SIEVE Circuit Intermediate Representation

See Introduction to the SIEVE Intermediate Representation for a list of contributors

Last Updated: 2023-07-17

Distribution Statement “A”: Approved for Public Release, Distribution Unlimited.

This material is based upon work supported by DARPA under Contracts No. HR001120C0087,
HR001120C0086, HR001120C0085 and Agreement No. HR00112020021. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of DARPA.

Contents

1 Introduction

2 Headers
3 Circuit-IR
3.1 Header e
3.2 Types . . . e
3.3 Public and Private Inputs
3.4 Memory Management
35 Standard Gates
3.6 Conversion Gates
3.6.1 Conversions Between Field Types
3.6.2 Conversions Between Extension Field and its Base Field
3.6.3 Conversion Between Rings and Fields
3.7 Function Gates
3.7.1 Function Gate Exampleo
3.7.2 Function Declaration Ordering and Recursion
3.8 Example
3.9 Circuit Semantics and Validity oo
4 Plugins
4.1 Motivation L.
4.2 Plugin Syntax
4.3 Plugin Types e

5 Input Streams

6 Circuit Configuration Communication (CCC)

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Motivation
CCCcontentand syntax
Type Families
Predicates
Conversion Declarations
Plugin Constraints
Example

Appendix A Textual Syntax

A.l
A.2
A3
A4
A5

Special Tokens L
Header
Circuit-IR
Input Streams L
Circuit Plugins

Appendix B Binary Syntax
B.1 FlatBuffer Schema
B.2 Multi Gigabyte Flatbuffer Limitations

1 Introduction

The Circuit-IR has been a workhorse of the SIEVE Program, having been tested during the Phase
[l testing event. The SIEVE Circuit-IR encodes a circuit as a sequence of gates, each emitting
one or more wires. This document specifies the format and semantics of the Circuit-IR, the public
and private input streams used with it, and the Circuit Configuration Communication (CCC). For
a quick example try jumping ahead to the example in section 3.8.

2 Headers

Please see the Headers section of Introduction to the SIEVE Intermediate Representation.

3 Circuit-IR
3.1 Header

As stated in Section 2, the Circuit-IR header starts with the version number and resource type.

version 2.0.0;

circuit ;

Next, all plugins (Section 4), types, and conversion gates that are used in the file are declared up
front in the header, before the @begin keyword. The order of these declarations must be sorted.
Plugins must appear first, followed by types, and then conversion gates come last.

A type declaration specifies the types that are used in the rest of the file. Types can specify
either a field, ext_field, or ring, as defined in Section 3.2. Type declarations also implicitly
specify a type-index, assigned incrementally as each type is specified. The maximum number of
types that can be defined is 256.

It is a failure of resource validity to declare the same type more than once. This property
allows backends to compare types by comparing indices, which is less computationally expensive
(in particular when dealing with large primes or structured types defined by plugins).

// index 0: Boolean

Otype field 2;

// index 1: 2761 — 1

Otype field 2305843009213693951;

// index 2: GF(2763) with polynomial modulus x"63 + x + 1
Otype ext_field 0 63 9223372036854775811;

// index 3: Ring over 2732

Otype ring 32;

This example declares two field types for the Boolean and 25! — 1 prime fields, extension field
type for GF(2%3), and a ring type for 232, respectively indexed by 0, 1, 2, and 3.

All conversion gates used in the file must be declared in the header. Each conversion gate
declaration specifies which fields are converted between and how many of each field is input and
output. Note that the length of input and output ranges must be greater than 0. Here are a few
examples.

// Convert Booleans to Mersenne61 and back
@convert(@out: 1:1, @in: 0:61);
@convert(@out: 0:61, @in: 1:1);

// Convert Mersenne6l to 25519 and back
@convert(@out: 1:5, @in: 2:1);
@convert(@out: 2:1, @in: 1:5);

Conversion gates are fully specified in section 3.6.

3.2 Types

The Circuit-IR supports multiple types, as specified below.

e Otype field <p>: This type specifies a field modulo prime p.
Examples:

// index 0: Boolean

Otype field 2;

// index 1: 2°61 — 1

Otype field 2305843009213693951;

Qtype ext_field <index> <degree> <modulus>: This type specifies an extension field
GF(p™), where index denotes the type index of the (non-extension) field p, degree de-
notes the degree n of the extension field's polynomial modulus, and modulus is an integer
constant which denotes the irreducible polynomial modulus of the extension field, as ex-
plained below. The value of modulus MUST be less than p™, and the value of index
MUST be associated with an already defined type.

Constant representation. For extension fields, constants (including the modulus value
above) are represented as base-10 integers, where the coefficients are the digits of the
integer when interpreted in the base field p. The coefficient for the X* term is given by
the kth digit of the constant written in base p, where the Oth digit is the least significant.

As an example, for GF'(25%) the constant 9223372036854775811 denotes the polynomial
X%+ X+ 1.

Examples:

// index 0: Boolean

Otype field 2;

// index 1: GF(2°63) with polynomial modulus x"63 + x + 1
Otype ext_field 0 63 9223372036854775811;

Q@type ring <width>: This type specifies a ring, Zsn. Practically, these act like conven-
tional unsigned base-2 integers.

Examples:

// index 0: unsigned 32— bit integers
Otype ring 32;

3.3 Public and Private Inputs

Inputs to the circuit are provided through separate resources (See Section 5) and accessed as
streams. There are two streams per type, one for public inputs and one for private (prover only)
inputs. Stream access uses the following syntax for public inputs:

$out-0 [... $out.n] <— @public([type_idx]);
And the following syntax for private inputs:
$out 0 [... $out.n] <— @private([type_idx]);

Items are read from the stream corresponding to the type index and assigned to the associated
output wires. If the type index is not specified, it defaults to zero.

3.4 Memory Management

Backends that consume SIEVE IR are highly optimized. To minimize their overhead in managing
memory, the IR exposes primitives to allocate and deallocate ranges of memory. There are strict
restrictions on memory management: many operations require a range of input or output wires
that are not only consecutive but also are part of the same allocation. This allows optimized
backends to ensure that the input or output wires are stored in contiguous memory. Two wires may
have consecutive wire-numbers, but be non-contiguous in memory, depending on the backend'’s
internal memory management strategy.

Each type is given its own numbering space, with wire-numbers in the range of 0...264 — 1.
Most directives will use a type-index parameter to select in which type, and in which numbering-
space, they will act. For example, 0: $123 and 1: $123 may both be defined, with each wire
residing in different numbering space due to their different types.

To allocate a range of wires explicitly, the @new([type_idx:] $first ... $last);
directive may be used. This creates a new allocation containing exactly the wire numbers $first

$1last, but does not assign values to those wires. Reads from uninitialized wires is a failure
of resource validity. The new allocation must not overlap any previous allocation. If the type
index is not specified, it defaults to zero.

