.

(a)
�

−1
1

�

and
�

−1
−4

�

(b)





2
−6

5



 and





−4
7
−3





(c)





1
1
1



 and





−1
−1
−1





(d)











0
0
0
0
0











and











1
1
1
1
1











6 (a) Which vector out of
�

1
0

�

,
�

0
1

�

, and
�

4
1

�

has a direc-

tion closest to that of
�

3
5

�

?

(b) Which vector out of





2
3
4



,





1
−1
−1



, and





−3
0
1



 has a

direction closest to that of





1
0
1



?

7 For each plane specified, express the plane in both vector
form and normal form.

(a) The plane P ⊆ R3 passing through the points
A= (2,0, 0), B = (0,3, 0) and C = (0,0,−1).

(b) The plane Q ⊆ R3 passing through the points
D = (1,1, 1), E = (1,−2,1) and F = (0,12, 0).

8 (a) Let A ⊆ R3 be the plane passing through





0
1
1



 and

with normal vector





−1
−1
−1



. Write A in vector form.

(b) Let B ⊆ R3 be the plane passing through





1
2
3



 and

with normal vector





1
−1

0



. Write B in vector form.

9 In this problem we will prove some algebraic properties
of the dot product.

(a) Show by direct computation
��

1
2

�

+
�

3
4

��

·
�

5
6

�

=
�

1
2

�

·
�

5
6

�

+
�

3
4

�

·
�

5
6

�

(b) For ~x , ~y , ~z ∈ R2, justify whether or not it always
holds that

(~x + ~y) · ~z = ~x · ~z + ~y · ~z.

Does the same conclusion hold true when ~x , ~y , ~z ∈
Rn?

(c) Show by direct computation
�

6
�

2
3

��

·
�

4
5

�

= 6
��

2
3

�

·
�

4
5

��

(d) For ~x , ~y ∈ R2 and k ∈ R, Justify whether or not it
always holds that

(k~x) · ~y = k(~x · ~y).

Does the same conclusion hold true when ~x , ~y ∈
Rn?

(e) The dot product is called distributive. Is this a good
word to describe the dot product? Why?

10 Let ~u, ~v ∈ Rn. In this problem, we will prove |~u · ~v| ≤
‖~u‖‖~v‖. This is called the Cauchy-Schwarz inequality.

(a) Assuming the geometric definition ~u · ~v =
‖~u‖‖~v‖ cosθ where θ is the angle between ~u and ~v,
prove the Cauchy-Schwarz inequality.

(b) The Cauchy-Schwartz inequality can also be proved
using only the algebraic definition of the dot product.
Keep in mind the following facts which come from
the algebraic definition: Let ~x , ~y , ~z ∈ Rn, k ∈ R. (i)
‖~x‖ =
p

~x · ~x; (ii) (~x + ~y) · ~z = ~x · ~z + ~y · ~z; (iii)
(k~x) · ~y = k(~x · ~y); (iv) ~x · ~y = ~y · ~x .

i. Explain why the result is immediate if one (or
both) of ~u, ~v is the zero vector.

ii. Assume ~u, ~v are non-zero vectors. Consider the
function f : R → R where f (t) = ‖t~u− ~v‖2.
Convince yourself that f (t)≥ 0 for all t ∈ R.

iii. Simplify f (t) into a quadratic formula so that
f (t) = at2 − bt + c by determining its coeffi-
cients a, b, c in terms of ~u, ~v.

iv. Prove |~u · ~v| ≤ ‖~u‖‖~v‖, the Cauchy-Schwarz
inequality. Hint: Consider f ( b

2a ).
v. Prove |~u · ~v| = ‖~u‖‖~v‖ if the vectors ~u, ~v are

scalar multiples of each other.

11 Let ~u, ~v ∈ Rn. In this problem, we will prove ‖~u+ ~v‖ ≤
‖~u‖+ ‖~v‖. This is called the Triangle Inequality.
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(a) Pick your favorite vectors ~u, ~v and draw a picture of
~u, ~v, and ~u+ ~v. Root your vectors so that they form
the edges of a triangle. Can you explain why the
Triangle Inequality is true?

(b) Express ‖~u+ ~v‖ in terms of dot products and square
roots.

(c) Prove the Triangle Inequality.

12 Let A= {~v1, . . . , ~vk} ⊂ Rn. A is a set of mutually orthogo-
nal vectors if for all i 6= j, we have ~vi · ~v j = 0.

(a) Suppose A is a set of mutually orthogonal vectors.
Is A a linearly independent set? Why or Why not?

(b) Suppose A is a set of mutually orthogonal and non-
zero vectors. Is A a linearly independent set? Why
or Why not?
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Dot Product

Norm
D

EF
IN

IT
IO

N
The norm of a vector ~v =





v1
...

vn



 is the length/magnitude of ~v. It is written ‖~v‖ and can be computed

from the Pythagorean formula ‖~v‖=
q

v2
1 + · · ·+ v2

n .

Dot Product

D
EF

IN
IT

IO
N

If ~a =









a1
a2
...

an









and ~b =









b1
b2
...

bn









are two vectors in n-dimensional space, then the dot product of ~a an ~b is

~a · ~b = a1 b1 + a2 b2 + · · ·+ an bn.

Equivalently, the dot product is defined by the geometric formula

~a · ~b = ‖~a‖‖~b‖cosθ

where θ is the angle between ~a and ~b.

24
Let ~a =
�

1
1

�

, ~b =
�

3
1

�

, and ~u=





1
2
1



.

24.1 (a) Draw a picture of ~a and ~b.

(b) Compute ~a · ~b.

(c) Find ‖~a‖ and ‖~b‖ and use your knowledge of the multiple ways to compute the dot product to find
θ , the angle between ~a and ~b. Label θ on your picture.

24.2 Draw the graph of cos and identify which angles make cos negative, zero, or positive.
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24.3 Draw a new picture of ~a and ~b and on that picture draw

(a) a vector ~c where ~c · ~a is negative.

(b) a vector ~d where ~d · ~a = 0 and ~d · ~b < 0.

(c) a vector ~e where ~e · ~a = 0 and ~e · ~b > 0.

(d) Could you find a vector ~f where ~f · ~a = 0 and ~f · ~b = 0? Explain why or why not.

24.4 Recall the vector ~u whose coordinates are given at the beginning of this problem.

(a) Write down a vector ~v so that the angle between ~u and ~v is π/2. (Hint, how does this relate to the
dot product?)

(b) Write down another vector ~w (in a different direction from ~v) so that the angle between ~w and ~u is
π/2.

(c) Can you write down other vectors different than both ~v and ~w that still form an angle of π/2 with
~u? How many such vectors are there?
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For a vector ~v ∈ Rn, the formula
‖~v‖=
p

~v · ~v

always holds.

Distance
D

EF The distance between two vectors ~u and ~v is ‖~u− ~v‖.

Unit Vector

D
EF A vector ~v is called a unit vector if ‖~v‖= 1.

25
Let ~u=





1
2
1



 and ~v =





1
1
3



.

25.1 Find the distance between ~u and ~v.

25.2 Find a unit vector in the direction of ~u.

25.3 Does there exist a unit vector ~x that is distance 1 from ~u?

25.4 Suppose ~y is a unit vector and the distance between ~y and ~u is 2. What is the angle between ~y and ~u?
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Orthogonal
D

EF Two vectors ~u and ~v are orthogonal to each other if ~u · ~v = 0. The word orthogonal is synonymous
with the word perpendicular.

26
26.1 Find two vectors orthogonal to ~a =

�

1
−3

�

. Can you find two such vectors that are not parallel?

26.2 Find two vectors orthogonal to ~b =





1
−3

4



. Can you find two such vectors that are not parallel?

26.3 Suppose ~x and ~y are orthogonal to each other and ‖~x‖ = 5 and ‖~y‖ = 3. What is the distance between ~x
and ~y?
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27.1 Draw ~u=

�

2
3

�

and all vectors orthogonal to it. Call this set A.

27.2 If ~x =
�

x
y

�

and ~x is orthogonal to ~u, what is ~x · ~u?

27.3 Expand the dot product ~u · ~x to get an equation for A.

27.4 If possible, express A as a span.
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Normal Vector
D

EF A normal vector to a line (or plane or hyperplane) is a non-zero vector that is orthogonal to all
direction vectors for the line (or plane or hyperplane).

28 Let ~d =
�

1
2

�

and ~p =
�

1
−1

�

, and define the lines

`1 = span{~d} and `2 = span{~d}+ {~p}.

28.1 Find a vector ~n that is a normal vector for both `1 and `2.

28.2 Let ~v ∈ `1 and ~u ∈ `2. What is ~n · ~v? What about ~n · (~u− ~p)? Explain using a picture.

28.3 A line is expressed in normal form if it is represented by an equation of the form ~n · (~x − ~q) = 0 for some ~n
and ~q. Express `1 and `2 in normal form.

28.4 Some textbooks would claim that `2 could be expressed in normal form as
�

2
−1

�

· ~x = 3. How does this

relate to the ~n · (~x − ~p) = 0 normal form? Where does the 3 come from?
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29
Let ~n=





1
1
1



.

29.1 Use set-builder notation to write down the set, X , of all vectors orthogonal to ~n. Describe this set
geometrically.

29.2 Describe X using an equation.

29.3 Describe X as a span.
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Projections & Vector Components

In this module you will learn

� The definition of the projection of a vector onto a set and the definition of the vector component of one
vector in the direction of another.

� The relationship between projection, orthogonality, and vector components.

� How to project a vector onto a line.

Consider the following situation: you’re designing a 3d video game, but your users only have 2d screens. Or,
you have a 900-dimensional dataset, but you want to visualize it on a continuum (i.e., as a line). Each of these
is an example of finding the best approximation to particular points given restrictions. In general, this operation
is called a projection,19 and in the world of linear algebra, it has a very particular meaning.

Projection. Let X ⊆ Rn be a set. The projection of the vector ~v ∈ Rn onto X , written projX ~v, is the closest
point in X to ~v.

Let Px y ⊆ R3 be the x y-plane in R3 and let ~v =





1
2
3



. Intuitively, projPx y
~v is the “shadow” that ~v would cast on

Px y if the sun were directly overhead. Upon drawing a picture, we conclude projPx y
~v =





1
2
0



 .

−2
−1

1
2

3

−2
−1

1
2

31

2

3

4

~v

projPx y
~v

x

y

z

Continuing, let `y ⊆ R3 be the y-axis in R3. It’s a little bit harder to visualize what proj`y
~v is, so let’s appeal to

some definitions.

By definition, every vector in `y takes the form ~ut =





0
t
0



 for some t ∈ R. The distance between ~ut and ~v is

‖~ut − ~v‖=























0
t
0



−





1
2
3























=
Æ

12 + (t − 2)2 + 32.

Since (t −2)2 is always positive, the quantity
p

12 + (t − 2)2 + 32 is minimized when (t −2)2 = 0; that is, when
t = 2. Thus, we see ~u2 is the closest vector in `y to ~v and so,

proj`y
~v = ~u2 =





0
2
0



 .

19What we define as a projection is sometimes called the orthogonal projection to distinguish it from other types of projections.
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Example. Let ` ⊆ R2 be the line given in vector form by ~x = t

�

1
1

�

+
�

3
−2

�

, and let ~v =
�

−1
−1

�

. Use the

definition of projection to find proj` ~v.

Let ~ut = t
�

1
1

�

+
�

3
−2

�

∈ `. By definition, the distance between ~v and ~ut is given by

‖~ut − ~v‖=












�

t
�

1
1

�

+
�

3
−2

��

−
�

−1
−1

�













=













�

t + 4
t − 1

�













=
p

2t2 + 6t + 17.

The quantity 2t2 + 6t + 17 is minimized when t = − 3
2 , and so the closest point in ` to ~v is ~u−3/2. Thus,

proj` ~v = −
3
2

�

1
1

�

+
�

3
−2

�

=
�

3/2
−7/2

�

.

Every example of a projection so far shares a geometric property. In the case of lines and planes, the vector
from the projection to the original point is a normal vector for the line or plane (provided it’s non-zero).

−2 −1 1 2 3 4

−1

1

2

3

~v − projX ~v

~v

projX ~v
X

Stated precisely, if X is a line or plane and ~v /∈ X is a vector, then ~v−projX ~v is a normal vector for X . Using this
fact, we can find projections onto lines and planes without needing to compute any distances!

Example. Let ` ⊆ R2 be the line given in vector form by ~x = t
�

1
1

�

+
�

3
−2

�

, and let ~v =
�

−1
−1

�

. Use the fact

that ~v − proj` ~v is a normal vector to ` to find proj` ~v.

Since ~v − proj` ~v is a normal vector to `, we know ~v − proj` ~v is orthogonal to ~d =
�

1
1

�

. Let
�

x
y

�

= proj` ~v for

some unknown x , y ∈ R. We now know

(~v − proj` ~v) · ~d =
��

−1
−1

�

−
�

x
y

��

·
�

1
1

�

=
�

−1− x
−1− y

�

·
�

1
1

�

= −2− x − y = 0.

That is,
x + y = −2. (5)

Also, since proj` ~v ∈ `, we know

proj` ~v =
�

x
y

�

= t
�

1
1

�

+
�

3
−2

�

=
�

t + 3
t − 2

�

.

From this, we have that x − t = 3 and y − t = −2. Combined with Equation (5), we have three equations
and three unknowns which produce the following system of linear equations.







x + y = −2

−t + x = 3

−t + y = −2

Solving this system, we conclude that x = 3/2 and y = −7/2 (we don’t care about the value of t). Therefore

proj` ~v =
�

3/2
−7/2

�

.
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Takeaway. When projecting onto lines and planes, right angles appear in key places.

Projections Onto Other Sets
For projections onto lines and planes, we can use what we know about normal vectors to simplify our life. The
same is true when projecting onto other sets, but we must always keep the definition in mind.

Example. Let T ⊆ R2 be the filled in triangle with vertices
�

0
0

�

,
�

1
0

�

, and
�

0
2

�

, and let

~a =
�

1/4
1/4

�

~b =
�

1
1

�

~c =
�

3
1/2

�

.

Find projT ~a, projT ~b, and projT ~c.

We’ll start by drawing a picture.

−1 1 2 3

−1

1

2
T

~a
~c

~b

From the picture, we see that ~a ∈ T and so

projT ~a = ~a.

We also see that ~b is closest to the hypotenuse of T , and so projT ~b is the same as the projection of ~b onto
the line y = −2x + 2. Computing, we find

projT ~b =
�

3/5
4/5

�

.

Finally, drawing concentric circles centered at ~c, we see that the lower-right corner of T is the closest point
in T to ~c.

−1 1 2 3

−1

1

2
T

~c

And so,

projT ~c =
�

1
0

�

.

Subtleties of Projections
You might be wondering, what is projX ~v if ~v is equidistant from two closest points in X? Or, what if X is an
open set (for example, an open interval in R1)? Then there might not be a closest point in X to ~v. In both these
cases, we say projX ~v is undefined.

Formally, for a fixed set X , we consider P(~v) = projX ~v as a function that inputs and outputs vectors. And, as a
function, P has a domain consisting of exactly the vectors ~v for which P(~v) is defined. As it happens, if X is

71 © Jason Siefken, 2015–2024



M
od

ul
e

5
–

Pr
oj

ec
tio

ns
&

Ve
ct

or
Co

m
po

ne
nt

s
a line or a plane in Rn, the domain of P is all of Rn, and in this text, we will be sensible and only ask about
projections that exist.

Vector Components
We’ve seen before that dot products can be used to measure how much one vector points in the direction of
another. But, we can go further. Suppose ~v 6= ~0 and ~u are vectors. We might want to decompose ~u into the sum
of two vectors, one which is in the direction of ~v and the other which is orthogonal to ~v. The tool that does this
is the vector component.

Vector Components. Let ~u and ~v 6= ~0 be vectors. The vector component of ~u in the ~v direction, written
vcomp~v ~u, is the vector in the direction of ~v so that ~u− vcomp~v ~u is orthogonal to ~v.

~u

~v

vcomp~v ~u

~u− vcomp~v ~u

From the definition, it’s obvious that

~u= vcomp~v ~u+ (~u− vcomp~v ~u)

is a decomposition of ~u into the sum of two vectors, one (vcomp~v ~u) is in the direction of ~v, and the other
(~u− vcomp~v ~u) is orthogonal to ~v.

Example. Find the vector component of ~a =
�

1
2

�

in the direction of ~b =
�

1
1

�

.

Since vcomp~b ~a is a vector in the direction of ~b, we know

vcomp~b ~a = k~b

for some k ∈ R. Since ~a− vcomp~b ~a is orthogonal to ~b, we know

(~a− vcomp~b ~a) · ~b = 0.

Combining these facts, we see

(~a− vcomp~b ~a) · ~b =
� �

1
2

�

︸︷︷︸

~a

−
�

k
k

�

︸︷︷︸

k~b

�

·
�

1
1

�

︸︷︷︸

~b

= (1− k) + (2− k) = 3− 2k = 0,

and so k = 3/2. Therefore

vcomp~b ~a = k~b =
�

3/2
3/2

�

.

Since we’ll be computing vector components often, let’s try to find a formula for vcomp~v ~u.

By definition, vcomp~v ~u is a vector in the direction of ~v, so

vcomp~v ~u= k~v.

Further, from the definition ~u− vcomp~v ~u is orthogonal to ~v, and so

~v · (~u− vcomp~v ~u) = ~v · (~u− k~v) = ~v · ~u− k~v · ~v = 0.

Because ~v 6= ~0, we know ~v · ~v 6= 0. Therefore, we may rearrange and solve for k to find

k =
~v · ~u
~v · ~v

,
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which means

vcomp~v ~u=
�

~v · ~u
~v · ~v

�

~v.

The Relationship Between Vector Components and Projections
Vector components and projections onto lines are closely related. So closely related that many textbooks use the
single word projection to talk about both vector components and projections.20 Let’s take a moment to explore
this relationship.

Let ~v =
�

2
4

�

and ~u =
�

3
1

�

and let ` = span{~v}. Drawing a picture of `, ~u, and proj` ~u, we see that proj` ~u satisfies

all the properties of vcomp~v ~u.

−1 1 2 3 4

−1

1

2

3

4

5

6

~u

proj` ~u

`= span{~v}

−1 1 2 3 4

−1

1

2

3

4

5

6

~u

vcomp~v ~u

~v

Since ` = span{~v} and proj` ~u ∈ `, we know that proj` ~u is in the direction of ~v. Further, using geometric
arguments, we know ~u− proj` ~u is a normal vector for ` and is therefore orthogonal to its direction vector ~v!
What’s more, we didn’t use anything in particular about ~u and ~v when making this argument (other than ~v 6= ~0).
This means, we have established a general fact.

Theorem. For vectors ~u and ~v 6= 0, we have

projspan{~v} ~u= vcomp~v ~u.

This is great news because vector components are easy to compute using dot products while projections are
usually hard to compute.

Example. Compute the projection of ~a =
�

3
7

�

onto L = span
§�

1
−4

�ª

.

Let ~b =
�

1
−4

�

. Since L = span{~b} and ~b 6= ~0, by the theorem above, we have

projL ~a = vcomp~b ~a =

�

~b · ~a
~b · ~b

�

~b =
3− 28
1+ 16

�

1
−4

�

=
�

−25/17
100/17

�

.

It’s worth noting, however, that vector components are equal to projections only in the case when you’re projecting
onto a span. In general, projections and vector components are unrelated.

Example. Let ~a =
�

3
7

�

, ~b =
�

1
−4

�

, and let D be the line given in vector form by ~x = t~b + ~a. Show that

projD ~a 6= vcomp~b ~a.

20We will not.

73 © Jason Siefken, 2015–2024



M
od

ul
e

5
–

Pr
oj

ec
tio

ns
&

Ve
ct

or
Co

m
po

ne
nt

s
By definition, projD ~a is the closest point in D to ~a. Since ~a ∈ D, we must have

projD ~a = ~a =
�

3
7

�

.

We already computed vcomp~b ~a =
�

−25/17
100/17

�

in the previous example, and so we see

vcomp~b ~a =
�

−25/17
100/17

�

6=
�

3
7

�

= projD ~a.

Takeaway. When projecting onto the span of a single vector, you can use vector components as a
computational shortcut, but if the set isn’t a span, you cannot.

Practice Problems

1 Let T =
§�

0
0

�

,
�

−1
2

�

,
�

1
−2

�ª

. Find projT

�

3
1

�

.

2 Let C =
�

~v ∈ R2 : ‖~v‖= 1
	

be the unit circle in R2. Find

projC

�

2
0

�

. Justify your answer.

3 Let ` = span
§�

2
1

�ª

, L = span
§�

2
1

�ª

+
§�

4
0

�ª

, and let S

be the set of convex linear combinations of
�

2
1

�

and
�

4
2

�

.

For ~v =
�

1
0

�

, find

(a) proj` ~v.

(b) projL ~v.

(c) projS ~v.

4 Let T be the set of convex linear combinations of
§�

1
1

�

,
�

−1
1

�

,
�

−1
−2

�ª

. Find projT (~v), for

(a) ~v =
�

3
3

�

(b) ~v =
�

0
0

�

(c) ~v =
�

1
−2

�

(d) ~v =
�

0
−4

�

5 Explain in your own words how to find proj`(~v) when
`= span{~d} for some ~d 6= ~0.

6 Let ~e1 =
�

1
0

�

, ~e2 =
�

0
1

�

, and ~u=
�

2
3

�

.

(a) Draw ~e1, ~e2, ~u, vcomp~e1
~u, and vcomp~e2

~u on the
same grid.

(b) Write down two characterizing properties for
vcomp~e2

~u.

(c) Check that ~u− vcomp~e1
~u satisfies the above prop-

erties.

(d) vcomp~e1
~u+ vcomp~e2

~u = ~u. Does this always hap-
pen? Explain.

7 In this problem, we will find the projection of a vector

onto a plane in R3. Let ~u =





1
2
−2



, ~v =





0
1
1



, ~a =





6
4
−2



,

and let P = span{~u, ~v}.

(a) Find vcomp~u(~a) and vcomp~v(~a).

(b) Show that ~a− vcomp~u(~a)− vcomp~v(~a) is a normal
vector for P.

(c) Use 7b to find projP(~a).
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Projection
D

EF Let X ⊆ Rn be a set. The projection of the vector ~v ∈ Rn onto X , written projX ~v, is the closest point in
X to ~v.

30 Let ~a =
�

1
0

�

, ~b =
�

4
0

�

, ~v =
�

2
2

�

and `= span{~a}.

30.1 Draw ~a, ~b, and ~v in the same picture.

30.2 Find proj{~b} ~v, proj{~a,~b} ~v.

30.3 Find proj` ~v. (Recall that a quadratic at2 + bt + c has a minimum at t = −
b

2a
).

30.4 Is ~v − proj` ~v a normal vector for `? Why or why not?
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31 Let K be the line given in vector form by ~x = t
�

1
2

�

+
�

1
0

�

and let ~c =
�

1
3

�

.

31.1 Make a sketch with ~c, K , and projK ~c (you don’t need to compute projK ~c exactly).

31.2 What should (~c − projK ~c) ·
�

1
2

�

be? Explain.

31.3 Use your formula from the previous part to find projK ~c without computing any distances.
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Let ~u and ~v 6= ~0 be vectors. The vector component of ~u in the ~v direction, written vcomp~v ~u, is the
vector in the direction of ~v so that ~u− vcomp~v ~u is orthogonal to ~v.

~u

~v

vcomp~v ~u

~u− vcomp~v ~u

32 Let ~a,~b ∈ R3 be unknown vectors.

32.1 List two conditions that vcomp~b ~a must satisfy.

32.2 Find a formula for vcomp~b ~a.
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33 Let ~d =
�

3
3

�

and ~u=
�

1
2

�

.

33.1 Draw ~d, ~u, span{~d}, and projspan{~d} ~u in the same picture.

33.2 How do projspan{~d} ~u and vcomp~d ~u relate?

33.3 Compute projspan{~d} ~u and vcomp~d ~u.

33.4 Compute vcomp−~d ~u. Is this the same as or different from vcomp~d ~u? Explain.
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Subspaces & Bases
In this module you will learn

� Formal and intuitive definitions of subspaces.

� The relationship between subspaces and spans.

� How to prove whether or not a set is a subspace.

� How to find a basis for and the dimension of a subspace.

Lines or planes through the origin can be written as spans of their direction vectors. However, a line or plane
that doesn’t pass through the origin cannot be written as a span—it must be expressed as a translated span.

−2 −1 1 2 3 4

−1

1

2

3

The span of ~d

~d

Not a span, but a translated span

There’s something special about sets that can be expressed as (untranslated) spans. In particular, since a
linear combination of linear combinations is still a linear combination, a span is closed with respect to linear
combinations. That is, by taking linear combinations of vectors in a span, you cannot escape the span. In
general, sets that have this property are called subspaces.

Subspace. A non-empty subset V ⊆ Rn is called a subspace if for all ~u, ~v ∈ V and all scalars k we have

(i) ~u+ ~v ∈ V ; and

(ii) k~u ∈ V .

In the definition of a subspace, property (i) is called being closed with respect to vector addition and property (ii)
is called being closed with respect to scalar multiplication.

Subspaces generalize the idea of flat spaces through the origin. They include lines, planes, volumes and more.

Example. Let V ⊆ R2 be the complete solution to x + 2y = 0. Show that V is a subspace.

Let ~u=
�

u1
u2

�

and ~v =
�

v1
v2

�

be in V, and let k be a scalar.

By definition, we have
u1 + 2u2 = 0

v1 + 2v2 = 0
.

We will show that V is nonempty and that (i) ~u+ ~v ∈ V; and (ii) k~u ∈ V.
First we will show (i). Observe that

~u+ ~v =
�

u1 + v1
u2 + v2

�

and the coordinates of ~u+ ~v satisfy

(u1 + v1) + 2(u2 + v2) = (u1 + 2u2) + (v1 + 2v2) = 0+ 0= 0.

Since the coordinates of ~u+ ~v satisfy the equation x + 2y = 0, we have shown that ~u+ ~v ∈ V.
Next we will show (ii). Observe that

k~u=
�

ku1
ku2

�
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and the coordinates of k~u satisfy

(ku1) + 2(ku2) = k(u1 + 2u2) = k0= 0.

And so, we have shown that k~u ∈ V.

Finally, since ~0=
�

0
0

�

satisfies x + 2y = 0, we conclude that ~0 ∈ V and so V is non-empty.

Thus, by the definition, we have shown that V is a subspace.

Example. Let W ⊆ R2 be the line expressed in vector form as

~x = t
�

1
2

�

+
�

1
1

�

.

Determine whether W is a subspace.

W is not a subspace. To see this, notice that ~v =
�

1
1

�

∈W, but 0~v = ~0 /∈W. Therefore, W is not closed

under scalar multiplication and so it cannot be a subspace.

As mentioned earlier, subspaces and spans are deeply connected. This connection is given by the following
theorem.

Theorem (Subspace-Span). Every subspace is a span and every span is a subspace. More precisely,
V ⊆ Rn is a subspace if and only if V = spanX for some set X .

Proof. We will start by showing every span is a subspace. Fix X ⊆ Rn and let V = spanX . First note that if
X 6= {}, then V is non-empty because X ⊆ V and if X = {}, then V = {~0}, and so is still non-empty.

Fix ~v, ~u ∈ V. By definition there are ~x1, ~x2, . . . , ~y1, ~y2, . . . ∈ X and scalars α1,α2, . . . ,β1,β2, . . . so that

~v =
∑

αi ~x i ~u=
∑

βi ~yi .

To verify property (i), observe that
~u+ ~v =
∑

αi ~x i +
∑

βi ~yi

is also a linear combination of vectors in X (because all ~x i and ~yi are in X ), and so ~u+ ~v ∈ spanX = V.

To verify property (ii), observe that for any scalar α,

α~v = α
∑

αi ~x i =
∑

(ααi)~x i ∈ spanX = V.

Since V is non-empty and satisfies both properties (i) and (ii), it is a subspace.

Now we will prove that every subspace is a span. Let V be a subspace and consider V ′ = spanV. Since taking a
span may only enlarge a set, we know V ⊆ V ′. If we establish that V ′ ⊆ V, then V = V ′ = spanV, which would
complete the proof.

Fix ~x ∈ V ′. By definition, there are ~v1, ~v2, . . . , ~vn ∈ V and scalars α1,α2, . . . ,αn so that

~x =
∑

αi~vi .

Observe that αi~vi ∈ V for all i, since V is closed under scalar multiplication. It follows that α1~v1 + α2~v2 ∈ V,
because V is closed under sums. Continuing, (α1~v1+α2~v2)+α3~v3 ∈ V because V is closed under sums. Applying
the principle of finite induction, we see

~x =
∑

αi~vi =
�

((α1~v1 +α2~v2) +α3~v3) + · · ·+αn−1~vn−1

�

+αn~vn ∈ V.

Thus V ′ ⊆ V, which completes the proof. �

The previous theorem is saying that spans and subspaces are two ways of talking about the same thing. Spans
provide a constructive definition of lines/planes/volumes/etc. through the origin. That is, when you describe a
line/plane/etc. through the origin as a span, you’re saying “this is a line/plane/etc. through the origin because
every point in it is a linear combination of these specific vectors”. In contrast, subspaces provide a categorical
definition of lines/planes/etc. through the origin. When you describe a line/plane/etc. through the origin as a
subspace, you’re saying “this is a line/plane/etc. through the origin because these properties are satisfied”.21

21Categorical definitions are useful when working with objects where it’s hard to pin down exactly what the elements inside are.
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Takeaway. Spans and subspaces are two different ways of talking about the same objects:
points/lines/planes/etc. through the origin.

Special Subspaces
When thinking about Rn, there are two special subspaces that are always available. The first is Rn itself. Rn is
obviously non-empty, and linear combinations of vectors in Rn remain in Rn. The second is the trivial subspace,
{~0}.

Trivial Subspace. The subset {~0} ⊆ Rn is called the trivial subspace.

Theorem. The trivial subspace is a subspace.

Proof. First note that {~0} is non-empty since ~0 ∈ {~0}. Now, since ~0 is the only vector in {~0}, properties (i) and
(ii) follow quickly:

~0+ ~0= ~0 ∈ {~0}
and

α~0= ~0 ∈ {~0}.
�

Bases
Let ~d =
�

2
1

�

and consider `= span{~d}.

−1 1 2 3 4

−1

1

2 `= span{~d}

~d

We know that ` is a subspace, and we defined ` as the span of {~d}, but we didn’t have to define ` that way.

We could have, for instance, defined `= span{~d,−2~d,
1
2
~d}. However, span{~d} is a simpler way to describe `

than span{~d,−2~d,
1
2
~d}. This property is general: the simplest descriptions of a line involve the span of only

one vector.

Analogously, let P = span{~d1, ~d2} be the plane through the origin with direction vectors ~d1 and ~d2. There are
many ways to write P as a span, but the simplest ones involve exactly two vectors. The idea of a basis comes
from trying to find the simplest description of a subspace.

Basis. A basis for a subspace V is a linearly independent set of vectors, B, so that spanB = V.

In short, a basis for a subspace is a linearly independent set that spans that subspace.

Example. Let `= span
§�

1
2

�

,
�

−2
−4

�

,
�

1/2
1

�ª

. Find two different bases for `.

We are looking for a set of linearly independent vectors that spans `. Notice that
�

1
2

�

= −
1
2

�

−2
−4

�

= 2
�

1/2
1

�

.

Therefore,

span
§�

1
2

�ª

= span
§�

−2
−4

�ª

= span
§�

1/2
1

�ª

= span
§�

1
2

�

,
�

−2
−4

�

,
�

1/2
1

�ª

= `.

Because
§�

1
2

�ª

is linearly independent and spans `, we have that
§�

1
2

�ª

is a basis for `. Similarly,
§�

1/2
1

�ª

is another basis for `.
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Unpacking the definition of basis a bit more, we can see that a basis for a subspace is a set of vectors that is just
the right size to describe everything in the subspace. It’s not too big—because it is linearly independent, there
are no redundancies. It’s not too small—because we require it to span the subspace.22

There are several facts everyone should know about bases:

1. Bases are not unique. Every subspace (except the trivial subspace) has multiple bases.

2. Given a basis for a subspace, every vector in the subspace can be written as a unique linear combination
of vectors in that basis.

3. Any two bases for the same subspace have the same number of elements.

You can prove the first fact by observing that if B = {~b1,~b2, . . .} is a basis with at least one element,23 then
{2~b1, 2~b2, . . .} is a different basis. The second fact is a consequence of all bases being linearly independent. The
third fact is less obvious and takes some legwork to prove, so we will accept it as is.

Dimension
Let V be a subspace. Though there are many bases for V, they all have the same number of vectors in them.
And, this number says something fundamental about V: it tells us the maximum number of linearly independent
vectors that can simultaneously exist in V. We call this number the dimension of V.

Dimension. The dimension of a subspace V is the number of elements in a basis for V .

This definition agrees with our intuition about lines and planes: the dimension of a line through ~0 is 1, and the
dimension of a plane through ~0 is 2. It even tells us the dimension of the single point {~0} is 0.24

Example. Find the dimension of R2.

Since {~e1,~e2} is a basis for R2, we know R2 is two dimensional.

Example. Let `= span
§�

1
2

�

,
�

−2
−4

�

,
�

1/2
1

�ª

. Find the dimension of the subspace `.

This is the same subspace from the earlier example where we found
§�

1
2

�ª

and
§�

1/2
1

�ª

were bases for `.

Both these bases contain one element, and so ` is a one dimensional subspace.

Example. Let A= {(x1, x2, x3, x4) : x1+2x2− x3 = 0 and x1+6x4 = 0}. Find a basis for and the dimension
of A.

A is the complete solution to the system

�

x1 + 2x2 − x3 = 0

x1 + 6x4 = 0
,

which can be expressed in vector form as







x1
x2
x3
x4






= t







0
1/2
1
0






+ s







−6
3
0
1






.

Therefore A = span

















0
1/2
1
0






,







−6
3
0
1

















. Since

















0
1/2
1
0






,







−6
3
0
1

















is a linearly independent spanning set

with two elements, A is two dimensional.

Like R2 and R3, whenever we discuss Rn, we always have a standard basis that comes along for the ride.

22If you’re into British fairy tales, you might call a basis a Goldilocks set.
23The empty set is a basis for the trivial subspace.
24The dimension of a line, plane, or point not through the origin is defined to be the dimension of the subspace obtained when it is

translated to the origin.
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Standard Basis. The standard basis for Rn is the set {~e1, . . . ,~en} where

~e1 =









1
0
0
...









~e2 =









0
1
0
...









~e3 =









0
0
1
...









· · · .

That is ~ei is the vector with a 1 in its ith coordinate and zeros elsewhere.

Note: the notation ~ei is context specific. If we say ~ei ∈ R2, then ~ei must have exactly two coordinates. If we say
~ei ∈ R45, then ~ei must have 45 coordinates.

Practice Problems

1 For each of the following sets, prove whether or not they
are a subspace.

(a) T ⊆ R2, where T is the complete solution to
3x − y = 0.

(b) U ⊆ R2, where U is the complete solution to
1
2 x − 6y = 0.

(c) V ⊆ R2, where V is the complete solution to
x − 5y − 1= 0.

(d) X ⊆ R3, where X is the complete solution to
5x −πy + (ln2)z = 0.

(e) Q ⊆ Rn, where Q is the complete solution to
a1 x1 + a2 x2 + ... + an−1 xn−1 + an xn = 0 where
a1, ..., an ∈ R.

2 For each of the following sets, prove whether or not it is
a subspace.

(a) A ⊆ R2, where A is specified in vector form by

~x = t
�

5
−7

�

+
�

1
2

�

.

(b) B ⊆ R2, where B is specified in vector form by

~x = t
�

−3
4

�

.

(c) C ⊆ R3, where C is specified in vector form by

~x = t





1
0
5



.

(d) D ⊆ R3, where D is specified in vector form by

~x = t





2
3
4



+ s





10
20

131



+





0
0
6



.

(e) E ⊆ R3, where E is specified in vector form by

~x = t





5
7
1



+ s





2
−2

1



.

3 Use the definition of subspace to prove each span below
is a subspace.

(a) span
§�

0
1

�

,
�

1
2

�ª

(b) span











1
1
1



 ,





1
0
0



 ,





2
0
0











4 A non-empty subset V ⊆ Rn is called a subspace if for all
~u, ~v ∈ V and all scalars k we have (i) ~u+ ~v ∈ V and (ii)
k~u ∈ V. For each set below, list which of property (i),
property (ii), or non-emptiness fails. Justify your answer.

(a) {(x , y, z) : x + y + z = 4}
(b) {}
(c)
�

(x , y) : x = y2
	

(d) {(x1, x2) : x1 ≥ 0}
(e)
�

(x , y) : x2 + y2 = 0
	

5 For each subset below, determine whether or not it is a
subspace. If it is a subspace, find (i) its dimension and
(ii) a basis for it.

(a) span
§�

2
3

�

,
�

−4
−6

�

,
�

1
3/2

�ª

(b) span











1
0
−2



 ,





0
2
5



 ,





1
2
3











(c) The plane given in vector form by

~x = t





6
1
1



+ s





6
0
6





(d) The line given in vector form by

~x = t





2
2
3





(e) The complete solution to




1
−2

3



 ·









x
y
z



−





2
2
2
3







= 0

(f) The complete solution to






1
3
3
7






·













x
y
z
w






−







0
0
0
0












= 0

6 Which of the following are bases for R3?

(a)











2
6
1



 ,





4
2
1



 ,





6
8
2











(b)











1
0
1



 ,





1
0
0



 ,





0
−1

0



 ,





−2
1
1











(c)











2
3
5



 ,





5
−4

2










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(d)











2
5
−6



 ,





4
11
−12



 ,





0
0
−3











7 For each statement, determine if it is true or false. Justify
your answer by referring to a definition or a theorem.

(a) All spans are subspaces.

(b) All subspaces can be expressed as spans.

(c) All translated spans are subspaces.

(d) The empty set is a subspace.

(e) The set
§�

1
2

�

,
�

2
3

�ª

is a subspace.

8 Give two examples of subspaces of R4 that are (i) 1 di-
mensional, (ii) 3 dimensional. Can you give an example
of a subspace that is 0 dimensional?

9 Let G ⊆ Rn be a subspace. Give upper and lower bounds
for the dimension of G.
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Subspaces and Bases
Subspace

D
EF

IN
IT

IO
N A non-empty subset V ⊆ Rn is called a subspace if for all ~u, ~v ∈ V and all scalars k we have

(i) ~u+ ~v ∈ V ; and

(ii) k~u ∈ V .

Subspaces give a mathematically precise definition of a “flat space through the origin.”

34 For each set, draw it and explain whether or not it is a subspace of R2.

34.1 A=
§

~x ∈ R2 : ~x =
�

a
0

�

for some a ∈ Z
ª

.

34.2 B =
§

~x ∈ R2 : ~x 6=
�

0
0

�ª

.

34.3 C =
§

~x ∈ R2 : ~x =
�

0
t

�

for some t ∈ R
ª

.

34.4 D =
§

~x ∈ R2 : ~x =
�

0
t

�

+
�

1
1

�

for some t ∈ R
ª

.

34.5 E =
§

~x ∈ R2 : ~x =
�

0
t

�

or ~x =
�

t
0

�

for some t ∈ R
ª

.

34.6 F =
§

~x ∈ R2 : ~x = t
�

3
1

�

for some t ∈ R
ª

.

34.7 G = span
§�

1
1

�ª

.

34.8 H = span{~u, ~v} for some unknown vectors ~u, ~v ∈ R2.
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Basis
D

EF A basis for a subspace V is a linearly independent set of vectors, B, so that spanB = V.

Dimension

D
EF The dimension of a subspace V is the number of elements in a basis for V .

35
Let ~u=





1
0
0



, ~v =





0
1
0



, ~w=





1
1
0



, and V = span{~u, ~v, ~w}.

35.1 Describe V .

35.2 Is {~u, ~v, ~w} a basis for V? Why or why not?

35.3 Give a basis for V .

35.4 Give another basis for V .

35.5 Is span{~u, ~v} a basis for V? Why or why not?

35.6 What is the dimension of V?
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36
Let ~a =





1
2
3



, ~b =





4
5
6



, ~c =





7
8
8



 (notice these vectors are linearly independent) and let P = span{~a,~b}

and Q = span{~b,~c}.

36.1 Give a basis for and the dimension of P.

36.2 Give a basis for and the dimension of Q.

36.3 Is P ∩Q a subspace? If so, give a basis for it and its dimension.

36.4 Is P ∪Q a subspace? If so, give a basis for it and its dimension.
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Matrix Representations of Systems of Linear Equations

In this module you will learn

� How to represent a system of linear equations as a matrix equation.

� Multiple ways to interpret solutions of systems of linear equations.

� How linear independence/dependence relates to solutions to matrix equations.

� How to use matrix equations to find normal vectors to lines or planes.

Matrix-vector multiplication gives a compact way to represent systems of linear equations.

Consider the system






x + 2y − 2z = −15

2x + y − 5z = −21

x − 4y + z = 18

, (6)

which is equivalent to the vector equation




x + 2y − 2z
2x + y − 5z

x − 4y + z



=





−15
−21

18



 .

We can rewrite (6) using matrix-vector multiplication:




1 2 −2
2 1 −5
1 −4 1





︸ ︷︷ ︸

A





x
y
z



=





−15
−21

18



 .

The matrix A on the left is called the coefficient matrix because it is made up of the coefficients from equation
(6).

By using coefficient matrices, every system of linear equations can be rewritten as a single matrix equation of
the form

A~x = ~b

where A is a coefficient matrix, ~x is a column vector of variables, and ~b is a column vector of constants.

Example. Consider the one equation system
�

x − 4y + z = 5 (7)

and the two-equation system
�

x − 4y + z = 5

y − z = 9
. (8)

Rewrite each system as a single matrix equation.

We can rewrite (7) as

�

1 −4 1
�





x
y
z



=
�

5
�

.

Multiplying out to verify, we see,

�

1 −4 1
�





x
y
z



=
�

x − 4y + z
�

=
�

5
�

,

which is indeed equivalent to (7).

89 © Jason Siefken, 2015–2024



M
od

ul
e

7
–

M
at

rix
Re

pr
es

en
ta

tio
ns

of
Sy

st
em

s
of

Li
ne

ar
Eq

ua
tio

ns
Similarly, we can rewrite (8) as

�

1 −4 1
0 1 −1

�





x
y
z



=
�

5
9

�

.

Multiplying out to verify, we see,

�

1 −4 1
0 1 −1

�





x
y
z



=
�

x − 4y + z
0x + y − z

�

=
�

5
9

�

,

which is equivalent to (8).

Interpretations of Matrix Equations
The solution set to a system of linear equations, like







x + 2y − 2z = −15

2x + y − 5z = −21

x − 4y + z = 18

, (9)

can be interpreted as the intersection of three planes (or hyperplanes if there were more variables). Each
equation (each row) specifies a plane, and the solution set is the intersection of all of these planes. Rewriting a
system of equations in matrix form gives two additional ways to interpret the solution set.

The Column Picture
Using the column interpretation of matrix-vector multiplication, we see that system (9) is equivalent to





1 2 −2
2 1 −5
1 −4 1









x
y
z



= x





1
2
1



+ y





2
1
−4



+ z





−2
−5

1



=





−15
−21

18



 .

We now see that asking, “What coefficients allow





1
2
1



,





2
1
−4



, and





−2
−5

1



 to form





−15
−21

18



 as a linear combina-

tion?” is equivalent to asking, “What are the solutions to system (9)?” Here,





1
2
1



,





2
1
−4



, and





−2
−5

1



 are the

columns of the coefficient matrix.

The Row Picture
The row interpretation gives another perspective. Let ~r1, ~r2, and ~r3 be the rows of the coefficient matrix for
system (9). Then, system (9) is equivalent to





1 2 −2
2 1 −5
1 −4 1









x
y
z



=





~r1

~r2

~r3



 ~x =





~r1 · ~x
~r2 · ~x
~r3 · ~x



=





−15
−21

18



 .

In other words, we can interpret solutions to system (9) as vectors whose dot product with ~r1 is −15, whose
dot product with ~r2 is −21, and whose dot product with ~r3 is 18. Given that the dot product has a geometric
interpretation, this perspective is powerful (especially when the right side of the equation is all zeros!).

Interpreting Homogeneous Systems
Consider the homogeneous system/matrix equation

x + 2y − 2z = 0

2x + y − 5z = 0

x − 4y + z = 0

⇐⇒





1 2 −2
2 1 −5
1 −4 1





︸ ︷︷ ︸

A





x
y
z



=





0
0
0



 . (10)

Now, the column interpretation of system (10) is: what linear combinations of the column vectors of A give ~0?
This directly relates to the question of whether the column vectors of A are linearly independent.
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Let ~r1, ~r2, and ~r3 be the rows of A. The row interpretation of system (10) asks: what vectors are simultaneously
orthogonal to ~r1, ~r2, and ~r3?

Takeaway. There are three ways to interpret solutions to a matrix equation A~x = ~b: (i) the intersection
of hyperplanes specified by the rows; (ii) what linear combinations of the columns of A give ~b; (iii) what
vectors yield the entries of ~b when dot producted with the rows of A.

Example. Find all vectors orthogonal to ~a =





1
1
1



 and ~b =





1
2
1



.

To find all vectors orthogonal to ~a and ~b we need to find vectors ~x satisfying ~a · ~x = 0 and ~b · ~x = 0. This is
equivalent to solving the matrix equation

�

~a
~b

�

~x =

�

~a · ~x
~b · ~x

�

=
�

1 1 1
1 2 1

�

︸ ︷︷ ︸

A





x
y
z



=
�

0
0

�

.

By row reducing A, we get

rref(A) =
�

1 0 1
0 1 0

�

,

and so the complete solution expressed in vector form is

~x = t





−1
0
1



 .

The row picture is particularly applicable when trying to find normal vectors.

Example. Let Q be the hyperplane specified in vector form by

~x = t







1
1
−1

1






+ s







0
1
0
1






+ r







2
0
0
0






+







1
2
3
4






.

Find a normal vector for Q and write Q in normal form.

Like the above example, since normal vectors for Q need to be orthogonal to ~d1 =







1
1
−1

1






, ~d2 =







0
1
0
1






, and

~d3 =







2
0
0
0






, we can find the normal vectors by solving





1 1 −1 1
0 1 0 1
2 0 0 0





︸ ︷︷ ︸

A







x
y
z
w






=





0
0
0



 .

By row reducing A, we get

rref(A) =





1 0 0 0
0 1 0 1
0 0 1 0



 ,

and so we get that the complete solution expressed in vector form is

~x = t







0
−1

0
1






.
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Therefore, any non-zero multiple of







0
−1

0
1






is a normal vector for Q. For example, ~n=







0
−1

0
1






is a normal

vector for Q, and Q can be written in normal form as






0
−1

0
1






·













x
y
z
w






−







1
2
3
4












= 0.

Practice Problems

1 Each system of equations below concerns the variables x ,
y , and z. Rewrite each system as a single matrix equation.

(a)







x − y + z = 1

2x − y + z = 2

3x + y − z = 3

(b)
�

x + z = 6

(c)

�

5x − 9y + 2z = 0

− y = 1

2 Find all vectors orthogonal to:

(a)





1
2
3



 and





2
2
3





(b)





0
5
6



 and





1
10

2





(c)





1
0
0



,





0
1
0



, and





0
0
1





(d)





2
6
−1





3 Express each plane or hyperplane in normal form.

(a) ~x = t





0
2
2



+ s





1
1
1



+





1
0
3





(b) ~x = t





1
6
8



+ s





2
0
2



+





0
0
9





(c) ~x = t







1
5

15
20






+ s







3
0

35
59






+ r







1
4
0

18






+







1
6
0
0







4 Let P = {(x , y, z) : 2x +4y −4z = 7}, let Q be the plane
specified in vector form by

~x = t





−1
2
0



+ s





5
0
2



+





0
7
1



 ,

and let R be the plane specified in normal form by




2
−8

2



 ·









x
y
z



−





1
7
0







= 0.

Find P ∩Q∩R.
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Matrices

37 Let A=
�

1 2
3 3

�

, ~x =
�

x
y

�

, and ~b =
�

−2
−1

�

.

37.1 Compute the product A~x .

37.2 Write down a system of equations that corresponds to the matrix equation A~x = ~b.

37.3 Let
�

x0
y0

�

be a solution to A~x = ~b. Explain what x0 and y0 mean in terms of intersecting lines (hint: think

about systems of equations).

37.4 Let
�

x0
y0

�

be a solution to A~x = ~b. Explain what x0 and y0 mean in terms of linear combinations (hint:

think about the columns of A).
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38
Let ~u=





1
2
3



, ~v =





4
5
6



, ~w=





7
8
9



.

38.1 How could you determine if {~u, ~v, ~w} was a linearly independent set?

38.2 Can your method be rephrased in terms of a matrix equation? Explain.
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39 Consider the system represented by




1 −3 0
0 0 1
0 0 0









x
y
z



= ~b.

39.1 If ~b =





1
2
3



, is the set of solutions to this system a point, line, plane, or other?

