
PwnyOS 1.1 
Release Notes 
Last summer, we released PwnyOS 1.0: a rock-solid platform on which we have built this new 
release. PwnyOS 1.0 introduced support for our custom filesystem (PwnyFS), preemptive 
multitasking, numerous process management syscalls, and scheduling primitives. Our users loved 
the experience provided by PwnyOS 1.0, and this year, we’re taking the PwnyOS experience to the 
next level.


This summer’s release, PwnyOS 1.1, is the clearest expression yet of our vision for the future of 
PwnyOS. We listened carefully to our users’ feedback, and we think our users will love the changes 
provided by the new system.


This document contains all the changes we’ve made to the kernel, as well as a guide to help you 
solve the challenges provided by the new release.


And as usual, there are plenty of bugs just waiting to be discovered. Welcome back to PwnyOS.


Disclaimer and License 
PwnyOS is an operating system designed to be insecure, buggy, and vulnerable. Throughout this 
challenge, you may gain access to the PwnyOS ISO image and kernel binary. Booting this 
operating system may result in permanent damage to your computer, motherboard, CPU, or 
firmware, or may result in permanent data loss. The authors take no responsibility for any damages 
caused by the software. The intention is that the PwnyOS image is analyzed statically or run under 
an emulator- never booted directly onto bare hardware. The authors assume no responsibility for 
any damages caused by the software, even when running the OS under an emulator. Users should 
only run the OS at their own risk.


The PwnyOS binary is released under the MIT License. See the License section at the end of this 
document for more information. 



So, what’s new with PwnyOS? 
This year’s release, PwnyOS 1.1, is an incremental release that builds on the code base of last 
summer’s release (1.0). This document is a companion document that builds on the 
documentation provided with PwnyOS 1.0, which can be found here: https://github.com/sigpwny/
pwnyOS-2020-docs. 

The top three requested PwnyOS features by UIUCTF 2020 participants were:

1. More PwnyOS instances

2. A serial console for interfacing with pwntools


3. Access to the PwnyOS kernel image to reverse engineer


This year, we’re happy to announce we are introducing all three of these, as well as some exciting 
new kernel features.


And of course, we are also introducing our most difficult PwnyOS challenges ever.


Serial IO 
For PwnyOS 1.1, we are returning to the basics with a new RS232 serial IO device. The high 
resolution GUI has been replaced with simple serial IO, allowing users to type non-printable 
characters into the console and script their exploits. There is no support for backspace with this 
interface, as the serial backspace character 0x7F tends to be quite useful for writing shellcode. As 

a result, we’ve made the decision to not support backspacing at all to hopefully simplify your 
shellcode writing process. There are three characters to avoid in any shellcode that will be treated 
as special signals, however.


The characters 0x0A and 0x0D each act as a line submission character. Anytime either is 

observed in the input buffer, the buffer will be sent to the consuming reader. So, if either character 
is present midway through some shellcode, your overflow will stop there.


The character 0x02, or ASCII start of text, acts as the break character in PwnyOS. We opted to 

use ^B instead of ^C to simplify interfacing with the serial terminal. If this character is included in 
shellcode, the process will immediately fire SIGINT upon the assertion of this character.


https://github.com/sigpwny/pwnyOS-2020-docs
https://github.com/sigpwny/pwnyOS-2020-docs


Signals 
We have added support for user-mode interrupts (“signals”). Users can register an asynchronous 
callback method that executes when some particular action occurs. There are two signal handlers 
supported in PwnyOS 1.1, which are:


SIGSEGV is fired whenever the process causes a page fault or general protection fault. SIGINT is 

fired whenever the user presses the “break” keyboard combination, which is ^B (control + B), or 
ASCII 0x02.


If a process doesn’t install a signal handler, then the signal event will cause the process to exit just 
like before. The signal management syscalls and internals are described later on in this document. 

Number Meaning

0 SIGSEGV

1 SIGINT



Image Layout 
Warning: Run the PwnyOS ISO at your own risk! Running on real hardware is not supported.