©new(1: $100 ... $200);

Directives that assign to wires will implicitly allocate the output wires if needed. For a
directive that assigns to a range of output wires type_idx: $first ... $last, if all wires
in the range are unallocated, it first creates an allocation as by the directive @new(type_idx:
$first ... $last) and then assigns to the newly-allocated wires. If, instead, any of those
wires were previously allocated, then they all must be part of a single allocation; if only some
of the wires in the range were allocated, or different wires are part of different allocations, this
is a failure of resource validity. This applies even for single wires; a single output wire such as
type-idx: $wire is treated as a one-element range type_idx: $wire ... S$wire. If a
directive has multiple output wire ranges, each is handled independently, even if the ranges use
consecutive numbers.

// Assume no wires are previously allocated.

// Implicitly allocates the range $100 ... $199
$100 ... $199 <— @call(fool);

// Implicitly allocates the single wire $200
$200 <— @call(foo2);

©Onew($300 ... $399);
// All wires $300 ... $399 are already allocated, so this does
// not implicitly allocate.
$300 ... $399 <— @call(foo3);
©Onew($400 ... $449);
// Error: only some of the wires are allocated.
$400 ... $499 <— @call(foo4);
©Onew($500 ... $549);
©Onew($550 ... $599);
// Error: wires are not all part of a single allocation.
$500 ... $599 <— @call(foo5);
// This creates a separate allocation for each output range.
$600 ... $649, $650 ... $699 <— @call(foo6);
The @delete directive deallocates wires with the form @delete([type_idx: 1 $first
$last);. All wires in the range type_idx: $first ... $last must be assigned

and must not have been previously deleted. The range may span multiple allocations, but it must
cover each allocation in full; deallocating only part of an allocation is a failure of resource validity.
If the type index is not specified, it defaults to zero.

// Set up some allocations

Onew(1: $100 ... $199)

Onew(1: $200 ... $299)

// Implicit allocations are treated the same as @new
$300 ... $399 <— @call(foo)

// Error: @delete includes wires that were never allocated
O@delete(1: $300 ... $499)

// Error: @delete covers only part of the $300 ... $399 allocation
@delete(1: $300 ... $310)

// Delete the entire $100 ... $199 allocation

O@delete(1: $100 ... $199)

// Delete the $200 ... $299 and $300 ... $399 allocations
O@delete(1: $200 ... $399)

Once a wire has been deleted, its wire number may not be reused and it may not be deleted
again.

IMPORTANT Notice that the form of nearly all ranges in the IR is first ... last rather
than first ... 1length. Ranges are inclusive on both ends.

3.5 Standard Gates

The form of most gates, unless otherwise specified, is:
$out <— gate_name ([type_idx:] $left_in, $right_in);

For a circuit to be well-formed, the type index must refer to a valid declared type. The type index
is optional and defaults to type O when omitted. Other gates have variations on this form, and
are described as necessary.

e Qadd field or ring addition
e Omul field or ring multiplication
e Qaddc field or ring addition by a constant
$out <— @addc([type_idx:] S$left_in, <right_constant >);

Note: If type_idx specifies an extension field, then right_constant contains a decimal
encoding of the extension field value, as is explained in Section 3.2.

e Omulc field or ring multiplication by a constant
$out <— @mulc([type-idx:] S$left_in, <right_constant >);

Note: If type_idx specifies an extension field, then right_constant contains a decimal
encoding of the extension field value, as is explained in Section 3.2.

e Copy the input wires to the output wires. The total number of input and output wires
must be the same. Input and output ranges for copy gates must conform to the same
memory contiguity constraints as input and output ranges for function calls as defined in
Section 3.7.1.

$out 0 [... $out.n] <— [type_idx_0:]
$in_first_.0 [... $in_last_0]
[, $in_first.m [.. $in_last.m]];

e Assign the input constant to the output wire
$out <— [type_idx:] <constant >;

Note: If type_idx specifies an extension field, then constant contains a decimal encoding
of the extension field value, as is explained in Section 3.2.

e Qassert_zero assert that a field element is zero

@assert_zero ([type_idx:] $wire);

For simplicity Boolean gates (in GF'(2)) are replaced with mathematically equivalent arith-
metic operations. This table summarizes alternative gates.

Boolean Gate | Arithmetic Replacement
@and OGmul
Oxor ©@add
@not @addc(x, <1>)

For a circuit to be well formed, two rules must be obeyed when using and assigning wires.
First, topological ordering requires that when a wire is used as the input to a gate, it must
have been previously defined by an earlier gate in the scope. Second, single static assignment
(SSA) requires that within a scope a particular wire is never redefined after its original assign-
ment, even if it removed with the @delete directive.

3.6 Conversion Gates

Conversion gates enable conversion of wires from one type to another. Conversion gates are only
supported between two field types or between an ext_field type and its associated field

type.

3.6.1 Conversions Between Field Types

Conceptually a list of wires in field A is converted to a list of wires in field B. Within the circuit,
a conversion gate has the form:

out_type_idx: $out_first [... Sout_last] <— @convert(
in_type_idx: $in_first [... $in_last] [, @modulus|®@no_modulus]);

The optional @modulus / @no_modulus specifier specifies the semantics of the conversion; any
other value denotes an error. If not specified, we default to @no_modulus. The conversion's
fields and number of wires must match a conversion specification from the front matter. If it is
not the case, there is a resource invalidity. Here is an example that uses conversion gates:

version 2.0.0;

circuit;

// field 0: Boolean

Otype field 2;

// field 1: 2761 — 1

Otype field 2305843009213693951;

// field 2: 27255 — 19

Otype field 5789604461865809771178549250434395392663499233282028201972879200-
// Declare used convert gates

@convert(@out: 1:1, @in: 0:61);

@convert(@out: 1:5, @in: 2:1);
Obegin

// convert Booleans to a single Mersenne6l
1: $0 <— @convert(0: $1 ... $61);
// convert a single 25519 to 5 Mersenne6ls
1: $1 ... $5 <— @convert(2: $0);

Q@end

The input range in_type_idx: $in first ... $in last must be part of a single allocation.
The output range out_type_idx: $out first ... $out_last must either be part of a single
allocation or be unallocated; if it is unallocated, the range will be implicitly allocated, as with
Onew.

Conversion Semantics. Here, we define in detail the specification of a @convert gate. Inputs
and outputs are expressed in big endian representation. There are two possible semantics for
conversions:

e @no_modulus (overflow semantics): To convert p wires ...z, in field A into q wires y;...y,
in field B, we first convert the p wires in field A into a natural number N = Zle x; X AP
Then we try to represent N using q wires in field B y;...y, as N = Y7 y; x B If N
cannot be represented in this fashion, this constitutes a proof failure.

e @modulus (modulus semantics): To convert p wires x...z, in field A into q wires ...y, in
field B, we first convert the p wires in field A into a natural number N = >7 x; x AP~
mod BY. Then we represent N into q wires in field B y1...y,; N =37 y; x BT

3.6.2 Conversions Between Extension Field and its Base Field

For extension fields one can only convert between an extension field GF'(p™) and its base field p.

out_type_idx: S$out_first [... Sout_last] <—
@convert(in_type_idx: $in_first [... S$in_last]);

Note that unlike for conversion gates for the field type, there is no optional specifier in this case.