39.2 If ~b =





1
1
0



, is the set of solutions to this system a point, line, plane, or other?
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40
Let ~d1 =





1
1
2



 and ~d2 =





−1
1
0



. Let P be the plane given in vector form by ~x = t ~d1+ s~d2. Further, suppose

M is a matrix so that M~r ∈ P for any ~r ∈ R2.

40.1 How many rows does M have?

40.2 Find such an M .

40.3 Find necessary and sufficient conditions (phrased as equations) for ~n to be a normal vector for P.

40.4 Find a matrix K so that non-zero solutions to K ~x = ~0 are normal vectors for P. How do K and M relate?
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Coordinates & Change of Basis I

In this module you will learn

� Notation for representing a vector in multiple bases.

� The distinction between a vector and its representation.

� How to compute multiple representations of a vector.

� The definition of an oriented basis.

Recall that when we write ~x =
�

2
3

�

, what we actually mean is ~x = 2~e1 + 3~e2. The numbers 2 and 3 are called

the coordinates of the vector ~x with respect to the standard basis. However, in general, subspaces have many
bases, and so it is possible to represent a single vector in many different ways as coordinates with respect to
different bases.

Let ~x =
�

2
3

�

, let E = {~e1,~e2} be the standard basis for R2, and let B = {~b1,~b2}, where ~b1 =
�

2
1

�

and ~b2 =
�

0
1

�

,

be another basis for R2. The coordinates of ~x with respect to E are (2, 3), but the coordinates of ~x with respect
to B are (1,2).

~x

1~b1

2~b2

~0

~x

2~e1

3~e2

~0

E-grid B-grid

The coordinates (2,3) and (1,2) represent ~x equally well, and when solving problems, we should pick the
coordinates that make our problem the easiest.25 However, now that we are representing vectors in multiple
bases, we need a way to keep track of what coordinates correspond to which basis.

Representation in a Basis.
Let B = {~b1, . . . ,~bn} be a basis for a subspace V and let ~v ∈ V . The representation of ~v in the B basis,
notated [~v]B, is the column matrix

[~v]B =





α1
...
αn





where α1, . . . ,αn uniquely satisfy ~v = α1
~b1 + · · ·+αn

~bn.
Conversely,





α1
...
αn





B

= α1
~b1 + · · ·+αn

~bn

is notation for the linear combination of ~b1, . . . ,~bn with coefficients α1, . . . ,αn.

Example. Let E = {~e1,~e2} be the standard basis for R2 and let C = {~c1,~c2} where ~c1 = ~e1 + ~e2, and ~c2 = 3~e2
be another basis for R2. Given that ~v = 2~e1 − ~e2, find [~v]E and [~v]C .

25For example, maybe in one choice of coordinates, we can avoid all fractions in our calculations—this could be good if you’re programming
a computer that rounds decimals.
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Since ~v = 2~e1 − ~e2, we know

[~v]E =
�

2
−1

�

.

To find [~v]C , we need to write ~v as a linear combination of ~c1 and ~c2.
Suppose

~v = x~c1 + y~c2

for some unknown scalars x and y . On the one hand,

~v = 2~e1 − ~e2,

and on the other hand,

~v = x~c1 + y~c2 = x(~e1 + ~e2) + 3y~e2 = x~e1 + (x + 3y)~e2.

Combining these two equations, we have

2~e1 − ~e2 = x~e1 + (x + 3y)~e2,

and so
(x − 2)~e1 + (x + 3y + 1)~e2 = ~0.

Since ~e1 and ~e2 are linearly independent, the only way for the above equation to be satisfied is if x − 2= 0
and x + 3y + 1= 0. Thus, we need to solve the system

�

x = 2

x + 3y = −1
.

After solving, we see ~v = 2~c1 − ~c2, and so

[~v]C =
�

2
−1

�

.

Notation Conventions
We need to revisit some past notation. Up to this point, we have been writing ~x =

�

2
3

�

to mean ~x = 2~e1 + 3~e2.

However, given the representation-in-a-basis notation, we should be writing

~x =
�

2
3

�

E
,

where E is the standard basis for R2.26 We should write
�

2
3

�

E
because the coordinates (2,3) refer to different

vectors for different bases. However, most of the time we are only thinking about the standard basis. So, the
convention we will follow is:

� If a problem involves only one basis, we may write
�

x
y

�

to mean
�

x
y

�

E
where E is the standard basis.

� If there are multiple bases in a problem, we will always write
�

x
y

�

X
to specify a vector in coordinates

relative to a particular basis X .

Takeaway. If a problem only involves the standard basis, we may use the notation we always have. If a
problem involves multiple bases, we must always use representation-in-a-basis notation.

26One might wonder if we’ve just made a circular definition. In Module 6, ~e1 ∈ R2 was defined to be
�

1
0

�

. But with our notation, this is

the same as ~e1 =
�

1
0

�

E
, which is itself true by definition! To get around this, we need to declare the existence of the standard basis some

other way. The physics solution is to define ~e1, ~e2, etc. as physical vectors in space. The abstract mathematics solution is to declare that ~e1,
~e2, etc. exist and are linearly independent and say nothing more.
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True Vectors vs. Representations

27

The Belgian surrealist René Magritte painted the work above, which is subtitled, “This is not a pipe”. Why?
Because, of course, it is not a pipe. It is a painting of a pipe! In this work, Magritte points out a distinction that
will soon become very important to us—the distinction between an object and a representation of that object.

Let ~x = 2~e1 + 3~e2 ∈ R2. The vector ~x is a real-life geometrical thing, and to emphasize this, we will call ~x a true

vector. In contrast, when we write the column matrix [~x]E =
�

2
3

�

, we are writing a list of numbers. The list of

numbers
�

2
3

�

has no meaning until we give it a meaning by assigning it a basis. For example, by writing
�

2
3

�

E
,

we declare that the numbers 2 and 3 are the coefficients of ~e1 and ~e2. By writing
�

2
3

�

B
where B = {~b1,~b2}, we

declare that the numbers 2 and 3 are the coefficients of ~b1 and ~b2. Since a list of numbers without a basis has
no meaning, we must acknowledge

~x 6= [~x]E =
�

2
3

�

,

since the left side of the equation is a true vector and the right side is a list of numbers. Similarly, we must
acknowledge

[~x]E 6=
�

2
3

�

E
= ~x ,

since the left side is a list of numbers and the right side is a true vector.

To help keep the notation straight in your head, for a basis X , remember the rule

[true vector]X = list of numbers and [list of numbers]X = true vector.

It’s easy to get confused when answering questions that involve multiple bases; precision will make these
problems much easier.

Orientation of a Basis
How can you tell the difference between a hand and a foot? They’re similar in structure28—a hand has five
fingers and a foot has five toes—but they’re different in shape—fingers are much longer than toes and the
thumb sticks off the hand at a different angle than the big toe sticks off the foot.

How about a harder question: how can you tell the difference between a left hand and a right hand? Any
length or angle measurement you make on an (idealized) left hand or right hand will be identical. But, we
know they’re different because they differ in orientation.29

We’ll build up to the definition of orientation in stages. Consider the ordered bases E , A, and B shown below.

27Image taken from Wikipedia: https://en.wikipedia.org/wiki/File:MagrittePipe.jpg
28We might say hands and feet are topologically equivalent.
29Other words for orientation include chirality and handedness.
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~e1

~e2

~a1

~a2

~e1

~e2

~b1

~b2

A= {~a1, ~a2} B = {~b1,~b2}

The A basis can be rotated to get the E basis while maintaining the proper order of the basis vectors (i.e.,
~a1 7→ ~e1 and ~a2 7→ ~e2), but it is impossible to rotate the B basis to get the E basis while maintaining the proper
order. In this case, we say that E and A have the same orientation and E and B have opposite orientations.
Even though the lengths and angles between all vectors in the A basis and the B basis are the same, we can
distinguish the A and B bases because they have different orientations.

Orientations of bases come in exactly two flavors: right-handed (or positively oriented) and left-handed (or
negatively oriented). By convention, the standard basis is called right-handed.

Orthonormal bases—bases consisting of unit vectors that are orthogonal to each other—are called right-handed
if they can be rotated to align with the standard basis, otherwise they are called left-handed. In this way, the
right-hand–left-hand analogy should be clear: two right hands or two left hands can be rotated to align with
each other, but a left hand and a right can never be rotated to alignment.

However, not all bases are orthonormal! Consider the bases E , A′, B′.

~a′1~a′2
~b′1 ~b′2

A′ = {~a′1, ~a′2} B′ = {~b′1,~b′2}

The bases A′ and B′ differ only slightly from A and B. Neither can be rotated to obtain E , however we’d still
like to say A′ is right-handed and B′ is left-handed. The following, fully general definition, allows us to do so.

Orientation of a Basis. The ordered basis B = {~b1, . . . ,~bn} is right-handed or positively oriented if it can
be continuously transformed to the standard basis (with ~bi 7→ ~ei) while remaining linearly independent
throughout the transformation. Otherwise, B is called left-handed or negatively oriented.

The term continuously transformed can be given a precise definition,30 but it will be enough for us to imagine
that a continuous transform between two bases is equivalent to a “movie” where one basis smoothly and without
jumps transforms into the other.

Let’s consider some examples. Let X = {~x1, ~x2} as depicted below. We could imagine ~x1, ~x2 continuously
transforming to ~e1,~e2 by ~x1 staying in place and ~x2 smoothly moving along the dotted line.

~e1

~e2

~x1

~x2

~e1

~e2

~x1

~x2

X = {~x1, ~x2} Continuous transform of X to E

Because at every step along this motion, the set of ~x1 and the transformed ~x2 is linearly independent, X is
positively oriented.

30Because you crave precision, here it is: the basis ~a1, . . . , ~an can be continuously transformed to the basis ~b1, . . . ,~bn if there exists a
continuous function Φ : [0, 1]→ {n-tuples of vectors} such that Φ(0) = (~a1, . . . , ~an) and Φ(1) = (~b1, . . . ,~bn). Here, continuity is defined in
the multi-variable calculus sense.
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Let Y = {~y1, ~y2} as depicted below. We are in a similar situation, except this time, somewhere along ~y2’s path,
the set of ~y1 and the transformed ~y2 becomes linearly dependent.

~e1

~e2

~y1

~y2 ~y2 ~y2

Y = {~y1, ~y2} Continuous transform of Y to E

Linearly dependent here

Maybe that was just bad luck and we might be able to transform along a different path and stay linearly
independent. It turns out, we are doomed to fail, because Y is negatively oriented.

Using the definition of the orientation of a basis to answer questions is difficult because to determine that a basis
is negatively oriented, you need to make a determination about every possible way to continuously transform
a basis to the standard basis. This is hard enough in R2 and gets much harder in R3. Fortunately, we will
encounter computational tools that will allow us to numerically determine the orientation of a basis, but, for
now, the idea is what’s important.

Reversing Orientation
Reflections reverse orientation and can manifest in two ways.31 Consider the reflection of E = {~e1,~e2} across
the line y = x .

~e1

~e2

Reflected ~e1

Reflected ~e2

Reflection

Positively Oriented Negatively Oriented

This reflection sends {~e1,~e2} 7→ {~e2,~e1}. Alternatively, reflection across the line x = 0 sends {~e1,~e2} 7→ {−~e1,~e2}.

~e1

~e2

Reflected ~e1

Reflected ~e2

Reflection

Positively Oriented Negatively Oriented

Both {~e2,~e1} and {−~e1,~e2}, as ordered bases, are negatively oriented. This is indicative of a general theorem.

31Think back to hands. The left and right hands are reflections of each other.

101 © Jason Siefken, 2015–2024



M
od

ul
e

8
–

Co
or

di
na

te
s

&
Ch

an
ge

of
Ba

sis
I

Theorem. Let B = {~b1, . . . ,~bn} be an ordered basis. The ordered basis obtained from B by replacing ~bi
with −~bi and the ordered basis obtained from B by swapping the order of ~bi and ~b j (with i 6= j) have the
opposite orientation as B.

Practice Problems

1 (a) Let ~u= ~e1 + 8~e2, ~v = −~e1 + 3~e2, and ~w= 2~e1.

i. Find [~u]E , [~v]E and [~w]E , where E is the stan-
dard basis for R2.

ii. Let A = {3~e1 + 2~e2, 4~e1 − ~e2}. Find [~u]A, [~v]A
and [~w]A.

iii. Let B = {11~e2,~e1 +
5
2~e2}. Find [~u]B, [~v]B and

[~w]B.

(b) Let ~q = 11~e2 − 4~e3, ~r = 5~e1 − 12~e2 + 8~e3, and
~s = ~e1 − 5~e2 + 2~e3.

i. Find [~q]E , [~r]E and [~s]E where E is the stan-
dard basis for R3.

ii. Let D = {~e1+2~e2,−3~e1+5~e2−4~e3,−8~e1+4~e2+
11~e3}. Find [~q]D, [~r]D and [~s]D.

iii. Let F = {~e1 + 4~e2 + 4~e3,−3~e1 + 20~e2, 21~e2 +
16~e3}. Find [~q]F , [~r]F and [~s]F .

2 (a) Let [~a]E =
�

5
−12

�

where E is the standard basis for

R2. Find a basis M for R2 such that [~a]M =
�

1
0

�

.

(b) Let [~b]E =





2
1
0



 where E is the standard basis for

R3. Find a basis N for R3 such that [~b]N =





0
1
2



.

3 Determine the orientation of each of the following bases
for R2.

(a)
§�

−5
0

�

,
�

0
−2

�ª

(b)
§�

2
−6

�

,
�

−4
1

�ª

(c)
§�

1
2

�

,
�

2
1

�ª

(d)
§�

6
−1

�

,
�

2
3

�ª

4 (a) Determine the orientation of the basis V =

{~v1, ~v2, ~v3} for R3 where ~v1 =





1
0
0



, ~v2 =





0
1
0



, and

~v3 =





0
0
−1



.

(b) Consider the basis V ′ = {~v1, 3~v2, ~v3} for R3. What is
the orientation of this basis?

(c) Consider the basis V ′′ = {−4~v1, ~v2, ~v3} for R3. What
is the orientation of this basis?

5 (a) Give two examples of positively oriented bases for
R2 and briefly explain how you know their orienta-
tion.

(b) Give two examples of negatively oriented bases for
R2 and briefly explain how you know their orienta-
tion.

(c) How does negating one vector in a basis change the
orientation?

(d) How does swapping the order of two different vec-
tors in a basis change the orientation?
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Change of Basis & Coordinates

41 The mythical town of Oronto is not aligned with the usual compass directions. The streets are laid out as
follows:

City Hall

North

East

Instead, every street is parallel to the vector ~d1 =
1
5

�

4 east
3 north

�

or ~d2 =
1
5

�

−3 east
4 north

�

. The center of town is

City Hall at ~0=
�

0 east
0 north

�

.

Locations in Oronto are typically specified in street coordinates. That is, as a pair (a, b) where a is how far
you walk along streets in the ~d1 direction and b is how far you walk in the ~d2 direction, provided you
start at city hall.

41.1 The points A= (2,1) and B = (3,−1) are given in street coordinates. Find their east-north coordinates.

41.2 The points X = (4,3) and Y = (1,7) are given in east-north coordinates. Find their street coordinates.

41.3 Define ~e1 =
�

1 east
0 north

�

and ~e2 =
�

0 east
1 north

�

. Does span{~e1,~e2}= span{~d1, ~d2}?

41.4 Notice that Y = 5~d1 + 5~d2 = ~e1 + 7~e2. Is the point Y better represented by the pair (5,5) or by the pair
(1,7)? Explain.
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Let B = {~b1, . . . ,~bn} be a basis for a subspace V and let ~v ∈ V . The representation of ~v in the B basis,
notated [~v]B, is the column matrix

[~v]B =





α1
...
αn





where α1, . . . ,αn uniquely satisfy ~v = α1
~b1 + · · ·+αn

~bn.

Conversely,




α1
...
αn





B

= α1
~b1 + · · ·+αn

~bn

is notation for the linear combination of ~b1, . . . ,~bn with coefficients α1, . . . ,αn.

42 Let E = {~e1,~e2} be the standard basis for R2 and let C = {~c1,~c2} where ~c1 =
�

2
1

�

E
and ~c2 =
�

5
3

�

E
be

another basis for R2.

42.1 Express ~c1 and ~c2 as a linear combination of ~e1 and ~e2.

42.2 Express ~e1 and ~e2 as a linear combination of ~c1 and ~c2.

42.3 Let ~v = 2~e1 + 2~e2. Find [~v]E and [~v]C .

42.4 Can you find a matrix X so that X [~w]C = [~w]E for any ~w?

42.5 Can you find a matrix Y so that Y [~w]E = [~w]C for any ~w?

42.6 What is Y X?
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Orientation of a Basis
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The ordered basis B = {~b1, . . . ,~bn} is right-handed or positively oriented if it can be continuously
transformed to the standard basis (with ~bi 7→ ~ei) while remaining linearly independent throughout
the transformation. Otherwise, B is called left-handed or negatively oriented.

43 Let {~e1,~e2} be the standard basis for R2 and let ~uθ be a unit vector. Let θ be the angle between ~uθ and ~e1
measured counter-clockwise starting at ~e1.

43.1 For which θ is {~e1, ~uθ } a linearly independent set?

43.2 For which θ can {~e1, ~uθ } be continuously transformed into {~e1,~e2} and remain linearly independent the
whole time?

43.3 For which θ is {~e1, ~uθ } right-handed? Left-handed?

43.4 For which θ is {~uθ ,~e1} (in that order) right-handed? Left-handed?

43.5 Is {2~e1, 3~e2} right-handed or left-handed? What about {2~e1,−3~e2}?
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Linear Transformations

In this module you will learn

� The definition of a linear transformation.

� The definition of the image of a set under a transformation.

� How to prove whether a transformation is linear or not.

� How to find a matrix for a linear transformation.

� The difference between a matrix and a linear transformation.

Now that we have a handle on the basics of vectors, we can start thinking about transformations. Transformation
(or map) is another word for a function, and transformations show up any time you need to describe vectors
changing. For example, the transformation

S : R2→ R2 defined by
�

x
y

�

7→
�

2x
y

�

stretches all vectors in the ~e1 direction by a factor of 2.

S

The transformation

T : R2→ R2 defined by
�

x
y

�

7→
�

x + 3
y

�

translates all vectors 3 units in the ~e1 direction.

T

Images of Sets

Recall the transformation S : R2 → R2 defined by
�

x
y

�

7→
�

2x
y

�

. If we had a bunch of vectors in the plane,

applying S would stretch those vectors in the ~e1 direction by a factor of 2. For example, let C be the circle of
radius 1 centered at ~0. Applying S to all the vectors that make up C produces an ellipse.
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−2 −1 1 2

−1

1

C
−2 −1 1 2

−1

1

S(C)

S

The operation of applying a transformation to a specific set of vectors and seeing what results is called taking
the image of a set.

Image of a Set. Let L : Rn → Rm be a transformation and let X ⊆ Rn be a set. The image of the set X
under L, denoted L(X ), is the set

L(X ) = {~y ∈ Rm : ~y = L(~x) for some ~x ∈ X }.

In plain language, the image of a set X under a transformation L is the set of all outputs of L when the inputs
come from X .

If you think of sets in Rn as black-and-white “pictures” (a point is black if it’s in the set and white if it’s not),
then the image of a set under a transformation is the output after applying the transformation to the “picture”.

Images allow one to describe complicated geometric figures in terms of an original figure and a transformation.
For example, let R : R2→ R2 be rotation counter clockwise by 30◦ and let X = {x~e1 + y~e2 : x , y ∈ [0,1]} be
the filled-in unit square. Then, R(X ) is the filled-in unit square that meets the x-axis at an angle of 30◦. Try
describing that using set builder notation!

1

1

X

1

1

R(X )

R

Linear Transformations
Linear algebra’s main focus is the study of a special category of transformations: the linear transformations.
Linear transformations include rotations, dilations (stretches), shears, and more.

Box

Untransformed

Box

Shear Project

Box

Rotate

Box

Stretch

Linear transformations are an important type of transformation because (i) we have a complete theory of linear
transformations (non-linear transformations are notoriously difficult to understand), and (ii) many non-linear
transformations can be approximated by linear ones.32 All this is to say that linear transformations are worthy
of our study.

Without further ado, let’s define what it means for a transformation to be linear.

Linear Transformation. Let V and W be subspaces. A function T : V →W is called a linear transformation
if

T (~u+ ~v) = T (~u) + T (~v) and T (α~v) = αT (~v)

for all vectors ~u, ~v ∈ V and all scalars α.

32Just like in one-variable calculus where if you zoom into a function at a point its graph looks like a line, if you zoom into a (non-linear)
transformation at a point, it looks like a linear one.
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In plain language, the transformation T is linear, or has the property of linearity, if it distributes over addition
and scalar multiplication. In other words, T distributes over linear combinations.

Example. Let S : R2→ R2 and T : R2→ R2 be defined by

�

x
y

�

S
7→
�

2x
y

�

and
�

x
y

�

T
7→
�

x
y + 4

�

.

For each of S and T , determine whether the transformation is linear.

Let ~u=
�

u1
u2

�

, ~v =
�

v1
v2

�

be vectors, and let α be a scalar.

We first consider S. We need to verify that S(~u+ ~v) = S(~u) + S(~v) and S(α~u) = αS(~u).
Computing, we see

S(~u+ ~v) = S
��

u1 + v1
u2 + v2

��

=
�

2u1 + 2v1
u2 + v2

�

=
�

2u1
u2

�

+
�

2v1
v2

�

= S(~u) + S(~v)

and

S(α~u) =
�

2αu1
au2

�

= S
�

αu1
au2

�

= α
�

2u1
u2

�

= αS(~u),

and so S satisfies all the properties of a linear transformation.

Next we consider T . Notice that T (~u+ ~v) =
�

u1 + v1
u2 + v2 + 4

�

doesn’t look like T (~u) + T (~v) =
�

u1 + v1
u2 + v2 + 8

�

.

Therefore, we will guess that T is not linear and look for a counter example.

Using ~e1 =
�

1
0

�

and ~e2 =
�

0
1

�

, we see

T (~e1 + ~e2) = T
��

1
1

��

=
�

1
5

�

6=
�

1
4

�

+
�

0
5

�

= T (~e1) + T (~e2).

Since at least one required property of a linear transformation is violated, T cannot be a linear transformation.

Function Notation vs. Linear Transformation Notation
Linear transformations are just special types of functions. In calculus, it is traditional to use lower case letters
for a function and parenthesis “(” and “)” around the input to the function.

f : R→ R
︸ ︷︷ ︸

a function named f

f (x)
︸︷︷︸

f evaluated at x

For (linear) transformations, it is traditional to use capital letters to describe the function/transformation and
parenthesis around the input are optional.

T : Rn→ Rm
︸ ︷︷ ︸

a transformation named T

T (~x)
︸︷︷︸

T evaluated at ~x

T ~x
︸︷︷︸

also T evaluated at ~x

Since sets are also traditionally written using capital letters, sometimes a font variant is used to when writing
the transformation or the set. For example, we might use a regular X to denote a set and a calligraphic T to
describe a transformation.

Another difference you might not be used to is that, in linear algebra, we make a careful distinction between a
function and its output. Let f : R→ R be a function. In calculus, you might consider the phrases “the function
f ” and “the function f (x)” to both make sense. In linear algebra, the first phrase is valid and the second is not.
By writing f (x), we are indicating “the output of the function f when x is input”. So, properly we should say
“the number f (x)”.

This distinction might seem pedantic now, but by keeping our functions as functions and our numbers/vectors
as numbers/vectors, we can avoid some major confusion in the future.

The “look” of a Linear Transformation
Images under linear transformations have a certain look to them. Based just on the word linear you can probably
guess which figure below represents the image of a grid under a linear transformation.
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−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

Linear Non-linear

Let’s prove some basic facts about linear transformations.

Theorem. If T : Rn→ Rm is a linear transformation, then T (~0) = ~0.

Proof. Suppose T : Rn→ Rm is a linear transformation and ~v ∈ Rn. We know that 0~v = ~0, so by linearity we
have

T (~0) = T (0~v) = 0T (~v) = ~0.

�

Theorem. If T : Rn→ Rm is a linear transformation, then T takes lines to lines (or points).

Proof. Suppose T : Rn → Rm is a linear transformation and let ` ⊆ Rn be the line given in vector form by
~x = t ~d + ~p. We want to prove that T (`), the image of ` under the transformation T , is a line or a point.

By definition, every point in ` takes the form t ~d + ~p for some scalar t. Therefore, every point in T (`) takes the
form T (t ~d + ~p) for some scalar t. But, T is a linear transformation, so

T (t ~d + ~p) = tT (~d) + T (~p).

If T(~d) 6= ~0, then ~x = tT(~d) + T(~p) describes a line in vector form and so T(`) is a line. If T(~d) = ~0, then
T (`) = {t~0+ T (~p) : t is a scalar}= {T (~p)} is a point. �

Theorem. If T : Rn→ Rm is a linear transformation, then T takes parallel lines to parallel lines (or points).

Proof. Suppose T : Rn → Rm is a linear transformation and let `1 and `2 be parallel lines. Then, we may
describe `1 in vector form as ~x = t ~d + ~p1 and we may describe `2 in vector form as ~x = t ~d + ~p2. Note that since
the lines are parallel, the direction vectors are the same.

Now, T (`1) can be described in vector form by

~x = tT (~d) + T (~p1)

and T (`2) can be described in vector form by

~x = tT (~d) + T (~p2).

Written this way and provided T(`1) and T(`2) are actually lines, we immediately see that T(`1) and T(`2)
have the same direction vectors and hence are parallel.

If T (`1) is instead a point, then we must have T (~d) = ~0, and so T (`2) must also be a point. �

Theorem. If T : Rn→ Rm is a linear transformation, then T takes subspaces to subspaces.

Proof. Let T : Rn→ Rm be a linear transformation and let V ⊆ Rn be a subspace. We need to show that T (V )
satisfies the properties of a subspace.

Since V is non-empty, we know T (V ) is non-empty.

Let ~x , ~y ∈ T (V ). By definition, there are vectors ~u, ~v ∈ V so that

~x = T (~u) and ~y = T (~v).
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Since T is linear, we know
~x + ~y = T (~u) + T (~v) = T (~u+ ~v).

Because V is a subspace, we know ~u+ ~v ∈ V and so we conclude ~x + ~y = T (~u+ ~v) ∈ T (V ).

Similarly, for any scalar α we have
α~x = αT (~u) = T (α~u).

Since V is a subspace, α~u ∈ V and so α~x = T (α~u) ∈ T (V ). �

Linear Transformations and Proofs
When proving things in math, you have all of logic at your disposal, and that freedom can be combined
with creativity to show some truly amazing things. But, for better or for worse, proving whether or not a
transformation is linear usually doesn’t require substantial creativity.

Let T : Rn→ Rn be defined by T (~v) = 2~v. To show that T is linear, we need to show that for all inputs ~x and ~y
and for all scalars α we have

T (~x + ~y) = T (~x) + T (~y) and T (α~x) = αT (~x).

But, there are an infinite number of choices for ~x , ~y , and α. How can we argue about all of them at once?

Consider the following proof that T is linear.

Proof. Let ~x , ~y ∈ Rn and let α be a scalar. By applying the definition of T , we see

T (~x + ~y) = 2(~x + ~y) = 2~x + 2~y = T (~x) + T (~y).

Similarly,
T (α~x) = 2(α~x) = α(2~x) = αT (~x).

Since T satisfies the two properties of a linear transformation, T is a linear transformation. �

This proof starts out with “let ~x , ~y ∈ Rn and let α be a scalar”. In what follows, the only properties of ~x and ~y
we use come from the fact that they’re in Rn (the domain of T) and the only fact about α we use is that it’s a
scalar. Because of this, ~x , and ~y are considered arbitrary vectors and α is an arbitrary scalar. Put another way,
the argument that followed would work for every single pair of vectors ~x , ~y ∈ Rn and for every scalar α. Thus,
by fixing arbitrary vectors at the start of our proof, we are (i) able to argue about all vectors at once while (ii)
having named vectors that we can actually use in equations.

Takeaway. Starting a linearity proof with “let ~x , ~y ∈ Rn and let α be a scalar” allows you to argue about
all vectors and scalars simultaneously.

The proof given above is very typical, and almost every proof of the linearity of a function T : Rn→ Rm will
look something like

Proof. Let ~x , ~y ∈ Rn and let α be a scalar. By applying the definition of T , we see

T (~x + ~y) = application(s) of the definition= T (~x) + T (~y).

Similarly,
T (α~x) = application(s) of the definition= αT (~x).

Since T satisfies the two properties of a linear transformation, T is a linear transformation. �

This isn’t to say that proving whether or not a transformation is linear is easy, but all the cleverness and insight
required appears in the “application(s) of the definition” parts.

What about showing a transformation is not linear? Here we don’t need to show something true for all vectors
and all scalars. We only need to show something is false for one pair of vectors or one pair of a vector and a
scalar.

When proving a transformation is not linear, we can pick one of the properties of linearity (distribution over
vector addition or distribution over scalar multiplication) and a single example where that property fails.33

33It’s often tempting to argue that the properties of linearity fail for all inputs, but this is a dangerous path! For instance, if T(~0) = ~0,
then T (~a) = T (~a+ ~0) = T (~a) + T (~0) = T (~a) regardless of whether T is linear or not.
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Example. Let T : Rn→ Rn be defined by T (~x) = ~x + ~e1. Show that T is not linear.

Proof. We will show that T does not distribute with respect to scalar multiplication.
Observe that

T (2~0) = T (~0) = ~e1 6= 2~e1 = 2T (~0).

Therefore, T cannot be a linear transformation. �

Matrix Transformations
We already know two ways to interpret matrix multiplication—linear combinations of the columns and dot
products with the rows—and we’re about to have a third.

Let M =
�

1 2
−1 1

�

. For a vector ~v ∈ R2, M ~v is another vector in R2. In this way, we can think of multiplication

by M as a transformation on R2. Define

T : R2→ R2 by T (~x) = M ~x .

Because T is defined by a matrix, we call T a matrix transformation. It turns out all matrix transformations are
linear transformations and most linear transformations are matrix transformations.34

When it comes to specifying linear transformations, matrices are heroes, providing a compact notation (just like
they did for systems of linear equations). For example, we could say, “The linear transformation T : R2→ R2

that doubles the x-coordinate and triples the y-coordinate”, or we could say, “The matrix transformation given

by
�

2 0
0 3

�

”.

When talking about matrices and linear transformations, we must keep in mind that they are not the same
thing. A matrix is a box of numbers and has no meaning until we give it meaning. A linear transformation is a
function that inputs vectors and outputs vectors. We can specify a linear transformation using a matrix, but a
matrix by itself is not a linear transformation.35

Takeaway. Matrices and linear transformations are closely related, but they aren’t the same thing.

So what are some correct ways to specify a linear transformation using a matrix? For a matrix M , the following
are correct.

� The transformation T defined by T (~x) = M ~x .

� The transformation given by multiplication by M .

� The transformation induced by M .

� The matrix transformation given by M .

� The linear transformation whose matrix is M .

Finding a Matrix for a Linear Transformation
Every linear transformation from Rn to Rm has a matrix, and we can use basic algebra to find an appropriate
matrix.

Let T : Rn→ Rm be a linear transformation. Since T inputs vectors with n coordinates and outputs vectors with
m coordinates, we know any matrix for T must be m× n. The process of finding a matrix for T can now be
summarized as follows: (i) create an m× n matrix of variables, (ii) use known input-output pairs for T to set
up a system of equations involving the unknown variables, (iii) solve for the variables.

Example. Let T : R2→ R2 be defined by T
�

x
y

�

=
�

2x + y
x

�

. Find a matrix, M , for T .

Because T is a transformation for R2→ R2, M will be a 2× 2 matrix. Let

M =
�

a b
c d

�

.

34If you believe in the axiom of choice and you allow infinitely sized matrices, every linear transformation can be expressed as a matrix
transformation.

35Consider the function defined by f (x) = 2x . You would never say that the function f is 2!
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We now need to use input-output pairs to “calibrate” M . We know

T
�

1
1

�

=
�

3
1

�

and T
�

0
1

�

=
�

1
0

�

.

Since M is a matrix for T , we know T ~x = M ~x for all ~x , and so

M
�

1
1

�

=
�

a b
c d

��

1
1

�

=
�

a+ b
c + d

�

=
�

3
1

�

and

M
�

0
1

�

=
�

a b
c d

��

0
1

�

=
�

b
d

�

=
�

1
0

�

.

This gives us the system of equations














a+ b = 3

c + d = 1

b = 1

d = 0

,

and solving this system tells us

M =
�

a b
c d

�

=
�

2 1
1 0

�

.

Practice Problems

1 For each transformation listed below, prove whether or
not it is a linear transformation.

(a) A : R2→ R2 defined by A
�

x
y

�

=
�

−x
y

�

.

(b) B : R2→ R2 defined by B
�

x
y

�

=
�

−x − 1
y

�

.

(c) id : R2 → R2, the function that leaves its input
unchanged.

(d) C : R2 → R2, where C sends all vectors above the
x-axis to ~0 and all vectors on or below the x-axis to
−~e2.

2 Draw the image of the unit circle under each transforma-
tion listed in 1.

3 Let M =
�

1 −2 3
−4 5 −6

�

and let TM be the correspond-

ing matrix transformation.

(a) Determine the domain and codomain of TM .

(b) Calculate TM









2
−1

1







.

(c) Find the image of the standard basis vectors of the
domain under TM .

4 Find a matrix for each transformation below, or explain
why no such matrix exists.

(a) S : R2 → R2, where S is the transformation that
doubles every vector.

(b) R : R2 → R2, where R is rotation clockwise by
135◦.

(c) T : R2 → R2, where T translates every vector by
3~e1.

(d) P : R2→ R2, where P is projection onto the y-axis.

(e) F : R2 → R2, where F is reflection over the line
y = x .

5 Let S : Rn → Rm and T : Rn → Rm be linear transfor-
mations, and define the transformation R : Rn → Rm by
R(~x) = S(~x) + T (~x). Show that R is also linear.

6 For a fixed vector ~a ∈ R3, define the function D~a by
D~a(~x) = ~a · ~x .

(a) Identify the domain and codomain of D~a.

(b) Show that when ~a = ~e1, then D~a is a linear transfor-
mation.

(c) Is D~a a linear transformation for all ~a? Prove your
claim.

(d) Find a matrix for D~a or explain why no such matrix
exists.

7 Let T : R2 → R2 be a transformation with the property
that T(V ) is a subspace whenever V is a subspace. Is
this enough information to conclude that T is a linear
transformation? Justify your answer.

8 For each statement below, determine whether it is true or
false. Justify your answer.

(a) Every transformation from Rn to Rm can be repre-
sented by a matrix.

(b) The image of a subspace under a linear transforma-
tion is not a subspace.

(c) A transformation that takes every vector in the do-
main to ~0 is not linear.

(d) Every matrix is a linear transformation.

(e) Parallel lines stay parallel under a linear transfor-
mation.

9 Let T : R2→ R2 be the transformation that doubles the
length of its input. The following statements about T are
either incorrect or incomplete. Fix each statement so that
it is correct and complete.

(a) T =
�

2 0
0 2

�

.
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(b) Since T ~x = 2~x for every ~x , we can say T = 2.

(c) T is a linear transformation because 2(~x + ~y) =
2~x + 2~y .
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Italicizing N

44 The citizens of Oronto want to erect a sign welcoming visitors to the city. They’ve commissioned letters to
be built, but at the last council meeting, they decided they wanted italicised letters instead of regular
ones. Can you help them?

Suppose that the “N” on the left is written in regular 12-point font. Find a matrix A that will transform
the “N” into the letter on the right which is written in an italic 16-point font.

Work with your group to write out your solution and approach. Make a list of any assumptions you notice
your group making or any questions for further pursuit.
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Beyond the N

45 Some council members were wondering how letters placed in other locations in the plane would be

transformed under A=
�

1 1/3
0 4/3

�

. If other letters are placed around the “N,” the council members argued

over four different possible results for the transformed letters. Which choice below, if any, is correct, and
why? If none of the four options are correct, what would the correct option be, and why?

Original

(0,0)

(A)

(0,0)

(B)

(0,0)

(C)

(0,0)

(D)

(0,0)
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Linear Transformations

46 R : R2→ R2 is the transformation that rotates vectors counter-clockwise by 90◦.

46.1 Compute R
�

1
0

�

and R
�

0
1

�

.

46.2 Compute R
�

1
1

�

. How does this relate to R
�

1
0

�

and R
�

0
1

�

?

46.3 What is R
�

a
�

1
0

�

+ b
�

0
1

��

?

46.4 Write down a matrix R so that R~v is ~v rotated counter-clockwise by 90◦.
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N Let V and W be subspaces. A function T : V →W is called a linear transformation if

T (~u+ ~v) = T (~u) + T (~v) and T (α~v) = αT (~v)

for all vectors ~u, ~v ∈ V and all scalars α.

47 47.1 Classify the following as linear transformations or not.

(a) R from before (rotation counter-clockwise by 90◦).

(b) W : R2→ R2 where W
�

x
y

�

=
�

x2

y

�

.

(c) T : R2→ R2 where T
�

x
y

�

=
�

x + 2
y

�

.

(d) P : R2→ R2 where P
�

x
y

�

= vcomp~u

�

x
y

�

and ~u=
�

2
3

�

.
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Image of a Set

D
EF

Let L : Rn→ Rm be a transformation and let X ⊆ Rn be a set. The image of the set X under L, denoted
L(X ), is the set

L(X ) = {~y ∈ Rm : ~y = L(~x) for some ~x ∈ X }.

48 Let S =
§�

x
y

�

: 0≤ x ≤ 1 and 0≤ y ≤ 1
ª

⊆ R2 be the filled-in unit square and let C = {~0,~e1,~e2,~e1+~e2} ⊆

R2 be the corners of the unit square.

48.1 Find R(C), W (C), and T (C) (where R, W , and T are from the previous question).

48.2 Draw R(S), T (S), and P(S) (where R, T , and P are from the previous question).

48.3 Let ` = {all convex combinations of ~a and ~b} be a line segment with endpoints ~a and ~b and let A be a
linear transformation. Must A(`) be a line segment? What are its endpoints?

48.4 Explain how images of sets relate to the Italicizing N task.
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The Composition of Linear Transformations

In this module you will learn

� How to break a complicated transformation into the composition of simpler ones.

� How the composition of linear transformations relates to matrix multiplication.

In life, we encounter situations where we do one thing after another. For example, you put on your socks and
then your shoes. We might call this whole operation (of first putting on your socks and then your shoes) “getting
dressed”, and it is an example of function composition.

Composition of Functions. Let f : A→ B and g : B→ C . The composition of g and f , notated g ◦ f , is
the function h : A→ C defined by

h(x) = g ◦ f (x) = g
�

f (x)
�

.

We can formalize the shoes-socks example with mathematical notation.

getting dressed= (putting on shoes) ◦ (putting on socks)

Or, if X represented putting on socks, S represented putting on shoes, and D represented getting dressed,
D = S ◦ X .

This real-life example has utility when talking to children. Getting dressed is a complicated operation, but by
breaking it up into simpler operations, even a young child can understand the process. In this vein, we can
understand complicated linear transformations by breaking them up into the composition of simpler ones.

For example, define

T : R2→ R2 by T (~x) =
� p

2 −
p

2p
2/2

p
2/2

�

~x .

It’s hard to understand what T does just by looking at inputs and outputs. However, if we were keen enough to
notice that

T = S ◦R

where R was rotation counter-clockwise by 45◦ and S was a stretch in the ~e1 direction by a factor of 2, suddenly
T wouldn’t be such a mystery.

How does one figure out the “simple transformations” that when composed give the full transformation? In
truth, there are many, many methods and there are whole books written about how to find these decompositions
efficiently. We will encounter two algorithms for this,36 but for now our methods will be ad hoc.

Example. Let U : R2 → R2 be the transformation given by M =

�p
2/2 −

p
2/2

0 0

�

, let R : R2 → R2

be rotation counter clockwise by 45◦, and let P : R2 → R2 be projection onto the x-axis. Write U as the
composition (in some order) of R and P.

We will use ~e1 and ~e2 to determine whether U is R ◦P or P ◦R.
Computing,

U(~e1) =

�p
2

2
0

�

and U(~e2) =

�

−
p

2
2
0

�

.

For R ◦P:

R ◦P(~e1) =R(P(~e1)) =R
�

1
0

�

=

�p
2

2p
2

2

�

R ◦P(~e2) =R(P(~e2)) =R
�

0
0

�

=
�

0
0

�

.

36Phrased in terms of matrices instead of linear transformations, the decompositions we will study are called: (i) decomposition into
elementary matrices, and (ii) diagonalization.
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For P ◦R:

P ◦R(~e1) = P(R(~e1)) = P

�p
2

2p
2

2

�

=

�p
2

2
0

�

P ◦R(~e2) = P(R(~e2)) = P

�

−
p

2
2p
2

2

�

=

�

−
p

2
2
0

�

.

Since P ◦R agrees with U on the standard basis (i.e., P ◦R and U output the same vectors when ~e1 and ~e2
are input), they must agree for all vectors. Therefore U = P ◦R.

Compositions and Matrix Products
Let A : R2→ R2 and B : R2→ R2 be matrix transformations with matrices

MA =
�

1 2
0 2

�

and MB =
�

−1 −1
−2 0

�

.

(Make sure you understand why A 6= MA before continuing!)

Define T = A ◦B. Since T : R2→ R2 is a linear transformation, we know T has a matrix MT which is 2× 2.
We can find MT by the usual methods. First, compute some input-output pairs for T .

T
�

1
0

�

=A
�

B
�

1
0

��

=A
�

−1
−2

�

=
�

−5
−4

�

and T
�

0
1

�

=A
�

B
�

0
1

��

=A
�

−1
0

�

=
�

−1
0

�

Letting MT =
�

a b
c d

�

, we use the input-output pairs to see

�

a
c

�

= MT

�

1
0

�

=
�

−5
−4

�

and
�

b
d

�

= MT

�

0
1

�

=
�

−1
0

�

,

and so

MT =
�

−5 −1
−4 0

�

.

We found MT , the matrix for T , using traditional techniques, but could we have used MA and MB to somehow
find MT ? As it turns out, yes, we could have!

By definition,
A~x = MA~x and B~x = MB ~x ,

since A and B are matrix transformations. Therefore,

A(B~x) = MA(MB ~x).

But, matrix multiplication is associative,37 and so

MA(MB ~x) = (MAMB)~x .

Thus MAMB must be a matrix for A ◦B = T . Indeed, computing the matrix product, we see

MAMB =
�

1 2
0 2

��

−1 −1
−2 0

�

=
�

−5 −1
−4 0

�

= MT .

The fact that matrix multiplication corresponds to function composition is no coincidence. It is the very reason
matrix multiplication is defined the way it is. This is reiterated in the following theorem.

Theorem. If P : Ra → Rb and Q : Rc → Ra are matrix transformations with matrices MP and MQ, then
P ◦Q is a matrix transformation whose matrix is given by the matrix product MP MQ.

It should now be clear why the order of matrix multiplication matters. The order of function composition
matters (you must put on your socks before your shoes!), and since matrix multiplication corresponds to function
composition, the order of matrix multiplication must matter.

37If an operation is associative, it means that where you put the parenthesis doesn’t matter.

122 © Jason Siefken, 2015–2024



M
od

ul
e

10
–

Th
e

Co
m

po
sit

io
n

of
Li

ne
ar

Tr
an

sfo
rm

at
io

ns

Practice Problems

1 (a) Let U : R2→ R2 be the matrix transformation given

by

�

0 0
−
p

2/2 −
p

2/2

�

. Further, let P : R2→ R2 be

the projection onto the y-axis, and let R : R2→ R2

be the rotation clockwise by 135◦.

i. Find a matrix for R ◦P.

ii. Find a matrix for P ◦R.

iii. Write U as the composition (in some order) of
R and P.

(b) Let V : R2 → R2 be the matrix transformation

given by
�

0 2
2 0

�

. Further, let S : R2 → R2 be the

transformation that doubles every vector, and let
F : R2→ R2 be the transformation reflecting over
the line y = x .

i. Find a matrix for F ◦ S.

ii. Find a matrix for S ◦F .

iii. Write V as the composition (in some order) of
F and S.

2 Let A : R2 → R2 and B : R2 → R2 be matrix transforma-
tions with matrices

MA =
�

2 2
1 3

�

and MB =
�

3 2
0 4

�

and let MT be the matrix for T =A ◦B.

(a) Find MT by computing input-output pairs for T .

(b) Find MT by using matrix multiplication applied to
MA and MB.

3 Let A : R3 → R2 and B : R2 → R1 be matrix transforma-
tions with matrices

MA =
�

2 1 0
2 3 0

�

and MB =
�

3 2
�

and let MT be the matrix for T = B ◦A.

(a) Find MT by computing input-output pairs for T .

(b) Find MT by using matrix multiplication applied to
MA and MB.
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Pat and Jamie

49

Suppose that the “N” on the left is written in regular
12-point font. Find a matrix A that will transform the
“N” into the letter on the right which is written in an
italic 16-point font.

Two students—Pat and Jamie—explained their approach to italicizing the N as follows:

In order to find the matrix A, we are going to find a matrix that makes the “N” taller, find a
matrix that italicizes the taller “N,” and a combination of those two matrices will give the desired
matrix A.

1. Do you think Pat and Jamie’s approach allowed them to find A? If so, do you think they found the
same matrix that you did during Italicising N?

2. Try Pat and Jamie’s approach. Either (a) come up with a matrix A using their approach, or (b)
explain why their approach does not work.
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50 Define P : R2 → R2 to be projection onto span{~u} where ~u =
�

2
3

�

, and let R : R2 → R2 be rotation

counter-clockwise by 90◦.

50.1 Find a matrix P so that P ~x = P(~x) for all ~x ∈ R2.

50.2 Find a matrix R so that R~x =R(~x) for all ~x ∈ R2.

50.3 Write down matrices A and B for P ◦R and R ◦P.

50.4 How do the matrices A and B relate to the matrices P and R?
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Range & Nullspace of a Linear Transformation

In this module you will learn

� The definition of the range and null space of a linear transformation.

� How to precisely notate the matrix for a linear transformation.

� The fundamental subspaces corresponding to a matrix (row space, column space, null space) and how
they relate to the range and null space of a linear transformation.

� How to find a basis for the fundamental subspaces of a matrix.

� The definition of rank and the rank-nullity theorem.

Associated with every linear transformation are two specially named subspaces: the range and the null space.

Range

Range. The range (or image) of a linear transformation T : V →W is the set of vectors that T can output.
That is,

range(T ) = {~y ∈W : ~y = T ~x for some ~x ∈ V}.

The range of a linear transformation has the exact same definition as the range of a function—it’s the set
of all outputs. In other words, the range of a linear transformation is the image of the entire domain with
respect to that linear transformation.38 However, unlike the range of an arbitrary function, the range of a linear
transformation is always a subspace.

Theorem. Let T : Rn→ Rm be a linear transformation. Then range(T ) ⊆ Rm is a subspace.

Proof. Since range(T ) = T (Rn) and Rn is non-empty, we know that range(T ) is non-empty. Therefore, to show
that range(T ) is a subspace, what remains to be shown is (i) that it’s closed under vector addition, and (ii) that
it is closed under scalar multiplication.

(i) Let ~x , ~y ∈ range(T). By definition, there exist ~u, ~v ∈ Rn such that ~x = T(~u) and ~y = T(~v). Since T is
linear,

~x + ~y = T (~u) + T (~v) = T (~u+ ~v),

and so ~x + ~y ∈ range(T ).

(ii) Let ~x ∈ range(T) and let α be a scalar. By definition, there exists ~u ∈ Rn such that ~x = T(~u), and so by
the linearity of T ,

α~x = αT (~u) = T (α~u).

Therefore α~x ∈ range(T ).

�

When analyzing subspaces, we are often interested in how big they are. That information is captured by a
number—the dimension of the subspace. For transformations, we also have a notion of how “big” they are,
which is captured in a number called the rank.

Rank of a Linear Transformation. For a linear transformation T : Rn → Rm, the rank of T , denoted
rank(T ), is the dimension of the range of T .

The rank of a linear transformation can be used to measure its complexity or compressibility. A rank 0
transformation must send all vectors to ~0. A rank 1 transformation must send all vectors to a line, etc.. So,
by knowing just a single number—the rank—you can judge how complicated the set of outputs of a linear
transformation will be.

Example. Let P be the plane given by x + y + z = 0, and let T : R3 → R3 be projection onto P. Find
range(T ) and rank(T ).

38Some people say “the image of T” as a short way of saying “the image of the entire domain of T under T”. Used in this sense
Image(T ) = range(T ).
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First we will find range(T ). Since T is a projection onto P, we know range(T ) ⊆ P. Because T (~p) = ~p for
all ~p ∈ P, we know P ⊆ range(T ), and so

range(T ) = P.

Since P is a plane, we know dim(P) = 2= dim(range(T )) = rank(T ).

Null Space
The second special subspace is called the null space.