The PwnyOS ISO is an ISO 9660 GRUB filesystem containing the kernel and PwnyFS filesystem 
image. This image was created with the following command:


grub-mkrescue is a command line utility for producing GRUB bootable rescue images with a 

given kernel. In this case, the kernel is the PwnyOS kernel, which is a freestanding 32-bit ELF 
binary. The PwnyFS filesystem image is also included in the files directory, which is loaded by 
GRUB as a multiboot boot module and later read by the PwnyOS kernel. To extract the files from 
the ISO image, the 7zip command line utility can be used as follows:


Be careful, as this will place the contents of the ISO in your current directory!

The following folders should be present on the ISO:


The kernel ELF itself can be found at boot/PwnyOS.


The PwnyFS filesystem image can be found at main.pwnyfs. The fs directory provides a copy 

of the contents placed into the PwnyFS filesystem on the ISO 9660 filesystem so you can browse 
them without having to unpack the PwnyFS filesystem.


The GRUB launch script can be found at boot/grub/grub.cfg. This script defines the PwnyOS 

kernel as a multiboot compliant kernel ELF, defines the PwnyFS filesystem as a boot module, and 
launches the kernel.


The [BOOT] directory, boot.catalog, and most of the files in the boot directory are 

automatically generated by GRUB and are not related to PwnyOS. 

grub-mkrescue ./files -o PwnyOS.iso > /dev/null 2>&1

7z x PwnyOS.iso

[BOOT]   boot   boot.catalog   fs   main.pwnyfs



A Brief Aside: 
The x86 Calling Convention 
This year, we wanted to provide a bit more background information on the x86 architecture, 
specifically the aspects unique to operating systems. We hope that this helps beginners who are 
new to this kind of challenge get started exploring systems concepts. Low level programming and 
reverse engineering can seem quite intimidating, but there is nothing to be afraid of :)


How are functions called? At the assembly level, functions (AKA methods or subroutines) are just 
chunks of instructions that can be called by other code. Since a function can be called from 
anywhere, we need a way to keep track of who called a given function, so we can return back to 
the caller once we’re done. The caller is the chunk of code executing a function, and the callee is 
the function we are executing.


The stack is a region of memory used by functions to keep track of the caller’s state. This includes 
the instruction that the caller should execute when this function completes (the “return address”), 
saved registers (on 32-bit you’ll see ebp saved at the start of pretty much every function), and 

other things such as arguments to the called function. Stacks follow the “last in, first out” scheme- 
the first thing pushed to the stack is the last thing popped off of it.


x86 has 8 main program registers, a flags register, an instruction pointer, and 6 segmentation 
registers. The main registers are eax, ebx, ecx, edx, esi, edi, esp, and ebp.  There 

is a lot of history to the naming convention and purpose of each register, but for the sake of this 
introduction, you can treat them all (except esp) as being free for use by our program. esp is the 

stack pointer and always points to the top of the stack. It is automatically changed whenever any 
instruction that modifies the stack is executed (such as push, pop, call, or ret). eax is where 

we save the return value that is passed from the callee to the caller when the callee returns.


The flags register, eflags, contains many bit flags that correspond to various parts of the 

processor state. This can be anything from the result of arithmetic operations to various system 
state flags. For more information on the eflags bits, check out the Wikipedia page: https://
en.wikipedia.org/wiki/FLAGS_register.


https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/FLAGS_register


The instruction pointer, eip, points to the instruction currently being executed.


The segment selectors are cs, ds, es, fs, gs, and ss. They are vestigial remnants of a very cool 

feature of early Intel processors called segmentation. However, in modern operating systems, 
segmentation protections have been superseded by paging, and on PwnyOS segmentation is not 
used (so the contents of these registers can be ignored). 


The call instruction is the main way to call a function on x86. Call will save the next instruction to 

execute to the stack, and then change the instruction pointer to point at the function to execute. 
Since we recorded the next instruction after the call on the stack, the callee can find where to 
return to when it’s done.