The conversion semantics are straightforward: when converting to the base field, the extension
field GF(p™) is decomposed into a sequence of n wires of field type p. When converting to the
extension field, the n wires of field type p are used to represent the polynomial coefficients in
GF(p™). For both conversion directions the base field wires use little endian ordering; that is,
$out_first represents the coefficient for X™ and $out_last represents the coefficient for X°.

version 2.0.0;

circuit;

// index 0: Boolean

Otype field 2;

// index 1: GF(2"63)

Otype ext_field 0 63 9223372036854775811;
// Declare used convert gates

10

@convert(@out: 0:63, @in: 1:1);
1:1

@convert(@out: , @in: 0:63);

@begin
// convert Booleans to polynomial in GF(2763)
1: $0 <— @convert(0: $1 ... $63)
// convert GF(2°63) to polynomial coefficients
0: $1 ... $63 <— @convert(1l: $0)

@end

3.6.3 Conversion Between Rings and Fields

Ring to ring, ring to field, and field to ring conversion use the same syntax as field to field
conversions. Each ring wire is to be treated as a vector of n-many GF'(2) values, in most
significant bit first order, where n is the bit-width specified in its type declaration. Conversion
can then proceed as a field to field conversion.

3.7 Function Gates

Function gates define a sub-circuit which may be reused multiple times. The function’s outputs
and inputs are given as ranges mapped sequentially, and by type, into the function’s scopes. In
the function’s signature, each range is defined by a length and a type index. When the function
is invoked, each range is mapped into its scope incrementally from 0.

Function declaration and invocation have the following forms:

@function(function_name ,
[@out: out_type_idx_0: out_field_count_0
[, out_type_idx_n: out_field count_n],]
[@in: in_type_idx_0: in_field_count_0
[, in_type_idx_n: in_field_count_n],]
)

/* gate list x/

Q@end

[$out _first.0 [... $out_last 0]
[, $out_first.n [... $out_last.n] | <]
@call(function_.name [, $in_first.0 [... $in_last_0]

[, $in_first.n [... S$in_last.n]]]);

The length of input and output ranges must be greater than 0 (for all i, out field count i >0
and in field count_i > 0).

Note that function invocations do not specify the type index for inputs and outputs since they
can be inferred from the function signature.

11

3.7.1 Function Gate Example

@function(dot_prod_10, @out: 1:1, @in: 1:10, 1:10)

// omitted
@end
Onew(1l: $0 ... $9);
Onew(1: $10 ... $22);
// assign $0 ... $19
$25 <— @call(dot_prod_10, $0 ... $9, $10 ... $19);

The @call directive must have one range of input wires for each input range declared in the
@function declaration. Each range of input wires must be part of a single allocation. Similarly,
the @call must have one range of output wires for each output range declared in the @function.
Each range of output wires must either be part of a single allocation or be unallocated; if it is
unallocated, the range will be implicitly allocated, as with new.

3.7.2 Function Declaration Ordering and Recursion

Functions are declared at the top level of the circuit. Function names come into scope after their
declaration. This prevents recursive functions and allows type checking while processing the file
as a stream. For example, the following invocation is valid.

@function(a) /* ... x/ @end

@function(b)
@call(a);

@end

@call(b)

The next example is invalid since the function a has not been declared and is not yet in scope
when b is defined.

@function(b)
@call(a);
@end

@function(a) /* ... %/ @end

@call(b)

3.8 Example

Here is a full example of a right-triangle using the Circuit-IR.

version 2.0.0;
circuit ;

12

Otype field 7;
Otype field 127;
@convert(1:1, 0:1);

@begin
// mod 7 hypotenuse
$0 <— @public(0);
// mod 7 legs
$1 <— @private (0);
$2 <— @private(0);

// mod 7 is too small to square them
1:90 <— @convert(0:%0);
1:$1 <— @convert(0:$1);
1:92 <— @convert(0:%2);

// square them

$3 <— ©@mul(1: $0, $0);
$4 <— Omul(1: $1, $1);
$5 <— Omul(1: $2, $2);
$6 <— @add(1: $4, $5):;

// invert the hypotenuse
$7 <— ©@mulc(1: $3, <126>);

// assert equal

$8 <— ©add(1: $6, $7);

@assert_zero(1: $8);
@end

3.9 Circuit Semantics and Validity

When working with the Circuit-IR there are three levels of semantics and validity to be considered.
Each level builds upon the prior level.

1. Syntactic Validity: The IR resource is recognizable in the language defined by the IR's
grammar (see appendix A and B).

2. Resource Validity: The IR resource obeys semantic rules which are falsifiable with just
the single resource.

3. Evaluation Validity: Three IR resources (relation, public inputs, and private inputs) obey
semantic rules which are only falsifiable in tandem.

While syntactic validity is important, it is easy to check using off the shelf parsing tools. The
focus of this subsection is on resource validity and evaluation validity.

13

Each resource is checked individually for Circuit Well-formedness or Stream Well-formedness

(See Section 5 for details). Circuit Well-formedness focuses on ensuring that wires are connected
correctly — a “broken” wire would make the circuit poorly-formed — and that all declared types
are unique.

Type Uniqueness No type is declared more than once.

Topological Ordering For a wire to be the input to a gate, it must have previously been assigned
as an output wire within the same scope.

Static Single Assignment Each wire which is allocated must be assigned exactly once within
its scope.

Allocation of Range Arguments When passing a range of wires (as either an input or an out-
put), all wires in the range must belong to the same allocation, and the range's cardinality
must match the called function or conversion gate's specification.

Deletion of Whole Allocations When passing a range of wires to a @delete directive, all
wires within the range must have previously been assigned and all allocates within the
range must be whole allocations. E.g. a @delete directive may not split an allocation into
smaller portions.

To meet Evaluation Validity, all three resources are evaluated together, and the following
conditions must be met.

Assertions Each input to an @assert_zero directive must carry the value 0.

Stream Length Requirement When the end of the circuit is reached each stream has exactly
zero items remaining: it must not have run out of items before reaching the end, and there
may not be any extra items.

4 Plugins

4.1 Motivation

In the previous section, we describe the Circuit-IR which contains the core IR functionalities. In
this intermediate representation, we would like to add some (complex) features (e.g. RAM oper-
ations). Unfortunately, each update in the basic syntax forces frontends and backends to update
their IR generator and parser. We would like to avoid this burden while increasing expressibility
of the language. The goal of plugins is to allow IR extensions without changing the core IR.