Null Space. The null space (or kernel) of a linear transformation T : V →W is the set of vectors that get
mapped to the zero vector under T . That is,

null(T ) = {~x ∈ V : T ~x = ~0}.

We’ve seen null spaces before. In the context of matrices when we asked questions like, “Are these column
vectors linearly independent?” Now that we understand linear transformation and subspaces, we can consider
this question anew.

Just like the range of a linear transformation, the null space of a linear transformation is always a subspace.

Theorem. Let T : Rn→ Rm be a linear transformation. Then null(T ) ⊆ Rn is a subspace.

Proof. Since T is linear, T(~0) = ~0 and so ~0 ∈ null(T) which shows that null(T) is non-empty. Therefore, to
show that null(T ) is a subspace, we only need to show (i) that it’s closed under vector addition, and (ii) that it
is closed under scalar multiplication.

(i) Let ~x , ~y ∈ null(T ). By definition, T (~x) = T (~y) = ~0. By linearity we see

T (~x + ~y) = T (~x) + T (~y) = ~0+ ~0= ~0,

and so ~x + ~y ∈ null(T ).

(ii) Let ~x ∈ null(T ) and let α be a scalar. By definition, T (~x) = ~0, and so by the linearity of T ,

T (α~x) = αT (~x) = α~0= ~0.

Therefore α~x ∈ null(T ).

�

Akin to the rank–range connection, there is a special number called the nullity which specifies the dimension of
the null space.

Nullity. For a linear transformation T : Rn→ Rm, the nullity of T , denoted nullity(T ), is the dimension of
the null space of T .

Example. Let P be the plane given by x + y + z = 0, and let T : R3 → R3 be projection onto P. Find
null(T ) and nullity(T ).

First we will find null(T ). Since T is a projection onto P (and because P passes through ~0), we know every
normal vector for P will get sent to ~0 when T is applied. And, besides ~0 itself, these are the only vectors that
get sent to ~0. Therefore

null(T ) = {normal vectors} ∪ {~0}= span











1
1
1











.

Since null(T ) is a line, we know nullity(T ) = 1.

Fundamental Subspaces of a Matrix
Every linear transformation has a range and a null space. Analogously, every matrix is associated with three
fundamental subspaces.
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Fundamental Subspaces. Associated with any matrix M are three fundamental subspaces: the row space
of M , denoted row(M), is the span of the rows of M ; the column space of M , denoted col(M), is the span
of the columns of M ; and the null space of M , denoted null(M), is the set of solutions to M ~x = ~0.

Computationally, it’s much easier to find the row space/column space/null space of a matrix than it is to find
the range/null space of a linear transformation because we can turn matrix questions into systems of linear
equations.

Example. Find the null space of M =
�

1 2 5
2 −2 −2

�

.

To find the null space of M , we need to solve the homogeneous matrix equation M ~x = ~0. Row reducing, we
see

rref(M) =
�

1 0 1
0 1 2

�

,

and so the z column is a free variable column. Therefore, the complete solution can be expressed in vector
form as





x
y
z



= t





−1
−2

1



 ,

and so

null(M) = span











−1
−2

1











.

The column space and row space are just as easy to compute, since it just involves picking a basis from the
existing row or column vectors.

Example. Let M =
�

1 2 5
2 −2 −2

�

. Find a basis for the row space and the column space of M .

First the column space. We need to pick a basis for span
§�

1
2

�

,
�

2
−2

�

,
�

5
−2

�ª

, which is the same thing as

picking a maximal linearly independent subset of
§�

1
2

�

,
�

2
−2

�

,
�

5
−2

�ª

.

Putting these vectors as columns in a matrix and row reducing, we see

rref
��

1 2 5
2 −2 −2

��

=
�

1 0 1
0 1 2

�

.

The first and second columns are the only pivot columns and so the first and second original vectors form a
maximal linearly independent subset. Thus,

col(M) = span
§�

1
2

�

,
�

2
−2

�ª

= R2 and a basis is
§�

1
2

�

,
�

2
−2

�ª

.

To find the row space, we need to pick a basis for span











1
2
5



 ,





2
−2
−2











. Repeating a similar procedure, we

see

rref









1 2
2 −2
5 −2







=





1 0
0 1
0 0



 ,

and so











1
2
5



 ,





2
−2
−2











is linearly independent. Therefore

row(M) = span











1
2
5



 ,





2
−2
−2











and a basis is











1
2
5



 ,





2
−2
−2











.
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When talking about fundamental subspaces, we often switch between talking about column vectors and row
vectors belonging to a matrix. The operation of swapping rows for columns is called the transpose.

Transpose.
Let M be an n×m matrix defined by

M =









a11 a12 a13 · · · a1m
a21 a22 a23 · · · a2m
...

...
...

. . .
...

an1 an2 an3 · · · anm









.

The transpose of M , notated M T , is the m× n matrix produced by swapping the rows and columns of M .
That is

M T =













a11 a21 · · · an1
a12 a22 · · · an2
a13 a23 · · · an3
...

...
. . .

...
a1m a2m · · · anm













.

Using the transpose, we can make statements like

col(M) = row(M T ) and row(M) = col(M T ).

In addition, it helps us state the following theorem.

Theorem (Row-Col Dimension). For a matrix A, the dimension of the row space equals the dimension of
the column space.

Proof. For this proof, we will rely on what we know about the row reduction algorithm and what the reduced
row echelon form of a matrix tells us.

Claim 1: row(rref(A)) ⊆ row(A). To see this, observe that to get rref(A), we take linear combinations of the rows
of A. Therefore, it must be that the span of the rows of rref(A) is contained in the span of the rows of A.

Claim 2: row(rref(A)) = row(A). To see this, observe that every elementary row operation is reversible. Therefore
every row in A can be obtained as a linear combination of rows in rref(A) (by just reversing the steps). Thus the
row vectors of rref(A) and the row vectors of A must have the same span.

Claim 3: The non-zero rows of rref(A) form a basis for row(A). We already know that the non-zero rows
of rref(A) span row(A), so we only need to argue that they are linearly independent. However, this follows
immediately from the fact that rref(A) is in reduced row echelon form. Above and below every pivot in rref(A)
are zeros. Therefore, a row in rref(A) with a pivot cannot be written as a linear combination of any other row.
Since every non-zero row has a pivot, this proves the claim.

Now, note the following two facts.

1. The columns of A corresponding to pivot columns of rref(A) form a basis for col(A).

2. The non-zero rows of rref(A) form a basis for row(A).

To complete the proof, note that every pivot of rref(A) lies in exactly one row and one column. Therefore, the
number of basis vectors in row(A) is the same as the number of basis vectors in col(A). �

Equations, Null Spaces, and Geometry

Let M =
�

1 2 5
2 −2 −2

�

. Using the typical row-reduction steps, we know that the complete solution to M ~x = ~0

(i.e., the null space of M) can be expressed in vector form as

~x = t





−1
−2

1



 .
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Similarly, the complete solution to M ~x = ~b where ~b =
�

1
2

�

can be expressed in vector form as

~x = t





−1
−2

1



+





1
0
0



 .

The set of solutions to M ~x = ~0 and M ~x = ~b look very similar. In fact,

{solutions to M ~x = ~b}= {solutions to M ~x = ~0}+ {~p} where ~p =





1
0
0



 .

Or, phrased another way, the solution set to M ~x = ~b is

null(M) + {~p}.

In the context of what we already know about lines and translated spans, this makes perfect sense. We know
that the solution set to M ~x = ~b is a line (which doesn’t pass through the origin) and may therefore be written
as a translated span span{~d}+ {~p}. Here ~d is a direction vector for the line and ~p is a point on the line.

Because ~p ∈ span{~d}+ {~p}, we call ~p a particular solution to M ~x = ~b. Using a similar argument, we can show
that for any matrix A, and any vector ~b, the set of all solutions to A~x = ~b (provided there are any) can be
expressed as

V + {~p}

where V is a subspace and ~p is a particular solution. In fact, we can do better. We can say V = null(A).

Theorem. Let A be a matrix, ~b be a vector, and let ~p be a particular solution to A~x = ~b. Then, the set of all
solutions to A~x = ~b is

null(A) + {~p}.

Proof. Let S = {all solutions to A~x = ~b} and assume ~p ∈ S. We will show S = null(A) + {~p}.

First we will show null(A) + {~p} ⊆ S. Let ~v ∈ null(A) + {~p}. By definition, ~v = ~n+ ~p for some ~n ∈ null(A). Now,
by linearity of matrix multiplication and the definition of the null space,

A~v = A(~n+ ~p) = A~n+ A~p = ~0+ ~b = ~b,

and so ~v ∈ S.

Next we will show S ⊆ null(A) + {~p}. First observe that for any ~u, ~v ∈ S we have

A(~u− ~v) = A~u− A~v = ~b− ~b = ~0,

and so ~u− ~v ∈ null(A).

Fix ~w ∈ S. By our previous observation, ~w− ~p ∈ null(A). Therefore

~w= (~w− ~p) + ~p ∈ null(A) + {~p},

which completes the proof. �

Takeaway. To write the complete solution to A~x = ~b, all you need is the null space of A and a particular
solution to A~x = ~b.

Null spaces are also closely connected with row spaces. Let P ⊆ R3 be the plane with equation x + 2y + 2z = 0.
We can rewrite this equation as a matrix equation and as the equation of a plane in normal form.

�

1 2 2
�





x
y
z



= ~0

︸ ︷︷ ︸

a matrix equation





1
2
2



 ·





x
y
z



= 0

︸ ︷︷ ︸

normal form
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Now we see that P = null
��

1 2 2
��

and that every non-zero vector in row
��

1 2 2
��

is a normal vector
for P. In other words, null

��

1 2 2
��

is orthogonal to row
��

1 2 2
��

.

This is no coincidence. Let M be a matrix and let ~r1, . . . ,~rn be the rows of M . By definition,

M ~x =





~r1 · ~x
...
~rn · ~x



 ,

and so solutions to M ~x = ~0 are precisely the vectors which are orthogonal to every row of M . In other words,
null(M) consists of all vectors orthogonal to the rows of M . Conversely, row(M) consists of all vectors orthogonal
to everything in null(M). We can use this fact to approach questions in a new way.

Example. Let ~a =





1
2
5



 and ~b =





2
−2
−2



. Find the set of all vectors orthogonal to both ~a and ~b.

Let M =
�

1 2 5
2 −2 −2

�

be the matrix whose rows are ~a and ~b. Since null(M) consists of all vectors orthogonal

to row(M), the set we are looking for is null(M). Computing via row reduction, we find

null(M) = span











−1
−2

1











.

Transformations and Matrices
Matrices are connected to systems of linear equations via matrix equations (like A~x = ~b) and to linear transfor-
mations through matrix transformations (like T (~x) = M ~x). This means that we can think about systems of
equations in terms of linear transformations and we can gain insight about linear transformations by looking at
systems of equations!

In preparation for this, let’s reconsider matrix transformations and be pedantic about our notation.

Let T : Rn→ Rn be a linear transformation and let M be its corresponding matrix. T is a function that inputs
and outputs vectors. M is a box of numbers, which has no meaning by itself, but we know how to multiply M by
lists of numbers (or other boxes of numbers). Therefore, strictly speaking, the expression “M ~x” doesn’t make
sense. The quantity “~x” is a vector, but we only know how to multiply M by lists of numbers.

Ah! But we know how to turn ~x into a list of numbers. Just pick a basis! The expression

M[~x]E

makes perfect sense since [~x]E is a list of numbers. Continuing to be pedantic, we know T (~x) 6= M[~x]E since
the left side is a vector and the right side is a list of numbers. We can fix this by either turning the right side
into a vector or the left side into a list of numbers. Doing this, we see the precise relationship between a linear
transformation T : Rn→ Rn and its matrix M is

[T (~x)]E = M[~x]E .

If we have a matrix M , by picking a basis (usually the standard basis), we can define a linear transformation by
first taking the input vector and rewriting it in the basis, next multiplying by the matrix, and finally taking the
list of numbers and using them as coefficients for a linear combination involving the basis vectors. This is what
we actually mean when we say that a matrix induces a linear transformation.

Induced Transformation.
Let M be an n×m matrix. We say M induces a linear transformation TM : Rm→ Rn defined by

[TM ~v]E ′ = M[~v]E ,

where E is the standard basis for Rm and E ′ is the standard basis for Rn.

Previously, we would write “T (~x) = M ~x” which hides the fact that when we relate a matrix and a linear
transformation, there is a basis hidden in the background. And, like before, when we’re only considering a single
basis, we can be sloppy with our notation and write things like “M ~x”, but when there are multiple bases or when
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we’re trying to be extra precise, we must make sure our boxes/lists of numbers and our transformations/vectors
stay separate.

Example. Let T be the transformation induced by the matrix M =
�

1 2 5
2 −2 −2

�

, and let ~v = 3~e1 − 3~e3.

Compute T (~v).

Since T is induced by M =
�

1 2 5
2 −2 −2

�

, by definition,

[TM ~v]E ′ = M[~v]E =
�

1 2 5
2 −2 −2

�

[~v]E .

Further, since ~v = 3~e1 − 3~e3, by definition we have [~v]E =





3
0
−3



. Therefore,

[TM ~v]E ′ =
�

1 2 5
2 −2 −2

�





3
0
−3



=
�

−12
12

�

.

In other words, T (~v) =
�

−12
12

�

E ′
= −12~e1 + 12~e2.

Using induced transformations, we can extend linear-transformation definitions to matrix definitions. In
particular, we can define the rank and nullity of a matrix.

Rank of a Matrix. Let M be a matrix. The rank of M , denoted rank(M), is the rank of the linear
transformation induced by M .

Nullity of a Matrix. Let M be a matrix. The nullity of M , denoted nullity(M), is the nullity of the linear
transformation induced by M .

Range vs. Column Space & Null Space vs. Null Space
Let M =
�

C1 C2 · · · Cm

�

be an m×m matrix with columns C1, . . . , Cm, and let T be the transformation
induced by M . The column space of M is the set of all linear combinations of the columns of M . But, let’s be
precise. The columns of M are lists of numbers, so to talk about the column space of M , we need to turn them
into vectors. Fortunately, we have a nice notation for that. Since Ci is a list of numbers, [Ci]E is a (true) vector,
and

col(M) = span{[C1]E , [C2]E , . . . , [Cm]E}.

Can we connect this to the range of T ? Well, by the definition of matrix multiplication, we know that

M









1
0
...
0









= M[~e1]E = C1

and in general M[~ei]E = Ci . By the definition of induced transformation, we know

[T (~ei)]E = M[~ei]E = Ci ,

and so
T (~ei) = [Ci]E .

Every input to T can be written as a linear combination of ~ei ’s (because E is a basis) and so, because T is linear,
every output of T can be written as a linear combination of [Ci]E ’s. In other words,

range(T ) = col(M).

This means that when trying to answer a question about the range of a linear transformation, we could think
about the column space of its matrix instead (or vice versa).
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Example. Let T : R3→ R2 be defined by

T





x
y
z



=
�

2x − z
4x − 2z

�

.

Find range(T ) and rank(T ).

Let M be a matrix for T . We know range(T ) = col(M) and rank(T ) = dim(range(T )) = dim(col(M)). By
inspection, we see that

M =
�

2 0 −1
4 0 −2

�

.

Again, by inspection, we see that
§�

2
4

�ª

is a basis for col(M) and col(M) is one dimensional. Therefore,

range(T ) = span
§�

2
4

�ª

and rank(T ) = 1.

There is an alternative definition of the rank of a matrix which commonly appears. We’ll state it as a theorem.

Theorem. Let M be a matrix. The rank of M is equal to the number of pivots in rref(M).

Proof. We know that rank(M) = dim(range(TM )) = dim(col(M)) where TM is the transformation induced by
M . Further, a basis for col(M) consists of a maximal linearly independent subset of the columns of M . To find
such a subset, we row reduce M and look at the columns of M that correspond to pivot columns of rref(M).

When all is said and done, the number of elements in a basis for col(M) will be the number of pivots in rref(M),
which is the same as rank(M). �

Takeaway. If T is a linear transformation and M is a corresponding matrix, range(T ) = col(M), and
answering questions about M answers questions about T .

Just like the range–column-space relationship, we also have a null-space–null-space relationship. More specif-
ically, if T is a linear transformation with matrix M , then null(T ) = null(M). From this fact, we deduce the
following theorem.

Theorem. Let T be a linear transformation and let M be a matrix for T . Then nullity(T ) is equal to the
number of free variable columns in rref(M).

Proof. We know nullity(T ) = dim(null(T )) = dim(null(M)). Further, we know that the complete solution to
M ~x = ~0 will take the form

~x = t1
~d1 + · · ·+ tk

~dk

where k is the number of free variable columns in rref(M). The algorithm for writing the complete solution to
M ~x = ~0 ensures that {~d1, . . . , ~dk} is a basis for null(M), and so nullity(T ) = k, which completes the proof. �

Combining these facts, we can reformulate the Row-Col Dimension theorem as a theorem about ranks.

Theorem. For a matrix A, we have rank(A) = rank(AT ).

Proof. By the Row-Col Dimension theorem, we know dim(col(A)) = dim(row(A)). By the definition of the
transpose, we know row(A) = col(AT ). Therefore,

dim(col(A)) = dim(col(AT )),

which is another way of saying rank(A) = rank(AT ). �

The Rank-Nullity Theorem
The rank and the nullity of a linear transformation/matrix are connected by a powerful theorem.

Theorem (Rank-nullity Theorem for Matrices). For a matrix A,

rank(A) + nullity(A) = # of columns in A.
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The rank-nullity theorem’s statement is simple, but it is surprisingly useful. For example, consider the question:
how many normal directions does a plane have in R3 or in R4 or in R5?

We already know the answer in R3: a plane has a two-dimensional set of direction vectors and a one-dimensional
set (a line) of normal vectors.39 But, we can verify this fact using the rank-nullity theorem.

Let
M =
�

1 2 2
�

and let P = null(M). We know P is a plane with equation x + 2y + 2z = 0 and therefore is two dimensional.
Further, non-zero vectors in the row space of M are normal vectors for P. Since null(M) is two-dimensional
and M has three columns, the rank-nullity theorem tells us that rank(M) = 1. Therefore dim(col(M)) =
dim(row(M)) = 1. We conclude the set of normal vectors to P = null(M) is a line (if we include ~0).

By contrast, let Q ⊆ R4 be the plane in R4 given in vector form by

~x = t







1
2
2
2






+ s







−1
1
−1

1






.

How many normal vectors does Q have? Well, the matrix A=
�

1 2 2 2
−1 1 −1 1

�

has rank 2 and therefore has

nullity 2. This means there exist two linearly independent normal directions for Q.40

There is an equivalent rank-nullity theorem for linear transformations.

Theorem (Rank-nullity Theorem for Linear Transformations). Let T be a linear transformation. Then

rank(T ) + nullity(T ) = dim(domain of T ).

Just like the rank-nullity theorem for matrices, the rank-nullity theorem for linear transformations can give
insights about linear transformations that would be otherwise hard to see.

Practice Problems

1 For the following matrices, find their null space, column
space, and row space.

(a) M1 =





1 2 1
3 1 −2
8 6 −2



.

(b) M2 =
�

0 2 1
3 2 5

�

.

(c) M3 =





1 2
3 1
4 0



.

(d) M4 =







1 −2 0 −1
3 5 −1 0
2 3 −2 0
0 0 0 1






.

2 Let P be the plane given by 3x + 4y + 5z = 0, and let
T : R3→ R3 be projection onto P.

(a) Find range(T ) and rank(T ).

(b) Find null(T ) and nullity(T ).

3 Find the range and null space of the following linear trans-
formations.

(a) P : R2 → R2, where P is projection on to the line
y = x .

(b) Let θ ∈ R and let R : R2→ R2 to be the transforma-
tion which rotates all vectors by counter-clockwise
by θ radians.

(c) F : R2→ R2, where F reflects over the x-axis.

(d) M : R3 → R3 where M is the matrix transforma-

tion given by





1 2 3
4 5 6
7 8 9



.

(e) Q : R3→ R1 defined by Q





x
y
z



= x + z.

4 (a) Let T be the transformation induced by the matrix
�

7 5
−2 −2

�

, and ~v = 3~e1 − 3~e2. Compute T ~v and

[T ~v]E .

(b) Let T be the transformation induced by the matrix
�

3 7 5
1 −2 −2

�

, and ~v = 2~e1 + 0~e2 + 4~e3. Compute

T ~v and [T ~v]E .

5 For each statement below, determine whether it is true or
false. Justify your answer.

(a) Let A be an arbitrary matrix. Then col(A) = col(AT ).

(b) Let T : Rm→ Rn be a transformation (not necessar-
ily linear). If null(T) = {~x ∈ Rm : T(~x) = ~0} is a
subspace, then T is linear.

39Technically, the set of normal vectors for a plane in R3 is a line without ~0, since ~0 is never considered a normal vector.
40Notice that we are using the complementary argument to the example in R3. For this example, the plane is the row space and the set of

normal vectors is the null space (ignoring ~0, of course).
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(c) Let T : Rm→ Rn be a linear transformation. Then
nullity(T )≥ n.

(d) Let T : Rm→ Rn be a linear transformation induced
by a matrix M . If rank(T ) = n, then nullity(M) = 0.

6 Give an example of a 3× 4 matrix M with the specified
rank, or explain why one cannot exist.

(a) rank(M) = 0

(b) rank(M) = 1

(c) rank(M) = 3

(d) rank(M) = 4

7 Let P : R3→ R3 be the projection onto the x y-plane.

(a) Find a matrix MP for the transformation.

(b) Find the range of P.

(c) Find the column space of MP . Are there any simi-
larities to your answer in the previous part?

(d) Find the null space of P and MP . Are there similar-
ities between the null space of a linear transforma-
tion and its associated matrix?
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Range

D
EF

The range (or image) of a linear transformation T : V →W is the set of vectors that T can output.
That is,

range(T ) = {~y ∈W : ~y = T ~x for some ~x ∈ V}.

Null Space
D

EF
IN

IT
IO

N The null space (or kernel) of a linear transformation T : V →W is the set of vectors that get mapped
to the zero vector under T . That is,

null(T ) = {~x ∈ V : T ~x = ~0}.

51 Let P : R2→ R2 be projection onto span{~u} where ~u=
�

2
3

�

(like before).

51.1 What is the range of P?

51.2 What is the null space of P?
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52 Let T : Rn→ Rm be an arbitrary linear transformation.

52.1 Show that the null space of T is a subspace.

52.2 Show that the range of T is a subspace.
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Induced Transformation

D
EF

IN
IT

IO
N Let M be an n×m matrix. We say M induces a linear transformation TM : Rm→ Rn defined by

[TM ~v]E ′ = M[~v]E ,

where E is the standard basis for Rm and E ′ is the standard basis for Rn.

53 Let M =
�

a b
c d

�

, let ~v = ~e1 + ~e2 ∈ R2, and let TM be the transformation induced by M .

53.1 What is the difference between “M ~v” and “M[~v]E”?

53.2 What is [TM~e1]E?

53.3 Can you relate the columns of M to the range of TM ?
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Fundamental Subspaces
D

EF
Associated with any matrix M are three fundamental subspaces: the row space of M , denoted row(M),
is the span of the rows of M ; the column space of M , denoted col(M), is the span of the columns of
M ; and the null space of M , denoted null(M), is the set of solutions to M ~x = ~0.

54 Consider A=
�

1 0 0
0 1 0

�

.

54.1 Describe the row space of A.

54.2 Describe the column space of A.

54.3 Is the row space of A the same as the column space of A?

54.4 Describe the set of all vectors orthogonal to the rows of A.

54.5 Describe the null space of A.

54.6 Describe the range and null space of TA, the transformation induced by A.
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55
B =
�

1 2 3
1 1 1

�

C = rref(B) =
�

1 0 −1
0 1 2

�

55.1 How does the row space of B relate to the row space of C?

55.2 How does the null space of B relate to the null space of C?

55.3 Compute the null space of B.
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56
P =
�

0 0
1 2

�

Q = rref(P) =
�

1 2
0 0

�

56.1 How does the column space of P relate to the column space of Q?

56.2 Describe the column space of P and the column space of Q.

142 © Jason Siefken, 2015–2024



Rank

D
EF

For a linear transformation T : Rn → Rm, the rank of T , denoted rank(T), is the dimension of the
range of T .

For an m× n matrix M , the rank of M , denoted rank(M), is the dimension of the column space of M .

57 Let P : R2 → R2 be projection onto span{~u} where ~u =
�

2
3

�

, and let R : R2 → R2 be rotation counter-

clockwise by 90◦.

57.1 Describe range(P) and range(R).
57.2 What is the rank of P and the rank of R?

57.3 Let P and R be the matrices corresponding to P and R. What is the rank of P and the rank of R?

57.4 Make a conjecture about how the rank of a transformation and the rank of its corresponding matrix relate.
Can you justify your claim?
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58
58.1 Determine the rank of (a)

�

1 1
2 2

�

(b)
�

1 2
3 4

�

(c)
�

1 1 0
0 0 1

�

(d)





3
3
2



 (e)





1 0 1
0 1 0
0 0 1



.

59 Consider the homogeneous system
x +2y +z = 0
x +2y +3z = 0
−x −2y +z = 0

(11)

and the non-augmented matrix of coefficients A=





1 2 1
1 2 3
−1 −2 1



.

59.1 What is rank(A)?

59.2 Give the general solution to system (11).

59.3 Are the column vectors of A linearly independent?

59.4 Give a non-homogeneous system with the same coefficients as (11) that has

(a) infinitely many solutions

(b) no solutions.
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60 60.1 The rank of a 3× 4 matrix A is 3. Are the column vectors of A linearly independent?

60.2 The rank of a 4× 3 matrix B is 3. Are the column vectors of B linearly independent?
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Rank-nullity Theorem
T

H
EO

RE
M The nullity of a matrix is the dimension of the null space.

The rank-nullity theorem for a matrix A states

rank(A) + nullity(A) = # of columns in A.

61 61.1 Is there a version of the rank-nullity theorem that applies to linear transformations instead of matrices? If
so, state it.

62 The vectors ~u, ~v ∈ R9 are linearly independent and ~w= 2~u− ~v. Define A= [~u|~v|~w].

62.1 What is the rank and nullity of A?

62.2 What is the rank and nullity of AT ?
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Inverse Functions & Inverse Matrices

In this module you will learn

� The definition of an inverse function and an inverse matrix.

� How to decompose a matrix into the product of elementary matrices and how to use elementary matrices
to compute inverses.

� How the order of matrix multiplication matters.

� How row-reduction and matrix inverses relate.

We should think of transformations or functions as machines that perform some manipulation of their input and
then give an output. This perspective allows us to divide functions into two natural categories: those that can
be undone and those that cannot. The official term for a function that can be undone is an invertible function.

Invertible Functions
The simplest function is the identity function.

Identity Function.
Let X be a set. The identity function with domain and codomain X , notated id : X → X , is the function
satisfying

id(x) = x

for all x ∈ X .

The identity function is the function that does nothing to its input.41 When doing precise mathematics, we often
prove a function or composition of functions does nothing to its input by showing it is equal to the identity
function.42

In plain terms, a function is invertible if it can be undone. More precisely a function is invertible if there exists
an inverse function that when composed with the original function produces the identity function and vice
versa.

Inverse Function.
Let f : X → Y be a function. We say f is invertible if there exists a function g : Y → X so that f ◦ g = id
and g ◦ f = id. In this case, we call g an inverse of f and write

f −1 = g.

Let’s consider an example. You have some money in your pockets. Let l : {nickels in left pocket} → N be the
function that adds up the value of all the nickels in your left pocket. Let r : {nickels in either pocket} → N be the
function that adds up the value of all the nickels in both of your pockets. In this case, l would be invertible—if
you know that l(# nickels) = 25, you must have had 5 nickels in your left pocket. We can write down a formula
for l−1 as

l−1(n) =
n
5

.

However, r is not invertible. If r(# nickels) = 25, you might have had 5 nickels in your left pocket, but you
might have 3 nickels in your left pocket and 2 in your right. We just don’t know, so no inverse to r can exist.

What we’ve just learned is that for a function to be invertible, it must be one-to-one.

One-to-one.
Let f : X → Y be a function. We say f is one-to-one (or injective) if distinct inputs to f produce distinct
outputs. That is f (x) = f (y) implies x = y .

Whenever a function f is one-to-one, there exists a function g so that g ◦ f = id. However, this is not enough to
declare that f is invertible43 because we also need f ◦ g = id. To ensure this, we need f to be onto.

41Technically, for every set there exists a unique identity function with that set as the domain/codomain, but we won’t belabor this point.
42This is similar to saying that we know ~x = ~y if and only if ~x − ~y = ~0.
43In this situation, we say that f is left-invertible.
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Onto.
Let f : X → Y be a function. We say f is onto (or surjective) if every point in the codomain of f gets mapped
to. That is range( f ) = Y .

Every invertible function is both one-to-one and onto, and every one-to-one and onto function is invertible.
And, as we will learn, this has implications for the rank and nullity of linear transformations.

Invertibility and Linear Transformations
Let’s now focus on linear transformations. We know that a linear transformation T : Rn→ Rm is invertible if
and only if it is one-to-one and onto.

If T is one-to-one, that means that distinct inputs to T yield distinct outputs. In other words, the solution to
T (~x) = ~b is always unique. But, the set of all solutions to T (~x) = ~b can be expressed as

null(T ) + {~p}.

Therefore, T is one-to-one if and only if nullity(T ) = 0. If T is onto, then range(T ) = Rm and so rank(T ) = m.

Now, suppose T is one-to-one and onto. By the rank-nullity theorem,

rank(T ) + nullity(T ) = 0+m= m= n= dim(domain of T ),

and so T has the same domain and codomain (at least a domain and codomain of the same dimension).

Using the rank-nullity theorem, we can start developing a list of properties that are equivalent to invertibility of
a linear transformation.

� T : Rn→ Rm is invertible if and only if nullity(T ) = 0 and rank(T ) = m.

� T : Rn→ Rm is invertible if and only if m= n and nullity(T ) = 0.

� T : Rn→ Rm is invertible if and only if m= n and rank(T ) = m.

Example. Let P : R2→ R2 be projection onto the x-axis and let R : R2→ R2 be rotation counter-clockwise
by 15◦. Classify each of P and R as invertible or not.

Notice that P(~e2) = P(2~e2) = ~0, therefore P is not one-to-one and so is not invertible.

Let Q : R2→ R2 be rotation clockwise by 15◦. R and Q will undo each other. Phrased mathematically,

R ◦Q= id and Q ◦R= id .

Therefore, Q is an inverse of R, and so R is invertible.

One important fact about linear transformations is that if a linear transformation is invertible, its inverse is also
a linear transformation.

Theorem. Let T be an invertible linear transformation. Then T −1 is also a linear transformation.

Proof. Let T be an invertible linear transformation and let T −1 be its inverse. We need to show that (i) T −1

distributes over addition and (ii) T −1 distributes over scalar multiplication.

(i) First observe that since T ◦ T −1 = id and because T is linear, we have

~a+ ~b = T ◦ T −1~a+ T ◦ T −1~b = T (T −1~a+ T −1~b).

Since T −1 ◦ T = id, by using the fact that ~a+ ~b = T (T −1~a+ T −1~b) we know

T −1(~a+ ~b) = T −1
�

T (T −1~a+ T −1~b)
�

= T −1~a+ T −1~b.

(ii) Similar to the proof of (i), we see

T −1(α~a) = T −1
�

α(T ◦ T −1~a)
�

= T −1 ◦ T (αT −1~a) = αT −1~a.

�

Invertibility and Matrices
In the world of matrices, the identity matrix takes the place of the identity function.
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Identity Matrix.
An identity matrix is a square matrix with ones on the diagonal and zeros everywhere else. The n × n
identity matrix is denoted In×n, or just I when its size is implied.

We can now define what it means for a matrix to be invertible.44

Matrix Inverse.
The inverse of a matrix A is a matrix B such that AB = I and BA= I . In this case, B is called the inverse of A
and is notated A−1.

Example. Determine whether the matrices A=
�

2 5
−3 −7

�

and B =
�

−7 −5
3 2

�

are inverses of each other.

AB =
�

2 5
−3 −7

��

−7 −5
3 2

�

=
�

1 0
0 1

�

= I

BA=
�

−7 −5
3 2

��

2 5
−3 −7

�

=
�

1 0
0 1

�

= I .

Therefore, A and B are inverses of each other.

Example. Determine whether the matrices A=
�

2 5 0
−3 −7 0

�

and B =





−7 −5
3 2
1 1



 are inverses of each

other.

AB =
�

2 5 0
−3 −7 0

�





−7 −5
3 2
1 1



=
�

1 0
0 1

�

= I

but

BA=





−7 −5
3 2
1 1





�

2 5 0
−3 −7 0

�

=





1 0 0
0 1 0
−1 −2 0



 6= I .

Therefore, A and B are not inverses of each other.

Since every matrix induces a linear transformation, we can use the facts we know about invertible linear
transformations to produce facts about invertible matrices. In particular:

� An n×m matrix A is invertible if and only if nullity(A) = 0 and rank(A) = n.

� An n× n matrix A is invertible if and only if nullity(A) = 0.

� An n× n matrix A is invertible if and only if rank(A) = n.

Matrix Algebra
The linear equation ax = b has solution x = b

a whenever a 6= 0. We arrive at this solution by dividing both
sides of the equation by a. Does a similar process exist for solving the matrix equation A~x = ~b? It sure does!

Unfortunately, we cannot divide by a matrix, but to solve A~x = ~b, we don’t need to “divide” by a matrix, we just
need to eliminate A from the left side. This could be accomplished by using an inverse.

Suppose A is invertible, then

A~x = ~b =⇒ A−1A~x = A−1~b =⇒ ~x = A−1~b.

Thus, if we have the inverse of a matrix handy, we can use it to solve a system of equations.

Example. Use the fact that
�

2 5
−3 −7

�−1

=
�

−7 −5
3 2

�

to solve the system

�

2x + 5y = 2

−3x − 7y = 1
.

44This should look very similar to what it means for a function to be invertible.
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The system can be rewritten as

�

2 5
−3 −7

��

x
y

�

=
�

2
1

�

.

Multiplying both sides by
�

2 5
−3 −7

�−1

gives

�

x
y

�

=
�

2 5
−3 −7

�−1 �2
1

�

=
�

−7 −5
3 2

��

2
1

�

=
�

−19
8

�

.

It’s important to note that, unlike in the case with regular scalars, the order of matrix multiplication matters.
So, whereas with scalars you could get away with something like

ax = b =⇒
1
a

ax = b
1
a

=⇒ x =
b
a

,

with matrices A~x = ~b does not imply A−1A~x = ~bA−1. In fact, if ~b is a column vector, the expression ~bA−1 is almost
always undefined!

Finding a Matrix Inverse
Whereas before we only knew how to solve a matrix equation A~x = ~b using row reduction, we now know how
to use A−1 to solve the same system. In fact, A−1 is the exact matrix so that ~x = A−1~b is the solution to A~x = ~b.
Therefore, by picking different ~b’s and solving for ~x , we can find A−1.

Example. Let A=
�

2 5
−3 −7

�

. Find A−1.

We know A−1 =
�

a b
c d

�

will be a 2× 2 matrix, and we know ~x = A−1~b will always be the unique solution to

A~x = ~b. Therefore, we can find A−1 by finding ~x ,~b pairs that satisfy A~x = ~b.
Using row reduction, we see

A~x =
�

1
0

�

has solution ~x =
�

−7
3

�

, and A~x =
�

0
1

�

has solution ~x =
�

−5
2

�

.

Therefore

A−1
�

1
0

�

=
�

a
c

�

=
�

−7
3

�

and A−1
�

0
1

�

=
�

b
d

�

=
�

−5
2

�

,

and so

A−1 =
�

−7 −5
3 2

�

.

Elementary Matrices
Finding the inverse of a matrix can be a lot of work. However if you already know how to undo what the
matrix does, finding the inverse might not be so hard. For example, if R30 is the matrix that rotates vectors in
R2 counter-clockwise by 30◦, its inverse must be R−30, the matrix that rotates vectors in R2 clockwise by 30◦.

Like before when we analyzed linear transformations by breaking them up into compositions of simpler linear
transformations, another strategy for finding an inverse matrix is to break a matrix into simpler ones whose
inverses we can just write down.

Some of the simplest matrices around are the elementary matrices.

Elementary Matrix.
A matrix is called an elementary matrix if it is an identity matrix with a single elementary row operation
applied.

Examples of elementary matrices include




1 0 0
0 1 0
0 0 −5









1 0 7
0 1 0
0 0 1









0 1 0
1 0 0
0 0 1



 .

These matrices are obtained from the row operations “multiply the last row by −5”, “add 7 times the last row to
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the first”, and “swap the first two rows”.

Elementary matrices are useful because multiplying by an elementary matrix performs the corresponding
elementary row operation! See for yourself:





1 0 0
0 1 0
0 0 −5









a b c
d e f
g h i



=





a b c
d e f

−5g −5h −5i









1 0 7
0 1 0
0 0 1









a b c
d e f
g h i



=





a+ 7g b+ 7h c + 7i
d e f
g h i









0 1 0
1 0 0
0 0 1









a b c
d e f
g h i



=





d e f
a b c
g h i





As a refresher, the elementary row operations are:

� multiply a row by a non-zero constant;

� add a multiple of one row to another; and

� swap two rows.

Each one of these operations can be undone, and so every elementary matrix is invertible. What’s more, the
inverse is another elementary matrix that is easy to write down.

Example. Find the inverse of E =





1 0 7
0 1 0
0 0 1



.

Since E corresponds to the row operation “add 7 times the last row to the first”, E−1 must correspond to the
row operation “subtract 7 times the last row from the first”. Therefore,

E−1 =





1 0 −7
0 1 0
0 0 1



 .

Elementary Matrices and Inverses
For a matrix M to be invertible, we know that M must be square and nullity(M) = 0. That means, M is invertible
if and only if rref(M) = I . In other words, M is invertible if there is a sequence of elementary row operations
that turn M into I . Each one of these row operations can be represented by an elementary matrix, which gives
us the following theorem.

Theorem. A matrix M is invertible if and only if there are elementary matrices E1, . . . , Ek so that

Ek · · · E2E1M = I .

Now, suppose M is invertible and let E1, . . . , Ek be elementary matrices so that Ek · · · E2E1M = I . We now know

Ek · · · E2E1M = (Ek · · · E2E1)
︸ ︷︷ ︸

Q

M =QM = I .

If we can argue that MQ = I , then Q will be the inverse of M !

Theorem. If A is a square matrix and AB = I for some matrix B, then BA= I .

Proof. Suppose A is a square matrix and that AB = I . Since AB = I , B must also be square. Since null(B) ⊆
null(AB), we know nullity(B) ≤ nullity(AB) = nullity(I) = 0, and so B is invertible (since it’s a square matrix
whose nullity is 0). Let B−1 be the inverse of B. Observe now that

A= AI = A(BB−1) = (AB)B−1 = IB−1 = B−1,

and so A= B−1. Finally, substituting B−1 for A shows

BA= BB−1 = I .
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In light of this theorem, we now have a new algorithm for finding the inverse of a matrix—find elementary
matrices that turn the matrix into the identity matrix and multiply those elementary matrices together to find
the inverse.

Example. Let A=





1 2 0
0 4 0
0 −1 1



. Find A−1 using elementary matrices.

We can row-reduce A with the following steps:




1 2 0
0 4 0
0 −1 1



→





1 2 0
0 1 0
0 −1 1



→





1 0 0
0 1 0
0 −1 1



→





1 0 0
0 1 0
0 0 1





The elementary matrices corresponding to these steps are

E1 =





1 0 0
0 1

4 0
0 0 1



 E2 =





1 −2 0
0 1 0
0 0 1



 E3 =





1 0 0
0 1 0
0 1 1



 .

We now have
E3E2E1A= I ,

and so

A−1 = E3E2E1 =





1 0 0
0 1 0
0 1 1









1 −2 0
0 1 0
0 0 1









1 0 0
0 1

4 0
0 0 1



=





1 − 1
2 0

0 1
4 0

0 1
4 1



 .

Decomposition into Elementary Matrices
If A is an invertible matrix, then the double-inverse of A (i.e., (A−1)−1) is A itself.45 This is easily proved. By
definition, (A−1)−1 is a matrix B so that BA−1 = I and A−1B = I . But B = A satisfies this condition!

Now, suppose M is an invertible matrix. Then, there exists a sequence of elementary matrices E1, . . . , Ek so that
Ek · · · E2E1M = I and

M−1 = Ek · · · E2E1.

Therefore
M = (M−1)−1 = (Ek · · · E2E1)

−1.

Thinking carefully about what (Ek · · · E2E1)−1 should be, we see that

(E−1
1 E−1

2 · · · E
−1
k )Ek · · · E2E1 = I and Ek · · · E2E1(E

−1
1 E−1

2 · · · E
−1
k ) = I ,

and so
M = (Ek · · · E2E1)

−1 = E−1
1 E−1

2 · · · E
−1
k .

(Notice the order of matrix multiplication reversed!) Each E−1
i is also an elementary matrix, and so we have

just shown that every invertible matrix can be written as the product of elementary matrices. This is actually a
double-sided implication (if and only if).

Theorem. A matrix M is invertible if and only if it can be written as the product of elementary matrices.

Proof. Suppose M is invertible. Then, there exists a sequence of elementary matrices E1, . . . , Ek so that
Ek · · · E1M = I . It follows that

M = E−1
1 E−1

2 · · · E
−1
k

is the product of elementary matrices. Conversely, since the product of invertible matrices is invertible and
every elementary matrix is invertible, the product of elementary matrices must be invertible. Therefore, if M is
not invertible, it cannot be written as the product of elementary matrices. �

45Formally we say that the operation of taking a matrix inverse is an involution.
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Practice Problems

1 Determine whether the following linear transformations
are one-to-one, onto, or both. As well, determine whether
or not they are invertible. Justify your answers.

(a) S : R2→ R2, where S is the linear transformation
that doubles every vector.

(b) R : R2 → R2, where R the linear transformation
that rotates every vector clockwise by 72◦.

(c) P : R2 → R2, where P the linear transformation
that projects every vector onto the y-axis.

(d) F : R2→ R2, where F is the linear transformation
that reflects every vector over the line y = x .

(e) T : R3→ R3, where T is the linear transformation

induced by the matrix MT =





1 2 3
4 5 6
7 8 9



.

(f) U : R3→ R2, where U is the linear transformation

induced by the matrix MU =
�

1 2 3
3 4 5

�

.

2 Invert the following matrices or explain why they are not
invertible.

(a) M1 =
�

2 3
1 −1

�

(b) M2 =
�

1 0
1 0

�

(c) M3 =





0 2 1
1 0 1
−2 3 0





(d) M4 =





2 0 1 8
1 −5 2 2
3 −1 0 7





(e) M5 =







0 −3 1 2
1 0 −1 1
2 −1 0 0
0 0 1 3







3 Solve the following systems in two ways: (i) by using row
reduction, and (ii) by using inverse matrices.

(a)

�

2x + y = 5

3x + 7y = 3

(b)







2x + 2y + 3z = 4

2x + 2y + z = 0

4x + 5y + 6z = 2

4 Let A=





1 3 5
0 2 0
−1 0 2



.

(a) Express A−1 as the product of elementary matrices.

(b) Express A as the product of elementary matrices.

5 For each statement below, determine whether it is true or
false. Justify your answer.

(a) For an arbitrary linear transformation T : Rm→ Rn,
if n 6= m, then the linear transformation is not in-
vertible.

(b) The matrix M =
�

1 0 0
1 1 0

�

is an elementary ma-

trix.

(c) Every elementary matrix is invertible.

(d) The product of elementary matrices is sometimes
an elementary matrix.

(e) The product of elementary matrices is always an
elementary matrix.

(f) A matrix that induces an invertible linear transfor-
mation is necessarily invertible.

(g) A transformation that is one-to-one and onto is al-
ways invertible.

(h) For two matricies A and B, if AB = I , then A and B
are invertible.
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Getting back N

63 “We’ve made a terrible mistake,” a council member says. “Can we go back to the regular N?”

Recall the original Italicising N task.

Suppose that the “N” on the left is written in regular
12-point font. Find a matrix A that will transform the
“N” into the letter on the right which is written in an
italic 16-point font.

Pat and Jamie explained their approach to the Italicizing N task as follows:

In order to find the matrix A, we are going to find a matrix that makes the “N” taller, find a
matrix that italicizes the taller “N,” and a combination of those two matrices will give the desired
matrix A.

The Oronto city council has asked you to unitalicise the N. Your new task is to find a matrix C that
transforms the “N” on the right to the “N” on the left.

1. Use any method you like to find C .

2. Use a method similar to Pat and Jamie’s method, only use it to find C instead of A.
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Inverses

64 64.1 Apply the row operation R3 7→ R3 + 2R1 to the 3× 3 identity matrix and call the result E1.

64.2 Apply the row operation R3 7→ R3 − 2R1 to the 3× 3 identity matrix and call the result E2.

Elementary Matrix

D
EF A matrix is called an elementary matrix if it is an identity matrix with a single elementary row

operation applied.

A=





1 2 3
4 5 6
7 8 9





64.3 Compute E1A and E2A. How do the resulting matrices relate to row operations?

64.4 Without computing, what should the result of applying the row operation R3 7→ R3 − 2R1 to E1 be?
Compute and verify.

64.5 Without computing, what should E2E1 be? What about E1E2? Now compute and verify.
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Matrix Inverse

D
EF The inverse of a matrix A is a matrix B such that AB = I and BA= I . In this case, B is called the inverse

of A and is notated A−1.

65 Consider the matrices

A=





1 2 0
0 1 0
−3 −6 1



 B =
�

1 0 0
0 1 0

�

C =





1 0
0 1
0 0





D =





1 −2 0
0 1 0
3 0 1



 E =





1 0 0
0 2 0
0 1 1



 F =





1 0 0
0 1 0
0 0 1





65.1 Which pairs of matrices above are inverses of each other?
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66
B =
�

1 4
0 2

�

66.1 Use two row operations to reduce B to I2×2 and write an elementary matrix E1 corresponding to the first
operation and E2 corresponding to the second.

66.2 What is E2E1B?

66.3 Find B−1.

66.4 Can you outline a procedure for finding the inverse of a matrix using elementary matrices?
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67

A=





1 2 −1
2 2 4
1 3 −3



 ~b =





1
2
3



 C = [A|~b] A−1 =





9 −3/2 −5
−5 1 3
−2 1/2 1





67.1 What is A−1A?

67.2 What is rref(A)?

67.3 What is rref(C)? (Hint, there is no need to actually do row reduction!)

67.4 Solve the system A~x = ~b.
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68 68.1 For two square matrices X , Y , should (X Y )−1 = X−1Y −1?

68.2 If M is a matrix corresponding to a non-invertible linear transformation T , could M be invertible?
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Change of Basis II

In this module you will learn

� How to create change-of-basis matrices.

� How to write a linear transformation in multiple bases.

Given a basis A for Rn, every vector ~x ∈ Rn uniquely corresponds to the list of numbers [~x]A (its coordinates
with respect to A), and the operation of writing a vector in a basis is invertible.

If we have two bases, A and B, for Rn, we have two equally valid ways of representing a vector in coordinates.

~x ∈ Rn

[~x]A [~x]B

Represent in basis A Represent in basis B

Not only that, but there must be a function that converts between [~x]A and [~x]B. The function works as follows:
input the list of numbers [~x]A, use those numbers as coefficients of the A basis vectors to get the true vector ~x ,
and then find the coordinates of that vector with respect to the B basis.

Example. Let A = {~a1, ~a2} where ~a1 =
�

1
1

�

E
and ~a2 =
�

1
−1

�

E
and let B = {~b1,~b2} where ~b1 =

�

2
1

�

E
and

~b2 =
�

5
3

�

E
be bases for R2. Given that [~x]A =

�

2
−3

�

, find [~x]B.

By definition,
~x = 2~a1 − 3~a2 = 2(~e1 + ~e2)− 3(~e1 − ~e2) = −~e1 + 5~e2.

We need to rewrite ~x as a linear combination of ~b1 = 2~e1 + ~e2 and ~b2 = 5~e1 + 3~e2. That is, we need to solve
the equation

~x = −~e1 + 5~e2 = α(2~e1 + ~e2) + β(5~e1 + 3~e2) = (2α+ 5β)~e1 + (α+ 3β)~e2.

Equating the coefficients of ~e1 and ~e2, we get

�

2α+ 5β = −1

α+ 3β = 5
,

which has a unique solution (α,β) = (−28,11). We conclude

[~x]B =
�

−28
11

�

.

For a basis A, the invertible function that takes a vector ~x and generates the coordinates [~x]A is a linear function.
Therefore, for bases A and B, the function that converts [~x]A to [~x]B must have a matrix. This matrix is called
the change of basis matrix.

Change of Basis Matrix. Let A and B be bases for Rn. The matrix M is called a change of basis matrix
(which converts from A to B) if for all ~x ∈ Rn

M[~x]A = [~x]B.

Notationally, [B←A] stands for the change of basis matrix converting from A to B, and we may write
M = [B←A].

Example. Let A = {~a1, ~a2} where ~a1 =
�

1
1

�

E
and ~a2 =
�

1
−1

�

E
and let B = {~b1,~b2} where ~b1 =

�

2
1

�

E
and

~b2 =
�

5
3

�

E
be bases for R2. Find the change of basis matrix [B←A].
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We know [B←A] will be a 2× 2 matrix and that

[B←A][~a1]A = [~a1]B and [B←A][~a2]A = [~a2]B.

Therefore, we need to compute [~a1]B and [~a2]B. Repeating the procedure from the previous example, we
find

[~a1]B =
�

−2
1

�

and [~a2]B =
�

8
−3

�

,

and so

[B←A] =
�

−2 8
1 −3

�

.

We can now enhance our diagram from earlier.

~x ∈ Rn

[~x]A [~x]B

Represent in A basis Represent in B basis

[B←A]

[A←B]

The notation [B←A] for the matrix that changes from the A basis to the B basis is suggestive. Suppose we
have another basis C. We can obtain [C←A] by multiplying [B←A] on the left by [C←B]. That is,

[C←A] = [C←B][B←A].

The backwards arrow “←” in the change-of-basis matrix notation comes because when we multiply a vector
and a matrix, the matrix is always to the left of the vector. So,

[~x]C = [C←A][~x]A = [C←B][B←A][~x]A.

As such, the notation for the change of basis matrix chains, allowing you to figure out what’s going on without
too much trouble.

Change of Basis Matrix in Detail
Let A and B be bases for Rn and M = [B←A] be the matrix that changes from the A to the B basis. Since we
can change vectors back from B to A, we know M is invertible and

M−1 = [A←B].

Just playing with notation, we see

M−1M = [A←B][B←A] = [A←A] = I M M−1 = [B←A][A←B] = [B←B] = I ,

which makes sense. The matrices [A←A] and [B←B] take vectors and rewrite them in the same basis, which
is to say, they do nothing to the vectors.

The argument above shows that every change of basis matrix is invertible. The converse is also true.

Theorem. An n× n matrix is invertible if and only if it is a change of basis matrix.

Proof. Suppose M = [B←A] is a change-of-basis matrix. Then

M−1 = [A←B],

and so M is invertible.

Alternatively, suppose M = [C1|C2|· · · |Cn] is an invertible n× n matrix with columns C1, . . . , Cn. Let ~ci = [Ci]E .
That is, ~ci is the vector which comes from interpreting Ci as coordinates with respect to the standard basis.

Since M is invertible, rref(M) = I , and so {~c1, . . . ,~cn} is a linearly independent set of n vectors. Therefore
C = {~c1, . . . ,~cn} is a basis for Rn. Now, observe

M[~ci]C = Ci = [~ci]E
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for i = 1, . . . , n, and so M = [E←C] is a change-of-basis matrix. �

The proof of the above theorem highlights something interesting. Let A= {~a1, . . . , ~an} be a basis for Rn. It is
always the case that

[~ai]A =



















...
0
1
0
0
...



















has a 1 in the ith position and zeros elsewhere. Now, let B = {~b1, . . . ,~bn} be another basis for Rn and define the
matrix M =
�

[~a1]B [~a2]B · · · [~an]B
�

to be the matrix with columns [~a1]B, . . . , [~an]B. Since multiplying a
matrix by [~ai]A will pick out the ith column, we have that

M[~ai]A = [~ai]B.

In other words,
M = [B←A].

Transformations and Bases
A linear transformation T : Rn→ Rn always has a matrix associated with it. This matrix is defined as the matrix
M so that

[T ~x]E = M[~x]E .

But, what if we swapped out E for a different basis?

Linear Transformation in a Basis. Let T : Rn→ Rn be a linear transformation and let B be a basis for Rn.
The matrix for T with respect to B, notated [T ]B, is the n× n matrix satisfying

[T ~x]B = [T ]B[~x]B.

In this case, we say the matrix [T ]B is the representation of T in the B basis.

Just like there are many ways to write down coordinates for a vector—one per choice of basis—there are many
ways to write down a matrix for a linear transformation. Up to this point, when we’ve said “M is a matrix for
T ”, what we meant is “M = [T ]E”. And, like with vectors, if we talk about a matrix for a linear transformation
without specifying the basis, we mean the matrix for the transformation with respect to the standard basis.

Example. Let B = {~b1,~b2} where ~b1 =
�

2
−3

�

E
and ~b2 =
�

5
−7

�

E
be a basis for R2 and let T : R2 → R2 be

the transformation that stretches in the ~e1 direction by a factor of 2. Find [T ]E and [T ]B.

Since T ~e1 = 2~e1 and T ~e2 = ~e2, We know

[T ]E
�

1
0

�

=
�

2
0

�

and [T ]E
�

0
1

�

=
�

0
1

�

and so

[T ]E =
�

2 0
0 1

�

.

We can find [T ]B in two ways: directly from the definition, or by using change of basis matrices. First, we
will work directly from the definition.
To find [T ]B, we need to figure out what T does to ~b1 and ~b2. However, since T is described in term of ~e1
and ~e2, it might be easier to express ~e1 and ~e2 in the B basis, and then analyze T .
Computing,

[~e1]B = [B←E]
�

1
0

�

=
�

2 5
−3 −7

�−1 �1
0

�

=
�

−7
3

�

[~e2]B = [B←E]
�

0
1

�

=
�

2 5
−3 −7

�−1 �0
1

�

=
�

−5
2

�

.
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Now we know

[T ]B[~e1]B = [T ~e1]B = [2~e1]B =
�

−14
6

�

[T ]B[~e2]B = [T ~e2]B = [~e2]B =
�

−5
2

�
.

Since [T ]B is a 2× 2 matrix, we can use what we know to solve for its entries, finding

[T ]B =
�

−13 −35
6 16

�

.

Let’s try finding [T ]B using change of basis matrices. We already know [T ]E , and so

[T ]B = [B←E][T ]E[E←B].

Further, we know

[E←B] =
�

2 5
−3 −7

�

and [B←E] =
�

2 5
−3 −7

�−1

=
�

−7 −5
3 2

�

.

Putting it all together,

[T ]B =
�

−7 −5
3 2

��

2 0
0 1

��

2 5
−3 −7

�

=
�

−13 −35
6 16

�

.

Similar Matrices
Just like some bases are better than others to represent particular vectors, some bases are better than others to
represent a particular linear transformation.

Example. Let B = {~b1,~b2} where ~b1 =
�

2
−3

�

E
and ~b2 =
�

5
−7

�

E
be a basis for R2 and let S : R2 → R2 be

the transformation that stretches in the ~b1 = 2~e1 − 3~e2 direction by a factor of 2 and reflects vectors in the
~b2 = 5~e1 − 7~e2 direction. Find [S]E and [S]B.

In this example, S is described in terms of the B basis. We know

S~b1 = 2~b1 and S~b2 = −~b2.

Therefore,

[S]B =
�

2 0
0 −1

�

.

To find [S]E , we will use change of basis matrices. Notice that

[S]E = [E←B][S]B[B←E],

and that

[E←B] =
�

2 5
−3 −7

�

and [B←E] =
�

2 5
−3 −7

�−1

=
�

−7 −5
3 2

�

.

Therefore

[S]E =
�

2 5
−3 −7

��

2 0
0 −1

��

−7 −5
3 2

�

=
�

−43 −30
63 44

�

.

In the example above, [S]B is a much nicer matrix than [S]E . However, the two matrices relate to each other.
After all,

[S]B = [B←E][S]E[E←B].

In this case, we call these matrices similar.46

Similar Matrices. The matrices A and B are called similar matrices, denoted A∼ B, if A and B represent
the same linear transformation but in possibly different bases. Equivalently, A∼ B if there is an invertible

46Another commonly used term is conjugate.
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matrix X so that
A= X BX−1.

The X in the definition of similar matrices is always a change-of-basis matrix.

When studying a linear transformation, you can pick any basis to represent it in and study the resulting matrix.
Different choices of basis will give you different perspectives on the linear transformation. In what’s to follow,
we will work to find the “best” basis in which to study a given linear transformation.47

Practice Problems

1 Let

A=
�

�

2
1

�

E
,
�

1
−2

�

E

�

and B =
�

�

3
−1

�

E
,
�

−2
3

�

E

�

.

be bases for R2. Define ~x ∈ R2 by [~x]A =
�

1
−1

�

.

(a) Find [~x]E and [~x]B.

(b) Find the change of basis matrices [E←A], [A←E],
[B←A], and [A←B].

2 Let

A=











2
1
0





E

,





1
−2

0





E

,





0
0
1





E







and B =
�

~b1,~b2,~b3

	

be bases for R3 where

~b1 =





1
0
0





A

~b2 =





1
1
0





A

~b3 =





1
1
1





A

.

(a) Find the representation of ~b1, ~b2, and ~b3 in the
standard basis.

(b) Find the change of basis matrices [A ← E] and
[E←B].

(c) Use [A←E] and [E←B] to compute [A←B].

3 Let B =
�

�

1
0

�

E
,
�

1
1

�

E

�

. For each linear transformation

T : R2→ R2 defined below, compute [T ]E and [T ]B.

(a) Let T be the transformation that rotates every vec-
tor counter clockwise by 90◦.

(b) Let T be the transformation that projects every vec-
tor onto the y-axis.

(c) Let T be the transformation that doubles every vec-
tor.

(d) Let T be the transformation that reflects every vec-
tor over the line y = x .

4 For each statement below, determine whether it is true or
false. Justify your answer.

(a) Any invertible n × n matrix can be viewed as a
change of basis matrix.

(b) Any n× n matrix is similar to itself.

(c) Let A be an m× n matrix. If m 6= n, then there is no
matrix that is similar to A.

(d) Any invertible n× n matrix A is similar to A−1 since
AA−1 = I .

47If you cannot wait, the “best” basis will turn out to be the eigen basis (provided it exists).
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More Change of Basis

69 Let B = {~b1,~b2} where ~b1 =
�

1
1

�

E
, ~b2 =
�

1
−1

�

E
and let X = [~b1|~b2] be the matrix whose columns are

[~b1]E and [~b2]E .

69.1 Write down X .

69.2 Compute [~e1]B and [~e2]B.

69.3 Compute X [~e1]B and X [~e2]B. What do you notice?

69.4 Find the matrix X−1. How does X−1 relate to change of basis?
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70 Let E = {~e1,~e2, . . . ,~en} be the standard basis for Rn and let B = {~b1,~b2, . . . ,~bn} be another basis for Rn.
Define the matrix X = [~b1|~b2|· · · |~bn] to be the matrix whose columns are the ~bi vectors written in the
standard basis. Notice that X converts vectors from the B basis into the standard basis. In other words,

X [~v]B = [~v]E .

70.1 Should X−1 exist? Explain.

70.2 Consider the equation
X−1[~v]? = [~v]?.

Can you fill in the “?” symbols so that the equation makes sense?

70.3 What is [~b1]B? How about [~b2]B? Can you generalize to [~bi]B?
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71 Let ~c1 =
�

2
1

�

E
, ~c2 =
�

5
3

�

E
, C = {~c1,~c2}, and A=

�

2 5
1 3

�

. Note that A−1 =
�

3 −5
−1 2

�

and that A changes

vectors from the C basis to the standard basis and A−1 changes vectors from the standard basis to the C
basis.

71.1 Compute [~c1]C and [~c2]C .

Let T : R2→ R2 be the linear transformation that stretches in the ~c1 direction by a factor of 2 and doesn’t
stretch in the ~c2 direction at all.

71.2 Compute T
�

2
1

�

E
and T
�

5
3

�

E
.

71.3 Compute [T~c1]C and [T~c2]C .

71.4 Compute the result of T
�

α
β

�

C
and express the result in the C basis (i.e., as a vector of the form

�

?
?

�

C
).

71.5 Find [T]C , the matrix for T in the C basis.

71.6 Find [T]E , the matrix for T in the standard basis.

Similar Matrices

D
EF

IN
IT

IO
N The matrices A and B are called similar matrices, denoted A∼ B, if A and B represent the same linear

transformation but in possibly different bases. Equivalently, A∼ B if there is an invertible matrix X so
that

A= X BX−1.
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Determinants
In this module you will learn

� The definition of the determinant of a linear transformation and of a matrix.

� How to interpret the determinant as a change-of-volume factor.

� How to relate the determinant of S ◦ T to the determinant of S and of T .

� How to compute the determinants of elementary matrices and how to compute determinants of large
matrices using row reduction.

Linear transformations transform vectors, but they also change sets.

Linear Transformation

It turns out to be particularly useful to track by how much a linear transformation changes area/volume. This
number (which is associated with a linear transformation with the same domain and codomain) is called the
determinant.48

Volumes
In this module, most examples will be in R2 because they’re easier to draw. The definitions given will extend to
Rn for any n, however we need to establish some conventions to properly express these ideas in English. In
English, we say that a two-dimensional figure has an area and a three-and-up dimensional figure has a volume.
In this section, we will use the term volume to also mean area where appropriate.

To measure how volume changes, we need to compare input volumes and output volumes. The easiest volume
to compute is that of the unit n-cube, which has a special notation.

Unit n-cube. The unit n-cube is the n-dimensional cube with sides given by the standard basis vectors and
lower-left corner located at the origin. That is

Cn =

¨

~x ∈ Rn : ~x =
n
∑

i=1

αi~ei for some α1, . . . ,αn ∈ [0,1]

«

= [0,1]n.

C2 should look familiar as the unit square in R2 with lower-left corner at the origin.

−1 1 2

1

C2

Cn always has volume 1,49 and by analyzing the image of Cn under a linear transformation, we can see by how
much a given transformation changes volume.

48This number is almost the determinant. The only difference is that the determinant might have a ± in front.
49The fact that the volume of Cn is 1 is actually by definition.
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Example. Let T : R2→ R2 be defined by T

�

x
y

�

=





2x − y

x +
1
2

y



. Find the volume of T (C2).

Recall that C2 is the unit square in R2 with sides given by ~e1 =
�

1
0

�

and ~e2 =
�

0
1

�

. Applying the linear

transformation T to ~e1 and ~e2, we obtain

T (~e1) =
�

2
1

�

and T (~e2) =

�

−1
1
2

�

.

Plotting
�

2
1

�

and

�

−1
1
2

�

, we see T (C2) is a parallelogram with base
p

5 and height 2
p

5
5 .

−1 1 2

1

C2

−1 1 2

1

T (C2)

T

Therefore, the volume of T (C2) is 2.

Let Vol(X ) stand for the volume of the set X . Given a linear transformation S : Rn → Rn, we can define a
number

Vol Change(S) =
Vol(S(Cn))

Vol(Cn)
=

Vol(S(Cn))
1

= Vol(S(Cn)).

A priori, Vol Change(S) only describes how S changes the volume of Cn. However, because S is a linear
transformation, Vol Change(S) actually describes how S changes the volume of any figure.

Theorem. Let T : Rn→ Rn be a linear transformation and let X ⊆ Rn be a subset with volume α. Then the
volume of T (X ) is α·Vol Change(T ).

A full proof of the above theorem requires calculus and limits, but the linear algebra ideas are based on the
following theorems.

Theorem. Suppose T : Rn→ Rn is a linear transformation, X ⊆ Rn is a subset, and the volume of T (X ) is
α. Then for any ~p ∈ Rn, the volume of T (X + {~p}) is α.

Proof. Fix T : Rn→ Rn, X ⊆ Rn, and ~p ∈ Rn. Combining linearity with the definition of set addition, we see

T (X + {~p}) = T (X ) + T ({~p}) = T (X ) + {T (~p)}

and so T (X + {~p}) is just a translation of T (X ). Since translations don’t change volume, T (X + {~p}) and T (X )
must have the same volume. �

Theorem. Fix k and let Bn be Cn scaled to have side lengths 1
k and let T : Rn→ Rn be a linear transformation.

Then

Vol Change(T ) =
Vol(T (Bn))

Vol(Bn)
.

Rather than giving a formal proof of the above theorem, let’s make a motivating picture.
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1

1

1

1/k

1/k

B2

1

1

1

1

T (B2)

T

k2 copies of B2

C2 contains
k2 copies of T (B2)
T (C2) contains

The argument now goes: there are kn copies of Bn in Cn and kn copies of T (Bn) in T (Cn). Thus,

Vol Change(T ) =
Vol(T (Cn))

Vol(Cn)
=

kn Vol(T (Bn))
kn Vol(Bn)

=
Vol(T (Bn))

Vol(Bn)
.

Now we can finally show that for a linear transformation T : Rn→ Rn, the number “Vol Change(T )” actually
corresponds to how much T changes the volume of any figure by.

The argument goes as follows: for a figure X ⊆ Rn, we can fill it with shrunken and translated copies, Bn, of Cn.
The same number of copies of T (Bn) fit inside T (X ) as do Bn’s fit inside X . Therefore, the change in volume
between T (X ) and X must be the same as the change in volume between T (Bn) and Bn, which is Vol Change(T ).

1

1

1

1

B2

1

1

1

1

T (B2)

T
Number of pieces doesn’t change

X T (X )

The Determinant
The determinant of a linear transformation T : Rn → Rn is almost the same as Vol Change(T ), but with one
twist: orientation.

Determinant. The determinant of a linear transformation T : Rn → Rn, denoted det(T ) or |T |, is the
oriented volume of the image of the unit n-cube. The determinant of a square matrix is the determinant of
its induced transformation.

We need to understand what the term oriented volume means. We’ve previously defined the orientation of a basis,
and we can use the orientation of a basis to define whether a linear transformation is orientation preserving or
orientation reversing.

Orientation Preserving Linear Transformation. Let T : Rn → Rn be a linear transformation. We say
T is orientation preserving if the ordered basis {T (~e1), . . . ,T (~en)} is positively oriented and we say T is
orientation reversing if the ordered basis {T (~e1), . . . ,T (~en)} is negatively oriented. If {T (~e1), . . . ,T (~en)} is
not a basis for Rn, then T is neither orientation preserving nor orientation reversing.
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~e1

~e2
T (~e1)T (~e2)

T Orientation Preserving

~e1

~e2

S(~e1)
S(~e2)

S Orientation Reversing

In the figure above, T is orientation preserving and S is orientation reversing.

For an arbitrary linear transformation Q : Rn→ Rn and a set X ⊆ Rn, we define the oriented volume of Q(X ) to
be +VolQ(X ) if Q is orientation preserving and −VolQ(X ) if Q is orientation reversing.

Example. Let T : R2→ R2 be defined by T
�

x
y

�

=





2x + y

−x +
1
2

y



. Find det(T ).

This is the same T as from the previous example where we computed VolT (C2) = 2. Since T is orientation
preserving, we conclude that det(T ) = 2.

Example. Let S : R2→ R2 be defined by S
�

x
y

�

=
�

−x + y
x + y

�

. Find det(S).

By drawing a picture, we see that S(C2) is a square and VolS(C2) = 2. However, S(~e1) =
�

−1
1

�

and S(~e2) =
�

1
1

�

form a negatively oriented basis, and so S is orientation reversing. Therefore, det(S) = −VolS(C2) = −2.

Example. Let P : R2→ R2 be projection onto the line with equation x + 2y = 0. Find det(P).

Because P projects everything to a line, we know P(C2) must be a line segment and therefore has volume
zero. Thus det(P) = 0.

Determinants of Composition
Volume changes are naturally multiplicative. If a linear transformation T changes volume by a factor of α and
S changes volume by a factor of β , then S ◦ T changes volume by a factor of βα. Thus, determinants must also
be multiplicative.50

50To fully argue this, we need to show that the composition of two orientation-reversing transformations is orientation preserving.
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2× Volume
T

3× Volume
S

6× Volume
S ◦ T

Theorem. Let T : Rn→ Rn and S : Rn→ Rn be linear transformations. Then

det(S ◦ T ) = det(S)det(T ).

This means that we can compute the determinant of a complicated transformation by breaking it up into simpler
ones and computing the determinant of each piece.

Determinants of Matrices
The determinant of a matrix is defined as the determinant of its induced transformation. That means, the
determinant is multiplicative with respect to matrix multiplication (because it’s multiplicative with respect to
function composition).

Theorem. Let A and B be n× n matrices. Then

det(AB) = det(A)det(B).

We will derive an algorithm for finding the determinant of a matrix by considering the determinant of elementary
matrices. But first, consider the following theorem.

Theorem (Volume Theorem I). For a square matrix M , det(M) is the oriented volume of the parallelepipeda

given by the column vectors.

aA parallelepiped is the n-dimensional analog of a parallelogram.

Proof. Let M be an n× n matrix and let TM be its induced transformation. We know the sides of TM (Cn) are
given by {TM (~e1), . . . ,TM (~en)}. And, by definition,

[TM (~ei)]E = M[~ei]E = ith column of M .

Therefore TM (Cn) is the parallelepiped whose sides are given by the columns of M . �

This means we can think about the determinant of a matrix by considering its columns. Now we are ready to
consider the determinants of the elementary matrices!

There are three types of elementary matrices corresponding to the three elementary row operations. For each
one, we need to understand how the induced transformation changes volume.

Multiply a row by a non-zero constant α. Let Em be such an elementary matrix. Scaling one row of I is
equivalent to scaling one column of I , and so the columns of Em specify a parallelepiped that is scaled by α in
one direction.

For example, if

Em =





1 0 0
0 1 0
0 0 α



 then {~e1,~e2,~e3} 7→ {~e1,~e2,α~e3}.

Thus det(Em) = α.

Swap two rows. Let Es be such an elementary matrix. Swapping two rows of I is equivalent to swapping two
columns of I , so Es is I with two columns swapped. This reverses the orientation of the basis given by the
columns.
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For example, if

Es =





0 1 0
1 0 0
0 0 1



 then {~e1,~e2,~e3} 7→ {~e2,~e1,~e3}.

Thus det(Es) = −1.

Add a multiple of one row to another. Let Ea be such an elementary matrix. The columns of Ea are the same
as the columns of I except that one column where ~ei is replaced with ~ei +α~e j . This has the effect of shearing Cn
in the ~e j direction.

~e j

~ei
height= 1

~e j

~ei +α~e j
height= 1

Since Cn is sheared in a direction parallel to one of its other sides, its volume is not changed. Thus det(Ea) = 1.

Takeaway. The determinants of elementary matrices are all easy to compute and the determinant of the
most-used type of elementary matrix is 1.

Now, by decomposing a matrix into the product of elementary matrices, we can use the multiplicative property
of the determinant (and the formulas for the determinants of the different types of elementary matrices) to
compute the determinant of an invertible matrix.

Example. Use elementary matrices to find the determinant of A=
�

1 2
3 4

�

.

We can row-reduce A with the following steps.

�

1 2
3 4

�

→
�

1 2
0 −2

�

→
�

1 2
0 1

�

→
�

1 0
0 1

�

.

The elementary matrices corresponding to these steps are

E1 =
�

1 0
−3 1

�

E2 =

�

1 0
0 − 1

2

�

and E3 =
�

1 −2
0 1

�

,

and so E3E2E1A= I . Therefore

A= E−1
1 E−1

2 E−1
3 I = E−1

1 E−1
2 E−1

3 =
�

1 0
3 1

��

1 0
0 −2

��

1 2
0 1

�

.

Using the fact that the determinant is multiplicative, we get

det(A) = det
��

1 0
3 1

��

1 0
0 −2

��

1 2
0 1

��

= det
��

1 0
3 1

��

det
��

1 0
0 −2

��

det
��

1 2
0 1

��

= (1)(−2)(1) = −2.

Determinants and Invertibility
We can use elementary matrices to compute the determinant of any invertible matrix by decomposing it into
the product of elementary matrices. But, what about non-invertible matrices?

Let M be an n × n matrix that is not invertible. Then, we must have nullity(M) > 0 and dim(col(M)) =
rank(M)< n. Geometrically, this means there is at least one line of vectors, null(M), that gets collapsed to ~0,
and the column space of M must be “flattened” (i.e., it has lost a dimension). Therefore, the volume of the
parallelepiped given by the columns of M must be zero, and so det(M) = 0.

Based on this argument, we have the following theorem.
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Theorem. Let A be an n× n matrix. A is invertible if and only if det(A) 6= 0.

Proof. If A is invertible, A= E1 · · · Ek, where E1, . . . , Ek are elementary matrices, and so

det(A) = det(E1 · · · Ek) = det(E1) · · ·det(Ek).

All elementary matrices have non-zero determinants, and so det(A) 6= 0.

Conversely, if A is not invertible, rank(A) < n, which means the parallelepiped given by the columns of A is
“flattened” and has zero volume. �

We now have another way to tell if a matrix is invertible! But, for an invertible matrix A, how do det(A) and
det(A−1) relate? Well, by definition

AA−1 = I ,

and so
det(AA−1) = det(A)det(A−1) = det(I) = 1,

which gives

det(A−1) =
1

det(A)
.

Determinants and Transposes
Somewhat mysteriously, we have the following theorem.

Theorem (Volume Theorem II). The determinant of a square matrix A is equal to the oriented volume of
the parallelepiped given by the rows of A.

Volume Theorem II can be concisely stated as det(A) = det(AT ), and joins other strange transpose-related facts
(like rank(A) = rank(AT )).

We can prove Volume Theorem II using elementary matrices.

Proof. Suppose A is not invertible. Then, neither is AT and so det(A) = det(AT ) = 0.

Suppose A is invertible and A= E1 · · · Ek where E1, . . . , Ek are elementary matrices. We then have

AT = ET
k · · · E

T
1 ,

which follows from the fact that the transpose reverses the order of matrix multiplication (i.e., (X Y )T = Y T X T ).
However, for each Ei , we may observe that ET

i is another elementary matrix of the same type and with the same
determinant. Therefore,

det(AT ) = det(ET
k · · · E

T
1 ) = det(ET

k ) · · ·det(ET
i )

= det(Ek) · · ·det(E1)
= det(E1) · · ·det(Ek) = det(E1 · · · Ek) = det(A).

The key observations for this proof are that (i) det(ET
i ) = det(Ei) and (ii) since the det(Ei)’s are just scalars, the

order in which they are multiplied doesn’t matter. �

Practice Problems

1 Let T : R2→ R2 be defined by T
�

x
y

�

=





3x − y

x −
1
4

y



. Find

the volume of T (C2).

2 Let S : R3 → R3 be defined by S





x
y
z



 =







2x + y + z

x −
1
2

y

z






.

Find the volume of S(C3).

3 Let T : R2→ R2 be defined by T
�

x
y

�

=
�

x + 2y
−x − y

�

.

(a) Draw E and T (E) and then determine whether T
is orientation preserving or orientation reversing.

(b) Find det(T ).

4 For each linear transformation defined below, find its de-
terminant.

(a) S : R2 → R2, where S shortens every vector by a

factor of
2
3

.

(b) R : R2→ R2, where R is rotation counter-clockwise
by 90◦.

(c) F : R2→ R2, where F is reflection across the line
y = −x .

(d) G : R2→ R2, where G(~x) = P(~x)+Q(~x) and where
P is projection onto the line y = x and Q is projec-

tion onto the line y = −
1
2

x .

177 © Jason Siefken, 2015–2024



M
od

ul
e

14
–

D
et

er
m

in
an

ts
(e) T : R3→ R3, where T





x
y
z



=







x − y + z

z + x −
1
3

y

z






.

(f) J : R3→ R3, where J





x
y
z



=





0
0

x + y + z



.

(g) K ◦H : R2 → R2, where H
�

x
y

�

=
�

x + 2y
−x − y

�

, and

K
�

x
y

�

=
�

−x − 2y
x + y

�

.

5 Let A=
�

2 3
1 5

�

.

(a) Use elementary matrices to find det(A).

(b) Draw a picture of the parallelogram given by the
rows of A.

(c) Draw a picture of the parallelogram given by the
columns of A.

(d) How do the areas of the parallelograms drawn in
parts 5b and 5c relate?

6 Let A=





1 2 0
0 2 1
1 2 3



.

(a) Use elementary matrices to find det(A).

(b) Find det(A−1).

(c) Find det(AT ), and compare your answer with 6a.
Are they the same? Explain.

7 Let A be an n× n matrix that can be decomposed into the
product of elementary matrices.

(a) What is rank(A)? Justify your answer.

(b) What is null(A−1)? Justify your answer.

8 Anna and Ella are studying the relationship between de-
terminant and volume. In particular, they are study-

ing S : R3 → R3 defined by S





x
y
z



 =





4x
2z
0



, and

T : R3→ R2 defined by T





x
y
z



=
�

2x
8z

�

.

For each conversation below, (a) evaluate Anna and Ella’s
arguments as correct, mostly correct, or incorrect; (b) point
out where each argument makes correct/incorrect state-
ments; (c) give a correct numerical value for the determi-
nant or explain why it doesn’t exist.

(a) Anna says:
Since the image of C3 under S is the parallelepiped

generated by





4
0
0



 ,





0
0
0



 , and





0
2
0



, which is 2-

dimensional parallelogram, the volume of S(C3)
is just the area of this parallelogram, which is 8.
Thus, det(S) = 8.
Ella says:
det(S) is undefined, because S is not invertible.

(b) Anna says:
Since the image of C3 under T is the parallelepiped

generated by
�

2
0

�

,
�

0
0

�

, and
�

0
8

�

, which is a paral-

lelogram in R2, the signed volume of T (C3) is just

the signed area of this parallelogram, which is 16.
Thus, det(T ) = 16.

Ella says:
det(T ) is undefined, because det(T ) is only defined
when the domain and codomain of T are the same.
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The unit n-cube is the n-dimensional cube with sides given by the standard basis vectors and lower-left
corner located at the origin. That is

Cn =

¨

~x ∈ Rn : ~x =
n
∑

i=1

αi~ei for some α1, . . . ,αn ∈ [0,1]

«

= [0,1]n.

The sides of the unit n-cube are always length 1 and its volume is always 1.

72 The picture shows what the linear transformation T does to the unit square (i.e., the unit 2-cube).

1 2

1

2

1 2

1

2

72.1 What is T
�

1
0

�

, T
�

0
1

�

, T
�

1
1

�

?

72.2 Write down a matrix for T .

72.3 What is the volume of the image of the unit square (i.e., the volume of T (C2))? You may use trigonometry.
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The determinant of a linear transformation T : Rn → Rn, denoted det(T ) or |T |, is the oriented
volume of the image of the unit n-cube. The determinant of a square matrix is the determinant of its
induced transformation.

73 We know the following about the linear transformation A:

A
�

1
0

�

=
�

2
0

�

and A
�

0
1

�

=
�

1
1

�

.

73.1 Draw C2 and A(C2), the image of the unit square under A.

73.2 Compute the area of A(C2).

73.3 Compute det(A).

74 Suppose R is a rotation counter-clockwise by 30◦.

74.1 Draw C2 and R(C2).

74.2 Compute the area of R(C2).

74.3 Compute det(R).
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75 We know the following about the linear transformation F :

F
�

1
0

�

=
�

0
1

�

and F
�

0
1

�

=
�

1
0

�

.

75.1 What is det(F)?

Volume Theorem I

T
H

M For a square matrix M , det(M) is the oriented volume of the parallelepiped (n-dimensional parallelo-
gram) given by the column vectors of M .

Volume Theorem II

T
H

M For a square matrix M , det(M) is the oriented volume of the parallelepiped (n-dimensional parallelo-
gram) given by the row vectors of M .

76 76.1 Explain Volume Theorem I using the definition of determinant.

76.2 Based on Volume Theorems I and II, how should det(M) and det(M T ) relate for a square matrix M?
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1

1

R1 R2

R3R4

Let R = R1 ∪ R2 ∪ R3 ∪ R4. You know the following
about the linear transformations M , T , and S.

M
�

x
y

�

=
�

2x
y

�

T : R2→ R2 has determinant 2

S : R2→ R2 has determinant 3

77.1 Find the volumes (areas) of R1, R2, R3, R4, and R.

77.2 Compute the oriented volume of M(R1), M(R2), and M(R).

77.3 Do you have enough information to compute the oriented volume of T(R2)? What about the oriented
volume of T (R+ {~e2})?

77.4 What is the oriented volume of S ◦ T (R)? What is det(S ◦ T )?

182 © Jason Siefken, 2015–2024



78
• E f is I3×3 with the first two rows swapped.

• Em is I3×3 with the third row multiplied by 6.

• Ea is I3×3 with R1 7→ R1 + 2R2 applied.

78.1 What is det(E f )?

78.2 What is det(Em)?

78.3 What is det(Ea)?

78.4 What is det(E f Em)?

78.5 What is det(4I3×3)?

78.6 What is det(W ) where W = E f Ea E f EmEm?
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79
U =







1 2 1 2
0 3 −2 4
0 0 −1 0
0 0 0 4







79.1 What is det(U)?

79.2 V is a square matrix and rref(V ) has a row of zeros. What is det(V )?
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80 80.1 V is a square matrix whose columns are linearly dependent. What is det(V )?

80.2 P is projection onto span
§�

−1
−1

�ª

. What is det(P)?
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81 Suppose you know det(X ) = 4.

81.1 What is det(X−1)?

81.2 Derive a relationship between det(Y ) and det(Y −1) for an arbitrary matrix Y .

81.3 Suppose Y is not invertible. What is det(Y )?
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Eigenvalues and Eigenvectors
In this module you will learn

� The definition of eigenvalues and eigenvectors.

� That eigenvectors give a particularly nice basis in which to study a linear transformation.

� How the characteristic polynomial relates to eigenvalues.

From here on out, we will only be considering linear transformations with the same domain and codomain
(i.e., transformations T : Rn → Rn). Why? Because that will allow us to compare input and output vectors.
By comparing inputs and outputs, we may describe a linear transformation as a stretch, twist, shear, rotation,
projection, or some combination of all of these operations.

Box

Untransformed

Box

Shear Project

Box

Rotate

Box

Stretch

It’s the stretched vectors that we’re most interested in now. If T stretches the vector ~v, then T , in that direction,
can be described by ~v 7→ α~v, which is an easy-to-understand linear transformation. The “stretch” directions for
a linear transformation have a special name—eigen directions—and the vectors that are stretched are called
eigenvectors.

Eigenvector. Let X be a linear transformation or a matrix. An eigenvector for X is a non-zero vector that
doesn’t change directions when X is applied. That is, ~v 6= ~0 is an eigenvector for X if

X ~v = λ~v

for some scalar λ. We call λ the eigenvalue of X corresponding to the eigenvector ~v.

The word eigen is German for characteristic, representative, or intrinsic, and we will see that eigenvectors
provide one of the best contexts in which to understand a linear transformation.

Example. Let P : R2 → R2 be projection onto the line ` given by y = x . Find the eigenvectors and
eigenvalues of P.

We are looking for vectors ~v 6= ~0 such that P~v = λ~v for some λ. Since P(`) = `, we know for any ~v ∈ `

P(~v) = 1~v = ~v.

Therefore, any non-zero multiple of
�

1
1

�

is an eigenvector for P with corresponding eigenvalue 1.

By considering the null space of P, we see, for example,

P
�

1
−1

�

=
�

0
0

�

= 0
�

1
−1

�

,

and so
�

1
−1

�

and all its non-zero multiples are eigenvectors of P with corresponding eigenvalue 0.

Finding Eigenvectors
Sometimes you can find the eigenvectors/values of a linear transformation just by thinking about it. For example,
for reflections, projections, and dilations, the eigen directions are geometrically clear. However, for an arbitrary
matrix transformation, it may not be obvious.

Our goal now will be to see if we can leverage linear algebra knowledge to find eigenvectors/values. So that we
don’t have to switch back and forth between thinking about linear transformations and thinking about matrices,
let’s just think about matrices for now.

Let M be a square matrix. The vector ~v 6= ~0 is an eigenvector for M if and only if there exists a scalar λ so that

M ~v = λ~v. (12)
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Put another way, ~v 6= ~0 is an eigenvector for M if and only if

M ~v −λ~v = (M −λI)~v = ~0.

The middle equation provides a key insight. The operation ~v 7→ M ~v −λ~v can be achieved by multiplying ~v by
the single matrix Eλ = M −λI .

Now we have that ~v 6= ~0 is an eigenvector for M if and only if

Eλ~v = (M −λI)~v = M ~v −λ~v = ~0,

or, phrased another way, ~v is a non-zero vector satisfying ~v ∈ null(Eλ).

We’ve reduced the problem of finding eigenvectors/values of M to finding the null space of Eλ, a related matrix.

Characteristic Polynomial
Let M be an n× n matrix and define Eλ = M −λI . Every eigenvector for M must be in the null space of Eλ for
some λ. However, because eigenvectors must be non-zero, the only chance we have of finding an eigenvector is
if null(Eλ) 6= {~0}. In other words, we would like to know when null(Eλ) is non-trivial.

We’re well equipped to answer this question. Because Eλ is an n× n matrix, we know Eλ has a non-trivial null
space if and only if Eλ is not invertible which is true if and only if det(Eλ) = 0. Every λ defines a different
Eλ where eigenvectors could be hiding. By viewing det(Eλ) as a function of λ, we can use our mathematical
knowledge of single-variable functions to figure out when det(Eλ) = 0.

The quantity det(Eλ), viewed as a function of λ, has a special name—it’s called the characteristic polynomial.51

Characteristic Polynomial.
For a matrix A, the characteristic polynomial of A is

char(A) = det(A−λI).

Example. Find the characteristic polynomial of A=
�

1 2
3 4

�

.

By the definition of the characteristic polynomial of A, we have

char(A) = det(A−λI)

= det
��

1 2
3 4

�

−
�

λ 0
0 λ

��

= det
��

1−λ 2
3 4−λ

��

= (1−λ)(4−λ)− 6= λ2 − 5λ− 2.

For an n× n matrix A, char(A) has some nice properties.

� char(A) is a polynomial.52

� char(A) has degree n.

� The coefficient of the λn term in char(A) is ±1; +1 if n is even and −1 if n is odd.

� char(A) evaluated at λ= 0 is det(A).

� The roots of char(A) are precisely the eigenvalues of A.

We will just accept these properties as facts, but each of them can be proved with the tools we’ve developed.

Using the Characteristic Polynomial to find Eigenvalues
With the characteristic polynomial in hand, finding eigenvectors/values becomes easier.

Example. Find the eigenvectors/values of A=
�

1 2
3 2

�

.

51This time the term is traditionally given the English name, rather than being called the eigenpolynomial.
52A priori, it’s not obvious that det(A−λI) should be a polynomial as opposed to some other type of function.
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Like the previous example, we first compute char(A).

char(A) = det
��

1−λ 2
3 2−λ

��

= (1−λ)(2−λ)− 6= λ2 − 3λ− 4= (4−λ)(−1−λ)

Next, we solve for when char(A) = 0 to find eigenvalues, which are λ1 = −1 and λ2 = 4.
We know non-zero vectors in null(A−λ1 I) are eigenvectors with eigenvalue −1. Computing,

null(A−λ1 I) = null
��

2 2
3 3

��

= span
§�

1
−1

�ª

,

And so the eigenvectors of A corresponding to eigenvalue λ1 = −1 are the non-zero multiples of
�

1
−1

�

.

Similarly, for λ2 = 4, we compute

null(A−λ2 I) = null
��

−3 2
3 −2

��

= span
§�

2
3

�ª

,

and so the eigenvectors for A with eigenvalue 4 are the non-zero multiples of
�

2
3

�

.

Using the characteristic polynomial, we can show that every eigenvalue for a matrix is a root of some polynomial
(the characteristic polynomial). In general, finding roots of polynomials is a hard problem,53 and it’s not one we
will focus on. However, it’s handy to have the quadratic formula in your back pocket for factoring particularly
stubborn polynomials.

Example. Find the eigenvectors/values of A=
�

1 2
3 4

�

.

First, we find the roots of char(A) by setting it to 0.

char(A) = det
��

1−λ 2
3 4−λ

��

= (1−λ)(4−λ)− 6= λ2 − 5λ− 2= 0

By the quadratic formula,a we find that

λ1 =
5−
p

33
2

λ2 =
5+
p

33
2

are the roots of char(A).
Following the procedure outlined above, we need to find null(A−λ1 I) and null(A−λ2 I).
We will start by row reducing A−λ1 I .

�

1− 5−
p

33
2 2

3 4− 5−
p

33
2

�

→

�

−3+
p

33
2 2

3 3+
p

33
2

�

→
�

1 4
−3+
p

33

1 3+
p

33
6

�

→

�

1 4(3+
p

33)
(−3+

p
33)(3+

p
33)

1 3+
p

33
6

�

→

�

1 3+
p

33
6

1 3+
p

33
6

�

→
�

1 3+
p

33
6

0 0

�

Thus, we conclude that the eigenvectors with eigenvalue 5−
p

33
2 are the non-zero multiples of

�

3+
p

33
6
−1

�

.

Similarly, the eigenvectors with eigenvalue 5+
p

33
2 are the non-zero multiples of

�

3−
p

33
6
−1

�

.

aRecall that the roots of ax2 + bx + c are given by −b±
p

b2−4ac
2a .

53In fact, numerically approximating eigenvalues turns out to be easier than finding roots of a polynomial, so many numerical root finding
algorithms actually create a matrix with an appropriate characteristic polynomial and use numerical linear algebra to approximate its roots.
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Transformations without Eigenvectors
Are there linear transformations without eigenvectors? Well, it depends on exactly what you mean. Let
R : R2→ R2 be rotation counter-clockwise by 90◦. Are there any non-zero vectors that don’t change direction
when R is applied? Certainly not.

Let’s examine further. We know MR =
�

0 −1
1 0

�

is a matrix for R, and

char(MR) = λ
2 + 1.

The polynomial λ2 + 1 has no real roots, which means that MR (and R) have no real eigenvalues. However,
λ2 + 1 does have complex roots of ±i. So far, we’ve always thought of scalars as real numbers, but if we allow
complex numbers as scalars and view R as a transformation from C2 → C2, it would have eigenvalues and
eigenvectors.

Complex numbers play an invaluable role in advanced linear algebra and applications of linear algebra to
physics. We will leave the following theorem as food for thought.54

Theorem. If A is a square matrix, then A always has an eigenvalue provided complex eigenvalues are
permitted.

Practice Problems

1 For each linear transformation defined below, find its
eigenvectors and eigenvalues. If it has no eigenvec-
tors/values, explain why not.

(a) S : R2→ R2, where S stretches every vector by the
factor of 3.

(b) R : R2 → R2, where R rotates every vector clock-
wise by π

4 .

(c) P : R2 → R2, where P projects every vector onto
the line ` given by y = −x .

(d) F : R2 → R2, where F reflects every vector over
the line ` given by y = −x .

(e) T : R3 → R3, where T is a linear transformation

induced by the matrix





1 2 3
3 4 5
5 6 7



.

(f) U : R3 → R2, where U is a linear transformation

induced by the matrix
�

1 2 3
3 4 5

�

.

2 Let A=
�

a b
c d

�

, where a, b, c, d ∈ R.

(a) Find the characteristic polynomial of A.

(b) Find conditions on a, b, c, d so that A has (i) two
distinct real eigenvalues, (ii) exactly one real eigen-
value, (iii) no real eigenvalues.

3 Let B =
�

1 2
0 4

�

.

(a) Find the eigenvalues of B.

(b) Find the eigenvalues of BT .

(c) A vector ~v 6= ~0 is called a left-eigenvector for B if
~vB = λ~v for some scalar λ (Here we consider ~v a
row vector). Find all left eigenvectors for B.

4 For each statement below, determine whether it is true or
false. Justify you answer.

(a) Zero cannot be an eigenvalue of any matrix.

(b) ~0 cannot be an eigenvector of any matrix.

(c) A 2× 2 matrix always has a real eigenvalue.

(d) A 3× 3 matrix always has a real eigenvalue.

(e) A 3× 2 matrix always has a real eigenvalue.

(f) The matrix M =







3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3






has exactly one

eigenvalue.

(g) An invertible square matrix can never have zero as
an eigenvalue.

(h) A non-invertible square matrix always has zero as
an eigenvalue.

54The theorem is a direct corollary of the fundamental theorem of algebra.
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The Green and the Black

82 The subway system of Oronto is laid out in a skewed grid. All tracks run parallel to one of the green lines
shown. Compass directions are given by the black lines.

While studying the subway map, you decide to pick two bases to help: the green basis G = {~g1, ~g2}, and
the black basis B = {~e1,~e2}.

~a

~b

~c

~d

~e

~f

1. Write each point above in both the green and the black bases.

2. Find a change-of-basis matrix X that converts vectors from a green basis representation to a black
basis representation. Find another matrix Y that converts vectors from a black basis representation
to a green basis representation.

3. The city commission is considering renumbering all the stops along the y = −3x direction. You
deduce that the commission’s proposal can be modeled by a linear transformation.

Let T : R2→ R2 be the linear transformation that stretches in the y = −3x direction by a factor of
2 and leaves vectors in the y = x direction fixed.

Describe what happens to the vectors ~u, ~v, and ~w when T is applied given that

[~u]G =
�

6
1

�

[~v]G =
�

4
−3

�

[~w]B =
�

−8
−7

�

.

4. When working with the transformation T , which basis do you prefer vectors be represented in?
What coordinate system would you propose the city commission use to describe their plans?
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Let X be a linear transformation or a matrix. An eigenvector for X is a non-zero vector that doesn’t
change directions when X is applied. That is, ~v 6= ~0 is an eigenvector for X if

X ~v = λ~v

for some scalar λ. We call λ the eigenvalue of X corresponding to the eigenvector ~v.

83 The picture shows what the linear transformation T does to the unit square (i.e., the unit 2-cube).

1 2

1

2

1 2

1

2

83.1 Give an eigenvector for T . What is the eigenvalue?

83.2 Can you give another?
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84 For some matrix A,

A





3
3
1



=





2
2

2/3



 and B = A−
2
3

I .

84.1 Give an eigenvector and a corresponding eigenvalue for A.

84.2 What is B





3
3
1



?

84.3 What is the dimension of null(B)?

84.4 What is det(B)?
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85 Let C =
�

−1 2
1 0

�

and Eλ = C −λI .

85.1 For what values of λ does Eλ have a non-trivial null space?

85.2 What are the eigenvalues of C?

85.3 Find the eigenvectors of C .

194 © Jason Siefken, 2015–2024



Characteristic Polynomial

D
EF

IN
IT

IO
N For a matrix A, the characteristic polynomial of A is

char(A) = det(A−λI).

86 Let D =
�

1 2
3 0

�

.

86.1 Compute char(D).

86.2 Find the eigenvalues of D.
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87 Suppose char(E) = −λ(2−λ)(−3−λ) for some unknown 3× 3 matrix E.

87.1 What are the eigenvalues of E?

87.2 Is E invertible?

87.3 What can you say about nullity(E), nullity(E − 3I), nullity(E + 3I)?
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Diagonalization

In this module you will learn

� How to diagonalize a matrix.

� When a matrix can and cannot be diagonalized.

Suppose T is a linear transformation and ~v1 and ~v2 are eigenvectors with eigenvalues λ1 and λ2. With this
setup, for any ~a ∈ span{~v1, ~v2}, we can compute T (~a) with minimal effort.

Let’s get specific. Define T : R2→ R2 to be the linear transformation with matrix M =
�

1 2
3 2

�

. Let ~v1 =
�

−1
1

�

and ~v2 =
�

2
3

�

, and notice that ~v1 is an eigenvector for T with eigenvalue −1 and that ~v2 is an eigenvector for T

with eigenvalue 4. Let ~a = ~v1 + ~v2.

Now,
T (~a) = T (~v1 + ~v2) = T (~v1) + T (~v2) = −~v1 + 4~v2.

We didn’t need to refer to the entries of M to compute T (~a).

Exploring further, let V = {~v1, ~v2} and notice that V is a basis for R2. By definition [~a]V =
�

1
1

�

, and so we just

computed

T
�

1
1

�

V
=
�

−1
4

�

V
.

When represented in the V basis, computing T is easy. In general,

T (α~v1 + β~v2) = αT (~v1) + βT (~v2) = −α~v1 + 4β~v2,

and so

T
�

α
β

�

V
=
�

−α
4β

�

V
.

In other words, T , when acting on vectors written in the V basis, just multiplies each coordinate by an eigenvalue.
This is enough information to determine the matrix for T in the V basis:

[T ]V =
�

−1 0
0 4

�

.

The matrix representations [T ]E =
�

1 2
3 2

�

and [T ]V =
�

−1 0
0 4

�

are equally valid, but writing T in the V basis

gives a very simple matrix!

Diagonalization
Recall that two matrices are similar if they represent the same transformation but in possibly different bases.
The process of diagonalizing a matrix A is that of finding a diagonal matrix that is similar to A, and you can bet
that this process is closely related to eigenvectors/values.

Let T : Rn→ Rn be a linear transformation and suppose that B = {~b1, . . . ,~bn} is a basis so that

[T ]B =









α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn









is a diagonal matrix. This means that ~b1, . . . ,~bn are eigenvectors for T ! The proof goes as follows:

[T ]B[~b1]B =









α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn

















1
0
...
0









=









α1
0
...
0









= α1[~b1]B = [α1
~b1]B,
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and in general
[T ]B[~bi]B = αi[~bi]B = [αi

~bi]B.

Therefore, for i = 1, . . . , n, we have
T ~bi = αi

~bi .

Since B is a basis, ~bi 6= ~0 for any i, and so each ~bi is an eigenvector for T with corresponding eigenvalue αi .