4.2 Plugin Syntax

Plugins allow a circuit to refer to specific functionalities. Those functionalities are defined in
a document. Only backends that have an implementation of a plugin can evaluate statements
containing that plugin.

14

In the circuit’s syntax, plugins are similar to functions except the function body is replaced by
the plugin. The declaration of a plugin function starts with the signature of a function followed
by the use of a @plugin directive with plugin parameters that includes the plugin name, the
operation name, and its generic parameters. Invocation will remain the same as for functions. A
function bound to a plugin must be declared before its invocation.

The names of plugins used must be specified in the header. This ensures that backends
can easily check which plugins are used and reject the circuit if needed, prior to starting circuit
evaluation.

Here is an example use of the vectors_v1 plugin that provides a mul operation over ranges
of wires.

Oplugin vectors_vl;
@begin

// declare the function signature with a plugin body
Ofunction(vec_mul_4, Q@out: 0:4, Q@in: 0:4, 0:4)
Oplugin(vectors_vl , mul);

// call the vec_mul_4 plugin function
$8 ... $11 <— @call(vec_mul 4, $0 ... $3, $4 ... $7);

©@end

Plugin operations are defined elsewhere, so the @plugin binding takes a list of plugin defined
arguments after the required plugin and operation names. Function signatures and their calls
(@call) remain well-specified in the IR. Each instantiation of a plugin operation requires a
separate function declaration and @plugin binding. Plugin binding arguments consist of a comma
separated sequence of identifiers and numeric literals. In practice, this enables plugins to specify

parameters like fields, lengths, and other functionality. Providing other functions' names as
generic arguments can enable higher order operations like maps and folds.

Oplugin vectors_vl;
@plugin iter_vO0;
@begin
// Multiple instantiations of the same plugin (vector, mul)
@function(vec_mul_4, Qout: 0:4, Q@in: 0:4, 0:4)
Oplugin(vectors_vl , mul);
@function(vec_mul_2, @out: 0:2, @in: 0:2, 0:2)
@plugin(vectors_vl , mul);

// Numeric parameter used as a circuit constant by the plugin
@function(vec_double_4, @out: 0:4, @in: 0:4)

15

Oplugin(vectors_vl , mulc, 2);

// Higher order map operation.
@function(plusl_0, @out: 0:1, @in: 0:1) /+x ... %/ @end
// An identifier parameter for the sub—function name,

// A numeric parameter describing function arguments by their order

// A numeric parameter for the iteration count
@function(vec_plusl_4, @out: 0:4, @in: 0:4)
Oplugin(iter_v0 , map, plusl_ 0, 0, 4);

Each plugin operation has a signature, which is defined as part of the standard for the plugin.
If the backend sees a @plugin for a known plugin, and the function signature doesn’'t match the
expected signature of the operation it is being bound to, then the circuit is invalid. Further, the
plugin's name must have been declared in the circuit header. Either of these errors would make
the circuit poorly formed.

Plugin operations may consume some public and private inputs. If a plugin operation consumes
input from the standard public or private streams, its plugin binding must contain the count of the
number of consumed public or private inputs per field. However, a plugin may be sophisticated
enough to produce its own public or private inputs and consume them immediately, in which case
input usage need not be declared. Here is an example use of an assert_equal plugin that checks
that the five inputs are equal to the five next private inputs.

Oplugin assert_equal;
©begin
// declare the function signature with a plugin body
@function(equal_to_private , @in: 0:5)
@plugin(assert_equal , private, 0, 5, @private: 0:5);

// call the equal_to_private plugin

@call(equal_to_private , $4 ... $8);
@end

4.3 Plugin Types

For some plugins, it is useful to declare additional types that are distinct from ordinary field
types. Plugins can define new types by using the @type @plugin(plugin_id, type_id, ...)
directive in the circuit header, which again takes a list of plugin-specified parameters. The first
two parameters name the plugin, and a particular type within the plugin. Subsequent parameters
may be identifiers or numbers, and their semantics are defined by the plugin. Types declared by
a plugin can be manipulated via its plugin functions, or the plugin may overload built-in gates for

16

its types. Here is an example demonstrating how the ram_arith v1 plugin uses a plugin type to
implement a buffer.

version 2.0.0;

circuit ;

Oplugin ram_arith_vl;

// Wire type 0 is the field mod 127

Otype field 127;

// Wire type 1 is the ram plugin type, with indexes and
// elements both drawn from field 0.

Otype @plugin(ram\ _arith_vl, state, 0);

@begin
// Declare RAM operations as abstract functions.
// ram.init creates a buffer of fixed size and
// initializes each element to the same input value.
@function(ram_init, @out: 1:1, @in: 0:1)
Oplugin(ram, init, 10);

// ram.read takes an RAM buffer and an address

// and returns the value at that address.

Ofunction(ram_read, @out: 0:1, @in: 1:1, 0:1)
@plugin(ram_arith_vl , read);

// ram_write takes a RAM buffer, an address, and

// a new value and writes the value to the address.

@function(ram_write, @in: 1:1, 0:1, 0:1)
@plugin(ram, write);

@function(assert_eq, @in: 0:1, 0:1)
$2 <— ©addc(%$0, <126>); // p—1
$3 <— @add($1, $2);
@assert_zero(9%$3);

Q@end

// Initialize all elements to 0 (type 0) in a newly
// allocated RAM buffer (type 1)

$0 <— 0: <0>;

$0 <— @call(ram_init, $0);

// Write something to the address
$1 <— @private_in(); // address
$2 <— Q@private_in(); // value

// 1:$0 RAM Buffer

17

// 0:%1 address wire
// 0:$2 value wire

Q@call(ram_write, $0, $1, $2);

// Read from the same address and check

$3 <— @call(ram_read, $0, $1);
@call(assert_eq, $2, $3);
Q@end

5 Input Streams

Public and private inputs are provided as separate resources. We have one input file per type and
per visibility level (public_input or private_input). These input files start with the same head-
ers as described in section 2: the version, the resource type (public_input or private_input),
and one type. Then, a sequence of numeric literals representing type elements is provided be-
tween @begin and Qend tags. These sequences act as a stream, and certain directives in the
circuit consume a value from one of these streams. If values in either stream are exhausted, this
is a failure of evaluation validity. If values remain in a stream after processing, then this is also

correctness.

an evaluation invalidity. Here is an example for public and private inputs.

version 2.0.0;
public_input;
Otype field 7;
@begin

< 5 >;
@end

version 2.0.0;
public_input;
Otype field 19;
@begin

< 2 >

< 15 >;
Qend

version 2.0.0;
private_input;
Otype field 7;
@begin

< 3 >;

< 4 >;
@end

18

6 Circuit Configuration Communication (CCC)

6.1 Motivation

To ease interoperation each backend should provide a configuration file declaring available types
and plugins that the frontend may use. This Circuit Configuration Communication, or CCC for
short, is a static configuration file provided with the installation of a backend, and the frontend
can configure from it while generating a statement. The CCC starts with supported plugins, then
types, conversions, and it may end with plugin constraints. A compatible frontend will only use

e the types supported by the targeted backend according to the CCC file,

e the standard gates (Section 3.5),

e the conversion gates supported by the targeted backend according to the CCC file, and
e the plugins supported by the targeted backend according to the CCC file.