We’ve just shown that if a linear transformation T : Rn → Rn can be represented by a diagonal matrix, then
there must be a basis for Rn consisting of eigenvectors for T . The converse is also true.

Suppose again that T : Rn→ Rn is a linear transformation and that B = {~b1, . . . ,~bn} is a basis of eigenvectors
for T with corresponding eigenvalues α1, . . . ,αn. By definition,

T (~bi) = αi
~bi ,

and so

T









k1
k2
...

kn









B

=









α1k1
α2k2

...
αnkn









B

which is equivalent to [T ]B









k1
k2
...

kn









=









α1k1
α2k2

...
αnkn









.

The only matrix that does this is

[T ]B =









α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn









,

which is a diagonal matrix.

What we’ve shown is summarized by the following theorem.

Theorem. A linear transformation T : Rn→ Rn can be represented by a diagonal matrix if and only if there
exists a basis for Rn consisting of eigenvectors for T . If B is such a basis, then [T ]B is a diagonal matrix.

Now that we have a handle on representing a linear transformation by a diagonal matrix, let’s tackle the problem
of diagonalizing a matrix itself.

Diagonalizable. A matrix is diagonalizable if it is similar to a diagonal matrix.

Suppose A is an n× n matrix. A induces some transformation TA : Rn→ Rn. By definition, this means A= [TA]E .
The matrix B is similar to A if there is some basis V so that B = [TA]V . Using change-of-basis matrices, we see

A= [E←V][TA]V[V←E] = [E←V]B[V←E].

In other words, A and B are similar if there is some invertible change-of-basis matrix P so

A= PBP−1.

Based on our earlier discussion, B will be a diagonal matrix if and only if P is the change-of-basis matrix for a
basis of eigenvectors. In this case, we know B will be the diagonal matrix with eigenvalues along the diagonal
(in the proper order).

Example. Let A=





1 2 5
−11 14 5
−3 2 9



 be a matrix and notice that ~v1 =





5
5
1



, ~v2 =





1
1
1



, and ~v3 =





1
3
1



 are

eigenvectors for A. Diagonalize A.

First, we find the eigenvalues that correspond to the eigenvectors ~v1, ~v2, and ~v3. Computing,

A~v1 =





20
20
4



= 4~v1, A~v2 =





8
8
8



= 8~v2, and A~v3 =





12
36
12



= 12~v3,

and so the eigenvalue corresponding to ~v1 is 4, to ~v2 is 8, and to ~v3 is 12.
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The change-of-basis matrix which converts from the {~v1, ~v2, ~v3} to the standard basis is

P =





5 1 1
5 1 3
1 1 1



 ,

and

P−1 =





1
4 0 − 1

4
1
4 − 1

2
5
4

− 1
2

1
2 0



 .

Define D to be the 3× 3 matrix with the eigenvalues of A along the diagonal (in the order, 4, 8, 12). That is,
the matrix A written in the basis of eigenvectors is

D =





4 0 0
0 8 0
0 0 12



 .

We now know

A= PDP−1 =





5 1 1
5 1 3
1 1 1









4 0 0
0 8 0
0 0 12









1
4 0 − 1

4
1
4 − 1

2
5
4

− 1
2

1
2 0



 ,

and that D is the diagonalized form of A.

Non-diagonalizable Matrices
Is every matrix diagonalizable? Unfortunately the world is not that sweet. But, we have a tool to tell if a matrix
is diagonalizable—checking to see if there is a basis of eigenvectors.

Example. Is the matrix R=
�

0 −1
1 0

�

diagonalizable?

Computing, char(R) = λ2 + 1 has no real roots. Therefore, R has no real eigenvalues. Consequently, R has
no real eigenvectors, and so R is not diagonalizable.a

aIf we allow complex eigenvalues, then R is diagonalizable and is similar to the matrix
�

i 0
0 −i

�

. So, to be more precise, we might

say R is not real diagonalizable.

Example. Is the matrix D =
�

5 0
0 5

�

diagonalizable?

For every vector ~v ∈ R2, we have D~v = 5~v, and so every non-zero vector in R2 is an eigenvector for D. Thus,
E = {~e1,~e2} is a basis of eigenvectors for R2, and so D is diagonalizable.a

aOf course, every square matrix is similar to itself and D is already diagonal, so of course it’s diagonalizable.

Example. Is the matrix J =
�

5 1
0 5

�

diagonalizable?

Computing, char(J) = (5−λ)2 which has a double root at 5. Therefore, 5 is the only eigenvalue of J . The
eigenvectors of J all lie in

null(J − 5I) = span
§�

1
0

�ª

.

Since this is a one dimensional space, there is no basis for R2 consisting of eigenvectors for J . Therefore, J
is not diagonalizable.

Example. Is the matrix K =
�

5 1
0 2

�

diagonalizable?

Computing, char(K) = (5−λ)(2−λ) which has roots at 5 and 2. Therefore, 5 and 2 are the eigenvalues of
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K . The eigenvectors of K lie in one of

null(K − 5I) = span
§�

1
0

�ª

or null(K − 2I) = span
§�

−1
3

�ª

.

Picking one eigenvector from each null space, we have that
§�

1
0

�

,
�

−1
3

�ª

is a basis for R2 consisting of

eigenvectors of K . Thus, K is diagonalizable.

Takeaway. Not all matrices are diagonalizable, but you can check if an n× n matrix is diagonalizable by
determining whether there is a basis of eigenvectors for Rn.

Geometric and Algebraic Multiplicities
When analyzing linear transformations or matrices, we’re often interested in studying the subspaces where
vectors are stretched by only one eigenvalue. These are called the eigenspaces.

Eigenspace. Let A be an n× n matrix with eigenvalues λ1, . . . ,λm. The eigenspace of A corresponding to
the eigenvalue λi is the null space of A−λi I . That is, it is the space spanned by all eigenvectors that have
the eigenvalue λi .
The geometric multiplicity of an eigenvalue λi is the dimension of the corresponding eigenspace. The
algebraic multiplicity of λi is the number of times λi occurs as a root of the characteristic polynomial of A
(i.e., the number of times x −λi occurs as a factor).

Now is the time when linear algebra and regular algebra (the solving of non-linear equations) combine. We
know, every root of the characteristic polynomial of a matrix gives an eigenvalue for that matrix. Since the
degree of the characteristic polynomial of an n× n matrix is always n, the fundamental theorem of algebra tells
us exactly how many roots to expect.

Recall that the multiplicity of a root of a polynomial is the power of that root in the factored polynomial. So, for
example p(x) = (4− x)3(5− x) has a root of 4 with multiplicity 3 and a root of 5 with multiplicity 1.

Example. Let R=
�

0 −1
1 0

�

and find the geometric and algebraic multiplicity of each eigenvalue of R.

Computing, char(R) = λ2 + 1 which has no real roots. Therefore, R has no real eigenvalues.a

aIf we allow complex eigenvalues, then the eigenvalues i and −i both have geometric and algebraic multiplicity of 1.

Example. Let D =
�

5 0
0 5

�

and find the geometric and algebraic multiplicity of each eigenvalue of D.

Computing, char(D) = (5−λ)2, so 5 is an eigenvalue of D with algebraic multiplicity 2. The eigenspace of
D corresponding to 5 is R2. Thus, the geometric multiplicity of 5 is 2.

Example. Let J =
�

5 1
0 5

�

and find the geometric and algebraic multiplicity of each eigenvalue of J .

Computing, char(J) = (5−λ)2, so 5 is an eigenvalue of J with algebraic multiplicity 2. The eigenspace of J

corresponding to 5 is span
§�

1
0

�ª

. Thus, the geometric multiplicity of 5 is 1.

Example. Let K =
�

5 1
0 2

�

and find the geometric and algebraic multiplicity of each eigenvalue of K .

Computing, char(K) = (5−λ)(2−λ), so 5 and 2 are eigenvalues of K , both with algebraic multiplicity 1. The

eigenspace of K corresponding to 5 is span
§�

1
0

�ª

and the eigenspace corresponding to 2 is span
§�

−1
3

�ª

.

Thus, both 5 and 2 have a geometric multiplicity of 1.

Consider the following two theorems.
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Theorem (Fundamental Theorem of Algebra). Let p be a polynomial of degree n. Then, if complex
roots are allowed, the sum of the multiplicities of the roots of p is n.

Theorem. Let λ be an eigenvalue of the matrix A. Then

geometric mult(λ)≤ algebraic mult(λ).

We can now deduce the following.

Theorem. An n× n matrix A is diagonalizable if and only if the sum of its geometric multiplicities is equal
to n. Further, provided complex eigenvalues are permitted, A is diagonalizable if and only if its geometric
multiplicities are equal to its corresponding algebraic multiplicities.

Proof. Let A be an n × n matrix with eigenvalues λ1, . . . ,λk. Let E1, . . . , Ek be bases for the eigenspaces
corresponding to λ1, . . . ,λk. We will start by showing E = E1 ∪ · · · ∪ Ek is a linearly independent set using the
following two lemmas.

No New Eigenvalue Lemma. Suppose that ~v1, . . . , ~vk are linearly independent eigenvectors of a matrix A, and let
λ1, . . . ,λk be the corresponding eigenvalues. Then, any eigenvector for A contained in span{~v1, . . . , ~vk} must
have one of λ1, . . . ,λk as its eigenvalue.

The proof goes as follows. Suppose ~v =
∑

i≤k αi~vi is an eigenvector for A with eigenvalue λ. We now compute
A~v in two different ways: once by using the fact that ~v is an eigenvector, and again by using the fact that ~v is a
linear combination of other eigenvectors. Observe

A~v = λ~v = λ

�

∑

i≤k

αi~vi

�

=
∑

i≤k

αiλ~vi

and

A~v = A

�

∑

i≤k

αi~vi

�

=
∑

i≤k

αiA~vi =
∑

i≤k

αiλi~vi .

We now have
~0= A~v − A~v =
∑

i≤k

αiλ~vi −
∑

i≤k

αiλi~vi =
∑

i≤k

αi(λ−λi)~vi .

Because ~v1, . . . , ~vk are linearly independent, we know αi(λ−λi) = 0 for all i ≤ k. Further, because ~v is non-zero
(it’s an eigenvector), we know at least one αi is non-zero. Therefore λ− λi = 0 for at least one i. In other
words, λ= λi for at least one i, which is what we set out to show.55

Basis Extension Lemma. Let P = {~p1, . . . , ~pa} and Q = {~q1, . . . , ~qb} be linearly independent sets, and suppose
P ∪ {~q} is linearly independent for all non-zero ~q ∈ spanQ. Then P ∪Q is linearly independent.

To show this, suppose ~0 = α1~p1 + · · ·+ αa~pa + β1~q1 + · · ·+ βb~qb is a linear combination of vectors in P ∪Q.
Let ~q = β1~q1 + · · ·+ βb~qb. First, note that ~q must be the zero vector. If not, ~0 = α1~p1 + · · ·+ αa~pa + ~q is a
non-trivial linear combination of vectors in P ∪ {~q}, which contradicts the assumption that P ∪ {~q} is linearly
independent. Since we’ve established ~0= ~q = β1~q1 + · · ·+ βb~qb, we conclude β1 = · · ·= βb = 0 because Q is
linearly independent. It follows that since ~0 = α1~p1 + · · ·+ αa~pa + ~q = α1~p1 + · · ·+ αa~pa + ~0, we must have
that α1 = · · ·= αa = 0 because P is linearly independent. This shows that the only way to express ~0 as a linear
combination of vectors in P ∪Q is as the trivial linear combination, and so P ∪Q is linearly independent.

Now we can put our lemmas to good use. We will use induction to show that E = E1 ∪ · · · ∪ Ek is linearly
independent. By assumption E1 is linearly independent. Now, suppose U = E1 ∪ · · · ∪ E j is linearly independent.
By construction, every non-zero vector ~v ∈ span E j+1 is an eigenvector for A with eigenvalue λ j+1. Therefore,
since λ j+1 6= λi for 1 ≤ i ≤ j, we may apply the No New Eigenvalue Lemma to see that ~v /∈ span U . It follows
that U ∪ {~v} is linearly independent. Since E j+1 is itself linearly independent, we may now apply the Basis
Extension Lemma to deduce that U ∪ E j+1 is linearly independent. This shows that E = E1 ∪ · · · ∪ Ek is linearly
independent.

To conclude notice that by construction, geometric mult(λi) = |Ei |. Since E = E1∪· · ·∪Ek is linearly independent,
the Ei ’s must be disjoint and so

∑

geometric mult(λi) =
∑

|Ei | = |E|. If
∑

geometric mult(λi) = n, then E ⊆ Rn

is a linearly independent set of n vectors and so is a basis for Rn. Finally, because we have a basis for Rn

consisting of eigenvectors for A, we know A is diagonalizable.

55You may notice that we’ve proved something stronger than we needed: if an eigenvector is a linear combination of linearly independent
eigenvectors, the only non-zero coefficients of that linear combination must belong to eigenvectors with the same eigenvalue.
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Conversely, if there is a basis E for Rn consisting of eigenvectors, we must have a linearly independent set of
n eigenvectors. Grouping these eigenvectors by eigenvalue, an application of the No New Eigenvalue Lemma
shows that each group must actually be a basis for its eigenspace. Thus, the sum of the geometric multiplicities
must be n.

Finally, if complex eigenvalues are allowed, the algebraic multiplicities sum to n. Since the algebraic multiplicities
bound the geometric multiplicities, the only way for the geometric multiplicities to sum to n is if corresponding
geometric and algebraic multiplicities are equal.

�

Practice Problems

1 For each of the matrices below, find the geometric and
algebraic multiplicity of each eigenvalue.

(a) A=
�

2 0
−2 1

�

(b) B =
�

3 0
0 3

�

(c) C =
�

3 0
3 0

�

(d) D =





0 3/2 4
0 1 0
−1 1 4





(e) E =





2 1/2 0
0 1 0
0 1/2 2





2 For each matrix from question 1, diagonalize the matrix
if possible. Otherwise explain why the matrix cannot be
diagonalized.

3 Give an example of a 4×4 matrix with 2 and 7 as its only
eigenvalues.

4 Can the geometric multiplicity of an eigenvalue ever be
0? Explain.

5 (a) Show that if ~v1 and ~v2 are eigenvectors for a matrix
M corresponding to different eigenvalues, then ~v1

and ~v2 are linearly independent.

(b) If possible, give an example of a non-diagonalizable
3× 3 matrix where 1 and −1 are the only eigenval-
ues.

(c) If possible, give an example of a non-diagonalizable
2× 2 matrix where 1 and −1 are the only eigenval-
ues.
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88 Consider

A=





1 0 1
0 1 1
1 1 0



 ~v1 =





1
1
1



 ~v2 =





1
1
−2



 ~v3 =





−1
1
0





and notice that ~v1, ~v2, ~v3 are eigenvectors for A. Let TA be the transformation induced by A.

88.1 Find the eigenvalues of TA.

88.2 Find the characteristic polynomial of TA.

88.3 Compute TA ~w where ~w= 2~v1 − ~v2.

88.4 Compute TA~u where ~u= a~v1 + b~v2 + c~v3 for unknown scalar coefficients a, b, c.

Notice that V = {~v1, ~v2, ~v3} is a basis for R3.

88.5 If [~x]V =





1
3
4



 is ~x written in the V basis, compute TA~x in the V basis.
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89 Recall from Problem 88 that

A=





1 0 1
0 1 1
1 1 0



 ~v1 =





1
1
1



 ~v2 =





1
1
−2



 ~v3 =





−1
1
0





and V = {~v1, ~v2, ~v3}. Let TA be the transformation induced by A and let P = [~v1|~v2|~v3] be the matrix with
columns ~v1, ~v2, and ~v3 (written in the standard basis).

89.1 Describe in words what P and P−1 do in terms of change-of-basis.

89.2 If you were asked to compute TA~y for some ~y ∈ R3, which basis would you prefer to do your computations
in? Explain.

89.3 Given a vector ~y ∈ R3 written in the standard basis, is there a way to compute TA~y without using the
matrix A? (You may use P and P−1, just not A.) Explain.

89.4 Can you find a matrix D so that
PDP−1 = A?

89.5 [~x]V =





1
3
4



. Compute T 100
A ~x . Express your answer in both the V basis and the standard basis.
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D
EF A matrix is diagonalizable if it is similar to a diagonal matrix.

90 Let B be an n× n matrix and let TB be the induced transformation. Suppose TB has eigenvectors ~v1, . . . , ~vn
which form a basis for Rn, and let λ1, . . . ,λn be the corresponding eigenvalues.

90.1 How do the eigenvalues and eigenvectors of B and TB relate?

90.2 Is B diagonalizable (i.e., similar to a diagonal matrix)? If so, explain how to obtain its diagonalized form.

90.3 What if one of the eigenvalues of TB is zero? Would B be diagonalizable?

90.4 What if the eigenvectors of TB did not form a basis for Rn. Would B be diagonalizable?
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Let A be an n × n matrix with eigenvalues λ1, . . . ,λm. The eigenspace of A corresponding to the
eigenvalue λi is the null space of A−λi I . That is, it is the space spanned by all eigenvectors that have
the eigenvalue λi .

The geometric multiplicity of an eigenvalue λi is the dimension of the corresponding eigenspace. The
algebraic multiplicity of λi is the number of times λi occurs as a root of the characteristic polynomial
of A (i.e., the number of times x −λi occurs as a factor).

91 Let F =
�

3 1
0 3

�

and G =
�

3 0
0 3

�

.

91.1 Is F diagonalizable? Why or why not?

91.2 Is G diagonalizable? Why or why not?

91.3 What are the geometric and algebraic multiplicities of each eigenvalue of F? What about the multiplicities
for each eigenvalue of G?

91.4 Suppose A is a matrix where the geometric multiplicity of one of its eigenvalues is smaller than the
algebraic multiplicity of the same eigenvalue. Is A diagonalizable? What if all the geometric and algebraic
multiplicities match?
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Systems of Linear Equations I
In this appendix you will learn

� What a system of linear equations is.

� What the solution set to a system of equations is, and what it means for a system of equations to be
consistent or inconsistent.

� How augmented matrices can be used to solve systems of linear equations.

� How to apply row reduction to find a unique solution to a system of linear equations and to determine if
a system of linear equations is consistent or inconsistent.

An equation encodes a relationship between quantities. For example, writing

Slices of cake
︸ ︷︷ ︸

C

= Slices you ate
︸ ︷︷ ︸

M

+Slices your brother ate
︸ ︷︷ ︸

B

specifies a precise relationship between the quantities C , M , and B. Without more information, C , M , and
B could be almost anything. As such, we call C , M , and B variables or unknowns. However, the relationship
between them is precisely defined.

Additional relationships give rise to additional equations, which we express concisely as a system of equations,
that is, a list of equations. For example, suppose you know the cake had six pieces and your brother ate twice
as many pieces as you. We might now write the system

C = M + B

B = 2M

C = 6

which should be interpreted as: “the relationship C = M + B holds and the relationship B = 2M holds and the
relationship C = 6 holds.” All this information, taken together, is enough to deduce the unknowns: M = 2,
B = 4, and C = 6.

Systems of equations naturally appear in linear algebra through vector equations. Suppose ~u=
�

1
2

�

, ~v =
�

2
3

�

,

and ~w=
�

1
1

�

. You might wonder if ~w was a linear combination of ~u and ~v. The answer is yes if and only if the

vector equation
~w= a~u+ b~v

has a solution for some a and b. Written in coordinates, this equation is equivalent to
�

1
1

�

= a
�

1
2

�

+ b
�

2
3

�

=
�

a+ 2b
2a+ 3b

�

.

Equating coordinates, a system of equations appears:
�

a+ 2b = 1

2a+ 3b = 1

Every vector equation, by way of coordinates, corresponds to a system of equations. And, fortunately for us,
there is an algorithm to find all solutions to these systems.56

Systems of Linear Equations
There’s no guarantee that a general equation, like x4 − ex + 7 = 0, has a solution, and it might be impossible to
decide if an arbitrary equation has a solution, let alone what the solutions are!57 However, for linear equations
and systems of linear equations we can always tell whether there is a solution and what the solution(s) are.

56Saying there is an algorithm for “X ” means that there is a specific set of (non-random) rules that always accomplishes “X ”. As a
consequence, doing “X ” never requires special insight. For example, there is an algorithm for multiplying numbers, but there is not an
algorithm for factoring polynomials of degree 5 or greater.

57Fermat’s Last Theorem famously claimed that an + bn = cn has no positive integer solutions for n≥ 3. However, it took 350 years of
human ingenuity before anyone was able rigorously back up the claim.
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Linear Equation. A linear equation in the variables x1, . . . , xn is one that can be expressed as

a1 x1 + a2 x2 + · · ·+ an xn = c

for constants a1, . . . , an and c. A system of linear equations is a system of equations consisting of one or
more linear equations.

Every vector equation corresponds to an equivalent system of linear equations and vice versa, where equivalent
means “expresses the same relationships between variables”.

Example. Write down the vector equation corresponding to the system of linear equations
�

2x + 3y + z = 2

y − z = −1
and the system of linear equations corresponding to the vector equation t ~w+ ~u = r~v

where ~w=
�

1
−1

�

, ~u=
�

2
3

�

, and ~v =
�

4
4

�

.

The system

�

2x + 3y + z = 2

0x + y − z = −1
corresponds to the vector equation

x
�

2
0

�

+ y
�

3
1

�

+ z
�

1
−1

�

=
�

2
−1

�

.

As for the vector equation t ~w+ ~u = r~v, rewriting each vector in coordinates gives us a corresponding system
of linear equations:

t ~w+ ~u= r~v→ t
�

1
−1

�

+
�

2
3

�

= r
�

4
4

�

�

t + 2
−t + 3

�

=
�

4r
4r

�

→
�

−4r + t = −2

−4r − t = −3
.

Takeaway. Every vector equation corresponds to a system of linear equations and every system of linear
equations corresponds to a vector equation.

Solution Sets
Before looking at how to solve systems of linear equations, let’s agree on some terminology.

A solution to an equation is a particular choice of values for the variables that satisfy (i.e. make true) the
equation. For example

x + y = 4 (13)

has a solution x = y = 2. However, x = y = 2 is just one of many possible solutions; we also have x = 4 and
y = 0 or x = −2 and y = 6. The solution set, also called the complete solution, to an equation (or system of
equations) is the set of all possible solutions. For example, the solution set to Equation (13) is S = {(x , y) :
y = 4− x}. In this case, S contains infinitely many solutions, including (x , y) = (2,2), the first solution we
found.

Solution sets look a lot like sets of vectors: the set S = {(x , y) : y = 4− x} could be thought of as a subset of

R2 where we identify a solution x = a and y = b with the column vector
�

a
b

�

. Drawing S as a subset of R2, we

see a familiar picture.
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1 2 3 4 5

1

2

3

4

5

It’s the graph of the line given in y = mx + b form by y = −x + 4. In other words, via solution sets, equations
and systems of equations can represent geometric objects.

Consistent & Inconsistent Systems
Consider the following equations (as separate equations, not as a system):

x2 = 0 with solution set Sx ⊆ R,

y2 = 4 with solution set Sy ⊆ R,

and
z2 = −1 with solution set Sz ⊆ R.

Sx = {0} consists of a single number. Sy = {2,−2} consists of two numbers, and Sz = {} consists of no
numbers.58 In this case, we would call the first two equations consistent and the third equation inconsistent.

Consistent & Inconsistent. An equation or system of equations is called consistent if it has at least one
solution. That is, its solution set is non-empty. Otherwise, an equation or system of equations is called
inconsistent.

Why the word consistent? This comes from the term logically consistent which means “able to be true”. An
equation is an assertion that the left hand side equals the right hand side. If that can never happen, the assertion
is not logically consistent.

This terminology becomes more clear with systems. Consider the system
�

x − y = 0

x − y = 1
.

From the first equation, we deduce y = x . From the second equation, we deduce x = 1+ y . Since x = x , we
know that y = x = 1+ y and therefore y = 1+ y . However, this is never true! There is a logical inconsistency
between the two equations. In isolation they’re fine, but taken together they’re not.

Equivalent Systems
Two systems of equations are logically equivalent if they express the same relationships between their variables.

For example, the equations x = 2y and
1
2

x = y express the exact same relationship between the variables x

and y . This can be formalized using solution sets.

Equivalent Systems. Two equations or systems of equations are called equivalent if they have the same
solution sets.

Again, x = 2y and
1
2

x = y both have the same solution set (a line through the origin of slope
1
2

), and so they

are equivalent.

Philosophical note: the process of “doing algebra” can be viewed as the process of manipulating equations/systems
into easier to understand equivalent equations/systems. When you’re asked to algebraically solve x2 − 4 = 0.

58We’re not allowing complex numbers at the moment.
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You might first factor to get the equivalent equation (x − 2)(x + 2) = 0. Then, since non-zero numbers cannot
multiply to give zero, we know x − 2= 0 or x + 2= 0, which in turn is equivalent to x = ±2. It’s always been
about equivalent systems!59

Row Reduction
Consider the vector equation

t~u+ s~v + r ~w= ~p where ~u=





1
2
1



 , ~v =





2
1
−4



 , ~w=





−2
−5

1



 , ~p =





−15
−21

18



 .

By expanding in terms of coordinates, we get an equivalent system of linear equations.






t + 2s− 2r = −15 row1

2t + s− 5r = −21 row2

t − 4s+ r = 18 row3

(14)

The most general way to solve any system is by substitution. For System (14), we could solve the first equation
for t, substitute the result in the remaining equations, solve the next equation for s, etc.. However, because
System (14) is a linear system, there’s an alternate method: row reduction.60

Study the following manipulations of System (14) and convince yourself that each operation produces a system
equivalent to the one it came from.







t + 2s− 2r = −15

2t + s− 5r = −21

t − 4s+ r = 18

row3 7→row3−row1−−−−−−−−−−→







t + 2s− 2r = −15

2t + s− 5r = −21

− 6s+ 3r = 33

row2 7→row2−2row1−−−−−−−−−−−→







t + 2s− 2r = −15

− 3s− r = 9

− 6s+ 3r = 33

row3 7→row3−2row2−−−−−−−−−−−→







t + 2s− 2r = −15

− 3s− r = 9

5r = 15

(15)

From the final system, System (15), it’s easy to see that r = 3. From there, we can substitute r = 3 into the
second row of System (15) to find s = −4 and we can substitute both r and s into the first row of System (15)
to find t = −1.

By adding and subtracting rows, we “reduced” the number of variables from some equations until they were easy
to solve. As an added benefit, every system along the way to System (15) was nicely organized and formatted.
In fact, the systems are so well organized that we can save time by not writing the variables and keeping track
of the numbers in an augmented matrix.61 That is, instead of writing







t + 2s− 2r = −15

2t + s− 5r = −21

t − 4s+ r = 18

we will write




1 2 −2 −15
2 1 −5 −21
1 −4 1 18



 .

We call the matrix an augmented matrix to stress that it contains two types of information: the coefficients of
the variables t, s, and r and the constants on the right hand side of the equations. An (optional) vertical line
separates the two types of numbers.

59Technically, up to this point we’ve been talking about conjunctive systems, which means that a solution must hold for all equations of a
system. The system x = ±2 is a disjunctive system, which means a solution only needs to hold for one of the equations (x = 2 or x = −2),
but the idea is the same.

60Row reduction is sometimes referred to as Gaussian elimination, Gauss-Jordan elimination, or just elimination; though there are subtle
differences between Gaussian and Gauss-Jordan elimination, they aren’t important, and we’ll refer to all similar methods as row reduction.

61A matrix is a box of numbers. An augmented matrix is a matrix with extra information associated with it.
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Now, the process of row reduction looks like this:

( t + 2s− 2r = −15

2t + s− 5r = −21

t − 4s+ r = 18
→





1 2 −2 −15
2 1 −5 −21
1 −4 1 18





row3 7→row3−row1−−−−−−−−−−→





1 2 −2 −15
2 1 −5 −21
0 −6 3 33





row2 7→row2−2row1−−−−−−−−−−−→





1 2 −2 −15
0 −3 −1 9
0 −6 3 33





row3 7→row3−2row2−−−−−−−−−−−→





1 2 −2 −15
0 −3 −1 9
0 0 5 15



→

(t + 2s− 2r = −15

− 3s− r = 9

5r = 15

The operations are identical, but we write augmented matrices instead of equations.

Takeaway. Augmented matrices are a notational tool that makes the process of doing row reduction more
efficient.

The Rules of Row Reduction
So far, we’ve been able to row reduce systems by adding a multiple of one row to another,62 but to fully solve
any system, we need additional operations.63

Elementary Row Operations. The three elementary row operations, which can be performed on a matrix
or system of equations, are

� swapping two rows (written rowi ↔ row j),

� multiplying a row by a non-zero scalar (written rowi 7→ k rowi), and

� adding a multiple of one row to another (written rowi 7→ rowi + k row j).

Notice that each elementary row operation can be undone. For example, if you perform rowi 7→ k rowi , you can

undo it with rowi 7→
1
k

rowi . Therefore, applying an elementary row operation to a system is guaranteed to

produce an equivalent system.

The strategy for solving a system is now summarized as:

1. Rewrite the system as an augmented matrix.

2. Use elementary row operations to zero-out the lower triangle of the augmented matrix.

3. Convert the matrix back to a system of equations.

4. Read off the solution (substituting when necessary).

Example. Find a solution to the following system:






a+ 3b+ 2c = 1

2a+ 7b+ 5c = 2

−a− 4b = 11

.

To do so, we rewrite the system as an augmented matrix then row reduce.






a+ 3b+ 2c = 1

2a+ 7b+ 5c = 2

−a− 4b = 11
→





1 3 2 1
2 7 5 2
−1 −4 0 11





row2 7→row2−2row1−−−−−−−−−−−→





1 3 2 1
0 1 1 0
−1 −4 0 11





row3 7→row3+row1+row2−−−−−−−−−−−−−−→





1 3 2 1
0 1 1 0
0 0 3 12



→







a+ 3b+ 2c = 1

b+ c = 0

3c = 12

62Technically, we subtracted, but that’s just adding a negative.
63If you’re clever, you can think up alternatives to the elementary row operations that work just as well, but there’s good reason to favor

the three elementary row operations. We’ll see them when discussing matrix decompositions.
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The third row reveals that c = 4; substituting into the second row, we find b = −4. Now we can substitute
b = −4 and c = 4 into the first row and we obtain a = 5.

Thus, the solution is





a
b
c



 =





5
−4

4



. Since this is the only solution to the system, the solution set is











5
−4

4











.

Example. Solve the system














3t + s+ 13r = −2

t + 5r = 1

−t + s− 6r = −8

t + s+ 4r = −6

.

Again, we row reduce the corresponding augmented matrix to find an equivalent system from which we can
more easily compute the solution.











3t + s+ 13r = −2

t + 5r = 1

−t + s− 6r = −8

t + s+ 4r = −6

→







3 1 13 −2
1 0 5 1
−1 1 −6 −8

1 1 4 −6







row1↔row2−−−−−−→







1 0 5 1
3 1 13 −2
−1 1 −6 −8

1 1 4 −6







row2 7→row2−3row1−−−−−−−−−−−→







1 0 5 1
0 1 −2 −5
−1 1 −6 −8

1 1 4 −6







row3 7→row3+row1−row2−−−−−−−−−−−−−−→







1 0 5 1
0 1 −2 −5
0 0 1 −2
1 1 4 −6







row4 7→row4−row1−row2−−−−−−−−−−−−−−→







1 0 5 1
0 1 −2 −5
0 0 1 −2
0 0 1 −2







row4 7→row4−row3−−−−−−−−−−→







1 0 5 1
0 1 −2 −5
0 0 1 −2
0 0 0 0






→











t + 5r = 1

s− 2r = −5

r = −2

0= 0

Our equivalent system reveals r = −2, which we can substitute back into the first and second rows to find
that t = 11 and s = −9.

As a vector, the solution is





t
s
r



=





11
−9
−2



 and so the solution set is











11
−9
−2











.

In the examples so far, we’ve stopped row reducing when the equations became simple enough to solve by
inspection. However, we could continue row reducing until the system is as simple as possible.

Example. Solve the system






a+ 3b+ 2c = 1

2a+ 7b+ 5c = 2

−a− 4b = 11

Notice that we solved this system using a combination of row reduction and substitution in a previous
example. This time, let us use only row reduction.
The augmented matrix for this system is





1 3 2 1
2 7 5 2
−1 −4 0 11



 .
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Based on the work from the previous example, we know it can be reduced to




1 3 2 1
0 1 1 0
0 0 3 12



 .

Now let us continue row reducing.





1 3 2 1
0 1 1 0
0 0 3 12





row3 7→
1
3

row3

−−−−−−−−→





1 3 2 1
0 1 1 0
0 0 1 4





row2 7→row2−row3−−−−−−−−−−→





1 3 2 1
0 1 0 −4
0 0 1 4





row1 7→row1−3row2−2row3−−−−−−−−−−−−−−−→





1 0 0 5
0 1 0 −4
0 0 1 4



→

(a = 5

b = −4

c = 4

The solution is





a
b
c



=





5
−4

4



 and the solution set is











5
−4

4











, which is the same as we got before.

What happens when you apply row reduction to an inconsistent system? Let’s see. Consider the system

�

x + y = 1

4x + 4y = 7
. (16)

Before continuing, convince yourself that this system is inconsistent. The augmented matrix for System (16) is

�

1 1 1
4 4 7

�

.

We apply the row operation row2 7→ row2 − 4row1 to get

�

1 1 1
0 0 3

�

,

which corresponds to the system

�

x + y = 1

0x + 0y = 3
.

But, the last equation says 0x + 0y = 3, which is not true for any choice of x and y! Thus, we see applying row
reduction to an inconsistent system reveals its inconsistency.

Example. Find a solution to the following system:







x + z = 4

x + y + 2z = −8

x + 3y + 4z = −18

.
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As usual we rewrite the system as an augmented matrix and then row reduce.

(x + z = 4

x + y + 2z = −8

x + 3y + 4z = −18
→





1 0 1 4
1 1 2 −8
1 3 4 −18





row3 7→row3−row2−−−−−−−−−−→





1 0 1 4
1 1 2 −8
0 2 2 −10





row2 7→row2−row1−−−−−−−−−−→





1 0 1 4
0 1 1 −12
0 2 2 −10





row3 7→row3−2row2−−−−−−−−−−−→





1 0 1 4
0 1 1 −12
0 0 0 14



→

( x + z = 4

y + z = −12

0x + 0y + 0z = 14

The equation 0x + 0y + 0z = 14 is never true and so the system is inconsistent. Since there are no values of
x , y , and z that satisfy the system, the solution set is {}, the empty set.

Practice Problems

1 For each equation given below, determine if it is a linear
equation. If not, explain what makes it nonlinear.

(a) cos(4)x1 + ey2 +πz3 = eπ

(b) 4x1 + 2x2 + 5x4 = 4x2 + 4x5 + 5

(c) 5x + 2y + 8z = cos(y)

(d) 12x + 3x y + 5z = 2

(e) cos(4)x + sin(4)y = tan(4)x

(f) x
y = 1

2 Convert each vector equation given below to a system of
linear equations.

(a) x





1
−1

0



+ y





0
1
0



+ z





4
6
1



=





2
−5

2





(b) x
�

7
16

�

+ y
�

8
13

�

=
�

11
30

�

(c) ~u+ t~u− s(~v+ ~w) = ~0 where ~u =
�

1
1

�

, ~v =
�

2
−1

�

, and

~w=
�

3
4

�

.

3 Convert each system of linear equations given below to a
vector equation.

(a)







4x2 + 2x3 = 0

x1 + 2x3 = 0

9x2 + 2x3 = 1

(b)

�

0x + 0y + 0z = 0

x + y + z = 3

4 Consider the vector equation x
�

2
4

�

+ y
�

8
16

�

= ~b where

~b is unknown.

(a) Show that if ~b =
�

7
14

�

, the system is consistent.

(b) Are there other vectors ~b that make the system con-
sistent? If so, how many? Justify your answer.

(c) Show that if ~b =
�

5
12

�

, the system is inconsistent.

(d) Are there other vectors ~b that make the system in-
consistent? If so, how many? Justify your answer.

5 On Kokoro’s farm, there is a cage with 35 animals, some of
which are chickens and some of which are rabbits. Kokoro
counted the total number of legs in the cage and found
that there were 94 legs in all (notably, each chicken has
exactly two legs and each rabbit has four legs). Kokoro
decides to use this information to figure out how many
chickens and how many rabbits there are.64

(a) Set up a system of linear equations that you could
solve to answer Kokoro’s question.

(b) Is the system consistent? If so, answer Kokoro’s
question.

(c) Kokoro wants to set up three other cages. For each
described cage below, explain using complete En-
glish sentences, whether such a configuration is
possible. Justify your answers using linear algebra.

i. Kokoro wants to set up a cage with cats and
dogs (notably, each cat has exactly four legs
and each dog has four legs) so that there are
35 animals in total, and the total number of
legs is 94.

ii. Kokoro wants to set up a cage with cats and
dogs so that there are 35 animals in total, and
the total number of legs is 140.

iii. Kokoro wants to set up a cage with chickens
and rabbits so that there are 42 animals in total,
and the total number of legs is 77.

6 For each statement below, determine whether it is true or
false. Justify your answer.

(a) A system of linear equations of 4 variables with 3
equations is always consistent.

(b) Any system of linear equation with 0x1+0x2+ · · ·+
0xn = 0 being one of the equations must be consis-
tent.

(c) There are m, c ∈ R so that the y-axis is the solution
set to the equation y = mx + c.

(d) There are m, c ∈ R so that the x-axis is the solution
set to the equation y = mx + c.

64This problem based on a classical Chinese problem from the ancient Chinese treatise Mathematical Classic of Master Sun (or Sunzi
Suanjing) written during 3rd to 5th centuries A.D.
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(e) There are m1, m2, c ∈ R so that the x-axis (in R3) is
the solution set to the equation z = m1 x +m2 y + c.

(f) A system of exactly one equation can have an empty
solution set.
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Systems of Linear Equations II

In this appendix you will learn

� How to put a matrix into reduced row echelon form.

� How to use free variables to write down the complete solution to a system of linear equations.

� That a system of linear equations has 0, 1, or infinitely many solutions.

� How solution sets to systems of linear equations relate to intersecting hyperplanes.

Consider the system
�

x − 2y = 0

2x − 4y = 0
. (17)

Notice that every solution to the first equation is also a solution to the second equation. Applying row reduction,
we get the system

�

x − 2y = 0

0x + 0y = 0
,

but that second equation, 0x + 0y = 0, is funny. It is always true, no matter the choice of x and y . It adds no
new information! In retrospect, it might be obvious that both equations from System (17) contain the same
information making one equation redundant.

System (17) is an example of an underdetermined system of equations, meaning there is not enough information
to uniquely determine the value of each variable. Its solution set is a line, which we can find by graphing.

−2 −1 1 2

−2

−1

1

2

From this picture, we could describe the complete solution to System (17) in vector form by

~x = t
�

2
1

�

.

But, what about a more complicated system? The system

�

x + y + z = 1

y − z = 2

is also underdetermined. It has a complete solution described by





x
y
z



= t





−2
1
1



+





−1
2
0



 ,

but this is much harder to find by graphing. Fortunately, we won’t have to graph. Row reduction, combined
with the notion of free variables, will provide a solution.
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Reduced Row Echelon Form

Before we tackle complete solutions for underdetermined systems, we need to talk about reduced row echelon
form,65 which is abbreviated rref. The reduced row echelon form of a matrix is the simplest (in terms of reading
off solutions) form a matrix can be turned into via elementary row operations.

Reduced Row Echelon Form (RREF). A matrix X is in reduced row echelon form if the following
conditions hold:

� The first non-zero entry in every row is a 1; these entries are called pivots or leading ones.

� Above and below each leading one are zeros.

� The leading ones form an echelon (staircase) pattern. That is, if row i has a leading one, every leading
one appearing in row j > i also appears to the right of the leading one in row i.

� All rows of zeros occur at the bottom of X .

Columns of a reduced row echelon form matrix that contain pivots are called pivot columns.a

aIf a matrix is augmented, we usually do not refer to the augmented column as a pivot column, even if it contains a pivot.

Example. Which of the follow matrices are in reduced row echelon form? For those that are, identify which
columns are pivot columns. For those that are not, what condition(s) fail?

A=





1 0 0 2
0 0 0 0
0 0 1 7



 B =





1 0 0 8
0 1 3 7
0 2 1 4



 C =





1 0 0 2
0 1 0 1
0 0 1 8



 D =





0 1 3 6
1 0 0 9
0 0 1 4





A is not in reduced row echelon form because the second row of A is a row of zeros but does not occur at the
bottom.

A=





1 0 0 2
0 0 0 0
0 0 1 7





B is not in reduced row echelon form for two reasons: (i) the first non-zero entry in the third row is not a 1,
and (ii) the entry below the leading one in the second row is not zero.

B =





1 0 0 8
0 1 3 7
0 2 1 4





C is in reduced row echelon form and the first, second, third columns are the pivot columns of C .

C =





1 0 0 2
0 1 0 1
0 0 1 8





D is not in reduced row echelon form for two reasons: (i) the entries above the leading one in the third row
are not all zeros, and (ii) the leading one in the second row appears to the left of the leading one in the first
row.

D =





0 1 3 6
1 0 0 9
0 0 1 4





We’ve encountered the reduced row echelon form of a matrix already in the examples of Appendix 1. Recall the
system






t + 2s− 2r = −15

2t + s− 5r = −21

t − 4s+ r = 18

with augmented matrix X =





1 2 −2 −15
2 1 −5 −21
1 −4 1 18



 .

65Reduced row echelon form is alternatively called row reduced echelon form; whether you say “reduced row” or “row reduced” makes no
difference to the math!
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The matrix X could be row reduced to

X ′ =





1 2 −2 −15
0 −3 −1 9
0 0 5 15



 ,

which was suitable for solving the system. However, X ′ is not in reduced row echelon form (the leading non-zero
entries must all be ones). We can further row reduce X ′ to

X ′′ =





1 0 0 −1
0 1 0 −4
0 0 1 3



 .

X ′′ is the reduced row echelon form of X , and reading off the solution to the original system from X ′′ is as simple
as can be!

Every matrix, M , has a unique reduced row echelon form, written rref(M), which can be obtained from M by
applying elementary row operations. There are many ways to compute the reduced row echelon form of a
matrix, but the following algorithm always works.

Row Reduction Algorithm. Let M be a matrix.

1. If M takes the form M = [~0|M ′] (that is, its first column is all zeros), apply the algorithm to M ′.

2. If not, perform a row-swap (if needed) so the upper-left entry of M is non-zero.

3. Let α be the upper-left entry of M . Perform the row operation row1 7→
1
α

row1. The upper-left entry of

M is now 1 and is called a pivot.

4. Use row operations of the form rowi 7→ rowi + β row1 to zero every entry below the pivot.

5. Now, M has the form

M =

�

1 ??
~0 M ′

�

,

where M ′ is a submatrix of M . Apply the algorithm to M ′.

The resulting matrix is in pre-reduced row echelon form. To put the matrix in reduced row echelon form,
additionally apply step 6.

6. Use the row operations of the form rowi 7→ rowi + β row j to zero above each pivot.

Though there might be more efficient ways, and you might encounter ugly fractions, the row reduction algorithm
will always convert a matrix to its reduced row echelon form.

Example. Apply the row-reduction algorithm to the matrix

M =





0 0 0 −2 −2
0 1 2 3 2
0 2 4 5 3



 .

First notice that M starts with a column of zeros, so we will focus on the right side of M . We will draw a line
to separate it.

M =





0 0 0 −2 −2
0 1 2 3 2
0 2 4 5 3





Next, we perform a row swap to bring a non-zero entry to the upper left.




0 0 0 −2 −2
0 1 2 3 2
0 2 4 5 3





row1↔row2−−−−−−→





0 1 2 3 2
0 0 0 −2 −2
0 2 4 5 3




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The upper-left entry is already a 1, so we can use it to zero all entries below.





0 1 2 3 2
0 0 0 −2 −2
0 2 4 5 3





row3 7→row3−2row1−−−−−−−−−−−→





0 1 2 3 2
0 0 0 −2 −2
0 0 0 −1 −1





Now we work on the submatrix.




0 1 2 3 2

0 0 0 −2 −2
0 0 0 −1 −1





Again, the submatrix has a first column of zeros, so we pass to a sub-submatrix.





0 1 2 3 2

0 0 0 −2 −2
0 0 0 −1 −1





Now we turn the upper left entry into a 1 and use that pivot to zero all entries below.





0 1 2 3 2

0 0 0 −2 −2
0 0 0 −1 −1





row2 7→
−1
2

row2

−−−−−−−−−→





0 1 2 3 2

0 0 0 1 1
0 0 0 −1 −1





row3 7→row3+row2−−−−−−−−−−→





0 1 2 3 2

0 0 0 1 1
0 0 0 0 0





The matrix is now in pre-reduced row echelon form. To put it in reduced row echelon form, we zero above
each pivot.





0 1 2 3 2
0 0 0 1 1
0 0 0 0 0





row1 7→row1−3row2−−−−−−−−−−−→





0 1 2 0 −1
0 0 0 1 1
0 0 0 0 0





All matrices, whether augmented or not, have a reduced row echelon form. Correctly applying the row reduction
algorithm takes practice, but being able to row reduce a matrix is the analogue of “knowing your multiplication
tables” for linear algebra.

Free Variables & Complete Solutions
By now we are very familiar with the system







x + 2y − 2z = −15

2x + y − 5z = −21

x − 4y + z = 18

,

which has a unique solution (x , y, z) = (−1,−4,3). We can compute this by row reducing the associated
augmented matrix:

rref









1 2 −2 −15
2 1 −5 −21
1 −4 1 18







 =





1 0 0 −1
0 1 0 −4
0 0 1 3



 ,

which corresponds to the system






x = −1

y = −4

z = 3

,

from which the solution is immediate. But what happens when there isn’t a unique solution?

Consider the system
�

x + 3y = 2

2x + 6y = 4
. (18)

When using an augmented matrix to solve this system, we run into an issue.

�

1 3 2
2 6 4

�

row reduces to
−−−−−−−−→

�

1 3 2
0 0 0

�
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From the reduced row echelon form, we’re left with the equation x + 3y = 2, which isn’t exactly a solution.
Effectively, the original system had only one equation’s worth of information, so we cannot solve for both x and
y based on the original system. To get ourselves out of this pickle, we will use a notational trick: introduce the
arbitrary equation y = t.66 Now, because we’ve already done row-reduction, we see







x + 3y = 2

2x + 6y = 4

y = t

row reduces to
−−−−−−−−→

�

x + 3y = 2

y = t
.

Here we’ve omitted the equation 0 = 0 since it adds no information. Now, we can solve for x and y in terms of
t.

~x =
�

x
y

�

=
�

2− 3t
t

�

= t
�

−3
1

�

+
�

2
0

�

.

Notice that t here stands for an arbitrary real number. Any choice of t produces a valid solution to the original
system (go ahead, pick some values for t and see what happens). We call t a parameter and y a free variable.67

Notice further that

~x = t
�

−3
1

�

+
�

2
0

�

is vector form of the line x + 3y = 2.

Though you can usually make many choices about which variables are free variables, one choice always works:
pick all variables corresponding to non-pivot columns to be free variables. For this reason, we refer to non-pivot
non-augmented columns of a row-reduced matrix as free variable columns.

Example. Use row reduction to find the complete solution to

�

x + y + z = 1

y − z = 2

The corresponding augmented matrix for the system is

A=
�

1 1 1 1
0 1 −1 2

�

.

A is already in pre-reduced row echelon form, so we only need to zero above each pivot.

�

1 1 1 1
0 1 −1 2

�

row1 7→row1−row2−−−−−−−−−−→
�

1 0 2 −1
0 1 −1 2

�

= rref(A).

The third column of rref(A) is a free variable column, so we introduce the arbitrary equation z = t and solve
the system in terms of t:







x + 2z = −1

y − z = 2

z = t

.

Written in vector form, the complete solution is




x
y
z



=





−1− 2t
2+ t

t



= t





−2
1
1



+





−1
2
0



 ,

and written as a set, the solution set is






~x ∈ R3 : ~x = t





−2
1
1



+





−1
2
0



 for some t ∈ R







.

Consider the (somewhat strange) system of one equation
�

0x + 0y + z = 1 .

66This equation is called arbitrary because it introduces no new information about the original variables. The restrictions on x and y
aren’t changed by introducing the fact y = t.

67We call y free because we may pick it to be anything we want and still produce a solution to the system.
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The solution set for this system is the x y-plane in R3 shifted up by one unit. We can use row reduction and free
variables to see this.

The system corresponds to the augmented matrix
�

0 0 1 1
�

which is already in reduced row echelon form. It’s third column is the only pivot column, making columns 1
and 2 free variable columns (remember, we don’t count augmented columns as free variable columns). Thus,
we introduce two arbitrary equations, x = t and y = s, and solve the new system







0x + 0y + z = 1

x = t

y = s

for (x , y, z), which gives




x
y
z



=





t
s
1



= t





1
0
0



+ s





0
1
0



+





0
0
1



 .