All SIEVE IR compatible backends must provide a CCC, and all SIEVE IR compatible frontends
must ingest a backend's CCC to generate a statement for the backend. In the case that a backend
cannot provide a feature (such as a type or a plugin) which the frontend would require, the
frontend will be unable to generate a statement, and the pair of frontend and backend would be
mutually incompatible.

6.2 CCC content and syntax

A CCC file starts with the standard IR header (Section 2), declaring its resource type as configuration.
It list the plugins, families of types, and conversion gates supported by the backend.

Each available plugin is specified by name using the same @plugin plugin name; syntax as
the Circuit IR. A plugins presence in the CCC indicates its availability, meaning that the frontend
is allowed to use it, but it does not require the frontend to use it. The frontend may use any
subset of the backend's available plugins. Similarly, a backend may indicate that no plugins are
supported, by leaving the plugins list empty.

Here is an example plugin list indicating the availability of the mux_vO0, arith_ram_vO0, and
arith_ram_v1 plugins. Presumably, a frontend could then choose if to use the mux_v0 plugin,
and if it needs RAM it could choose either version of the ram plugin. The frontend could also
use both versions of the RAM plugin, although that would be redundant and confusing.

Oplugin mux_v0;
Oplugin ram_arith_vO0;
Oplugin ram_arith_vl;

6.3 Type Families

Types are grouped into “type families” in the CCC. Each type family encompasses a set of types
which are somehow related. For example all fields which use Mersenne primes may be grouped
into a “Mersenne family”.

19

Each type family is specified first by what kind of type it is, then by predicates which constrain
the set of possible types in the family. A type family may be referenced later in the CCC by its
index in the order in which they appear, same as how Circuit IR types are referenced. There
are four kinds of types, each having a different mathematical structure and accordingly different
meanings for predicates.

e A field type is defined by a single prime characteristic. Implicitly, the characteristic must
be prime, and the predicates of a field family enforce further restrictions on it. A field
family has the form @type field(predicate [, predicates...]);. An empty list
of predicates (e.g. empty parenthesis) indicates that any prime is supported (including, for
example, 7).

e An ext field type is defined by a base field, a polynomial order, and a numeric en-
coding of polynomial coefficients (see Section 3.2). There are three groups of pred-
icates to an ext_field family. The first group is a list of previously declared base
field families, referenced by index. The base type of a member of this ext field
family must be a member of one of the allowed base field families, but need not be
a member of all (in fact, two base field families may be distinct of each other). The
second group is predicates upon the order of the extension field. The order must be
greater than one, and predicates may define additional restrictions. A third group de-
fines predicates upon the numerically encoded polynomial coefficients. The polynomial
must be irreducible, and predicates may define additional restrictions. An ext_field fam-
ily has the form @type ext_field (base_idz [, base_idzs...]) (predicate [,
predicates...]) (predicate [, predicates...]);. The family must define at
least one base_idz, but both the order predicates and polynomial predicates may be empty.

e A ring type uses a ring over a 2" modulus, providing the familiar bit representation for
n-bit integers. The predicates of a ring family enforce restrictions on n. A ring family has
the form @type ring(predicate [, predicates...]);. An empty list of predicates
(e.g. empty parenthesis) indicates that any n is supported.

e A plugin type is defined using plugins. Plugin type families use plugin constraints (see be-
low) instead of predicates. A plugin family has the form @type @plugin plugin_name ;.

6.4 Predicates

Predicates define constraints upon numeric parameters of a type. The following predicates exist.

e less_than(numeric) constructs a predicate requiring the parameter to be less than the
specified value.

e greater_than(numeric) constructs a predicate requiring the parameter to be greater
than the specified value.

e equals(numeric) constructs a predicate requiring the parameter to equal the specified
value.

20

e is mersenne is a predicate requiring that the parameter be a Mersenne prime.
e is proth is a predicate requiring that the parameter be a Proth prime.

e is power_of 2 is a predicate requiring that the parameter be a power of two.

When a type uses multiple predicates, each predicate is ANDed with the others. To produce
an OR relation between predicates, simply create multiple type families.

6.5 Conversion Declarations

Conversion gate declarations specify which type families the backend supports conversions be-

tween. Conversion gates are declared with @convert (Qout: family index out, @in: family index_in)
where the type families converted to and from are specified by their indices. It is currently not

possible to configure constraints on the number of input or output wires in a conversion.

6.6 Plugin Constraints

Certain plugins may define additional constraints, such as constraints on vector widths or RAM
address and value types. For each such plugin that the backend supports, the CCC should
contain a constraint block delimited by @plugin constraint(ram) ... @end, containing
Q@constraint(...) lines specific to that plugin. The arguments to each @constraint line
consist of comma-separated identifiers and integers, similar to the arguments of a function’s
@plugin binding declaration. Predicates may also be used within a @constraint, however their
associativity and combinations with arbitrary identifiers or integers is plugin defined. Each plugin
that uses constraints will specify the structure and semantics of @constraint lines allowed within
the plugin’s constraint block.

6.7 Example

version 2.0.0;
configuration ;

// The following plugins may be used
@plugin mux_v0;

@plugin ram_arith_v0;

@plugin ram_arith_vl;

// 0: The field of exactly 2
Otype field (equals(2));

// 1: Any prime greater than 1 million
Otype field (greater_than(1000000));

// 2: Any mersenne prime which is greater than 100 and less than 1000.

21

// To avoid confusion, for a Mersenne Prime p such that p = 2xxm — 1,
// 100 < p < 1000, rather than m.
Otype field (is_mersenne, greater_than(100), less_than(1000));

// 3: An extension field over GF(2xx4)
Otype ext_field (0) (equals(4)) ();

// 4: a 16, 32, or 64—bit unsigned integer
Otype ring(is_power_of_2, less_than(65), greater_than(15));

// 5, 6: RAM Types for either the vO0 or vl RAM plugin
Otype @plugin ram_arith_vO0;
Otype @plugin ram_arith_v1;

// Conversion from large fields (type 1) to Booleans (type 0)
@convert(@out: 0, @in: 1);

// Conversion from large primes (type 1) to Mersennes (type 2)
@convert(@out: 2, @in: 1);

// Conversions from the extension field (type 3) to Booleans (type 0)
// Note, that the IR only defines conversions involving extension

// fields to or from their base fields.

@convert(@out: 0, @in: 3);

// Bidirectional conversions of fields (type 1) and rings (type 4)
@convert(@out: 4, @in: 1);
@convert(@out: 1, @in: 4);

// Note that different versions of the same plugin are
// unlikely to be compatible
// INVALID: @convert(@out: 5, @in: 6);

// Note that although constraints are shown for the vectors_vli
// plugin, they are shown for demonstration purpose and are not
// standardized. Frontends are unlikely to recognize these

// constraints.

Oplugin_constraints(vectors_vl)
// Element type must match either of the first two @field lines.
// The plugin spec defines the meaning of repeated element_type
// constraints,; in this case, we assume repeated lines are
// allowed and that the constraint is satisfied if at least one
// line is satisfied.
@constraint (element_type, 0);

22

@constraint (element_type, 1);

// Vector width must be a power of two between 2 and 16. The
// meaning of these constraints is defined by the plugin spec.
@constraint (vector_width , is_power_of_2, 2, 16);

@end

Appendix A Textual Syntax

This appendix uses a right-recursive BNF grammar to define the exact syntax of the text format.

A.1 Special Tokens

The following special tokens are defined by regular expressions.

(number) => 0 ;

(number) => [1-9]1[0-9]* ;
(number) => 0x[0-9a-fA-F]+ ;
(number) => 0X[0-9a-fA-F]+ ;
(number) => 00[0-71+ ;
(number) => 00[0-7]+ ;
(number) => Ob[0-1]+ ;
(number) => O0B[0-1]+ ;

// interpret ‘$’ as a literal dollar sign (U+0024)
(wire-number) => $[1-9] [0-9]* ;
(wire-number) => $0x[0-9a-fA-F]+ ;
(wire-number) => $0X[0-9a-fA-F]+ ;
(wire-number) => $00[0-7]+ ;
(wire-number) => $00[0-7]1+ ;

() => $0b[0-1]+ ;

{) => $0B[0-1]+ ;

wire-number
wire—-number

// interpret ‘.’ as a literal point or dot (U+002E)
(identifier) => [a-zA-Z_][a-zA-Z0-9_1*((.|::) [a-zA-Z_] [a-2zA-Z0-9_]*)* ;

Whitespace is defined with the following regular expression. Do note that in certain cases,

non-empty whitespace may be necessary to break larger tokens.

// * is repetition. * is a star character.
// \n, \r, \t are newline, carriage return, and tab.

(whitespace) => (\nI\rI\t1//["\nl¥\nl/*(["*¥] *[~/1)¥*¥/)* ;

23

A.2 Header

The following grammar is given for the IR Header.
(header) => (version-spec) (resource-id) ;

¢ ¢

(version-spec) => ‘version’ (number) ‘.’ (number) ¢.’ (number) ‘;’ ;

=> ‘circuit’ ¢;’ ;

resource-id
resource-id) => ‘tramslation’ ¢;’ ;
¢

()

{)

(resource-id) => ‘public_input’ “;’ ;
() => ‘private_input’ ;’ ;
()

=> ‘configuration’ ‘;’ ;

resource-id
resource-id

A.3 Circuit-IR

The following grammar is given for the Circuit-IR (resource id circuit).

(circuit) => (header) (circuit-header) (circuit-body) EOF ;

(circuit-header) => (type-list) ;
(circuit-header) => (type-list) (conversion-list) ;

(type-list) => (type) (type-list) ;

(type-list) => (type) ;

(type) => ‘@type’ ‘field’ (number) °;’ ;

(=> ‘Qtype’ ‘ext_field’ (number) (number) (number) ‘;’ ;
(type) => ‘@type’ ‘ring’ (number) ‘;’ ;

ct
<
o)

0]
~

// note that in @out: t:n (and likewise @in: t:n), n > O
(conversion-list) => (conversion) (conversion-list) ;
(conversion-list) => (conversion) ;

(conversion) => ‘@convert’ ‘(’

‘@out’ ‘:’ (number) ¢:’ (number) °,’
‘@in’ ‘:’ (number) ‘:’ (number) ©,’
DA

(circuit-body) => ‘@begin’ (top-scope) ‘@end’ ;

(top-scope) => (top-scope-item) (top-scope) ;
(top-scope) => (top-scope-item) ;

(top-scope-item) => (function-declaration) ;
(top-scope-item) => (directive) ;

(function-declaration) => ‘@function’ ‘(’ (identifier) ¢,

24

‘@out’ ‘:’ (parameter-list) ,’

‘@in’ :’ (parameter-list) ‘)’
(function-scope)
‘@end’ ;

(function-declaration) => ‘@function’ ‘(’ (identifier) ¢,

‘@in’ :’ (parameter-list) ‘)’
(function-scope)
‘@end’ ;

(function-declaration) => ‘@function’ ‘(’ (identifier) ©,’

‘@out’ ‘:’ (parameter-list))’
(function-scope)
‘@end’ ;

(function-declaration) => ‘@function’ ¢(’ (identifier) €)’
(function-scope)
‘@end’ ;

// note that in parameter t:n, n > 0

(parameter-list) => (parameter) ¢,’ (parameter-list) ;
(parameter-list) => (parameter) ;
(parameter) => (number) ‘:’ (number) ;

(function-scope) => (function-scope-item) (function-scope) ;
(function-scope) => (function-scope-item) ;
(function-scope-item) => (directive) ;

directive) => (new-directive) ;
directive) => (delete-directive)
directive) => (binary-gate) ;
directive) => (binary-const-gate) ;

assign-directive) ;
input-gate) ;
assert—zero—directive) ;
convert-gate) ;
call-directive) ;

directive
directive
directive
directive
directive

() => (
() => (
() => (
() => (
(directive) => (copy-directive) ;
() => (
() => (
() => (
() => (
() =>

(new-directive) => ‘@new’ ‘(’
(number) ‘:’ (wire-number)
(new-directive) => ‘@new’ ‘(’
(wire-number) ©..