Using row reduction and free variables, we can find complete solutions to very complicated systems. The
process is straight-forward enough that even a computer can do it!68

Example. Consider the system of equations in the variables x , y , z, and w:






− 2w= −2

y + 2z + 3w= 2

2y + 4z + 5w= 3

Find the solution set for this system.

The augmented matrix corresponding to this system is

M =





0 0 0 −2 −2
0 1 2 3 2
0 2 4 5 3



 ,

which we’ve row reduced in a previous example:

rref(M) =





0 1 2 0 −1
0 0 0 1 1
0 0 0 0 0



 .

Here, columns 1 and 3 are free variable columns, so we introduce the equations x = t and z = s. Now,
solving the system















y + 2z = −1

w= 1

x = t

z = s

for (x , y, z, w), gives






x
y
z
w






=







t
−1− 2s

s
1






= t







1
0
0
0






+ s







0
−2

1
0






+







0
−1

0
1






.

Thus, the solution set to the system is










~x ∈ R4 : ~x = t







1
0
0
0






+ s







0
−2

1
0






+







0
−1

0
1






for some t, s ∈ R











.

68Computers usually don’t follow the algorithm outlined here because they have to deal with rounding error. But, there is a modification
of the row reduction algorithm called row reduction with partial pivoting which solves some issues with rounding error.
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Free Variables & Inconsistent Systems
If you need a free variable/parameter to describe the complete solution to a system of linear equations, the
system necessarily has an infinite number of solutions—one coming from every choice of value for your free
variable/parameter. However, one still needs to be careful when deciding from an augmented matrix whether a
system of linear equations has an infinite number of solutions.

Consider the augmented matrices A and B, which are given in reduced row echelon form.

A=
�

1 2 −1
0 0 0

�

B =
�

1 2 0
0 0 1

�

Both matrices lack a pivot in their second column. However, A corresponds to a system with an infinite solution
set, while B corresponds to an inconsistent system with an empty solution set. We can debate whether it is
appropriate to say that B has a free variable column,69 but one thing is clear: when evaluating the number of
solutions to a system, you must pay attention to whether or not the system is consistent.

Putting everything together, we can fully classify the number of solutions to a system of linear equations based
on pivots/free variables.

Consistent Pivots Number of Solutions
False At least one column doesn’t have a pivot 0
True Every column has a pivot 1
True At least one column doesn’t have a pivot Infinitely many

This information is so important, we will also codify it in a theorem.

Theorem. A system of linear equations has either 0 solutions, 1 solution, or infinitely many solutions.

The Geometry of Systems of Equations
Consider the system of equations

�

x − 2y = 0 row1

x + y = 3 row2
(19)

The only values of x and y that satisfy both equations is (x , y) = (2, 1). However, each row, viewed in isolation,
specifies a line in R2. Call the line coming from the first row `1 and the line coming from the second row `2.

−1 1 2 3 4

−1

1

2

3

4

`1

`2

These two lines intersect exactly at the point
�

2
1

�

. And, of course they should. By definition, a solution to a

system of equations satisfies all equations. In other words, a solution to System (19) is a point that lies in both
`1 and `2. In other words, solutions lie in `1 ∩ `2.

Takeaway. Geometrically, a solution to a system of equations is the intersection of objects specified by the
individual equations.

69On the one hand, the second column fits the description. On the other hand, you cannot make any choices when picking a solution,
since there are no solutions.
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This perspective sheds some light on inconsistent systems. The system

�

x − 2y = 0 row1

2x − 4y = 2 row2

is inconsistent. And, when we graph the lines specified by the rows, we see that they are parallel and never
intersect. Thus, the solution set is empty.

Planes & Hyperplanes
Consider the solution set to a single linear equation viewed in isolation. For example, in the three-variable case,
we might consider

x + 2y − z = 3.

The solution set to this equation is a plane. Why? For starters, writing down the complete solution involves
picking two free variables. Suppose we pick y = t and z = s. Then, before we even do a calculation, we know
the complete solution will be described in vector form by

~x = t ~d1 + s~d2 + ~p,

where ~d1, ~d2, and ~p come from doing the usual computations. But, that is vector form of a plane!

In general, a single equation in n variables requires n− 1 free variables to describe its complete solution. The
only exception is the trivial equation, 0x1 + · · ·+ 0xn = 0, which requires n free variables. For the sake of
brevity, from now on we will assume that a linear equation in n variables means a non-trivial linear equation in
n variables.

Applying this knowledge, we can construct a table for systems consisting of a single linear equation.

Number of Variables Number of Free Variables Complete Solution

2 1 Line in R2

3 2 Plane in R3

4 3 Volume in R4

Notice that the dimension of the solution set (a line being one dimensional, a plane being two dimensional, and
a volume being three dimensional) is always one less than the dimension of the ambient space (R2, R3, R4).70

Such sets are called hyperplanes because they are flat and plane-like. However, unlike a plane, the dimension of
a hyperplane need not be two.

With our newfound geometric intuition, we can understand solutions to systems of linear equations in a different
way. The solution set to a system of linear equations of two variables must be the result of intersecting lines.
Therefore, the only options are: a point, a line, or the empty set. The solution to a system of linear equations of
three variables is similarly restricted. It can only be: a point, a line, a plane, or the empty set.

Intersecting in a line Empty intersection

In higher dimensions, the story is the same: solution sets are formed by intersecting hyperplanes and we can
use algebra to precisely describe these sets of intersection.

70Another way to describe these sets would be to say that they have co-dimension 1.
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Practice Problems

1 Find the complete solution to the following systems.

(a)







4x + 6y + 3z − 10w= 6

5x + 2y + z − 7w= 2

−6x + 2y + z + 4w= 2

(b)







2x + 2y + z = −1

y − 4z + 2w= 3

x − y − 3z − 4w= 5

(c)

�

x + y − 2z = −5

−4x + y + 5z = 3

(d)







3x − 2y = −4

x + y + 3z = 3

−4x + y − 3z = 1

(e)







x − y + 2z = −1

2x + y + 4z = 1

3x − 4y + 3z = −2

(f)



















2x + z = 8

x + y + z = 4

x + 3y + 2z = 4

3x + 2y + 4z = 9

2 For each system of linear equations given below: (i) write
down its augmented matrix, (ii) use row reduction algo-
rithm to determine if it is consistent or not, (iii) for each
consistent system, give the complete solution.

(a)







−10x1 − 4x2 + 4x3 = 28

3x1 + x2 − x3 = −8

x1 + x2 −
1
2 x3 = −3

(b)







3x1 − 2x2 + 4x3 = 54

5x1 − 3x2 + 6x3 = 88

x1 = −3

(c)
�

x + 2y = 5

(d)

�

4x = 6

2x = 3

(e)







x1 + 2x2 + 4x3 − 3x4 = 0

3x1 + 5x2 + 6x3 − 4x4 = 1

4x1 + 5x2 − 2x3 + 3x4 = 3

(f)



















x1 − x2 + 5x3 + x4 = 1

x1 + x2 − 2x3 + 3x4 = 3

3x1 − x2 + 8x3 + x4 = 5

x1 + 3x2 − 9x3 + 7x4 = 5

(g)
�

0x + 0y + 0z = 0

3 (a) Let ~v1 =







1
1
−2

4






, ~v2 =







1
4
0
2






and ~v3 =







−2
−2

4
−8






.

Set up and solve a system of linear equations whose
solution will determine if the vectors ~v1, ~v2 and ~v3

are linearly independent.

(b) Let ~v1 =





1
2
3



, ~v2 =





−2
1
0



 and ~v3 =





2
7
1



.

Set up and solve a system of linear equations whose
solution will determine if the vectors ~v1, ~v2 and ~v3

span R3.

(c) Let `1 and `2 be described in vector form by

`1
︷ ︸︸ ︷

~x = t
�

1
3

�

+
�

1
1

�

`2
︷ ︸︸ ︷

~x = t
�

2
1

�

+
�

3
4

�

.

Set up and solve a system of linear equations whose
solution will determine if the lines `1 and `2 inter-
sect.

(d) Let P1 and P2 be described in vector form by

P1 : ~x = t





1
−1

0



+ s





−1
−1

2



 ,

P2 : ~x = t





1
−1

1



+ s





−1
3
−2



+





0
1
−1



 .

Set up and solve a system of linear equations whose
solution will determine if the planes P1 and P2 in-
tersect.

4 Presented below some students’ arguments for question 3.
Evaluate whether their reasoning is totally correct, mostly
correct, or incorrect. If their reasoning is not totally cor-
rect, point out what mistake(s) they made and how they
might be fixed.

(a) i. Consider the vector equation

x~v1 + y~v2 + z~v3 = ~0

where x , y, z ∈ R.

Since (x , y, z) = (0,0,0) is a solution to the equa-
tion, the equation has the trivial solution. Therefore,
the vectors ~v1, ~v2 and ~v3 are linearly independent.

(a) ii. Consider the vector equation

x~v1 + y~v2 + z~v3 = ~0

where x , y, z ∈ R.

Notice that (x , y, z) = (−2,0,−1) is a solution to
the equation. Since y = 0 in this solution, it is a
trivial solution and therefore the vectors ~v1, ~v2 and
~v3 are linearly independent.

(c) i. The lines `1 and `2 intersect when their x and
y-coordinates are equal. Equating x and y-
coordinates gives

�

t + 1= 2t + 3

3t + 1= t + 4
.

This system is equivalent to

�

t = −2

2t = 3
.

Since this system is inconsistent, the lines `1 and `2

do not intersect.

225 © Jason Siefken, 2015–2024



Ap
pe

nd
ix

2
–

Sy
st

em
s

of
Li

ne
ar

Eq
ua

tio
ns

II
(c) ii. The lines `1 and `2 intersect when their x and

y-coordinates are equal. Equating x and y-
coordinates gives

�

t + 1= 2s+ 3

3t + 1= s+ 4
.

This system is equivalent to
�

t − 2s = 2

3t − s = 3
,

and the solution is
�

t
s

�

=
�

4/5
−3/5

�

.

Therefore the lines `1 and `2 intersect at
�

4/5
3/5

�

.

(d) i. Notice that

~x =





1/2
−1/2

0



= 1/2





1
−1

0



+ 0





−1
−1

2





and

~x =





1/2
−1/2

0



= 0





1
−1

1



− 1/2





−1
3
−2



+





0
1
−1



 .

So, ~x =





1/2
−1/2

0



 is a point on P1 and P2. Therefore

the planes P1 and P2 intersect.

(d) ii. Notice that ~x =





1
0
0



 is a point in P2, but this point

is not in P1. Therefore the planes do not intersect.
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Matrices & Matrix Operations

In this appendix you will learn:

� What a matrix is and how to describe a matrix in terms of its shape and entries.

� Special types of matrices, including diagonal and triangular matrices.

� How to multiply a matrix by a vector and a matrix by a matrix as well as multiple ways to interpret
matrix-vector and matrix-matrix multiplication.

� Basic properties of matrix-matrix multiplication: non-commutative, associated, distributive.

A matrix is a box (rectangular array) of numbers, usually surrounded by brackets.71 For example,

�

1 2 3
4 5 6

�





x
y
z





�

7.5 −2
−3 0

� 1 2
3 4
5 6

are matrices. In this book, we always write matrices with square brackets “ [ · · · ] ”. We have already used
matrices in two ways: to keep track of the coefficients when solving a system of linear equations and to describe
vectors (as a column of numbers). In both of these cases, matrices were a notational tool used to keep related
numbers together. But, as we will soon see, matrices are also mathematical objects that you can do arithmetic
with.

Matrix Notation
A matrix can be described by its shape72 (the number of rows and columns in the matrix) and its entries (the
numbers inside the matrix). Traditionally, matrices are labeled with capital letters and their entries are labeled
with lower-case letters.

Consider the matrix A with m rows and n columns:

A= m rows









n columns

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
...

. . .
...

am1 am2 am3 · · · amn









We call A an “m by n matrix”, or in notation, an “m × n matrix”.73 The entries of A are indexed by their
(row, column) coordinates. So, the (1, 1) entry of A is a11, the (2, 1) entry of A is a21, etc.. When subscripting a
matrix entry, it is tradition to omit a separator between the row and column index. That is, we write ai j instead
of ai, j or a(i, j).

74

Example. Let A=
�

1 2 3
4 5 6

�

. Find the shape of A as well as the (1,3) entry of A.

A has two rows and three columns, so A is a 2× 3 matrix. The (1, 3) entry of A is the number in the first row
and third column of A, which is 3.

Since a matrix is completely determined by its shape and entries, we can define a matrix via a formal. For
example, define B to be the 2× 3 matrix whose (i, j) entry, bi j , satisfies the formula bi j = i + j. In this case

B =
�

b11 b12 b13
b21 b22 b23

�

=
�

2 3 4
3 4 5

�

.

The shorthand B = [bi j] means that “B is a matrix whose (i, j) entry is bi j”. Using this shorthand, we could
alternatively say B = [bi j] is a 2× 3 matrix satisfying bi j = i + j.

71The word matrix comes from the Latin word for womb; you can think of a matrix as “holding numbers together”.
72Other terms for the shape of a matrix include the “size of a matrix” and the “dimensions of a matrix”. But, be careful not to confuse this

usage of “dimension” with the term “dimension” in the context of subspaces.
73In this context, “× ” is read as “by”
74There’s nothing wrong with including a separator. It’s just not common practice.
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Example. Let C = [ci j] be a 3× 3 matrix satisfying ci j = i − j. Write down C .

C =





c11 c12 c13
c21 c22 c23
c31 c32 c33



=





0 −1 −2
1 0 −1
2 1 0



 .

Basic Terms
A matrix has three special parts: the diagonal, the upper triangle, and the lower triangle.







a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45







︸ ︷︷ ︸

Diagonal







a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45







︸ ︷︷ ︸

Upper Triangle







a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45







︸ ︷︷ ︸

Lower Triangle

Formally, we define the diagonal and upper/lower triangle of a matrix in terms of the row and column
coordinates.

Diagonal. The diagonal of an m× n matrix A= [ai j] consists of the entries ai j satisfying i = j.

Upper & Lower Triangle. Let A= [ai j] be an m× n matrix. The upper triangle of A consists the entries
ai j satisfying j ≥ i. The lower triangle of A consists of the entries ai j satisfying j ≤ i.

Special Matrices
There are several special matrices that come up often.

Triangular Matrices. A matrix is called upper triangular if all non-zero entries lie in the upper triangle of
the matrix and a matrix is called lower triangular if all non-zero entries lie in the lower triangle. A matrix
is called triangular if it is either upper or lower triangular.

Square Matrix. A matrix is called square if it has the same number of rows as columns.

Diagonal Matrix. A square matrix is called diagonal the only non-zero entries in the matrix appear on the
diagonal.

Symmetric Matrix. The square matrix A= [ai j] is called symmetric if its entries satisfy ai j = a ji .
Alternatively, if the entries of A satisfy ai j = −a ji , then A is called skew-symmetric or anti-symmetric.

Zero Matrix. A matrix is called a zero matrix if all its entries are zero.

Identity Matrix.
An identity matrix is a square matrix with ones on the diagonal and zeros everywhere else. The n × n
identity matrix is denoted In×n, or just I when its size is implied.

Example. Identify the diagonal of A=





−2 3
5 6
7 7



.

The diagonal of A consists of the entries in A whose row coordinate is equal to the column coordinate. So,
the diagonal of A consists of −2 and 6.

Example. Apply a single row operation to B =





−2 3
0 6
0 12



 to make it an upper triangular matrix.

To make B an upper triangular matrix, we need all entries below the diagonal to be zero. More specifically, we
need to get rid of the 12 in the lower-right corner of B. By applying the row operation row3 7→ row3−2 row2
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to B, we get the upper triangular matrix

B′ =





−2 3
0 6
0 0





Example. If possible, produce a matrix that is both upper and lower triangular.

For a matrix to be upper triangular, all entries below the diagonal must be zero. For a matrix to be lower
triangular, all entries above the diagonal need to be zero. Therefore, if a matrix is both upper and lower
triangular, the only non-zero entries of the matrix must be on the diagonal. It follows that





1 0 0
0 2 0
0 0 3



 and
�

0 0 0
0 0 0

�

etc.

are valid examples.

Matrix Arithmetic
In Module 1, we saw that vectors were an extension of numbers that allowed us to describe directions. Similarly,
we can view matrices as a more general type of “number”. Matrices can do everything numbers can, everything
vectors can, and more!

Basic Operations

The rules for addition and scalar multiplication of matrices are what you expect: to add two matrices, add the
corresponding entries, and to scalar multiply a matrix, distribute the scalar to each entry.

For example,

2
�

1 2 3
4 5 6

�

=
�

2 4 6
8 10 12

�

and
�

1 2 3
4 5 6

�

+
�

−1 2 0
3 0 1

�

=
�

1− 1 2+ 2 3+ 0
4+ 3 5+ 0 6+ 1

�

=
�

0 4 3
7 5 7

�

.

While any matrix can be scalar multiplied by any scalar, matrix addition only makes sense for compatible
matrices. That is, you can only add together two matrices of the same shape.

Takeaway. If two matrices are of the same shape, you can add them by adding entries “straight across”;
you can multiply a matrix by a scalar by distributing the scalar to each entry of the matrix.

Example. Let A=
�

1 2 3
4 5 6

�

, let B =
�

1 1
2 2

�

, and let C =
�

−1 0 −1
2 1 2

�

. Compute 2A+ B and A+ 3C , if

possible.

First, note that A is a 2× 3 matrix and so it can only be added to another 2× 3 matrix. Since B is a 2× 2
matrix, 2A+ B is not defined. But, C is a 2× 3 matrix, so A+ 3C is defined. Computing,

A+ 3C =
�

1 2 3
4 5 6

�

+ 3
�

−1 0 −1
2 1 2

�

=
�

1 2 3
4 5 6

�

+
�

−3 0 −3
6 3 6

�

=
�

−2 2 0
10 8 12

�

.

Matrix-Vector Multiplication
Matrices and vectors interact via matrix-vector multiplication. There are two equivalent ways to think about
matrix-vector multiplication: in terms of columns (the column picture) and in terms of rows (the row picture).
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Column Picture

Let

A=









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









=





| | |
~c1 ~c2 · · · ~cn

| | |





be an m× n matrix and let

~c1 =









a11
a21
...

am1









~c2 =









a12
a22
...

am2









· · · ~cn =









a1n
a2n
...

amn









.

be the vectors corresponding to the columns of A. Further, let ~x =









x1
x2
...

xn









be a vector.

We define the matrix-vector product A~x to be the linear combination of ~c1, ~c2, . . . , ~cn with coefficients x1, x2,
etc.. That is,

A~x =





| | |
~c1 ~c2 · · · ~cn

| | |













x1
x2
...

xn









= x1~c1 + x2~c2 + · · ·+ xn~cn.

Example. Let B =
�

1 2
−2 3

�

and let ~v =
�

4
3

�

. Compute B~v using the column picture.

The column vectors of B are
�

1
−2

�

and
�

2
3

�

, so

B~v =
�

1 2
−2 3

��

4
3

�

= 4
�

1
−2

�

+ 3
�

2
3

�

=
�

10
1

�

.

The column picture of matrix-vector multiplication hints that matrix-vector multiplication can be used to encode
sophisticated problems involving linear combinations (see Module 7 for details).

Row Picture

Alternatively, let

A=









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









=









—— ~r1 ——
—— ~r2 ——

...
—— ~rm ——









be an m× n matrix and let

~r1 =









a11
a12
...

a1n









~r2 =









a21
a22
...

a2n









· · · ~rm =









am1
am2

...
amn









.

be vectors corresponding to the rows of A. Note that we are writing the row vectors of A in column vector form.

Further, let ~x =









x1
x2
...

xn









be a vector.
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We alternatively define the matrix-vector product A~x as the vector whose coordinates are the dot products of
the rows of A and the vector ~x . That is,

A~x =









—— ~r1 ——
—— ~r2 ——

...
—— ~rm ——









~x =









~r1 · ~x
~r2 · ~x

...
~rm · ~x









.

Example. Let B =
�

1 2
−2 3

�

and let ~v =
�

4
3

�

. Compute B~v using the row picture. Verify that the result

matches with what you get from the column picture.

The row vectors of B are
�

1
2

�

and
�

−2
3

�

, so

B~v =
�

1 2
−2 3

��

4
3

�

=







�

1
2

�

·
�

4
3

�

�

−2
3

�

·
�

4
3

�






=
�

(1)(4) + (2)(3)
(−2)(4) + (3)(3)

�

=
�

10
1

�

.

This is the same vector we got in the previous example using the column picture!

Since the row picture of matrix-vector multiplication involves dot products, which in turn relate to angles and
geometry, the row picture hints that matrix-vector multiplication can be used to encode sophisticated problems
involving the angles between multiple vectors (see Module 7 for more).

Compatibility

Matrix-vector multiplication is only possible when the shape of the matrix is compatible with the size of the
vector. That is the number of columns of the matrix must match the number of coordinates in the vector. (Try
some examples using the row an column picture to make sure you agree.)

The result of a matrix-vector product is always a vector, but the number of coordinates in the output vector can
change. For example, if M is a 2× 3 matrix, the product M ~v is only defined if ~v ∈ R3. However, the resulting
vector ~w = M ~v is in R2 (try an example and verify for yourself). This means matrix-vector multiplication can be
used to move vectors between different spaces!

Takeaway. Let A be an m× n matrix and ~x be a vector. The matrix-vector product A~x is only defined if ~x
has n coordinates. In that case, the result is a vector with m coordinates.

Matrix-Matrix Multiplication
In many circumstances, we can also multiply two matrices with each other. To do so, we repeatedly apply
matrix-vector multiplication. Let C and A be matrices and let ~a1, ~a2, . . ., ~ak be the columns of A. Then,

CA= C





| | |
~a1 ~a2 · · · ~ak

| | |



=





| | |
C ~a1 C ~a2 · · · C ~ak

| | |



 .

Here, we “distributed” C into the matrix A, creating a new matrix whose columns are C ~a1, C ~a2, . . . . Using the
row picture to expand each C ~ai , we arrive at an explicit formula. Let ~r1, ~r2, . . ., ~rm be the rows of C . Then,

CA=









—— ~r1 ——
—— ~r2 ——

...
—— ~rm ——













| | |
~a1 ~a2 · · · ~ak

| | |



=









~r1 · ~a1 ~r1 · ~a2 · · · ~r1 · ~ak
~r2 · ~a1 ~r2 · ~a2 · · · ~r2 · ~ak

...
...

. . .
...

~rm · ~a1 ~rm · ~a2 · · · ~rm · ~ak









.

Example. Let X =
�

1 2 3
0 −1 0

�

and Y =





2 3
1 1
1 0



. Compute X Y and Y X .
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Computing X Y entry by entry, we get the (1, 1) entry is





1
2
3



 ·





2
1
1



 = 7, the (2, 1) entry is





0
−1

0



 ·





2
1
1



 = −1,

and so on. Computing all the entries we get

X Y =
�

1 2 3
0 −1 0

�





2 3
1 1
1 0



=
�

7 5
−1 −1

�

.

Computing Y X entry by entry, we get the (1, 1) entry is
�

2
3

�

·
�

1
0

�

= 2, the (2, 1) entry is
�

1
1

�

·
�

1
0

�

= 1, and

so on. Computing all the entries we get

Y X =





2 3
1 1
1 0





�

1 2 3
0 −1 0

�

=





2 1 6
1 1 3
1 2 3



 .

From the previous example, we see that multiplying matrices in different orders can produce different results.
Formally we say that matrix multiplication is not commutative (in contrast, scalars can be multiplied in any
order). This non-commutativity holds even for square matrices.75 For example,

�

1 1
2 2

�

=
�

1 0
0 2

��

1 1
1 1

�

6=
�

1 1
1 1

��

1 0
0 2

�

=
�

1 2
1 2

�

.

Further, for a matrix-matrix multiplication to be possible, the shapes of each matrix must be compatible. Using
our knowledge of matrix-vector multiplication, we can deduce that if the matrix-matrix product CA makes
sense, then the number of columns of C must match the number of rows of A.

Writing the shape of two matrices side-by-side allows for a quick compatibility check.

rows of C × columns of C rows of A
︸ ︷︷ ︸

must be equal for CA to exist

×columns of A

A successful matrix-matrix multiplication will always result in a matrix with the number of rows of the first and
the number of columns of the second.

rows of C × columns of C rows of A× columns of A
︸ ︷︷ ︸

successful product will be a rows of C× columns of A matrix

Example. Let A be a 2× 3 matrix, let B be a 3× 4 matrix, and let C be a 1× 3 matrix. Determine the shape
of the matrices resulting from all possible products of A, B, and C .

For the product of two matrices to exist, the number of columns of the first matrix must equal the number of
rows in the second. Therefore, the only matrix products that are possible are AB and CB.
AB is the product of a 2× 3 matrix with a 3× 4 matrix, and so will be a 2× 4 matrix.
CB is the product of a 1× 3 matrix with a 3× 4 matrix, and so will be a 1× 4 matrix.

Matrix Algebra
Let A, B, and C be n× n matrices and let α be a scalar. We can now write algebraic expressions like

A(B +αC).

Since the matrices are all n× n, such expressions are always defined and the results are again n× n matrices.
We can almost treat arithmetic with n× n matrices like arithmetic with numbers, save the fact that changing the
order of multiplication might change the result. Many familiar properties of arithmetic carry over to matrices.
For example, matrix multiplication is both associative and distributive. That is,

(AB)C = A(BC) and A(B + C) = AB + AC and (A+ B)C = AC + BC .

We’re already familiar with the special matrices I , the identity matrix, and 0, the zero matrix. In terms of matrix
algebra, these behave like the numbers 1 and 0. That is,

IA= AI = A and 0A= A0= 0
75Of course, it is possible that AB = BA for matrices A and B. It just doesn’t happen very often.
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for any compatible square matrix A.

To kick it up a level, when working with square matrices, we can define polynomials of matrices. Using familiar
exponent notation, A2 = AA, we can formulate questions like

Does the equation A2 = −I have a 2× 2 matrix solution?

Famously, the equation x2 = −1 has no real solutions, but A2 = −I actually does have real 2×2 matrix solutions
(see if you can find one)! In this text we will only scratch the surface of what can be done with matrix algebra,
but it’s powerful stuff.76

Matrix algebra behaves a lot like regular algebra except that the order of multiplication matters and matrices
must always have compatible sizes.

More Notation
Linear algebra has many different products: scalar multiplication, dot products, matrix-vector products, and
matrix-matrix products, to name a few. To distinguish between these different products, we use different
notations.

For matrix-vector and matrix-matrix products, we use adjacency to represent multiplication. That is, we write

A~v and AB

to indicate a product. Specifically, we do not use the symbols “ · ” or “× ” to represent matrix-vector or matrix-
matrix products (these symbols are reserved for the dot product and cross product, respectively).

Practice Problems

1 For each description below, if possible, create a matrix
matching the description. Otherwise, explain why such a
matrix doesn’t exist.

(a) A 2× 2 diagonal matrix whose entries sum to −1.

(b) A 2× 2 symmetric matrix whose entries sum to −1.

(c) A 4× 2 symmetric matrix whose entries sum to −1.

(d) A 3× 3 skew-symmetric matrix whose entries sum
to −1.

(e) A 1 × 4 matrix A = [ai j] whose entries satisfy
ai j =
p

i + j.

2 Consider the following matrices A =





1 0 0
1 0 2
1 6 5



, B =





2 1 1
0 2 0
0 0 3



, C =





1
−1

2



, and D =
�

0 −2 1
�

. For

each of the following, (i) determine if the operation is de-
fined, and (ii) compute the result using both the column
picture and row picture of multiplication (if applicable).

(a) AC

(b) 2A+ B

(c) A− B

(d) CA

(e) AB

(f) BA

(g) DC

(h) C D

3 In general, matrix multiplication is non-commutative.
However, some types of matrices are special.

Let A and B be 2× 2 diagonal matrices and let X and Y
be n× n diagonal matrices.

(a) Show by direct computation that AB = BA.

(b) Show that both X Y and Y X also diagonal matrices.

(c) Is it true that X Y = Y X no matter n? Explain.

4 Classify the following statements as true or false.

(a) A matrix in reduced row echelon form is an upper
triangular matrix.

(b) A diagonal matrix is in reduced row echelon form.

(c) Every zero matrix is also square.

(d) A zero matrix is neither upper or lower triangular.

(e) A matrix that is both upper triangular and lower
triangular must be diagonal.

(f) Using row operations every lower triangular matrix
can be converted into an upper triangular matrix.

(g) The product of two lower triangular matrices is a
lower triangular matrix (provided the product is
defined).

5 Let R be a 1× n matrix and let C be an n× 1 matrix.

(a) Is the product RC defined? If so, what is its shape?

(b) Is the product CR defined? If so, what is its shape?

(c) Let ~r be the (only) row vector in R and let ~c be the
(only) column vector in C . Are ~r · ~c and RC the
same? Explain.

(d) Let ~x , ~y ∈ Rn and let R~x be the 1× n matrix with ~x
as a row vector and let C~y be the n× 1 matrix with
~y as a column vector. The inner product of ~x and ~y
is defined to be R~x C~y . The outer product of ~x and ~y
is defined to be C~yR~x .

i. How does the inner product of ~x and ~y relate
to the dot product of ~x and ~y?

76Galois theory and representation theory both heavily rely on matrix algebra.
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ii. Let Q be the outer product of ~x and ~y. What

does the reduced row echelon form of Q look
like?

iii. Let Q be the outer product of ~x and ~y. Show
that the columns of Q are always linearly de-
pendent when n≥ 2.

6 A 3× 3 matrix is called a Heisenberg matrix if it takes the

form





1 a c
0 1 b
0 0 1



 for some a, b, c ∈ R.

(a) Show that if A and B are Heisenberg matrices, then
so are AB and BA.

(b) If A and B are Heisenberg matrices, is it always
the case that AB = BA? Give a proof or a counter
example.

(c) Let X =





1 a c
0 1 b
0 0 1



 and let Y =





1 −1 ab− c
0 1 −b
0 0 1



. Show that X Y = I3×3.

7 Let X be a matrix of the form
�

a −b
b a

�

for some a, b ∈ R.

(a) Show that X 2 has the same form as X .

(b) Is there a solution to the matrix equation X 2 = I2×2?
If so, how many?

(c) Is there a solution to the matrix equation X 2 =
−I2×2? If so, how many?

(d) Let Y be an arbitrary 2× 2 matrix. How many solu-
tions are there to the equation Y 2 = I2×2?

(e) Do you agree with the statement “every positive
real number has exactly two square roots”? Do you
agree with the statement “every diagonal matrix
with positive entries on the diagonal has exactly
two square roots”? Explain.
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Formulas for 2× 2 and 3× 3 Determinants

In this appendix you will learn:

� A practical formula for 2× 2 determinants.

� How to calculate 3× 3 determinants using diagonal method.

� How to calculate 3× 3 determinants using cofactor expansion method.

Module 14 discusses the theory of determinants and gives a general algorithm for computing determinants by
using elementary matrices. But, since 2× 2 and 3× 3 matrices arise so often in day-to-day life,77 it is worth
learning some special-purpose formulas for computing the determinants of 2× 2 and 3× 3 matrices.

It should be noted that these formulas are special. Though there do exist formulas for determinants of n× n
matrices, they are exponentially more complex than the formulas for 2×2 and 3×3 matrices. As such, determinants
of large matrices are usually computed using row reduction/elementary matrices and not formulas.78

Computing 2× 2 Determinants
For a 2× 2 matrix, we can calculate its determinant directly from its entries.

Theorem. Let M =
�

a b
c d

�

. Then,

det(M) = ad − bc.

The 2× 2 determinant formula can be deduced from Volume Theorem I. Let M =
�

a b
c d

�

and let ~c1 =
�

a
c

�

and

~c2 =
�

b
d

�

be the columns of M . We need to compute the area of the parallelogram P, with sides ~c1 and ~c2.

b a a+ b

c

d

c + d

~c1

~c2 P

We can compute the area of P by computing the area of a rectangle that contains P and subtracting off any
area that we “over counted”.

b a a+ b

c

d

c + d

P

Surrounding rectangle

b a a+ b

c

d

c + d

P

little rectangle

little rectangletriangle

triangle

triangle triangle

77The day-to-day life of a mathematics student, at least!
78General determinant formulas are primarily useful as theoretical tools for writing proofs.
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Thus,

Vol(P) = area of big rectangle− area of little rectangles− area of triangles.

Using the coordinates for ~c1 and ~c2, we get

Vol(P) = (a+ b)(d + c)
︸ ︷︷ ︸

area of big rectangle

− 2bc
︸︷︷︸

area of little rectangles

−2
ac
2
+ 2

bd
2

︸ ︷︷ ︸

area of triangles

= ad − bc. (20)

b a a+ b

c

d

c + d

Equation (20) is beautiful and simple, but its derivation should give you pause. Volume Theorem I refers to
oriented volume and we didn’t make any reference to orientation in our figures! Indeed, we played tricks with

pictures. We drew ~c1 and ~c2 in a right-handed orientation in the first quadrant, even though the vectors
�

a
c

�

and
�

b
d

�

could be in any quadrant (and one or both could even be the zero vector)! To fully justify Equation

(20), we need to consider cases based on all the possible ways ~c1 and ~c2 can form a parallelogram. However, it

turns out that every case gives the same answer: det
��

a b
c d

��

= ad − bc.

Example. Directly compute the determinant of M =
�

1 6
2 7

�

using the 2 × 2 formula. Then, find the

determinant of M after decomposing it into the product of elementary matrices.

Using the 2× 2 formula, we get
det(M) = (1)(7)− (2)(6) = −5.

Alternatively, row reducing and keeping track of the elementary matrices for each step, we see

�

1 −6
0 1

�

︸ ︷︷ ︸

E3

�

1 0
0 − 1

5

�

︸ ︷︷ ︸

E2

�

1 0
−2 1

�

︸ ︷︷ ︸

E1

M =
�

1 0
0 1

�

,

and so

M =
�

1 0
2 1

��

1 0
0 −5

��

1 6
0 1

�

= E−1
1 E−1

2 E−1
3 .

E−1
1 and E−1

3 both have determinant 1, and E−1
2 has determinant −5. Thus,

det(M) = det(E−1
1 )det(E−1

2 )det(E−1
3 ) = (1)(−5)(1) = −5,

which is exactly what we got using the formula.

Computing 3× 3 Determinants
The formula for a 3× 3 matrix is more complicated than the 2× 2 formula.
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Theorem. Let M =





a b c
d e f
g h i



. Then

det(M) = aei + b f g + cdh− gec − hf a− id b.

Fortunately, there is a clever mnemonic for remembering this formula called the Rule of Sarrus or the diagonal
trick.

Rule of Sarrus

Let M =





a b c
d e f
g h i



. To compute the determinant of M using the Rule of Sarrus, apply the following four

steps.

Step 1. Augment M with copies of its first two columns.




a b c a b
d e f d e
g h i g h





Step 2. Multiply together and then add the entries along the three diagonals of the new matrix. These
are called the diagonal products.





a b c a b
d e f d e
g h i g h





sum of diagonal products= aei + b f g + cdh.

Step 3. Multiply together and then subtract the entries along the three anti-diagonals. These are called
the anti-diagonal products.





a b c a b
d e f d e
g h i g h





difference of anti-diagonal products= −gec − hf a− id b

Step 4. Add the diagonal products and subtract the anti-diagonal products to get the determinant.

det(M) = aei + b f g + cdh− gec − hf a− id b.

Example. Use the diagonal trick to compute det









1 4 0
−2 3 1

0 2 1







.





1 4 0 1 4
−2 3 1 −2 3
0 2 1 0 2





sum of diagonal products= (1)(3)(1) + (4)(1)(0) + (0)(−2)(2) = 3+ 0+ 0.





1 4 0 1 4
−2 3 1 −2 3
0 2 1 0 2





difference of anti-diagonal products= −(0)(3)(0)− (2)(1)(1)− (1)(−2)(4) = −0− 2− (−8).

Thus,

det









1 4 0
−2 3 1

0 2 1







= 3 + 0 + 0 − 0 − 2 − (−8) = 9.
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It may be tempting to apply the Rule of Sarrus to 4× 4 and larger matrices, but don’t do it! There is a formula
for 4× 4 determinants, but it’s not given by the Rule of Sarrus.79

Like the 2× 2 formula for determinants, we can derive the 3× 3 formula directly from the definition. However,
it takes quite a bit more work.80

Determinant Formulas and Orientation
Determinants and orientation are connected and our determinant formulas (if we accept them as true) give us
an alternative way to determine the orientation of a basis.

Let B = {~b1,~b2} be an ordered basis for R2, and let M = [~b1|~b2] be the matrix whose columns are ~b1 and ~b2.
Since B is linearly independent, we know that det(M) 6= 0. Further, applying the definition of the determinant,
we know

det(M)> 0

means that B is a right-handed basis and det(M)< 0 means B is a left-handed basis.

Example. Use a determinant to decide whether the ordered basis
§�

1
2

�

,
�

−3
2

�ª

is left-handed or right-

handed.

Let A=
�

1 −3
2 2

�

be the matrix whose columns are the elements of the given ordered basis.

Using the formula for 2× 2 determinants gives us

det(A) = (1)(2)− (2)(−3) = 8> 0

and so we conclude
§�

1
2

�

,
�

−3
2

�ª

is a right-handed basis.

Recall the ordered basis Q= {~e1, ~uθ } where ~uθ =
�

cosθ
sinθ

�

is the unit vector which forms an angle of θ with the

positive x-axis.

1

1

~e1

~uθ
θ

Visually, we can see that Q should be right-handed when θ ∈ (0,π), left handed when θ ∈ (π, 2π) and Q is not
a basis when θ = 0 or θ = π.

But what does the determinant say?

Computing the determinant of the matrix Q = [~e1| ~uθ ] directly using the 2× 2 determinant formula, we get

det(Q) = det([~e1| ~uθ ]) = det
��

1 cosθ
0 sinθ

��

= sinθ .

Notice that det(Q) = sinθ > 0 when θ ∈ (0,π), det(Q) = sinθ < 0 when θ ∈ (π, 2π) and det(Q) = sinθ = 0
when θ ∈ {0,π}.

The determinant supports our intuition.
79Because your curiosity is never ending, here’s the formula. For a matrix 4× 4 matrix A = [ai j], we have det(A) = a11a22a33a44 −

a11a22a34a43−a11a23a32a44+a11a23a34a42+a11a24a32a43−a11a24a33a42−a12a21a33a44+a12a21a34a43+a12a23a31a44−a12a23a34a41−
a12a24a31a43+a12a24a33a41+a13a21a32a44−a13a21a34a42−a13a22a31a44+a13a22a34a41+a13a24a31a42−a13a24a32a41−a14a21a32a43+
a14a21a33a42+a14a22a31a43−a14a22a33a41−a14a23a31a42+a14a23a32a41. This formula involves 24 products. The 5×5 formula involves
120 products and the 6× 6 formula involves 720 products. It only gets worse from there.

80If you’re interested in proving the 3× 3 determinant formula, try using the elementary matrix approach rather than computing the
volume of a parallelepiped directly.
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Practice Problems

1 For each matrix given below, calculate its determinant
using both row reduction/elementary matrices and the
2× 2 determinant formula.

(a)
�

1 0
2 4

�

(b)
�

1 5
1 5

�

(c)
�

1 0
0 1

�

(d)
�

1 1
0 0

�

2 For each matrix given below, calculate its determinant
using both row reduction/elementary matrices and the
3× 3 determinant formula.

(a)





1 0 0
1 0 2
1 6 5





(b)





1 −4 1
2 6 5
2 2 3





(c)





−1 0 −8
1 −3 −8
1 −2 −1





(d)





2 0 0
0 2 0
0 0 3





(e)





0 0 0
0 0 0
0 0 0





3 For each ordered set given below, use a determinant to
decide whether it is a right-handed basis, a left-handed
basis, or not a basis.

(a)
§�

1
−3

�

,
�

1
2

�ª

(b)
§�

1
−3

�

,
�

−2
6

�ª

(c)











1
0
3



 ,





1
2
5



 ,





1
−1

1











(d)











1
4
9



 ,





1
2
3



 ,





1
1
1











(e)











4
2
4



 ,





4
2
0



 ,





2
1
6











4 Find all values of a, b ∈ R so that the ordered set
§�

a2

ab

�

,
�

ab
b

�ª

is (a) a right-handed basis, (b) a left-

handed basis, (c) not a basis.

5 Let M =
�

a b
c d

�

. The adjugate matrix (sometimes called

the classical adjoint) of M , notated M adj, is the matrix

given by M adj =
�

d −b
−c a

�

. Prove that if M is invertible,

then M−1 =
M adj

det(M)
.

6 For each statement below, determine whether it is true or
false. Justify your answer.

(a) A 2× 2 matrix M has determinant 1 if and only if
M = I2×2.

(b) A 3 × 3 matrix M has determinant 1 if and only
if Vol Change(TM ) is equal to 1, where TM is the
transformation given by TM (~x) = M ~x .

(c) For vectors ~a,~b ∈ R2, it is always the case that
det([~a|~b]) = −det([~b|~a]).

(d) For a 2× 2 or 3× 3 matrix M , multiplying a single
entry of M by 4 will change det(M) by a factor of
4.

(e) For a square matrix A, it is always the case that
det(AT A)≥ 0.
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Practice Problem Solutions

Solutions for Module 1

1 (a) i.





2
2
−3





ii.
�

1
−4

�

(b) i. ~e1 − 2~e2 + 3~e3

ii. 3~e2

2











1
−4
26
−1

2











3 (a) Yes, take k = 5.

(b) Yes, take i = 2, j = 1.

(c) Yes, take k = − 1
2 .

(d) No.

(e) Yes, take r = 2.

(f) No.

4 (a)

−4 −2 2 4

−4

−2

2

4

(b)

−4 −2 2 4

−4

−2

2

4

(c)

−4 −2 2 4

−4

−2

2

4

(d) The set D and B are equal.

We have C ⊆ A, C ⊆ B, C ⊆ D, A⊆ B, A⊆ D, and B = D.

5 (a) No.

(b) No.

(c) Yes.

(d) Yes.

6 (a)
§

~v ∈ R2 : ~v =
�

α

β

�

for some α,β ∈Q
ª

(b)
§

~v ∈ R2 : ~v =
�

α

β

�

for some α,β ∈ R \Q
ª

(c)
�

~v ∈ R2 : ~v = −~e1 or ~v = −~e2

	

7 (a) i. False.

ii. True.

iii. False.

iv. True.

v. True.

vi. False.

(b) i. True.

ii. False.

iii. True.

iv. True.

v. True.

vi. False.

8 (a) Correct.

(b) Incorrect.

(c) Incorrect.

(d) Incorrect.

(e) Correct.

(f) Incorrect.

(g) Incorrect.

Solutions for Module 2

1 (a) `1 : ~x = t
�

3
4

�

+
�

2
6

�
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(b) `2 : ~x = t
�

1
6

�

+
�

1
1

�

(c) `3 : ~x = t
�

3
4

�

(d) `4 : ~x = t





3
4
5



+





2
3
5





(e) `5 : ~x = t





0
3
2



+





0
1
−1





2 (a) P1 : ~x = t





1
0
4



+ s





0
1
0





(b) P2 : ~x = t





3
4
5



+ s





4
4
3



+





2
3
5





(c) P3 : ~x = t





1
0
−4



+ s





0
1
3



+





0
3
−1





(d) P4 : ~x = t





0
1
0



+ s





0
0
1



+





1
−1

1





(e) R2 : ~x = t
�

1
0

�

+ s
�

0
1

�

(f) P5 : ~x = t







−1
1
0
0






+ s







−3
0
2
1






+







1
−1

1
−1







3 (a) The lines `1 and `3 coincide. The line `2 intersects
with both `1 and `3.

(b) `1 ∩ `2 ∩ `3 =
§�

2
4

�ª

4 (a) P1 ∩ `=











1
1
0











(b) P1 ∩P2 : ~x = t





1
1
3



+





−1/3
5/3

0





(c) P2 ∩ `=











2
4
1











(d) P3 : ~x = t





1
3
1



+ s





1
0
0





(e) Suppose P ′2 is a plane that is parallel to P2. Notice
that P ′2 can be expressed with the equation x− y = c
for some c ∈ R.
Finding such a plane P ′2 which does not intersect `
is now equivalent to finding a number c ∈ R so that
(1+ t)− (1+ 3t) 6= c for all t ∈ R. But, t = −1/2c
solves the equation (1+ t)− (1+ 3t) = c, so any
plane P ′2 that is parallel to P2 must intersect `.

5 (a)

−1 1 2

−1

1

~a

~b

A

(b) ` is given by the set

{~x ∈ R2 : ~x = t~a+ (1− t)~b for some t ∈ R}.

(c) The above set can be rewritten as

{~x ∈ R2 : ~x = t(~a− ~b) + ~b for some t ∈ R}.

This is exactly the line given in vector form by

~x = t(~a− ~b) + ~b.

Since ~a− ~b =
�

0
2

�

, ` is the vertical line containing

~b (and ~a).

(d)

−1 1 2

−1

1

~a

~b

`

A

−1 1 2

−1

1

~a

~b

A∩ `

(e) A∩ ` is the set

{α~a+ β~b : α,β ≥ 0 and α+ β = 1}.

This is the set of convex linear combinations of ~a
and ~b.

(f) The endpoints of A∩ ` are ~a and ~b.

6 (a) ~d =
1
2
~a+

1
2
~b

(b) ~e =
1
2
~c +

1
2
~d

(c) ~e =
1
2
~c +

1
2
(
1
2
~a+

1
2
~b) =

1
2
~c +

1
4
~a+

1
4
~b

(d)

−1 1 2

−1

1

2

~e ~a

~b

~c

~d

(e)

−1 1 2

−1

1

2

~a

~b

~c
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The set is the filled-in triangle with vertices given
by ~a, ~b, and ~c. To see this, notice that the set of
convex linear combinations of ~a, ~b, and ~c is the set
of convex linear combinations of ~c and any convex
linear combination of ~a and ~b. Indeed,

α1~a+α2
~b+α3~c

= (1−α3)
�

α1

1−α3
~a+

α2

1−α3

~b
�

+α3~c,

and α1~a+α2
~b+α3~c is a convex linear combination

of ~a, ~b, and ~c exactly when

α1

1−α3
~a+

α2

1−α3

~b

is a convex linear combination of ~a and ~b (verify
this!). By the previous part, the set of convex lin-
ear combinations of ~a and ~b is the line segment
between ~a and ~b. Call this line segment S. Now
we know the set of convex linear combinations of ~a,
~b, and ~c is the union of every line segment from ~c
and a vector in S. This is the filled-in triangle with
vertices given by ~a, ~b, and ~c.

7 (a)

1 2 3

−1

1

~x

~y

(b)

−2 −1 1

−2

−1

1

~x

~z

(c)

−2 −1 1 2 3

−2

−1

~y

~z

(d)

−2 −1 1

−2

−1

1

~x

~z

(e)

−2 −1 1 2 3

−2

−1

1 ~x

~y

~z

8 (7c)

§

~v ∈ R2 : ~v = t
�

−5
−1

�

+
�

3
−1

�

for some 0≤ t ≤ 1
ª

.

(7d)

§

~w ∈ R2 : ~w= t
�

−3
−3

�

+
�

1
1

�

for some 0≤ t ≤ 1
ª

.

9

−5 −4 −3 −2 −1 1

−6

−4

−2

2

4

6

8

P

Q

~u

~v

~w

Geometrically, the set of convex linear combinations of ~u,
~v, and ~w is a filled-in triangle with vertices at ~u, ~v and ~w.
The point P lies inside this triangle, while Q does not.

To argue algebraically, suppose P = t1~u+ t2~v + t3 ~w and
t1+ t2+ t3 = 1. From these assumptions, we can set up a
system of equations which has a unique solution

P =
1
4
~u+

1
4
~v +

1
2
~w,

and so P is a convex linear combination of ~u, ~v, and ~w.
The same procedure with Q gives a unique solution with
coefficients t1 =

5
9 , t2 = −

1
9 , t3 =

5
9 , and so Q is not a

convex linear combination of ~u, ~v, and ~w.

Solutions for Module 3

1 (a) A is linearly dependent.

(b) span(A) is the plane











x
y
0



 ∈ R3 : x , y ∈ R







.
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(c) Yes. If A′ = A∪











0
0
1











, then span(A′) = R3.

2 (a) Line

(b) Line

(c) Plane

(d) Line

(e) Plane

(f) Point

(g) Plane

(h) Volume

(i) Plane

(j) Plane

3 (a) i. Linearly Independent
ii. Linearly Dependent

iii. Linearly Independent
iv. Lineraly Dependent
v. Linearly Independent

vi. Linearly Independent
vii. Linearly Dependent

viii. Linearly Independent
ix. Linearly Independent
x. Linearly Dependent

(b) Linearly Dependent

(c) No. The solutions to the vector equation α1 ~x1 +
α2 ~x2 + . . .+ αn+1 ~xn+1 = 0 for α1,α2, . . . ,αn+1 ∈ R
are the solutions to a system of n equations in
n + 1 variables. This system is consistent since
α1 = α2 = . . . = αn+1 = 0 is a solution. The row
reduced echelon form of the corresponding aug-
mented matrix has at least one free variable column
since there are more columns than rows. Hence
there are infinitely many solutions, and in particu-
lar there exists a non-trivial solution to the above
vector equation.

4 (a) i. span
§�

0
−1

�ª

ii. span
§�

3
−2

�ª

iii. span
§�

4
5

�ª

iv. Not possible since
�

0
0

�

is not on the line.

v. Not possible since
�

0
0

�

is not on the line.

(b) 4(a)iv: span
§�

1
−1

�ª

+
§�

1
0

�ª

4(a)v: span
§�

5
3

�ª

+
§�

8/9
0

�ª

(c) i. Not possible since ~0 is not in the plane.

ii. span











6
−1

0



 ,





1
0
1











iii. span











3
0
−1



 ,





0
1
0











iv. Impossible since ~0 is not in the plane.

v. span











0
1
0











vi. Not possible since ~0 is not in the plane.

(d) 4(c)i: span











1
2
0



 ,





0
1
1











+











2
0
0











4(c)iv: span











1
0
0



 ,





0
0
1











+











0
1
0











4(c)vi: span











1
2
0











+











1
0
−1











5 (a) Same plane (R2).

(b) Same plane (2





1
0
5



+





2
2
3



=





4
2

13



).

(c) Different plane (





2
2
1



 is not in the second plane).

6 The set is linearly dependent since:





6
4

11



 =





2
0
7



+4





1
1
1





(geometric) or





2
0
7



+4





1
1
1



+(−1)





6
4

11



 = ~0 (algebraic).

7 (a) ~d1 =







1
0
0
0






, ~d2 =







0
1
0
0






, ~d3 =







0
0
1
0






, ~p =







0
0
0
0







(b) ~d1 =







1
0
0
0






, and ~d2 =







0
1
0
0






, ~d3 =







1
1
0
0






, ~p =







0
0
1
0







(c) ~d1 =







1
0
0
0






, ~d2 =







2
0
0
0






, ~d3 =







−1
0
0
0






, ~p =







0
0
0
0







(d) ~d1 = ~d2 = ~d3 = ~0, ~p =







2
2
2
3







8 The set A is linearly independent. Since A contains no
vectors, there is no way to write ~0 as a non-trivial linear
combination of vectors in A. However, B is linearly depen-
dent, since ~0= 7~0 is a non-trivial linear combination of
vectors in B that gives the zero vector.

9

−2 −1 1 2

−1

1

2

3

S

244 © Jason Siefken, 2015–2024



Ap
pe

nd
ix

5
–

Pr
ac

tic
e

Pr
ob

lem
So

lu
tio

ns

−2 −1 1 2

−1

1

2

3

T

−4 −2 2 4

−2

2

4

6

T + S

10 (a) The set S:

1 2 3 4

−4

−2

2

4

The set S + S:

1 2 3 4

−4

−2

2

4

The set (S + S) + S:

1 2 3 4

−4

−2

2

4

(b) The set (S+S)+S and S+(S+S) are equal since vec-
tor addition is associative. This means that S+S+S
is well-defined and we can drop the parentheses, so
the expression S + S + S makes sense.

(c)

1 2 3 4

−4

−2

2

4

Notice that we obtain the orange points when we
add an additional S to the set sum. Since we are
considering the infinite sum S + S + S + S + · · ·, the
process continues infinitely.

11 (a) There are infinitely many points in each of D, L, and
D+ L.

(b)

−2 −1 1 2

−1

1

2

3

D+ L

(c) D + L can be decomposed into 2 unit radius half-
circles and a square with side length 2. The area of
D+ L is then π+ 4.

(d) We can take A to be a circle of radius 0.02 units.

12 (a) True. This follows from the geometric definition of
linear dependence.

(b) False.
§�

1
0

�

,
�

0
0

�

,
�

0
1

�ª

is linearly dependent, but
�

1
0

�

is not a linear combination of
�

0
0

�

and
�

0
1

�

.

(c) True. ~v1 is a linear combination of ~v2 and so {~v1, ~v2}
is linearly dependent by the definition of linear de-
pendence.
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(d) False.
§�

1
0

�

,
�

0
0

�

,
�

0
1

�ª

is linearly dependent, but
�

1
0

�

is not a scalar multiple of
�

0
1

�

.

(e) True. The linear combination of any finite set with
all coefficients zero is ~0.

Solutions for Module 4

1 (a) 78 (b) 2 (c) 57 (d) 12 (e) −1

2 (a) 2 (b)
p

14 (c) 4
p

290

3 (a) Greater than 90◦ (b) Greater than 90◦ (c) Less than
90◦

4 (a)
�

1
0

�

and
�

−1
0

�

(b)
1
p

5

�

2
−1

�

and
1
p

5

�

−2
1

�

(c)
1
p

10





3
−1

0



 and
1
p

26





5
0
−1





(d)
1
p

6





1
−2

1



 and
1
p

41





0
5
4





(e)







1
0
0
0






and

1
p

2







0
1
−1

0







5 (a) 5 (b)
p

269 (c) 2
p

3 (d)
p

5

6 (a)
�

0
1

�

(b)





2
3
4





7 (a) ~x = t





2
0
1



 + s





0
3
1



 +





2
0
0



 and





3
2
−6



 ·



~x −





2
0
0







= 0

(b) ~x = t





1
1
1



+ s





0
1
0



;





1
0
−1



 · ~x = 0

8 (a) ~x = t





−1
1
0



+s





0
1
−1



+





0
1
1



 (b) ~x = t





1
1
0



+s





0
0
1



+





1
2
3





9 (a) We get the value 56 on both sides.

(b) Writing the vectors in terms of the coefficients, we
get

(x1+ y1)z1+(x2+ y2)z2 = x1z1+ y1z1+ x2z2+ y2z2

which is always true.
In the general case, the left side will be the sum
of (x i + yi)zi and the right side will be the sum of
x izi + yizi . Since these two terms are always equal,
the two sums are equal. So yes, the same conclusion
hold true in all dimensions.

(c) We get the value 138 on both sides.

(d) Writing it in terms of the coefficients, we get

(kx1)y1 + (kx2)y2 = k(x1 y1 + x2 y2)

which is always true.

In the general case, the left side will be the sum
of kx i yi and the right side will be the product of
k and the sum of x i yi . Distributing the product of
k onto the sum, we get that these two results are
equal. So yes, the same conclusion hold true in all
dimensions.

(e) The dot product distributes onto sums, just like the
typical multiplication of real numbers.

12 (a) A is linearly dependent if ~0 ∈ A, and is linearly
independent otherwise.

(b) Suppose
α1~v1 + · · ·+αn~vn = ~0

for some α1, . . . ,αn ∈ R.

For any i = 1, . . . , n, take the dot product of ~vi with
both sides of this equation, we have αi‖~vi‖2 = 0.
Since ~vi is a non-zero vector, this implies that αi = 0.

Then, α1 = · · ·= αn = 0 and therefore A is linearly
independent.

Solutions for Module 5

1 The distances from
�

3
1

�

to
�

0
0

�

,
�

−1
2

�

, and
�

1
−2

�

are
p

10,

p
17, and

p
13, respectively. So projT

�

3
1

�

=
�

0
0

�

.

2 Suppose ~v =
�

x
y

�

∈ C . We would like to minimize












�

x
y

�

−
�

2
0

�













, or equivalently













�

x
y

�

−
�

2
0

�













2

. This expres-

sion can be rewritten as













�

x
y

�

−
�

2
0

�













2

= (x − 2)2 + y2 = (x2 + y2)− 4x + 4

= ‖~v‖2 − 4x + 4= 5− 4x .

Since x ≤ 1, the above expression is minimized when
x = 1 (and thus y = 0). That is,

projC

�

2
0

�

=
�

1
0

�

.

3 (a) Let ~u =
�

2
1

�

. Then proj` ~v = t~u for some t ∈ R

which minimizes

‖~v − t~u‖2 = ‖~u‖2 t2 − (2~u · ~v)t + ‖~v‖2 .

This quantity is minimized when t = ~u·~v
‖~u‖2
= 2

5 , so

proj` ~v =
2
5
~u=

1
5

�

4
2

�

.
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(b) Let ~u =
�

2
1

�

. Then projL

�

1
0

�

=
�

4
0

�

+ t~u for some

t ∈ R which minimizes












�

1
0

�

−
�

4
0

�

− t~u













2

= (−3− 2t)2 + (0− t)2

= 9+ 12t + 5t2.

The quantity 9+ 12t + 5t2 = 5(t + 6
5 )

2 + 9
5 is mini-

mized when t = − 6
5 , so

projL ~v =
�

4
0

�

−
6
5
~u=

1
5

�

8
−6

�

(c) The set S is equal to {t~u : 1 ≤ t ≤ 2} (check this),

and so S ⊆ `. We found proj` ~v =
�

4/5
2/5

�

which is

not in S. Therefore, projS ~v must be one of the end-
points of S. Checking both endpoints, we conclude

projS ~v =
�

2
1

�

.

4 Geometrically, T is a filled in triangle with vertices
�

1
1

�

,
�

−1
1

�

and
�

−1
−2

�

. So for points outside the triangle,

the closest point in T will be on the nearest side of T , and
so we can project onto T by projecting onto line segments.

(a) projT

�

3
3

�

=
�

1
1

�

; since
�

3
3

�

is above T , the closest

point will be on the line segment y = 1, −1≤ x ≤ 1.

(b) projT

�

0
0

�

=
�

0
0

�

, since ~0 ∈ T .

(c) projT

�

1
−2

�

= 1
13

�

−5
−14

�

; let ` be the line segment

~x =
�

1
1

�

+ t
�

−2
−3

�

, 0 ≤ t ≤ 1. Then projT

�

1
−2

�

=

proj`

�

1
−2

�

, and then either by minimizing the

length function, or drawing a perpendicular line
to `, we find the closest point is when t = 9

13 .

(d) projT

�

0
−4

�

=
�

−1
−2

�

, as in (c), but now the mini-

mizer is at t > 1, so the constraints 0≤ t ≤ 1 force
us to take the closest point on the line segment.

7 (a) Using the formula for vector components, we have

vcomp~u(~a) =
~a · ~u
~u · ~u
~u=

18
9
~u=





2
4
−4





vcomp~v(~a) =
~a · ~v
~v · ~v

~v =
2
2
~v =





0
1
1



 .

(b) Let ~b = ~a− vcomp~u(~a)− vcomp~v(~a). Directly com-

puting, we have ~b =





4
−1

1



.

To show ~b is orthogonal to P, we need to check that

~b · ~u= 4− 2− 2= 0

and
~b · ~v = 0− 1+ 1= 0.

Hence ~b is a normal vector to P. (Note that this
only worked because ~u · ~v = 0. Subtracting each
vector component from ~a will not produce a normal
vector in general.)

(c) Since ~b is orthogonal to P and ~a−~b is a linear com-

bination of ~u and ~v, the vector ~a−~b =





2
5
−3



 is the

closest point to ~a on P.

Solutions for Module 6

1 (a) T is a subspace: it is non-empty since
�

0
0

�

∈ T .

i. Let
�

x1

y1

�

,
�

x2

y2

�

∈ T . Then 3x1 − y1 = 0 =

3x2 − y2. Hence 3(x1 + x2) − (y1 + y2) =
(3x1 − y1) + (3x2 − y1) = 0 + 0 = 0 and
�

x1

y1

�

+
�

x2

y2

�

∈ T .

ii. Let
�

x
y

�

∈ T . Then 3x − y = 0. Hence for all

α ∈ R, 3αx −αy = α(3x − y) = α · 0= 0 and

α

�

x
y

�

∈ T .

(b) U is a subspace: it is non-empty since
�

0
0

�

∈ U .

i. Let
�

x1

y1

�

,
�

x2

y2

�

∈ U . Then 1
2 x1 − 6y1 = 0 =

1
2 x2 − 6y2. Hence 1

2 (x1 + x2)− 6(y1 + y2) =
( 1

2 x1 − 6y1) + (
1
2 x2 − 6y2) = 0 + 0 = 0 and

�

x1

y1

�

+
�

x2

y2

�

∈ U .

ii. Let
�

x
y

�

∈ U . Then 1
2 x − 6y = 0. Hence for all

α ∈ R, 1
2αx − 6αy = α( 1

2 x − 6y) = α · 0 = 0

and α
�

x
y

�

∈ U .

(c) V is not a subspace, since for example
�

6
1

�

∈ V, but

0 ·
�

6
1

�

= ~0 6∈ V.

(d) X is a subspace: it is non-empty since





0
0
0



 ∈ X .

i. Let





x1

y1

z1



 ,





x2

y2

z2



 ∈ X . Then 5x1 − πy1 +

(ln2)z1 = 0 = 5x2 − πy2 + (ln2)z2. Hence
5(x1 + x2) − π(y1 + y2) + (ln2)(z1 + z2) =
(5x1−πy1+(ln 2)z1)+(5x2−πy2+(ln 2)z2) =

0+ 0= 0 and





x1

y1

z1



+





x2

y2

z2



 ∈ X .

ii. Let





x
y
z



 ∈ X . Then 5x − πy + (ln2)z = 0.

Hence for all α ∈ R, 5αx −παy + (ln2)αz =

α(5x −πy +(ln 2)z) = α · 0 = 0 and α





x
y
z



 ∈

X .
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(e) Q is a subspace: it is non-empty since ~0 ∈Q.

i. Let







x1
...

xn






,







x ′1
...

x ′n






∈Q. Then a1 x1+. . .+an xn =

0 = a1 x ′1+ . . .+an x ′n. Hence a1(x1+ x ′1)+ . . .+
an(xn+ x ′n) = (a1 x1+ . . .+an xn)+(a1 x ′1+ . . .+

an x ′n) = 0+ 0= 0 and







x1
...

xn






+







x ′1
...

x ′n






∈Q.

ii. Let







x1
...

xn






∈ Q. Then a1 x1 + . . . + an xn = 0.

Hence for any scalar α ∈ R, a1αx1 + . . . +
anαxn = α(a1 x1 + . . .+ an xn) = α · 0= 0 and

α







x1
...

xn






∈Q.

2 (a) A is not a subspace, since for example
�

1
2

�

∈A, but

0 ·
�

1
2

�

= ~0 6∈A.

(b) B is a subspace: it is non-empty since
�

−3
4

�

∈ B.

i. Let ~u, ~v ∈ B. Then ~u = t1

�

−3
4

�

and ~v =

t2

�

−3
4

�

for some t1, t2 ∈ R. But then ~u+ ~v =

(t1 + t2)
�

−3
4

�

∈ B.

ii. Let ~u = t
�

−3
4

�

∈ B. For any scalar α ∈ R, we

have α~u= (αt)
�

−3
4

�

∈ B.

(c) C is a subspace: it is non-empty since





1
0
5



 ∈ C.

i. Let ~u, ~v ∈ C. Then ~u = t1





1
0
5



 and ~v = t2





1
0
5





for some t1, t2 ∈ R. But then ~u + ~v = (t1 +

t2)





1
0
5



 ∈ C.

ii. Let ~u = t





1
0
5



 ∈ C. For any scalar α ∈ R, we

have α~u= (αt)





1
0
5



 ∈ C.

(d) D is not a subspace, since for example





0
0
6



 ∈ D,

but 0 ·





0
0
6



= ~0 6∈D. (





0
0
−6



 cannot be written as

a linear combination of





2
3
4



 and





10
20

131



.)

(e) E is a subspace: it is non-empty since





0
0
0



 ∈ E .

i. Let ~u, ~v ∈ E . Then ~u= t1





5
7
1



+ s1





2
−2

1



 and

~v = t2





5
7
1



+ s2





2
−2

1



 for some t1, t2, s1, s2 ∈

R. But then ~u + ~v = (t1 + t2)





5
7
1



 + (s1 +

s2)





2
−2

1



 ∈ E .

ii. Let ~u = t





5
7
1



+ s





2
−2

1



 ∈ E . For any scalar

α ∈ R, we have α~u = (αt)





5
7
1



+(αs)





2
−2

1



 ∈

E .

3 (a) Let A be span
§�

0
1

�

,
�

1
2

�ª

. A is a subspace: it is

non-empty since ~0 ∈A.

i. Let ~u, ~v ∈ A. Then ~u = t1

�

0
1

�

+ s1

�

1
2

�

and

~v = t2

�

0
1

�

+ s2

�

1
2

�

for some t1, t2, s1, s2 ∈ R.

But then ~u+~v = (t1+ t2)
�

0
1

�

+(s1+s2)
�

1
2

�

∈A.

ii. Let ~u = t
�

0
1

�

+s
�

1
2

�

∈A. For any scalar α ∈ R,

we have α~u= (αt)
�

0
1

�

+ (αs)
�

1
2

�

∈A.

(b) Let B be span











1
1
1



 ,





1
0
0



 ,





2
0
0











. Observe that

since





2
0
0



 = 2





1
0
0



, this is the same thing as say-

ing B = span











1
1
1



 ,





1
0
0











.

B is a subspace: it is non-empty since ~0 ∈ B.

i. Let ~u, ~v ∈ B. Then ~u = t1





1
1
1



+ s1





1
0
0



 and

~v = t2





1
1
1



+ s2





1
0
0



 for some t1, t2, s1, s2 ∈ R.

But then ~u+~v = (t1+ t2)





1
1
1



+(s1+s2)





1
0
0



 ∈

B.

ii. Let ~u = t





1
1
1



+ s





1
0
0



 ∈ B. For any scalar α ∈

R, we have α~u= (αt)





1
1
1



+ (αs)





1
0
0



 ∈ B.
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4 (a) Property (i) fails, since





4
0
0



 is in the set, but





4
0
0



+





4
0
0



=





8
0
0



 is not.

Property (ii) fails, since





4
0
0



 is in the set, but

0 ·





4
0
0



= ~0 is not.

(b) Non-emptiness fails, since it is the empty set.

(c) Property (i) fails, since
�

1
1

�

is in the set (1 = 12),

but
�

1
1

�

+
�

1
1

�

=
�

2
2

�

is not (2 6= 22).

Property (ii) fails, since
�

1
1

�

is in the set, but 2
�

1
1

�

=
�

2
2

�

is not.

(d) Property (ii) fails, since
�

1
0

�

is in the set, but−
�

1
0

�

=
�

−1
0

�

is not.

(e) None of the properties fail. The set is {~0}, the trivial
subspace.

5 (a) Yes, it is a subspace. Its dimension is 1 and a basis

for it is
§�

2
3

�ª

.

(b) Yes, it is a subspace. Its dimension is 2 and a basis

for it is











1
0
−2



 ,





0
2
5











.

(c) Yes, it is a subspace. Its dimension is 2 and a basis

for it is











6
1
1



 ,





6
0
6











.

(d) Yes, it is a subspace. Its dimension is 1 and a basis

for it is











2
2
3











.

(e) Yes, it is a subspace. Its dimension is 2 and a basis

for it is











6
6
2



 ,





2
1
0











.

(f) Yes, it is a subspace. Its dimension is 3 and a basis

for it is

















3
−1

0
0






,







3
0
−1

0






,







7
0
0
−1

















.

6 (a) Not a basis, as it is not linearly independent: the
third vector is equal to the sum of the other two.

(b) Not a basis, since four vectors in R3 cannot be lin-
early independent.

(c) Not a basis, as two vectors cannot span all of R3.
You need at least three vectors.

(d) It is a basis.

7 (a) True by the Subspace-Span Theorem.

(b) True by the Subspace-Span Theorem.

(c) False. Translated spans cannot all be expressed as
spans (since they do not need to contain ~0, but spans
do), but the Subspace-Span Theorem says that all
subspaces can be expressed as spans.

(d) False. By the definition of a subspace, they cannot
be the empty set.

(e) False. By the definition of a subspace, since
�

1
2

�

and
�

2
3

�

are in the set,
�

1
2

�

+
�

2
3

�

=
�

3
5

�

should also be

in the set. But it isn’t.

8 (i) span

















1
2
3
4

















and the line with vector form ~x =

t







2
2
3
0






.

(ii) span

















1
0
0
0






,







0
1
0
0






,







0
0
1
0

















and the volume with

equation x1 + x2 + x3 + x4 = 0.
The set {~0} is the only 0-dimensional subspace.

9 As we’ve seen in problem 8, the dimension of G can be as
small as 0. This is our lower bound.
As for the upper bound, we know that n+ 1 vectors in
Rn cannot be linearly independent. So a basis for G can
have at most n vectors. Hence n is an upper bound for
the dimension of G.

Solutions for Module 7

1 (a)





1 −1 1
2 −1 1
3 1 −1









x
y
z



=





1
2
3





(b)
�

1 0 1
�





x
y
z



=
�

6
�

(c)
�

5 −9 2
0 −1 0

�





x
y
z



=
�

0
1

�

2 (a) If ~x =





x
y
z



 is orthogonal to





1
2
3



 and





2
2
3



, then

~x ·





1
2
3



= 0 =⇒ x + 2y + 3z = 0

~x ·





2
2
3



= 0 =⇒ 2x + 2y + 3z = 0.

This means we need to solve the system

�

1 2 3
2 2 3

�

︸ ︷︷ ︸

A





x
y
z



=
�

0
0

�

.
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Row reducing A yields

rref(A) =
�

1 0 0
0 1 3/2

�

,

so third column corresponds to a free variable. Let
z = t, then x = 0 and y = − 3t

2 . The complete
solution expressed in vector form is

~x = t





0
−3/2

1



 or ~x = t





0
−3

2



 .

(b) Proceeding as in 0a, we need to solve the matrix
equation

�

0 5 6
1 10 2

�

︸ ︷︷ ︸

B





x
y
z





︸︷︷︸

~x

=
�

0
0

�

.

We obtain

rref(B) =
�

1 0 −10
0 1 6/5

�

,

so the complete solution is

~x = t





10
−6/5

1



 or ~x = t





50
−6

5



 .

(c) We need to solve the matrix equation





1 0 0
0 1 0
0 0 1









x
y
z



=





0
0
0



 .

The only solution is ~x = ~0.

(d) We need to solve the matrix equation

�

2 6 −1
�

︸ ︷︷ ︸

A





x
y
z





︸︷︷︸

~x

=
�

0
�

.

Row reducing, we obtain

rref(A) =
�

1 3 −1/2
�

.

Both the second and third columns correspond to
free variables. Let y = s and z = t, then x = −3s+ t

2 ,
so we have




x
y
z



=





−3s+ t/2
s
t



= s





−3
1
0



+ t





1/2
0
1



 .

Therefore, the complete solution is

~x = s





−3
1
0



+ t





1/2
0
1



 .

3 Key fact to remember: a normal vector is orthogonal to
the direction vectors.

(a) If ~n=





nx

ny

nz



 is a normal vector, then

~n ·





0
2
2



= 0 =⇒ 2ny + 2nz = 0

~n ·





1
1
1



= 0 =⇒ nx + ny + nz = 0.

Expressed in matrix form, this system becomes

�

0 2 2
1 1 1

�

︸ ︷︷ ︸

A





nx

ny

nz



=
�

0
0

�

.

Row reduction yields

rref(A) =
�

1 0 0
0 1 1

�

,

so complete solution in vector form is

~n= t





0
−1

1



 .

This means that any non-zero multiple of





0
−1

1



 is

a normal vector for this plane, so a normal form of
the plane is




0
−1

1



 ·









x
y
z



−





1
0
3







= 0.

(b) We first wish to find all vectors ~n orthogonal to





1
6
8





and





2
0
2



. To do this, we solve the system

�

1 6 8
2 0 2

�





nx

ny

nz



=
�

0
0

�

.

Row reducing, we have
�

1 6 8
2 0 2

�

→
�

1 6 8
0 −12 −14

�

→
�

1 6 8
0 6 7

�

→
�

1 0 1
0 6 7

�

which has nullspace equal to span











6
7
−6











.

Since





0
0
9



 is a point on the plane, we then get that

a normal form of the plane is




6
7
−6



 ·









x
y
z



−





0
0
9







= 0.
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(c) We first wish to find all vectors ~n orthogonal to






1
5

15
20






,







3
0

35
59






, and







1
4
0

18






. To do this we solve the

system





1 5 15 20
3 0 35 59
1 4 0 18











nx

ny

nz

nw






=





0
0
0



 .

Row reducing, we have





1 5 15 20
3 0 35 59
1 4 0 18



→





1 5 15 20
3 0 35 59
0 −1 −15 −2





→





1 5 15 20
0 −15 −10 −1
0 −1 −15 −2





→





1 5 15 20
0 15 10 1
0 1 15 2





→





1 5 15 20
0 1 15 2
0 15 10 1





→





1 5 15 20
0 1 15 2
0 0 −215 −29





→





1 0 −60 10
0 1 15 2
0 0 −215 −29





→





1 0 −60 10
0 1 15 2
0 0 215 29





→





1 0 −60 10
0 1 0 − 1

43
0 0 215 29





→





1 0 0 778
43

0 1 0 − 1
43

0 0 215 29





→





1 0 0 778
43

0 1 0 − 1
43

0 0 1 29
215





which has nullspace equal to span

















3890
−5
29

−215

















.

Thus, since







1
6
0
0






is a point on the hyperplane, we

then get that the normal form of the hyperplane is







3890
−5
29

−215






·













x
y
z
w






−







1
6
0
0












= 0.

4 We first express all the planes in the same form (any form
works but we choose to use the equation form). P is

already expressed in this form: 2x + 4y − 4z = 7.
We are given Q in the form

~x = t





−1
2
0



+ s





5
0
2



+





0
7
1



 .

Writing this into vector form yields

x = −t + 5s

y = 2t + 7

z = 2s+ 1

then substituting the above values yields

2x = −2t + 5(2s)

2x = −(y − 7) + 5(z − 1)

2x + y − 5z = 2.

Thus, having eliminated t and s from our original equa-
tions we find that the equation form of Q is 2x+ y−5z = 2.
We are given R in the form





2
−8

2



 ·









x
y
z



−





1
7
0







= 0

which, expanding the dot product, yields





2
−8

2



 ·





x
y
z



=





2
−8

2



 ·





1
7
0





2x − 8y + 2z = 2− 7(8)

2x − 8y + 2z = −54.

Thus the equation form of R is 2x − 8y + 2z = −54.
Having written all three planes in equation form, finding
P ∩Q∩R is the same as finding the solution set to the
matrix equation





2 4 −4
2 1 −5
2 −8 2









x
y
z



=





7
2

−54



 .

Row-reducing on both sides yields





2 4 −4
2 1 −5
2 −8 2









x
y
z



=





7
2

−54




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→





2 4 −4
0 −3 −1
2 −8 2









x
y
z



=





7
−5
−54





→





2 4 −4
0 −3 −1
0 −12 6









x
y
z



=





7
−5
−61





→





2 0 − 16
3

0 −3 −1
0 −12 6









x
y
z



=





1
3
−5
−61





→





2 0 − 16
3

0 −3 −1
0 0 10









x
y
z



=





1
3
−5
−41





→





2 0 − 16
3

0 −3 −1
0 0 1









x
y
z



=





1
3
−5
− 41

10





→





2 0 0
0 −3 −1
0 0 1









x
y
z



=





− 323
15
−5
− 41

10





→





2 0 0
0 −3 0
0 0 1









x
y
z



=





− 323
15
− 91

10
− 41

10





→





1 0 0
0 1 0
0 0 1









x
y
z



=





− 323
30
91
30
− 41

10





so that P ∩Q∩R consists of exactly one point.

P ∩Q∩R=











− 323
30
91
30
− 41

10











.

Solutions for Module 8

1 (a) i. [~u]E =
�

1
8

�

, [~v]E =
�

−1
3

�

, and [~w]E =
�

2
0

�

.

ii. [~u]A =
�

3
−2

�

, [~v]A =
�

1
−1

�

, and [~w]A =
�

2/11
4/11

�

.

iii. [~u]B =
�

1/2
1

�

, [~v]B =
�

1/2
−1

�

, and [~w]B =
�

−5/11
2

�

.

(b) i. [~q]E =





0
11
−4



, [~r]E =





5
−12

8



, and [~s]E =





1
−5

2



.

ii. We are givenD =











1
2
0





E

,





−3
5
−4





E

,





−8
4

11





E







.

To find [~q]D, we need to find scalars x , y, z
such that

x





1
2
0



+ y





−3
5
−4



+ z





−8
4

11



=





0
11
−4



 ,

which gives rise to a system of equations whose
augmented matrix is




1 −3 −8 0
2 5 4 11
0 −4 11 −4



 .

This can be row reduced to




1 0 0 3
0 1 0 1
0 0 1 0



 .

Therefore, [~q]D =





3
1
0



. Similarly we can find

[~r]D =





−1
−2

0



 , [~s]D =





−66/67
−39/67
−2/67



 .

iii. We are givenF =











1
4
4





E

,





−3
20

0





E

,





0
21
16





E







.

Therefore, [~q]F =





3
1
−1



, [~r]F =





2
−1

0



, and

[~s]F =





−23/130
−51/130

11/65



.

2 (a) Let M = {~u, ~v}. Then [~a]M =
�

1
0

�

⇒ ~a =

1~u+ 0~v⇒ ~a = ~u. So as long as we choose the first
vector in M as ~a, any linearly independent second
vector will do. Thus take M= {5~e1 − 12~e2,~e1}

(b) The observation here is that the numbers that ap-
pear in the coordinates in both [~b]E and [~b]N are
same but they are just shuffled. Thus we can take
N to be the corresponding permutation of E . Take
N = {~e3,~e2,~e1}

3 (a) Positively oriented. (Rotate both vectors 180 de-
grees clockwise and scale)

(b) Negatively oriented.

(c) Negatively oriented. (
�

1
2

�

is to be transformed to

~e1. If we rotate it clockwise at some stage it points

at the same direction as
�

2
1

�

, thus making it linearly

dependent. If we try to rotate it counter clockwise,
at some stage it also points at the same (negative)

direction as
�

2
1

�

, where it becomes linerly depen-

dent. )

(d) Positively oriented.

4 (a) Negatively oriented. ( only ~v3 needs to be taken
care of. To transform it to ~e3, no matter what we
do, at some stage we have to cross the x y-plane.
At that stage it becomes linearly dependent.)

(b) Negatively oriented. ( 3~v2 can be scaled to ~v2. Then
we are back at situation (a).)

(c) Positively oriented. (This is a little bit tricky. Note
that ~v2 is already ~e2. So we can leave that alone
and limit our operations to the xz-plane. In the
xz-plane rotate −4~v1 and ~v3 counter clockwise 180
degrees. Then −4~v1 transforms to 4~e1, which then
can be scaled to ~e1, and ~v3 transforms to ~e3.)
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Solutions for Module 9

1 (a) Yes. A is a linear transformation. Let ~u=
�

u1

u2

�

and

~v =
�

v1

v2

�

be two vectors and α be a scalar. A(~u+

~v) =A
�

u1 + v1

u2 + v2

�

=
�

−u1 − v1

u2 + v2

�

=
�

−u1

u2

�

+
�

−v1

v2

�

=

A
�

u1

u2

�

+ A
�

v1

v2

�

= A(~u) + A(~v) and A(α~u) =

A
�

αu1

αu2

�

=
�

−αu1

αu2

�

= α
�

−u1

u2

�

= αA
�

u1

u2

�

= αA(~u)

So A satisfies all the properties of a linear transfor-
mation.

(b) No. B
�

0
0

�

=
�

−1
0

�

6=
�

0
0

�

(c) Yes. Let ~u=
�

u1

u2

�

and ~v =
�

v1

v2

�

be two vectors and

α be a scalar. id(~u+~v) = id
�

u1 + v1

u2 + v2

�

=
�

u1 + v1

u2 + v2

�

=
�

u1

u2

�

+
�

v1

v2

�

= id
�

u1

u2

�

+ id
�

v1

v2

�

= id(~u) + id(~v)

and id(α~u) = id
�

αu1

αu2

�

=
�

αu1

αu2

�

= α
�

u1

u2

�

=

α id
�

u1

u2

�

= α id(~u) So id satisfies all the properties

of a linear transformation.

(d) No. As ~0 is on the x-axis, C(~0) = −~e2 6= ~0 .

2 (a) Notice A is just reflection about y-axis. If you re-
flect all points on the circle about the y-axis you get
back the unit circle.

(b) B
�

x
y

�

=
�

−x − 1
y

�

=
�

−x
y

�

+
�

−1
0

�

. So the transfor-

mation B reflects over the y-axis and then translates.
We already know the first operation keeps the circle
as it is. So the final image is just a translated circle,
that is unit circle with center at (-1,0).

(c) id leaves all points unchanged. So the image of the
unit circle under id is still the unit circle.

(d) The unit circle under C is the set {(0,0), (0,−1)}.
3 (a) Recall that an m×n matrix represents a transforma-

tion from Rn → Rm. The given matrix M is 2× 3,
so TM : R3→ R2. Thus the domain of TM is R3 and
codomain is R2.

(b) TM









2
−1

1







=
�

1 −2 3
−4 5 −6

�





2
−1

1



=
�

7
−19

�

(c) TM (~e1) =
�

1
−4

�

, TM (~e2) =
�

−2
5

�

, TM (~e3) =
�

3
−6

�

4 (a)
�

2 0
0 2

�

(b) To determine the image of ~e1,~e2, we use trigonom-

etry. Note R
�

1
0

�

=
�

− cos(45o)
− sin(45o)

�

=

�

−1/
p

2
−1/
p

2

�

and

R
�

0
1

�

=
�

cos(45o)
− sin(45o)

�

=

�

1/
p

2
−1/
p

2

�

. To see this

draw pictures, draw angles and remember that ~e1

and ~e2 are unit vectors. Thus the matrix of R is
�

− 1p
2

1p
2

− 1p
2
− 1p

2

�

.

(c) No such matrix exists as this is not a linear transfor-
mation.

(d)
�

0 0
0 1

�

(e)
�

0 1
1 0

�

5 Let ~u and ~v be two vectors in Rn and c be a scalar.
Then we have, R(~u + ~v) = S(~u + ~v) + T(~u + ~v). Since
given that both S, T are linear transformations, we get
S(~u + ~v) + T(~u + ~v) = S(~u) + S(~v) + T(~u) + T(~v) =
(S(~u)+T (~u))+(S(~v)+T (~v)) = R(~u)+R(~v). Hence we have,
R(~u+~v) = R(~u)+R(~v). Similarly, R(c~u) = S(c~u)+T (c~u) =
cS(~u) + cT (~u) = cR(~u). Thus R is also linear.

6 (a) Since dot product is only defined for vectors in the
same space, if ~a ∈ R3, ~x must also be in R3. So the
domain of D~a is R3.

(b) Let ~u=





u1

u2

u3



 and ~v =





v1

v2

v3



 be two vectors and α

be a scalar. Then

D~e1
(~u+ ~v) =





1
0
0



 ·





u1 + v1

u2 + v2

u3 + v3



= u1 + v1

=





1
0
0



 ·





u1

u2

u3



+





1
0
0



 ·





v1

v2

v3





= D~e1
(~u) + D~e1

(~v)

and

D~e1
(α~u) =





1
0
0



 ·





αu1

αu2

αu3



= αu1

= α









1
0
0



 ·





u1

u2

u3









= αD~e1
(~u)

(c) Yes, D~a is a linear transformation for all vectors
~a. The properties of linear transformation can
be proved from properties of dot product. Let ~u
and ~v be two vectors and α be a scalar. Then
D~a(~u+ ~v) = ~a · (~u+ ~v) = ~a · ~u+ ~a · ~v = D~a(~u)+D~a(~v)
and

D~a(α~u) = ~a · (α~u) = α ~a · ~u= αD~a(~u)

(d) D~a : R3→ R. Thus the matrix, say MD, will be 1×3.

If ~a =





a1

a2

a3



 Then, MD =
�

a1 a2 a3

�

7 No. Here is a (counter) example of a transformation
which is not linear : T : R2→ R2 is such that T keeps the
coordinates of the points on x-axis unchanged and sends

every other point to ~0. That is, T is given by T
�

x
y

�

=
�

0
0

�

if y 6= 0, and T
�

x
0

�

=
�

x
0

�

.

Then T satisfies the given condition : T(R2) is the x-
axis which is a subspace. T(~0) = ~0⇒ {T(~0)} = {~0}, so
T sends the zero subspace to the zero subspace. Other
subspaces of R2 are lines through the origin. T sends
all such lines except for the x-axis to the subspace {~0}.
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T sends the subspace x-axis to x-axis. Thus T(V ) is a
subspace whenever V is a subspace. But clearly T is not

linear. Take for example : T
�

1
1

�

=
�

0
0

�

by construction.

But
�

1
1

�

=
�

1
0

�

+
�

0
1

�

and
�

T
�

1
0

�

+ T
�

0
1

��

=
�

1
0

�

+
�

0
0

�

=
�

1
0

�

6= T
�

1
1

�

8 (a) False. Take T : R2→ R2 given by T
�

x
y

�

=
�

x − 1
0

�

.

If there were a matrix
�

a b
c d

�

representing this

transformation, then consider T
�

1
0

�

and T
�

2
0

�

.

T
�

1
0

�

=
�

a b
c d

��

1
0

�

=
�

0
0

�

which implies that

a = 0, c = 0. But T
�

2
0

�

=
�

a b
c d

��

2
0

�

=
�

1
0

�

which

implies a =
1
2

, c = 0 — a contradiction! So no such

matrix exists. The correct statement is the follow-
ing: Every “linear" transformation from Rn to Rm

can be represented by a matrix.

(b) False. This follows directly from the theorem given
in this chapter that if T : Rn→ Rm is a linear trans-
formation, then T takes subspaces to subspaces.

(c) False. The transformation is linear. Check the
properties. Note: this transformation is sometimes
called “the zero transformation.’

(d) False. A matrix is just a box of numbers, it has no
meaning unless we give it meaning. We can spec-
ify a linear transformation by using a matrix, but a
matrix by itself is not a linear transformation.

(e) False. There is a theorem in this module which
explains this point. Suppose T : R2 → R2 is the
tranformation which takes all vectors to the zero
vector, `1 is given by the equation y = x + 1 and
`2 is given by the equation y = x + 2. Then T is a
linear transformation but T (`1) = T (`2) = {(0, 0)}.
Hence it doesn’t make sense to say `1 and `2 are
parallel under T .

9 (a) T can be defined by T ~x =
�

2 0
0 2

�

~x .

(b) Since T ~x = 2~x for every ~x ∈ R2 we can define T as
the function which multiplies its input by the scalar
two.

(c) T is a linear transformation because T (~x + ~y) =
2(~x+ ~y) = 2~x+2~y = T ~x+T ~y and T (α~x) = 2α~x =
α2~x = αT ~x for all ~x , ~y ∈ R2 and all scalars α.

Solutions for Module 10

1 (a)

(R ◦P)
��

1
0

��

=
�

0
0

�

, (R ◦P)
��

0
1

��

=







1
p

2
−

1
p

2







(P ◦R)
��

1
0

��

=





0

−
1
p

2



 , (P ◦R)
��

0
1

��

=





0

−
1
p

2





We can use the effect of the transformation on the
standard basis to compute the matrix.

i.

MR◦P =
�

R(P(~e1)) R(P(~e2))
�

=







0
1
p

2
0 −

1
p

2







ii.

MP◦R =
�

P(R(~e1)) P(R(~e2))
�

=





0 0

−
1
p

2
−

1
p

2





iii. Since MU = MP◦R and
1
p

2
=
p

2
2

, we can

assert that U = P ◦R.

(b)

(F ◦ S)
��

1
0

��

=
�

0
2

�

, (F ◦ S)
��

0
1

��

=
�

2
0

�

(S ◦F)
��

1
0

��

=
�

0
2

�

, (S ◦F)
��

0
1

��

=
�

2
0

�

We can use the effect of the transformation on the
standard basis to compute the matrix.

i. MF◦S =
�

F(S(~e1)) F(S(~e2))
�

=
�

0 2
2 0

�

ii. MS◦F =
�

S(F(~e1)) S(F(~e2))
�

=
�

0 2
2 0

�

iii. S ◦F = V = F ◦ S.

2 (a)

MT

�

1
0

�

= MAMB

�

1
0

�

= MA

�

3 2
0 4

��

1
0

�

=
�

2 2
1 3

��

3
0

�

=
�

6
3

�

MT

�

0
1

�

= MAMB

�

0
1

�

= MA

�

3 2
0 4

��

0
1

�

=
�

2 2
1 3

��

2
4

�

=
�

12
14

�

Therefore, MT =
�

6 12
3 14

�

.

(b) MT = MAMB =
�

2 2
1 3

��

3 2
0 4

�

=
�

6 12
3 14

�

3 (a) T = B ◦A, thus T : R3→ R.

T





1
0
0



= (B ◦A)





1
0
0



= B
�

2
2

�

= 10

T





0
1
0



= (B ◦A)





0
1
0



= B
�

1
3

�

= 9

T





0
0
1



= (B ◦A)





0
0
1



= B
�

0
0

�

= 0.

Therefore MT =
�

10 9 0
�

(b) MT = MBMA =
�

3 2
�

�

2 1 0
2 3 0

�

=
�

10 9 0
�
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Solutions for Module 11

1 (a) M1 =





1 2 1
3 1 −2
8 6 −2



; rref(M1) =





1 0 −1
0 1 1
0 0 0



.

null(M1) =
�

~x ∈ R3 : M1 ~x = ~0
	

; therefore, we
need to solve
�

M1|~0
�

.

null(M1) =







~x ∈ R3 : ~x = s





1
−1

1



 for some s ∈ R







= span











1
−1

1











col(M1) = span











1
3
8



 ,





2
1
6



 ,





1
−2
−2











= span











1
3
8



 ,





2
1
6











row(M1) = span











1
2
1



 ,





3
1
−2



 ,





8
6
−2











= span











1
2
1



 ,





3
1
−2











= span











1
0
−1



 ,





0
1
1











(b) rref(M2) =
�

1 0 4/3
0 1 1/2

�

.

null(M2) = span











4/3
1/2
−1











col(M2) = span
§�

0
3

�

,
�

2
2

�ª

= R2

row(M2) = span











0
2
1



 ,





3
2
5











(c) rref(M3) =





1 0
0 1
0 0



.

null(M3) =
§�

0
0

�ª

col(M3) = span











1
3
4



 ,





2
1
0











row(M3) = span
§�

1
2

�

,
�

3
1

�ª

= R2

(d) rref(M4) = I4×4.

null(M4) =

















0
0
0
0

















col(M4) = R4

row(M4) = R4

2 (a) Since T is the projection onto P, T (~x) = ~x for any
~x ∈ P and thus P ⊆ range(T ).
Let ~y ∈ range(T). This means that ~y = T(~x) for
some ~x ∈ R3. By definition of a projection, ~y is
the closest point in P to ~x , so ~y ∈ P and thus
range(T ) ⊆ P.
This shows that range(T ) = P.
Since range(T ) = P is a plane, we have rank(T ) =
dim(range(T )) = dim(P) = 2.

(b) By the rank-nullity theorem,

rank(T ) + nullity(T ) = dim(domain of T ).

Thus,

nullity(T ) = dim(domain of T )−rank(T ) = 3−2= 1.

Since ~n =





3
4
5



 is normal to P, we have T(~n) = ~0

and thus ~n ∈ null(T ). Since nullity(T ) = 1 and ~n is
a non-zero vector in null(T ), we have

null(T ) = span











3
4
5











.

3 (a) Similar to Problem 2.(a),

range(P) = {line given by the equation y = x}

= span
§�

1
1

�ª

null(P) = {line given by the equation y = −x}

= span
§�

1
−1

�ª

(b) Notice that if we have a non-zero vector, after ro-
tation the vector still remains non-zero as rota-
tion does not change magnitude of vectors. Thus,

null(R) =
§�

0
0

�ª

. From the rank-nullity theorem,

rank(R) = 2 implies that range(R) = R2.

(c) Since F
�

x
y

�

=
�

x
−y

�

, if F
�

x
y

�

=
�

0
0

�

, then x = y =

0. Thus, null(F) =
§�

0
0

�ª

. From the rank-nullity

theorem, rank(F) = 2 implies that range(F) = R2.

(d) Let M be the matrix of the transformation

M. rref(M) =





1 0 −1
0 1 2
0 0 0



 So, range(M) =

col(M) = span











1
4
7



 ,





2
5
8











and null(M) =

span











1
−2

1











.
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(e) Notice that range(Q) ⊆ R. For any t ∈ R1, we

have Q





t
0
0



 = t + 0 = t and thus t ∈ range(Q).

Hence, range(Q) = R1. For ~x ∈ R3, Q(~x) =

Q





x
y
z



 = x + z = 0. Thus, null(Q) is the plane

given by the equation x + z = 0 Alternatively,

null(Q) = span











1
0
−1



 ,





0
1
0











4 (a) [~v]ε =
�

3
−3

�

So, [T ~v]ε =
�

7 5
−2 −2

��

3
−3

�

=
�

6
0

�

Thus T ~v = 6~e1.

(b) [~v]ε =





2
0
4



 So, [T ~v]ε =
�

3 7 5
1 −2 −2

�





2
0
4



 =

�

26
−6

�

Thus T ~v = 26~e1 − 6~e2 [Here ~e1,~e2 ∈ R2]

5 (a) False. range(A) and range(AT ) need not even be in
the same space.

For example, take A=





1 0
0 1
0 0



 , AT =
�

1 0 0
0 1 0

�

Then range(A) =
�

x y − plane in R3
	

, whereas
range(AT ) = R2

(b) False. Consider, T : R2→ R2 given by

T
�

x
y

�

=
�

x2

y

�

Then, null(T ) =
§�

0
0

�ª

which is a subspace. But T

is not linear.

(c) False. From rank-nullity theorem,

nullity(T )≤ dim( domain of T ) = m (in this case)

So, for any n> m this is false. Consider for example

T : R1→ R2 given by T (x) =
�

x
0

�

; nullity(T ) = 0

(d) False. This is false whenever m > n (follows from
rank-nullity theorem) Take for example: T : R3→

R2 induced by the matrix A=
�

1 0 0
0 1 0

�

;

we have that rank(T) = dim(col A) = 2, and
nullity(T ) = nullity(A) = 1.

6 (a)





0 0 0 0
0 0 0 0
0 0 0 0





(b)





1 0 0 0
0 0 0 0
0 0 0 0





(c)





1 0 0 0
0 1 0 0
0 0 1 0





(d) A 3× 4 matrix with rank 4 cannot exist. Examples
of justifications are: 1) The column space of a 3× 4
matrix is a subspace of R3 and so cannot be four
dimensional; 2) A matrix with rank 4 has 4 pivots,
but a 3× 4 matrix can have at most 3 pivots, which
is less than 4.

7 (a)





1 0 0
0 1 0
0 0 0





(b) The range of P is the x y-plane.

(c) The column space of MP is span











1
0
0



 ,





0
1
0











,

which is the x y-plane. The column space of a matrix
is the same as the range of its induced transforma-
tion.

(d) The null space of P and MP is span











0
0
1











, which

is the z-axis. The null space of a matrix is the same
as the null space of its induced transformation.

Solutions for Module 12

1 (a) S is both one-to-one and onto. No two distinct vec-
tors can be doubled to become the same vector, thus
the transformation is one-to-one. Every vector is
double of the vector that is half of itself, thus the
transformation is onto. S is invertible, its inverse is
the transformation that halves every vector.

(b) R is both one-to-one and onto. No two distinct vec-
tors can be rotated by 72◦ clockwise to become the
same vector, thus the transformation is one-to-one.
Every vector is the 72◦ clockwise rotation of the
vector that is the 72◦ counter-clockwise rotation of
itself, thus the transformation is onto. R is invert-
ible, its inverse is the transformation that rotates
every vector counter-clockwise by 72◦.

(c) P is neither one-to-one nor onto. Every vector on
the x-axis is sent to the origin so there are distinct
inputs that do not map to distinct outputs, thus the
transformation is not one-to-one. Vectors that do
not lie on the y-axis are not in the range of the trans-
formation, thus the transformation is not onto. P
is not invertible.

(d) F is both one-to-one and onto. No two distinct
vectors can be reflected to become the same vector,
thus the transformation is one-to-one. Every vector
is the reflection of the vector that is the reflection of
itself, thus the transformation is onto. F is invert-
ible, its inverse is itself—the reflection about the
line y = x .

(e) T is neither one-to-one nor onto. The RREF of MT

is





1 0 −1
0 1 0
0 0 0



. rank(T ) = rank(MT ) = 2. by the

rank-nullity theorem the nullity is 1. An entire line
of vectors is getting mapped to ~0 so there are dis-
tinct inputs that do not map to distinct outputs, thus
the transformation is not one-to-one. The range of
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T = the column space of MT which is not all of
R3, Thus the transformation is not onto. T is not
invertible.

(f) U is onto but is not one-to-one. Because U maps
from R3 to R2, the rank is at most 2, so by the Rank-
Nullity Theorem, the nullity must be at least 1. More
than one vector is getting mapped to ~0 so there are
distinct inputs that do not map to distinct outputs,
thus the transformation is not one-to-one. Since

rref(MU ) is
�

1 0 −1
0 1 2

�

. rank(U) = rank(MU ) =

2, which is the dimension of the codomain, thus the
transformation is onto. U is not invertible.