4

.’ (wire-number))’ ¢;’ ;
.? (wire-number) ‘)’ ¢;’ ;

(delete-directive) => ‘@delete’ ‘(’

25

(number) ‘:’ (wire-number) . (wire-number))’ ¢;’ ;
(delete-directive) => ‘@delete’ ‘(’

(wire-number) ...’ (wire-number))’ “;’ ;

4

(binary-gate) => (wire-number) ‘<-’ (binary-gate-operation) ‘(’

(number) ‘:’ (wire-number) ‘,’ (wire-number) ¢)’ ;’ ;
(binary-gate) => (wire-number) ‘<-’ (binary-gate-operation) °(’
(wire-number) ¢,’ (wire-number))’ ¢;’ ;

(binary-gate-operation) => ‘@add’ ;
(binary-gate-operation) => ‘@mul’ ;

(binary-const-gate) => (wire-number) ‘<-’ (binary-const-gate-operation) ‘(’

(number) :’ (wire-number) ¢,’ ‘<’ (number) ‘>’)’ ¢;’ ;
(binary-const-gate) => (wire-number) ‘<-’ (binary-const-gate-operation) ‘(’
(wire-number) ¢,’ ‘<’ (number) ‘>’)’ ;7 ;

(binary-const-gate-operation) => ‘@addc’ ;
(binary-const-gate-operation) => ‘@mulc’ ;

(copy-directive) => (wire-range) ‘<-’ (number) ‘:’ (wire-range-list) ;’ ;
(copy-directive) => (wire—range) ‘<=’ (wire-range-list) ¢;’ ;
(assign-directive) => (wire-number) ‘<-’ (number) ‘:’ ‘<’ (number) ‘>’ ;’ ;
(assign-directive) => (wire-number) ‘<-’ ‘<’ (number) ‘>’ ¢;’ ;

(input-gate) => (wire-range) ‘<-’ (input-gate-operation) ¢(’ (number))’ “;’ ;
(input-gate) => (wire-range) ‘<-’ (input-gate-operatiomn) ‘(’)’ ¢;’ ;

(input-gate-operation) => ‘@public’ ;
(input-gate-operation) => ‘@private’ ;

(assert-zero-directive) => ‘@assert_zero’ ‘(’
(S

(number) ¢:’ (wire-number) ‘)’ ¢;’ ;
(assert-zero-directive) => ‘@assert_zero’ ‘(’ (wire-number) ‘)’ °;’ ;

(convert-gate) => (number) ¢:’ (wire-range) ‘<-’ ‘@convert’ ‘(’
(number) ‘:’ (wire-range) ‘)’ ‘;’ ;

(wire-range) => (wire-number) ;
(wire-range) => (wire-number) ‘...’ (wire-number) ;

=> (wire-range-list) ‘<-’ ‘@call’ ‘(’

(wire-range-list))’ ¢;’ ;

=> ‘@call’ ‘(’ (identifier) (wire-range-list) ‘)’ *;’ ;

=> (wire-range-list) ‘<-’ ‘@call’ ‘(’ (identifier) €)’ ;7 ;

(call-directive

(identifier
(call-directive
(call-directive

)
)
)
)

26

(call-directive) => ‘@call’ ‘(’ (identifier))’ ¢;’ ;

(wire-range-list) => (wire-range) ‘,’ (wire-range-list) ;
(wire-range-list) => (wire-range) ;

A.4 Input Streams
The following grammar is given for input streams (resources private_input and public_input).
(stream) => (header) (stream-header) (stream-body) EOF ;

4

(stream-header) => ‘@type’ ‘field’ (number) °;’ ;

stream-body) => ‘@begin’ (stream-list) ‘Q@end’ ;
y g
(stream-body) => ‘@begin’ ‘@end’ ;

(stream-list) => (stream-item) (stream-list) ;
(stream-list) => (stream-item) ;

(stream-item) => ‘<’ (number) ‘>’ ‘;’ ;

A.5 Circuit Plugins

The following additions to the Circuit-IR grammar will enable plugins.

(circuit-header) => (plugin-list) (type-list) ;
(circuit-header) => (plugin-list) (type-list) (conversion-list) ;

(plugin-list) => (plugin) (plugin-list) ;
(plugin-list) => (plugin) ;
(plugin) => ‘@plugin’ (identifier) °;’ ;

(type) => ‘@type’ (plugin-binding) ;’ ;

(function-declaration) => ‘@function’ ¢(’ (identifier) ©,’
‘@out’ ‘:’ (parameter-list) ,’
‘@in’ :’ (parameter-list) ‘)’
(plugin-binding) “;’ ;

(function-declaration) => ‘@function’ ¢(’ (identifier) ¢,’
‘@in’ ‘:’ (parameter-list))’
(plugin-binding) ¢;’ ;

(function-declaration) => ‘@function’ ‘(’ (identifier) ¢,’

‘@out’ ‘:’ (parameter-list) ‘)’

27

(plugin-binding) ¢;’ ;
(function-declaration) => ‘@function’ ¢(’ (identifier) €)’
(plugin-binding) ¢;’ ;

(plugin-binding) => ‘@plugin’ ‘(’ (identifier) ,’ (identifier)
“,? (plugin-arguments) (stream-count) ‘)’ ;

(plugin-binding) => ‘@plugin’ ‘(’ (identifier) ¢,’ (identifier)
(stream-count) ‘)’ ;

(plugin-arguments) => (plugin-argument) (plugin-arguments) ;
(plugin-arguments) => (plugin-argument) ;

(plugin-argument) => (number) ;
(plugin-argument) => (identifier) ;

(4 (4

(stream-count) => ¢,’ ‘@private’ ‘:’ (stream-count-items) ;

(stream-count) => ¢,’ ‘@public’ ‘:’ (stream-count-items) ;

(stream-count) => ‘,’ ‘@private’ ‘:’ (stream-count-items) ,’
‘@public’ ‘:’ (stream-count-items) ;

(stream-count) => NULL ;

(stream-count-items) => (stream-count-item) ,’ (stream-count-items) ;
(stream-count-items) => (stream-count-item) ;
(stream-count-item) => (number) ¢:’ (number) ;

Appendix B Binary Syntax

B.1 FlatBuffer Schema

The binary serialization of Circuit-IR will be described here using the open-source FlatBuffers
cross-platform serialization library, originally developed by Google. FlatBuffers is a metaformat
that specifies the superficial aspects of the syntax, such as representations of literals, structured
data and arrays. It moreover supports formal schemas that concretely define what elements (e.g.,
structures and arrays) can appear in the specific format. FlatBuffers was chosen for the following
reasons:

e It offers an existing compact encoding of the format with efficient (de)serialization.

e It is supported by a wide-range of community-based tools and libraries for the most common
languages (and is also easy to parse from scratch).

We will use the below FlatBuffers schema to represent circuit, public_input, and private_input
resources. This schema is isomorphic to the Circuit-IR representation presented in Section 3.

// This is a FlatBuffers schema.