2 (a) To find the inverse we row reduce M1, applying each
of the row operations to the identity matrix.
�

2 3 1 0
1 −1 0 1

�

�

1 3
2

1
2 0

1 −1 0 1

�

�

1 3
2

1
2 0

0 − 5
2 − 1

2 1

�

�

1 3
2

1
2 0

0 1 1
5 − 2

5

�

�

1 0 1
5

3
5

0 1 1
5 − 2

5

�

So M−1
1 =

�

1
5

3
5

1
5 − 2

5

�

.

(b) M2 does not row reduce to the identity matrix so it
is not invertible.

(c) M−1
3 =





3 −3 −2
2 −2 −1
−3 4 2





(d) M4 is not invertible because it is not a square matrix.

(e) M−1
5 = 1

23







−4 −1 12 3
−8 −2 1 6
−3 −18 9 8

1 6 −3 5







5 (a) True. If m< n then T cannot be onto. If m> n then
T cannot be one-to-one. In both cases, T cannot be
invertible. We may conclude that the dimension of
the domain and codomain must be equal in order
for a transformation to be invertible.

(b) False. Elementary matricies are one row operation
away from the identity matrix. The identity matrix
of any size is always square. There is no identity
matrix such that performing one row operation on
it yields M . We may conclude that elementary ma-
tricies are always square.

(c) True. The inverse of an elementary matrix E is
another elementary matrix E−1 which corresponds
to the row operation that turns E into the identity
matrix. E−1 is the “opposite" row operation.

(d) True. Let E1 correspond to multiplying row 1 by 4.
Let E2 correspond to multiplying row 1 by 2. The
product E2E1 corresponds to multiplying row 1 by
8, which is also a single row operation and thus has
a corresponding elementary matrix.

(e) False. Let E1 correspond to multiplying row 1 by 4.
Let E2 correspond to multiplying row 2 by 2. The
product E2E1 corresponds to multiplying row 1 by 4
and row 2 by 2, which is not a single row operation
and thus does not have a corresponding elementary
matrix.

(f) True.

(g) True.

(h) False. Let A =
�

1 0 0
0 1 0

�

. Let B =





1 0
0 1
0 0



.

AB = I . BA =





1 0 0
0 1 0
0 0 0



 6= I . A and B are not

invertible. It is required that AB = BA= I in order
for matrices A and B to be invertible.

Solutions for Module 13

1 (a) Note that by definition

A= {2~e1 + ~e2,~e1 − 2~e2}.

Since [~x]A =
�

1
−1

�

, it follows that

~x = (2~e1 + ~e2)− (~e1 − 2~e2) = ~e1 + 3~e2.

It thus follows that [~x]E =
�

1
3

�

.

To find [~x]B, we must first express the two elements
of A as linear combinations of the two elements of
B. This involves solving two systems of linear equa-
tions:

2~e1 + ~e2 = x1(3~e1 − ~e2) + x2(−2~e1 + 3~e2)

and

~e1 − 2~e2 = y1(3~e1 − ~e2) + y2(−2~e1 + 3~e2).

Written as column vectors, these are
�

2
1

�

= x1

�

3
−1

�

+ x2

�

−2
3

�

and
�

1
−2

�

= y1

�

3
−1

�

+ y2

�

−2
3

�

.

Solving the systems and applying the definition, we
obtain

[~a1]B =
�

x1

x2

�

=
1
7

�

8
5

�

, [~a2]B =
�

y1

y2

�

=
1
7

�

−1
−5

�

.

Now we have

[~x]B = [~a1]B−[~a2]B =
1
7

�

8
5

�

−
1
7

�

−1
−5

�

=
1
7

�

9
10

�

.

(b) By definition, [E←A] is the matrix M satisfying

M[~x]A = [~x]E

for all vectors ~x . In particular, it must satisfy

M[~a1]A = [~a1]E , M[~a2]A = [~a2]E .

It thus follows that M satisfies

M
�

1
0

�

=
�

2
1

�

, M
�

0
1

�

=
�

1
−2

�

.
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Solving for M gives

M =
�

2 1
1 −2

�

.

To find [A←E], we simply need to compute M−1.
Following the explicit inverse formula for 2× 2 ma-
trices, we see that

[A←E] = M−1 =
1
5

�

2 1
1 −2

�

.

To compute [B←A], we note that

[B←A] = [B←E][E←A].

We compute [B←E] readily as

[E←B] =
�

3 −2
−1 3

�

.

Thus,

[B←E] = [E←B]−1 =
1
7

�

3 2
1 3

�

.

Therefore,

[B←A] =
1
7

�

3 2
1 3

��

2 1
1 −2

�

=
1
7

�

8 −1
5 −5

�

.

Taking inverse gives [A←B].
2 (a) By definition, we have

[~b1]E = [~a1]E = [2~e1 + ~e2]E

=





2
1
0



 ,

[~b2]E = [~a1]E + [~a2]E
= [(2~e1 + ~e2) + (~e1 − 2~e2)]E
= [3~e1 − ~e2]E

=





3
−1

0



 ,

[~b3]E = [~a1]E + [~a2]E + [~a3]E
= [(2~e1 + ~e2) + (~e1 − 2~e2) + (~e3)]E
= [3~e1 − ~e2 + ~e3]E

=





3
−1

1



 .

(b) We have that

[E←A] =





2 1 0
1 −2 0
0 0 1



 .

By part (a), we have

[E←B] =





2 3 3
1 −1 −1
0 0 1



 .

Inverting the former, we see that

[A←E] =
1
5





2 1 0
1 −2 0
0 0 5



 .

(c) We have

[A←B] = [A←E][E←B]

=
1
5





2 1 0
1 −2 0
0 0 5









2 3 3
1 −1 −1
0 0 1





=





1 1 1
0 1 1
0 0 1



 .

3 (a) [T ]E =
�

0 −1
1 0

�

and [T ]B =
�

−1 −2
1 1

�

(b) [T ]E =
�

0 0
0 1

�

To compute [T ]B, note that T ~b1 = T ~e1 = ~0 and
T ~b2 = T (~e1 + ~e2) = ~e2. Further, ~e2 = −~b1 + ~b2.

Therefore, [T ]B =
�

0 −1
0 1

�

.

(c) [T ]E = [T ]B =
�

2 0
0 2

�

(d) Note that T ~e1 = ~e2 and T ~e2 = ~e1, so [T ]E =
�

0 1
1 0

�

. To compute [T ]B, we simply observe that

~b1 = ~e1 and ~b2 = ~e1 + ~e2. Thus, T ~b1 = ~e2 =
−~b1 + ~b2 and T ~b2 = ~e1 + ~e2 = ~b2. Therefore,

[T ]B =
�

−1 0
1 1

�

.

4 (a) True. A square matrix M is invertible if and only if
it is a change of basis matrix.

(b) True. Any square matrix M satsifies M = I M I−1.

(c) True. The definition of similarity requires the exis-
tence of an invertible matrix P, i.e. a square matrix,
and a matrix B such that B = PAP−1. If A is not a
square matrix, then either PA or AP−1 is not defined,
so such a matrix P cannot exist.

(d) False. For example, A=
�

2 0
0 −1

�

is not similar to

its inverse.

Solutions for Module 14

1 The volume of T (C2) is equal to the absolute value of the
determinant of T . We have that

[T ]E =
�

3 −1
1 −1/4

�

,

so detT = −3/4+ 1 = 1/4. Since this number is positive,
it is also the desired volume.

2 We start by computing the determinant of S. The deter-
minant of S can be computed from [S]E , which is given
by

[S]E =





2 1 1
1 −1/2 0
0 0 1



 .

Since determinant is preserved by row operations of the
form “add a multiple of one row to another”, we can par-
tially row reduce [S]E (using only that row operation)
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without changing the determinant. Thus, the determinant
of [S]E is the same as the determinant of





2 1 1
0 −1 −1/2
0 0 1



 .

This matrix is triangular, so the determinant is just
the product of the entries on the diagonal. Therefore,
det[S]E = −2. But volume is non-negative, so the vol-
ume of S(C3) is 2.

3 (a) Computing, we see T (~e1) =
�

1
−1

�

and T (~e2) =
�

2
−1

�

. Drawing these two vectors, we see that

T (~e1),T (~e2) can be continuously transformed back
into ~e1,~e2 while staying linearly independent the
whole time. Therefore T is orientation preserving.

(b) detT is equal to the determinant of the matrix

[T ]E =
�

1 2
−1 −1

�

,

which is 1.

4 (a) The matrix for S in any basis is
�

2/3 0
0 2/3

�

, so the

determinant is 4/9.

(b) R does not change volume or orientation so its de-
terminant is 1.

(c) F does not change volume but it reverses orienta-
tion so its determinant is −1.

(d) Though the determinants of P and Q are both 0, the
determinant of G is not zero! We can compute the

standard matrix for G by noticing G(~e1) =
�

13/10
1/10

�

and G(~e2) =
�

1/10
7/10

�

. Therefore

[G]E =
�

13/10 1/10
1/10 7/10

�

and so detG = 9/10.

(e) The matrix [T ]E is given by

[T ]E =





1 −1 1
1 −1/3 1
0 0 1



 .

Subtracting the first row from the second gives the
matrix





1 −1 1
0 2/3 0
0 0 1



 ,

which has the same determinant as [T ]E , and since
this matrix is upper triangular, its determinant is
simply 2/3.

(f) The map J maps every vector in R3 into

span











0
0
1











, hence J is not invertible. Therefore,

detJ = 0.

(g) The determinant of the composition of the two maps
is just the product of the determinants of the two

maps. The matrices for K and H (with respect to
E) are
�

1 2
−1 −1

�

and
�

−1 −2
1 1

�

and each has determinant one, so the determinant
of K ◦H is also 1.

5 (a) Put E1 =
�

1 0
−1/2 1

�

. Then

E1A=
�

2 3
0 7/2

�

.

Put E2 =
�

1 0
0 2/7

�

. Then

E2E1A=
�

2 3
0 1

�

.

Put E3 =
�

1 −3
0 1

�

. Then

E3E2E1A=
�

2 0
0 1

�

.

Finally, put E4 =
�

1/2 0
0 1

�

. Then

E4E3E2E1A=
�

1 0
0 1

�

.

Therefore,

det A= det E−1
1 det E−1

2 det E−1
3 det E−1

4 = 7.

(b)

(c)

(d) They have the same area.

6 (a) By row reducing and keeping track of our steps, we
see that

E5E4E3E2E1A= I
where

E1 =





1 0 0
0 1 0
−1 0 1



 E2 =





1 0 0
0 1/2 0
0 0 1





E3 =





1 0 0
0 1 0
0 0 1/3



 E4 =





1 −2 0
0 1 0
0 0 1





E5 =





1 0 0
0 1 −1
0 0 1





Therefore A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 . By thinking

about the relationship between elementary matrices
and determinants, we see that det E−1

1 = det E−1
4 =

det E−1
5 = 1 and that det E−1

2 = 2 and det E−1
3 = 3.

Therefore det A= 6.

(b) det(A−1) = 1/det(A) = 1/6.

(c) We have

AT =





1 0 1
2 2 2
0 1 3



 .

Note that

(E1A)T = AT ET
1 =





1 0 0
2 2 0
0 1 3



 .

This matrix is lower triangular, so the determinant is
equal to the product of the diagonal entries, which
is still 6. Further det(ET

1 ) = 1, and so det(AT ) = 6.
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7 (a) The rank of A is equal to n, since each elementary

matrix has non-zero determinant and since A can
be expressed as a product of elementary matrices,
it also has non-zero determinant.

(b) The nullspace of A−1 is trivial (i.e. equal to {~0}),
since A−1 is invertible.

8 (a) Anna’s argument is incorrect.
Reason: Since S is a linear transformation on R3,
its determinant is given by the signed change of
3-dimensional volume. Anna’s argument is incorrect
because she considered the 2-dimensional volume
of S(C3).
Ella’s argument is incorrect.
Reason: The determinant is defined for all linear
transformations from Rn to Rn, no matter whether
it is invertible or not.
Finally, det(S) = 0, because since S(C3) is a 2-
dimensional object in R3, its 3-dimensional volume is
0. Therefore, Vol Change(S) = 0, and we conclude
that det(S) = 0.

(b) Anna’s argument is incorrect.
Reason: The determinant function is only defined
for linear transformations with same domain and
codomain.
Ella’s argument is correct.
Finally, det(T ) is undefined, because the domain
and codomain of T are not the same.

Solutions for Module 15

1 (a) Every non-zero vector in R2 is an eigenvector with
eigenvalue 3.

(b) char(R) has no real root, so R has no real eigenvalue
or eigenvectors.

(c) There are two eigenvalues. 0 is an eigenvalue with

eigenvector
�

1
1

�

, and 1 is an eigenvalue with eigen-

vector
�

1
−1

�

.

(d) There are two eigenvalues. −1 is an eigenvalue

with eigenvector
�

1
1

�

, and 1 is an eigenvalue with

eigenvector
�

1
−1

�

.

(e) char(T ) = −λ(λ2−12λ−12). Then, we have three
eigevalues. 0 is an eigenvalue with eigenvector




1
−2

1



, 6 + 4
p

3 is an eigenvalue with eigenvec-

tor





2
2+
p

3
2
p

3



, and 6− 4
p

3 is an eigenvalue with

eigenvector





2
2−
p

3
2− 2

p
3



.

(f) U is induced by a 2 × 3 matrix, and eigenval-
ues/eigenvectors are only defined for linear maps
from Rn to itself. So, U has no eigenvalues or eigen-
vectors.

2 (a) By definition,

char(A) = det(A−λI) = det
�

a−λ b
c d −λ

�

= λ2 − (a+ d)λ+ ad − bc.

(b) By the quadratic formula, the discriminant ∆ of
char(A) is∆= (a+d)2−4(ad−bc) = (a−d)2+4bc.
So, A has two distinct real eigenvalues if (a− d)2 +
4bc > 0, one real eigenvalue if (a− d)2 + 4bc = 0,
and no real eigenvalues if (a− d)2 + 4bc < 0.

3 (a) char(B) = det
�

1−λ 2
0 4−λ

�

= (1−λ)(4−λ). So,

B has eigenvalues 1 and 4.

(b) char(B) = char(BT ), so BT also has eigenvalues 1
and 4.

(c) The equation ~vT B = λ~vT holds if and only if BT ~v =
λ~v. Here, we interpret ~v as a column vector and ~vT

as a row vector.

We observe that BT has eigenvector
�

−3
2

�

with

eigenvalue 1 and an eigenvector
�

0
1

�

with eigen-

value 4. Hence B has left eigenvectors
�

−3 2
�

with eigenvalue 1 and left eigenvector
�

0 1
�

with
eigenvalue 4. It follows that all non-zero scalar mul-
tiples of
�

−3 2
�

and
�

0 1
�

are also left eigen-
vectors.

4 (a) False. 0 is an eigenvalue of
�

0 0
0 0

�

.

(b) True. An eigenvector is a nonzero vector by defini-
tion.

(c) False.
�

0 1
−1 0

�

has no real eigenvalue.

(d) True. Its characteristic polynomial has degree 3 and
hence has at least one real root.

(e) False. Eigenvalues are not defined for a non-square
matrix.

(f) False.







3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3






has 0 as an eigenvalue with

eigenvector







1
−1

0
0






. It also has eigenvalue 12 with

eigenvector







1
1
1
1






.

(g) True. Any eigenvector with eigenvalue 0 lies in the
null space of the matrix, which implies that the null
space has dimension at least one.

(h) True. Suppose A was a non-invertible square matrix.
Then, we must have nullity(A) > 0, and so null(A)
contains at least one non-zero vector, ~v. By defini-
tion A~v = ~0 = 0~v, and so ~v is an eigenvector for A
with eigenvalue 0.

Solutions for Module 16
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1 (a) i. λ= 1, Algebraic: 1, Geometric: 1

ii. λ= 2, Algebraic: 1, Geometric: 1

(b) i. λ= 3, Algebraic: 2, Geometric: 2

(c) i. λ= 0, Algebraic: 1, Geometric: 1

ii. λ= 3, Algebraic: 1, Geometric: 1

(d) i. λ= 1, Algebraic: 1, Geometric: 1

ii. λ= 2, Algebraic: 2, Geometric: 1

(e) i. λ= 2, Algebraic: 2, Geometric: 2

ii. λ= 1, Algebraic: 1, Geometric: 1

2 (a)
�

2 0
0 1

�

(b)
�

3 0
0 3

�

(c)
�

3 0
0 0

�

(d) Not diagonalizable.

(e)





2 0 0
0 2 0
0 0 1





3







2 0 0 0
0 2 0 0
0 0 7 0
0 0 0 7







4 No. If λ is an eigenvalue of a matrix A, then det(A−λI) =
0 and therefore A − λI is not invertible. Specifically,
nullity(A− λI) ≥ 1 and hence there exists at least one
eigenvector for the eigenvalue λ. Therefore the geometric
multiplicity of λ is at least one.

5 (a) Let ~v1 and ~v2 be eigenvectors for a matrix M cor-
responding to distinct eigenvalues λ1 and λ2 re-
spectively. Let a, b ∈ R be such that a~v1 + b~v2 = ~0.
Multiplying both sides by M −λ1 I , we get

b(λ2 −λ1)~v2 = ~0.

Since ~v2 is an eigenvector, it is nonzero. Hence, ei-
ther b = 0 or λ2 −λ1 = 0. Since λ1 6= λ2 we know
λ2 −λ1 6= 0 and so b = 0.

We have deduced that a~v1 = ~0. However, since ~v1

is nonzero (because it is an eigenvector), we must
have that a = 0. This means that ~v1 and ~v2 are
linearly independent.

(b)





1 1 0
0 1 0
0 0 −1





(c) This is impossible. Suppose that for some matrix M ,
~v1 is an eigenvector corresponding to 1 and ~v2 is an
eigenvector corresponding to −1. By 5a, ~v1 and ~v2

are linearly independent and thus form a basis for
R2. Since, R2 has a basis consisting of eignvectors
of M , we know M is diagonalizable.

Solutions for Appendix 1

1 (a) Linear equation.

(b) Linear equation.

(c) Not a linear equation because of the cos(y) term.

(d) Not a linear equation because of the 3x y term.

(e) Linear equation.

(f) Not a linear equation because of the x
y term. Note

that it is almost equivalent to the equation x = y,
but they are not equivalent because x = 0, y = 0 is
a solution to the latter equation but not the former.

2 (a)







x + 4z = 2

−x + y + 6z = −5

z = 2

(b)

�

7x + 8y = 11

16x + 13y = 30

(c)

�

−5s+ t = −1

−3s+ t = −1

3 (a) x1





0
1
0



+ x2





4
0
9



+ x3





2
2
2



=





0
0
1





(b) x
�

0
1

�

+ y
�

0
1

�

+ z
�

0
1

�

=
�

0
3

�

4 (a) If ~b =
�

7
14

�

, then the vector equation becomes

x
�

2
4

�

+ y
�

8
16

�

=
�

7
14

�

.

Converting it to a system of linear equations and
row reducing we get
�

2x + 8y = 7

4x + 16y = 14
→
�

x + 4y = 3.5

0x + 0y = 0
.

The solution to this system is then
§

x = 3.5− 4t
y = t (t ∈ R).

This system is consistent.

(b) There are vectors ~b that makes the system consis-

tent. For instance, any vector ~b = ~b =
�

t
2t

�

where

t ∈ R makes the system consistent. Since there
are infinitely many real numbers, we conclude that
there are infinitely many vectors ~b that makes the
system consistent.

(c) If ~b =
�

5
14

�

, then the vector equation becomes

x
�

2
4

�

+ y
�

8
16

�

=
�

5
12

�

.

Converting it to a system of linear equations and
row reducing we get
�

2x + 8y = 5

4x + 16y = 12
→
�

x + 4y = 2.5

0x + 0y = 2
.

This system is inconsistent.

(d) There are vectors ~b that makes the system incon-

sistent. For instance,
�

10
24

�

is is such a vector. In

general, any vector ~b with ~b =
�

5t
12t

�

where t ∈ R

(t 6= 0) makes the system inconsistent. Since there
are infinitely many real numbers, we conclude that
there are infinitely many vectors ~b that makes the
system inconsistent.
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5 (a) Let x be the number of chickens, and let y be the

number of rabbits. Using the information given in
the problem, we have

�

x + y = 35

2x + 4y = 94
.

(b) Row reducing

�

x + y = 35

2x + 4y = 94
,

we get
�

x + y = 35

y = 12
.

This shows that the system is consistent. The solu-
tion to this system is x = 23, y = 12. Thus, there
are 23 chickens and 12 rabbits in the farm.

(c) Before discussing each configuration, we point out
that a configuration is possible if there exists a natu-
ral number solution to the system of linear equations
associated with the configuration.

i. For the first configuration, let x be the number
of cats, and let y be the number of dogs. Using
the information given in the problem, we have

�

x + y = 35

4x + 4y = 94
.

Row reducing this system, we get

�

x + y = 35

0x + 0y = −46
.

This system is inconsistent, which means
there’s no solution to this system. Therefore,
Kokoro’s first configuration is not possible.

ii. For the second configuration, let x be the num-
ber of cats, and let y be the number of dogs.
Using the information given in the problem,
we have
�

x + y = 35

4x + 4y = 140
.

Row reducing this system, we get

�

x + y = 35

0x + 0y = 0
.

This system is consistent, and the complete
solution is given by

�

x = 35− t

y = t
(t ∈ R).

Take t = 1, and we get a natural number so-
lution x = 34, y = 1. (In fact, there is more
than one natural number solution.) Therefore,
Kokoro’s second configuration is possible.

iii. For the third configuration, let x be the num-
ber of chickens, and let y be the number of
rabbits. Using the information given in the
problem, we have

�

x + y = 42

2x + 4y = 77
.

Row reducing this system, we get
�

x + y = 42

y = − 7
2

.

This system is consistent and the unique solu-
tion is x = 91

2 , y = − 7
2 However, there cannot

be 91/2 of a chicken, so Kokoro’s third config-
uration is not possible.

6 (a) False. A counterexample is given by






x1 + x2 + x3 + x4 = 1
x1 + x2 + x3 + x4 = 2
x1 + x2 + x3 + x4 = 3

.

(b) False. A counterexample is given by
§

0x1 + 0x2 = 0
0x1 + 0x2 = 1

.

(c) False. Assume the y-axis can be represented as the
complete solution to y = mx + c for some m, c.
Since (x , y) = (0, 0) and (x , y) = (0, 1) are both on
the y axis, we know 0 = 0m+ c and 1 = 0m+ c.
This gives 0= 1, which is false. Therefore, there’s
no m, c ∈ R so that the y-axis is the solution set to
the equation y = mx + c.

(d) True. Take m = 0, c = 0. The equation then be-
comes y = 0. A complete solution to this equation

is given by
�

t
0

�

(t ∈ R), which is exactly the x-axis.

(e) False. The x-axis in R3 can be described as










x
0
0



 ∈ R3 : x ∈ R







. Assume the x-axis can be

represented as the complete solution to z = m1 x +
m2 y+c for some m1, m2, c. Since (x , y, z) = (0, 0, 0)
is on the x axis, we know c = 0. Since (x , y, z) =
(1,0,0) is on the x axis, we know that m1 = 0.
The equation then becomes z = m2 y . However, for
each choice of m2, x = 0, y = 1, z = m2 is a solu-
tion to the system which does not lie in the x-axis.
Therefore, there’s no there’s no m1, m2, c ∈ R so
that the x-axis is the solution set to the equation
z = m1 x +m2 y + c.

(f) True. An example is given by
�

0x + 0y = 1 .

Solutions for Appendix 2

1 (a) Let

X =





4 6 3 −10 6
5 2 1 −7 2
−6 2 1 4 2





be the augmented matrix corresponding to the sys-
tem.

By row reduction,

rref(X ) =





1 0 0 −1 0
0 1 1/2 −1 1
0 0 0 0 0



 .
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The third and fourth column of rref(X ) are free vari-
able columns, so we introduce the arbitrary equa-
tions z = t and w = s and solve the following system
in terms of t and s:


















x −w= 0

y + (1/2)z −w= 1

z = t

w= s

.

Written in vector form, the complete solution is






x
y
z
w






=







s
1− (1/2)t + s

t
s






= t







0
−1/2

1
0






+s







1
1
0
1






+







0
1
0
0






.

(b) Let

X =





2 2 1 0 −1
0 1 −4 2 3
1 −1 −3 −4 5





be the augmented matrix corresponding to the sys-
tem.
By row reduction,

rref(X ) =





1 0 0 −2 1
0 1 0 2 −1
0 0 1 0 −1



 .

The fourth column of rref(X ) is a free variable col-
umn, so we introduce the arbitrary equation w= t
and solve the following system in terms of t:


















x − 2w= 1

y + 2w= −1

z = −1

w= t

.

Written in vector form, the complete solution is






x
y
z
w






=







1+ 2t
−1− 2t
−1
t






= t







2
−2

0
1






+







1
−1
−1

0






.

(c) Let

X =
�

1 1 −2 −5
−4 1 5 3

�

be the augmented matrix corresponding to the sys-
tem.
By row reduction,

rref(X ) =
�

1 0 −7/5 −8/5
0 1 −3/5 −17/5

�

.

The third column of rref(X ) is a free variable col-
umn, so we introduce the arbitrary equation z = t
and solve the following system in terms of t:






x − 7/5z = −8/5

y − 3/5z = −17/5

z = t

.

Written in vector form, the complete solution is




x
y
z



=





−8/5+ 7/5t
−17/5+ 3/5t

t



= t





7/5
3/5

1



+





−8/5
−17/5

0



 .

(d) Let

X =





3 −2 0 −4
1 1 3 3
−4 1 −3 1





be the augmented matrix corresponding to the sys-
tem.

By row reduction,

rref(X ) =





1 0 6/5 2/5
0 1 9/5 13/5
0 0 0 0



 .

The third column of rref(X ) is a free variable col-
umn, so we introduce the arbitrary equation z = t
and solve the following system in terms of t:







x + 6/5z = 2/5

y + 9/5z = 13/5

z = t

.

Written in vector form, the complete solution is





x
y
z



=





2/5− 6/5t
13/5− 9/5t

t



= t





−6/5
−9/5

1



+





2/5
13/5

0



 .

(e) Let

X =





1 −1 2 −1
2 1 4 1
3 −4 3 −2





be the augmented matrix corresponding to the sys-
tem.

By row reduction,

rref(X ) =





1 0 0 4/3
0 1 0 1
0 0 1 −2/3



 .

Written in vector form, the complete solution is





x
y
z



=





4/3
1

−2/3



 .

(f) Let

X =







2 0 1 8
1 1 1 4
1 3 2 4
3 2 4 9







be the augmented matrix corresponding to the sys-
tem.

By row reduction,

rref(X ) =







1 0 0 5
0 1 0 1
0 0 1 −2
0 0 0 0






.

Written in vector form, the complete solution is





x
y
z



=





5
1
−2



 .
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2 (a) i.





−10 −4 4 28
3 1 −1 −8
1 1 −1/2 −3





(a) ii.




−10 −4 4 28
3 1 −1 −8
1 1 −1/2 −3





→





1 1 −1/2 −3
3 1 −1 −8
−10 −4 4 28





→





1 1 −1/2 −3
0 −2 1/2 1
0 6 −1 −2





→





1 1 −1/2 −3
0 1 −1/4 −1/2
0 6 −1 −2





→





1 1 −1/2 −3
0 1 −1/4 −1/2
0 0 1/2 1





→





1 1 −1/2 −3
0 1 −1/4 −1/2
0 0 1 2





→





1 0 0 −2
0 1 0 0
0 0 1 2





(a) iii. This system of linear equations is consistent. Its
complete solution is





x1

x2

x3



=





−2
0
2



 .

(b) i.




3 −2 4 54
5 −3 6 88
1 0 0 −3





(b) ii.




3 −2 4 54
5 −3 6 88
1 0 0 −3





→





1 0 0 −3
5 −3 6 88
3 −2 4 54





→





1 0 0 −3
0 −3 6 103
0 −2 4 63





→





1 0 0 −3
0 1 −2 −103/3
0 −2 4 63





→





1 0 0 −3
0 1 −2 −103/3
0 0 0 −17/3





(b) iii. This system of linear equations is inconsistent.

(c) i.
�

1 2 5
�

(c) ii. The augmented matrix of this system of linear equa-
tions is already in reduced row echelon form.

(c) iii. This system of linear equations is consistent. Its
complete solution is

�

x
y

�

= t
�

−2
1

�

+
�

5
0

�

.

(d) i.
�

4 6
2 3

�

(d) ii.
�

4 6
2 3

�

→
�

1 3/2
2 3

�

→
�

1 3/2
0 0

�

(d) iii. This system of linear equations is consistent. Its
complete solution is x = 3/2.

(e) i.




1 2 4 −3 0
3 5 6 −4 1
4 5 −2 3 3





(e) ii.





1 2 4 −3 0
3 5 6 −4 1
4 5 −2 3 3





→





1 2 4 −3 0
0 −1 −6 5 1
0 −3 −18 15 3





→





1 2 4 −3 0
0 1 6 −5 −1
0 −3 −18 15 3





→





1 2 4 −3 0
0 1 6 −5 −1
0 0 0 0 0





→





1 0 −8 7 2
0 1 6 −5 −1
0 0 0 0 0





(e) iii. This system of linear equations is consistent. Its
complete solution is







x1

x2

x3

x4






= t







8
−6

1
0






+ s







−7
5
0
1






+







2
−1

0
0






.

(f) i.






1 −1 5 1 1
1 1 −2 3 3
3 −1 8 1 5
1 3 −9 7 5







(f) ii.







1 −1 5 1 1
1 1 −2 3 3
3 −1 8 1 5
1 3 −9 7 5






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→







1 −1 5 1 1
0 −2 3 3
3 −1 8 1 5
1 3 −9 7 5







→







1 −1 5 1 1
0 2 −7 2 2
0 2 −7 −2 2
0 4 −14 6 4







→







1 −1 5 1 1
0 1 −7/2 1 1
0 2 −7 −2 2
0 4 −14 6 4







→







1 −1 5 1 1
0 1 −7/2 1 1
0 0 0 −4 0
0 0 0 2 0







→







1 −1 5 1 1
0 1 −7/2 1 1
0 0 0 1 0
0 0 0 2 0







→







1 −1 5 1 1
0 1 −7/2 1 1
0 0 0 1 0
0 0 0 0 0







→







1 0 3/2 0 2
0 1 −7/2 0 1
0 0 0 1 0
0 0 0 0 0







(f) iii. This system of linear equations is consistent. Its
complete solution is






x1

x2

x3

x4






= t







−3/2
7/2

1
0






+







2
1
0
0






.

(g) i.
�

0 0 0 0
�

(g) ii. The augmented matrix of this system of linear equa-
tions is already in reduced row echelon form.

(g) iii. This system of linear equations is consistent. Its
complete solution is




x
y
z



= t





1
0
0



+ s





0
1
0



+ r





0
0
1



 .

3 (a) The vectors ~v1, ~v2 and ~v3 are linearly independent if

x~v1 + y~v2 + z~v3 = ~0

only has the trivial solution.
This vector equation is equivalent to the system of
linear equations


















x + y − 2z = 0

x + 4y − 2z = 0

−2x + 4z = 0

4x + 2y − 8z = 0

.

The complete solution to this system is




x
y
z



= t





2
0
1



 .

In particular, (x , y, z) = (2,0,1) is a non-trivial so-
lution to this system, so the vectors ~v1, ~v2 and ~v3

are linearly dependent.

(b) By definition, the vectors ~v1, ~v2, and ~v3 span R3 if
every vector can be written as a linear combination
of ~v1, ~v2, and ~v3. In other words, the equation

x~v1 + y~v2 + z~v3 =





a
b
c





is consistent for all choices of a, b, and c. This vec-
tor equation is equivalent to the system of linear
equations






x − 2y + 2z = a

2x + y + 7z = b

3x + z = c

.

Row reducing, we notice that every column is a
pivot column and so the system is always consistent.
Therefore, span{~v1, ~v2, ~v3}= R3.

(c) The lines `1 and `2 intersect when their x and y-
coordinates. We first set the parameter variable of
`1 to t and the parameter variable of `2 to s. Then,
equating the coordinates gives the system of linear
equations

�

t − 2s = 2

3t − s = 3
.

The solution to this system is

�

t
s

�

=
�

4/5
−3/5

�

.

Since ~x =
�

9/5
17/5

�

when t = 4/5 (or s = −3/5), the

intersection of `1 and `2 is the point
�

9/5
17/5

�

.

(d) The planes P1 and P2 intersect when their coordi-
nates are equal. Relabeling the parameter variables
for P2 as q and r and equating both vector forms,
we get the following system of linear equations:







t − s− q+ r = 0

−t − s+ q− 3r = 1

2s− q+ 2r = −1

.

The complete solution to this system is







t
s
q
r






= u







−2
−1

0
1






+







−1/2
−1/2

0
0






.

Thus there are an infinite number of points in
P1 ∩P2.

To find these points, we substitute q = 0 and r = u
into the vector form of P2. This shows us that
P1 ∩P2 can be expressed in vector form by





x
y
z



= u





−1
3
−2



+





0
1
−1



 .
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4 (a) The reasoning is incorrect. The solution (x , y, z) =

(0,0,0) is the trivial solution to the vector equa-
tion, and it is always a solution to the homogeneous
equation

α1~v1 + · · ·+αk~vk = ~0

no matter what ~v1, . . . , ~vk are.
To determine if a set of vectors is linearly indepen-
dent, we need to find out whether the trivial solu-
tion is the only solution to the vector equation. That
is, there does not exist any non-trivial solution to
the vector equation.

(b) The reasoning is incorrect. A trivial solution is the
solution where all the variables equal zero, so the
solution (x , y, z) = (−2,0,−1) is not a trivial solu-
tion.

(c) The reasoning is incorrect. When equating coordi-
nates of two different vector forms, the parameter
variables needs to be set to different letters.
A valid system of linear equations is

�

t − 2s = 2

3t − s = 3
.

Here we have set the parameter t in the vector form
of `2 to s.

(d) The reasoning is incorrect. The solution
�

4/5
−3/5

�

to

the system of linear equations gives the value of t
and s at the intersection. To find the intersection of
`1 and `2, the value t = 4/5 or s = −3/5 needs to
be plugged into the vector form of `1 or `2.

(e) The reasoning is correct. Since ~x =





1/2
−1/2

0



 is a

point on both P1 and P2, it is in the intersection
of P1 and P2, so the planes P1 and P2 intersect.
However, we can not determine if the intersection
is a line or a plane based on only one point, so we
need to set up and solve an appropriate system of
linear equations.

(f) The reasoning is incorrect. Finding one point that is
in P2 but not in P1 shows that P1 does not intersect
P2 at that point, but does not rule out the possibility
that P1 intersects P2 at a different point.

Solutions for Appendix 3

1 Note: there are many matrices possible.

(a)
�

1 0
0 −2

�

(b)
�

1 1
1 −4

�

or
�

1 0
0 −2

�

(c) Impossible. A symmetric matrix must be square.

(d) Impossible. Let A= [ai j] be a skew symmetric ma-
trix. By definition, ai j = −a ji . In particular, the
diagonal entries satisfy akk = −akk and so must be
zero. For every other entry ai j with i 6= j, there
exists a corresponding entry −a ji . Therefore the
sum of all entries must be zero.

(e)
�p

2
p

3 2
p

5
�

2 (a)





1
5
5





(b)





4 1 1
2 2 4
2 12 13





(c)





−1 −1 −1
1 −2 2
1 6 2





(d) Not defined

(e)





2 1 1
2 1 7
2 13 16





(f)





4 6 7
2 0 4
3 18 15





(g)
�

4
�

(h)





0 −2 1
0 2 −1
0 −4 2





4 (a) True

(b) False. Consider
�

0 0
0 1

�

.

(c) False. Zero matrices can be of any size.

(d) False. All zero matrices are both upper and lower
triangular.

(e) False. Diagonal matrices must be square; up-
per/lower triangular matrices can be of any size.

(f) True

(g) True

5 (a) Yes. 1× 1

(b) Yes. n× n

(c) They are related but not the same. ~r · ~c is a scalar
and RC is a 1× 1 matrix.

(d) i. The inner product of ~x and ~y is [~x · ~y]. That
is, it is the 1× 1 matrix with entry ~x · ~y .

ii. The reduced row echelon form of Q looks like
a (possibly) non-zero row followed by rows of
zeros.

iii. Let y1, . . . , yn ∈ R be the entries in ~y . Then the
columns of Q are y1~x , . . . , yn ~x . These columns
are all scalar multiples of the same vector, ~x ,
and so are linearly dependent.

6 (a) Multiplying




1 a b
0 1 c
0 0 1









1 x y
0 1 z
0 0 1



=





1 a+ x c + a y + z
0 1 b+ y
0 0 1





and so two Heisenberg matrices aways multiply to-
gether to form another Heisenberg matrix.

(b) It may be that AB 6= BA. For example




1 2 0
0 1 1
0 0 1









1 1 0
0 1 2
0 0 1



 6=





1 1 0
0 1 2
0 0 1









1 2 0
0 1 1
0 0 1



 .

(c) By multiplying out, we see X Y = I (and Y X = I).
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7 (a) Multiplying out, we see
�

a −b
b a

��

x −y
y x

�

=
�

ax − b y −(a y + bx)
a y + bx ax − b y

�

has the required form.

(b) Multiplying, we see

X 2 =
�

a −b
b a

�2

=
�

a2 − b2 −2ab
2ab a2 − b2

�

=
�

1 0
0 1

�

implies that a = 0 or b = 0. If a = 0, then −b2 = 1,
which is impossible. Therefore b = 0. This means
a2 = 1 which has solutions a = ±1. Therefore there
are exactly two solutions to X 2 = I .

(c) Multiplying, we see

X 2 =
�

a −b
b a

�2

=
�

a2 − b2 −2ab
2ab a2 − b2

�

=
�

−1 0
0 −1

�

implies that a = 0 or b = 0. If a = b, then a2 = −1,
which is impossible. Therefore a = 0. This means
−b2 = −1 which has solutions b = ±1. Therefore
there are exactly two solutions to X 2 = −I .

(d) There are infinitely many solutions to Y 2 = I . For

example
�

0 t
1/t 0

�2

= I for any non-zero t.

(e) Yes to the first, no to the second. Matrices are more
general than numbers!

Solutions for Appendix 4

1 (a) 4

(b) 0

(c) 1

(d) 0

2 (a) −12

(b) −16

(c) 5

(d) 12

(e) 0

3 (a) Since det
��

1 1
−3 2

��

= 5 > 0, the ordered set
§�

1
−3

�

,
�

1
2

�ª

is a right-handed basis.

(b) Since det
��

1 −2
−3 6

��

= 0, the set
§�

1
−3

�

,
�

−2
6

�ª

is not linearly independent and so is not a basis.

(c) Since det









1 1 1
0 2 −1
3 5 1







= −2< 0, the ordered

set











1
0
3



 ,





1
2
5



 ,





1
−1

1











is a left-handed basis.

(d) Since det









1 1 1
4 2 1
9 3 1







 = −2 < 0, the ordered

set











1
4
9



 ,





1
2
3



 ,





1
1
1











is a left-handed basis.

(e) Since det









4 4 2
2 2 1
4 0 6







 = 0, the set











4
2
4



 ,





4
2
0



 ,





2
1
6











is not linearly independent

and so is not a basis.

4 Before answering, note that det
��

a2 ab
ab b

��

= a2 b −

a2 b2 = a2(b− b2).

(a) If
§�

a2

ab

�

,
�

ab
b

�ª

is a right-handed basis, then

det
��

a2 ab
ab b

��

= a2(b − b2) > 0. This implies

that a2 and b− b2 are both nonzero and have the
same sign. Since a2 ≥ 0, we must have a2 > 0
and b− b2 > 0. The roots of b− b2 are b = 0 and
b = 1, so b− b2 > 0 implies 0< b < 1. Therefore,
§�

a2

ab

�

,
�

ab
b

�ª

is a right-handed basis when a 6= 0

and 0< b < 1.

(b) If
§�

a2

ab

�

,
�

ab
b

�ª

is a left-handed basis, then

det
��

a2 ab
ab b

��

= a2(b − b2) < 0. This implies

that a2 and b− b2 are both nonzero and have dif-
ferent signs. Since a2 ≥ 0, this implies that a2 > 0
and b− b2 < 0. Roots of b− b2 are b = 0 and b = 1,
so b − b2 < 0 implies b < 0 or b > 1. Therefore,
§�

a2

ab

�

,
�

ab
b

�ª

is a left-handed basis when a 6= 0

and either b < 0 or b > 1.

(c) If
§�

a2

ab

�

,
�

ab
b

�ª

is not a basis, then

det
��

a2 ab
ab b

��

= a2(b − b2) = 0. This implies

that a2 = 0 or b−b2 = 0. Therefore,
§�

a2

ab

�

,
�

ab
b

�ª

is not a basis if one of the following conditions holds:
a = 0, b = 1, or b = 0.

5 Since

M adj

det M
M =

1
ad − bc

�

da− bc d b− bd
ac − ca ad − cb

�

=
�

1 0
0 1

�

= I2×2

and

M
M adj

det M
=

1
ad − bc

�

ad − bc ba− ab
cd − dc da− cb

�

=
�

1 0
0 1

�

= I2×2,

we conclude that

M−1 =
M adj

det(M)
.

6 (a) False. A counterexample is M =

�

2 0
0 1

2

�

.
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(b) False. A counterexample is M =





−1 0 0
0 −1 0
0 0 −1



.

M does not change volume, but it does reverse ori-
entation.

(c) True. Note that [~a|~b] is just [~b|~a] with its columns
swapped. The oriented volume of the parallelo-
gram generated by ~a and ~b is equal to the negative
of the oriented volume of the parallelogram gener-
ated by (~b, ~a). Using Volume Theorem I, we have
det([~a|~b]) = −det([~b|~a]).

(d) False. A counterexample is M =





1 0 0
0 1 0
0 0 1



. We

multiply the (1,2)-entry by 4 to get another ma-

trix M ′. Note that M ′ is still





1 0 0
0 1 0
0 0 1



, and

det(M) = 1= det(M ′) 6= 4det(M).

(e) True. Note that det(AT A) = det(AT )det(A) =
det(A)det(A) = det(A)2 ≥ 0.
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Indices

Index of Symbols

Cn, 171, 179
L(X ) (Image of a set), 108, 119
M T , 130
[T ]B, 163
[~v]B, 97, 104
|T |, 173, 180
[B←A], 161
col(M), 129, 140
id, 147
N, 2
null(M), 129, 140
nullity(M), 133

projX ~v, 69, 75
Q, 2
R, 2
Rn, 2
rank(M), 133
rank(T ), 127
row(M), 129, 140
span V , 34, 43
vcomp~v ~u, 72, 77
Z, 2
∩, 2, 12
char(A), 188, 195

∪, 2, 12
det(T ), 173, 180
;, 1
∈, 1
‖ · ‖, 3
/∈, 1
∼, 164, 169
⊆, 1
~0, 4
~a · ~b, 53
g ◦ f , 121

Index of Terms

Basis, 81, 86
change-of-basis, 198
left-handed, 100, 105
negatively oriented, 100,

105
orientation of, 99, 238
positively oriented, 100,

105
right-handed, 100, 105,

236
standard basis, 5, 83

Change of basis matrix, 161
Characteristic polynomial, 188,

195
Coordinates, 5

Determinant, 173, 180
2× 2 formula, 235
3× 3 formula, 237

Diagonalizable, 199
Dimension, 127
Displacement, 2
Dot product, 53

algebraic definition, 53
geometric definition, 53

Eigenspace, 200, 206
Eigenvalue, 187, 192

algebraic multiplicity, 200,
206

geometric multiplicity,
200, 206

Eigenvector, 187, 192, 198

Function
composition, 121
identity function, 147

inverse of, 147
invertible function, 147

Heisenberg matrix, 234
Hyperplane, 56

Injective function, 147
Inner product, 233
Isomorphism, 3

Line
direction vector for, 18, 29
normal form, 55
normal vector, 55, 66
parallel, 20
skew, 20
vector form of, 18, 29

Linear combination, 5, 14
coefficient of, 5, 14
convex, 23, 27
non-negative, 23, 27
trivial, 38, 48

Linear transformation, 108,
118, 190

composition of, 174
induced, 132, 139
notation, 109
nullity, 128
orientation preserving,

173
orientation reversing, 173
proving linearity, 111
range (image), 127, 137
rank, 127, 143
representation in a basis,

112, 163
Linear transformations

null space (kernel), 128,
137

Linearity, 109
Linearly dependent, 37, 47
Linearly independent, 37, 47

Matrix
coefficient matrix, 89
column space, 129, 140
definition, 227
diagonal matrix, 198
diagonalizable, 198, 205
elementary matrix, 150,

156, 175, 235
fundmamental subspaces

of, 129, 140
identity matrix, 149, 228
inverse of, 149, 157
invertible, 151, 162, 177
linear transformation

induced by, 132, 139
matrix multiplication, 122
matrix transformation,

112
null space, 129, 140
nullity, 133, 143
of a linear transformation,

163
rank, 133
reduced row echelon form,

130
row space, 129, 140
similar matrices, 197
transpose of, 130

Matrix equations
the column picture, 90
the row picture, 90
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Normal vector, 56
Null space, 188

One-to-one function, 147
Onto function, 148
Orthogonal, 54, 64
Outer product, 233

Parameter variable, 18
Plane

direction vector for, 21, 31
normal vector, 55, 66
scalar form of, 57
vector form of, 21, 31

Point
in Euclidean Space, 3
of a set, 1

Projection, 69, 75

Rank-nullity theorem
for linear transformations,

135, 148
for matrices, 134

Russel’s Paradox, 1

Scalar, 2
Scalar product, 53
Set

element of, 1
empty, 1
equality, 1
image of, 108, 119
intersection, 2, 12
union, 2, 12

Set sum, 35, 45
Set-builder notation, 2
Span, 34, 43

translated, 36
Standard basis, 5
Subspace, 79, 85, 127

dimension, 82, 86
trivial subspace, 81

Surjective function, 148
System of linear equations

coefficient matrix, 89
equivalent, 212
homogeneous, 39
overdetermined system,

21

True vector, 99

Unit n-cube (Cn), 171, 179

Vector, 2
direction of, 2, 54
magnitude of, 2, 3
norm of, 3
positive direction of, 54
representation in a basis,

97, 104
rooted, 3

Vector component, 72, 77
Vector operations

addition, 4
laws of, 4
scalar multiplication, 4

Volume, 35, 171
theorem I, 175, 235
theorem II, 177

Zero vector (~0), 4
Zero vector (~0), 110

Index of Definitions

Basis, 81, 86
left-handed, 100, 105
negatively oriented, 100,

105
positively oriented, 100,

105
right-handed, 100, 105
standard basis, 83

Determinant, 173, 180
Dot product

algebraic definition, 53
geometric definition, 53

Eigenspace, 200, 206
Eigenvalue, 187, 192

algebraic multiplicity, 200,
206

geometric multiplicity,
200, 206

Eigenvector, 187, 192
Equivalent systems, 209

Function
composition, 121
identity function, 147
inverse of, 147
invertible function, 147

Homogeneous system, 39
Hyperplane, 56

Injective function, 147

Line
direction vector for, 18, 29
normal form, 55
normal vector, 55, 66
vector form of, 18, 29

Linear combination, 5, 14
coefficient of, 5, 14
convex, 23, 27
non-negative, 23, 27
trivial, 38, 48

Linear dependence/indepen-
dence

algebraic definition, 38,
49

geometric definition, 37,
47

Linear transformation, 108,
118

induced, 132, 139
null space (kernel), 128,

137
nullity, 128
orientation preserving,

173
orientation reversing, 173
range (image), 127, 137
rank, 127, 143
representation in a basis,

163

Matrix
column space, 129, 140

diagonal, 228
diagonal of, 228
diagonalizible, 198, 205
elementary matrix, 150,

156
fundamental subspaces of,

129, 140
identity matrix, 149, 228
inverse of, 149, 157
linear transformation

induced by, 132, 139
lower triangle of, 228
lower triangular, 228
null space, 129, 140
nullity, 133, 143
of a linear transformation,

163
rank, 133
row space, 129, 140
similar matrices, 164, 169
skew-symmetric, 228
square, 228
symmetric, 228
transpose of, 130
triangular, 228
upper triangle of, 228
upper triangular, 228
zero matrix, 228

One-to-one function, 147
Onto function, 148
Orthogonal, 54, 64
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Parameter variable, 18
Plane

direction vector for, 21, 31
vector form of, 21, 31

Projection, 69, 75

Scalar, 2
Set, 11

empty, 1
equality, 1
image of, 108, 119
intersection, 2, 12

union, 2, 12
Set sum, 35, 45
Set-builder notation, 2
Span, 34, 43
Subset, 1
Subspace

dimension, 82, 86
trivial subspace, 81

Subspaces, 79, 85
Superset, 1
Surjective function, 148

Unit n-cube (Cn), 171, 179

Vector, 2
representation in a basis,

97, 104
Vector component, 72, 77
Vector operations

addition, 4
scalar multiplication, 4

Zero vector (~0), 4
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