28

https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/

// See https://google.github.io/flatbuffers/
namespace sieve_ir;

// REGEX used:

// — VERSION_REGEX = ""\d+.\d+.\d+$"

// — STRING_REGEX = ""[a—zA—Z_][\w]*x((\.]::)[a—zA=Z_][\w]*)*$"
// — NUMBERREGEX = " ((\d+)|(0x[0—9a—fA—F]+))$"

// =———= Message types that can be exchanged. ——
union Message {
Relation ,

Publiclnputs ,
Privatelnputs ,

}

// The 'version' field must match VERSION_REGEX
// Each string in the 'plugins’' list must match STRING_REGEX
table Relation {

version i string;
plugins [string];
types [Type];
conversions :[Conversion];
directives :[Directive];

}

// The 'version' field must match VERSION_REGEX
table Publiclnputs {

version . string;
type : Type;
inputs [Value];

}

// The 'version' field must match VERSION_REGEX
table Privatelnputs {

version :string;
type : Type;
inputs :[Value];
}
// === Helper types

// Type element is encoded in a vector of bytes in little —endian
// order. There is no minimum or maximum length; trailing zeros
// may be omitted.
table Value {

value :[ubyte];

29

}

struct Count {
type_id :ubyte;

count uint64
// === Directive
union DirectiveSet {
Gate
Function ,
}
table Directive {
directive :DirectiveSet;
// === Conversion

// The 'count’' field of these 'Count’'s must be > 0
struct Conversion {

output_count : Count ;

input_count : Count;

}

/| == Type

union TypeU {
Field ,
ExtField ,
Ring ,
PluginType

}

table Type {
element :TypeU;

}

table Field {
modulo :Value;

}

table ExtField {
index cubyte;
degree :uint64;
modulus :uint64;

30

table Ring {

nbits cuint64;
}
// 'name’ and 'operation ' must match STRING_REGEX
// Strings of the ’'params' list must match either

// STRING_REGEX or NUMBERREGEX
table PluginType {

name . string;
operation :string;
params [string];
}
// —— Gate types
table GateConstant {
type_id cubyte;
out_id cuint64;
// 'constant' is encoded in a vector of bytes in little —endian

// order. There is no minimum or maximum length; trailing zeros
// may be omitted.
constant :[ubyte];

}

table GateAssertZero {
type_id :ubyte;
in_id uint64

}

table GateCopy {
type_id :ubyte;
out_id :WireRange;
in_id :[WireRange];
}

table GateAdd {
type_id :ubyte;
out_id uint64
left_id :wuint64;
right_id :uint64;

}

table GateMul {
type_id :ubyte;
out_id uint64 ;

31

left_id uint64
right_id :wuint64;

}

table GateAddConstant {

type_id cubyte;
out_id cuint64 ;
in_id cuint64;
// 'constant’' is encoded in a vector of bytes in little —endian

// order. There is no minimum or maximum length; trailing zeros
// may be omitted.
constant :[ubyte];

}

table GateMulConstant {

type_id cubyte;
out_id cuint64 ;
in_id cuint64;
// 'constant' is encoded in a vector of bytes in little —endian

// order. There is no minimum or maximum length; trailing zeros
// may be omitted.
constant :[ubyte];

table GatePublic {
type_id :ubyte;
out_id :WireRange;

}

table GatePrivate {
type_id :ubyte;
out_id :WireRange;

}

// To allocate in a contiguous space all wires between
// first_id and last_id inclusive.
table GateNew {

type_id “ubyte;
first_id cuint64;
last_id cuint64 ;

}

table GateDelete {
type_id “ubyte;
first_id cuint64;

32

last_id cuint64 ;

}

table GateConvert {
out_type_id cubyte;
out_first_id cuint64;
out_last_id cuint64 ;
in_type_id cubyte;
in_first_id cuint64;
in_last_id cuint64;
modulus :bool;

}

// == Function declaration

union FunctionBody {
Gates ,
PluginBody ,

}

table Gates {
gates [Gate];

}

// 'name’ and 'operation ' must match STRING_REGEX
// Strings of the ’'params’' list must match either
// STRING_REGEX or NUMBERREGEX

table PluginBody {

name cstring;

operation cstring;

params [string];

public_count :[Count]; // Each type_id must be unique

private_count :[Count]; // Each type_id must be unique

}

// Declare a Function gate as a custom computation or from a plugin
// The 'name’ must match STRING_.REGEX

// The 'output_count' and 'input_count’' must be > 0

table Function {

name . string;
output_count :[Count];
input_count [Count];

body :FunctionBody;

}

struct WireRange {

33

first_id cuint64;
last_id cuint64;

}

// Invokes a previously defined Function gate
// The 'name’ must match STRING_.REGEX
table GateCall {
name . string;
out_ids :[WireRange];
in_ids :[WireRange];
}

union GateSet {
GateConstant ,
GateAssertZero ,
GateCopy,
GateAdd
GateMul
GateAddConstant ,
GateMulConstant ,
GatePublic ,
GatePrivate ,
GateNew
GateDelete ,
GateConvert ,
GateCall,

}

table Gate {
gate :GateSet;

}

// ———= Flatbuffers details
// All message types are encapsulated in the FlatBuffers root table.
table Root {

message :Message;

}

root_type Root;

// When storing messages to files , this extension and identifier
// should be used.

file_extension "sieve”:

file_identifier "siev”; // a.k.a. magic bytes.

// Message framing:

34

//

// All messages must be prefixed by its size in bytes,
// as a 4—bytes little —endian unsigned integer.

As a structured format, the FlatBuffers schema provides a concrete, readable and typed
syntax, ensuring syntactic validity. However, it does not provide resource or evaluation validity as
it is not a language. Refer to Section 3.9 to a description of syntactic, resource and evaluation
validity.

B.2 Multi Gigabyte Flatbuffer Limitations

A limitation of the Flatbuffer technology is its 32-bit internal pointer representation, which
prevents it from storing buffers larger than approximately 2GB. The IR specifies the following
workaround for this limitation.

e The Root message may be repeated within a file or stream as many times as is necessary:
each message holding a portion of the IR resource.

e Each message must be prefixed by its length in bytes, as a 4-byte unsigned little-endian
number. (See FinishSizePrefix).

e Each message's version attribute must be the same as the first message's version. All
other attributes must be empty except for the resource’s body.

Unfortunately, there is no way for a Flatbuffer to hold a single function which is larger than
2GB.

35

https://google.github.io/flatbuffers/class_flat_buffers_1_1_flat_buffer_builder.html#a425ab2bd13a0e4331a7190ec2d17c3b2

	Introduction
	Headers
	Circuit-IR
	Header
	Types
	Public and Private Inputs
	Memory Management
	Standard Gates
	Conversion Gates
	Conversions Between Field Types
	Conversions Between Extension Field and its Base Field
	Conversion Between Rings and Fields

	Function Gates
	Function Gate Example
	Function Declaration Ordering and Recursion

	Example
	Circuit Semantics and Validity

	Plugins
	Motivation
	Plugin Syntax
	Plugin Types

	Input Streams
	Circuit Configuration Communication (CCC)
	Motivation
	CCC content and syntax
	Type Families
	Predicates
	Conversion Declarations
	Plugin Constraints
	Example

	Appendix Textual Syntax
	Special Tokens
	Header
	Circuit-IR
	Input Streams
	Circuit Plugins

	Appendix Binary Syntax
	FlatBuffer Schema
	Multi Gigabyte Flatbuffer Limitations