The ret instruction undoes the call instruction by popping the return address off the stack, and 

setting eip to point to that location. This allows the callee to pass execution back to the caller with 

the return value saved in eax.


Interrupts are asynchronous control transfers that can occur at any time. PwnyOS receives many 
kinds of interrupts. For example, when you press a key on the emulated PS/2 keyboard, PwnyOS 
will receive an interrupt informing it that a key was pressed. Interrupts can happen at any time, so 
the interrupt routine must be careful to exit with the registers containing the same values as they 
had when it began. Additionally, the processor needs to keep track of more than just the return 
address during these kinds of control transfers. When an interrupt occurs, the following structure is 
pushed to the stack:


 

Stack Stuff

…

Return Address

Stack Stuff

…

esp

esp

Before Call After Call

eip (Return Address)

cs

eflags

esp

ss

Interrupt Context

esp



The interrupt context structure contains the return address, just like with the call instruction. 
However, we also save the cs and ss segment registers, eflags, and esp. The cs selector is an 

index into a special structure called the Global Descriptor Table, and defines the processor’s 
current permission level. Level 0 (or “ring 0”) is kernel mode, which has ultimate power over the 
system, and level 3 (or “ring 3”) is user mode, which is restricted in what kinds of code it can 
execute. Even programs that run as root still run in ring 3 mode- ring 0 is reserved for kernel code 
(system calls, interrupts, exception handlers, boot code, task switching code, and IO are all 
examples of the kinds of things that run in ring 0). While segmentation is unused in PwnyOS, we 
still need to use the cs selector to set the processor permission level.


Interrupts need to save the previous permission level because all interrupts run in kernel mode- 
when the processor exits the interrupt, it needs to know which mode to switch back to. There is 
some nuance to interrupt control transfers omitted from this document, for more information check 
out the AMD Architecture Programmer’s Manual Volume 2: System Programming (https://
www.amd.com/system/files/TechDocs/24593.pdf).


The iret instruction undoes the changes created by an interrupt. It pops the return address off 

the stack, sets the stack pointer, cs, and ss selectors back to what they were, and restores 

eflags to what it was at the interrupt time. This process assumes the interrupt routine saved any 

registers that it modified (which PwnyOS does- more on this in the “Signals” section). This allows 
the processor to return exactly back to the code it was executing prior to the interrupt.


More information on interrupts and task switching can be found in last year’s “Getting Started with 
PwnyOS” guide, available at: https://github.com/sigpwny/pwnyOS-2020-docs.


One last question that remains is how does an operating system allow multiple tasks to run on one 
CPU core? The answer is the context switch. There are many ways to approach this, however, 
this document will describe briefly the approach taken by PwnyOS. 


For each process in the system, the kernel allocates a 4 MB page for the user code and stack. 
This page is set to RWX for ring 3 execution, and the user process can do with it whatever it likes. 
The kernel will load the ELF program to be executed into this memory region and jump to the ELF 
entrypoint, and after that, the user program can do whatever it likes with its memory. The kernel 

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://github.com/sigpwny/pwnyOS-2020-docs


also allocates a “kernel stack” per process, which is a separate region of memory that’s used as 
the kernel stack during kernel code execution. When the kernel decides a given task needs to be 
swapped to a different task, the kernel pushes its state to the current kernel task, and then swaps 
to a different task’s stack and pops the state off that stack.





Pictured above are the kernel stacks for three example processes. Note that the base of each 
stack is an iret context (the struct pushed during interrupt entry). This is because any time kernel 

code is executing, we entered the kernel via an asynchronous control transfer of some kind 
(system call, interrupt, or exception), and on 32-bit x86, all of these control transfers push an iret 

context to the stack. Just above the iret context is the saved user registers for a given task- these 
are pushed by PwnyOS at the entrypoint to each interrupt service routine.


The top of a sleeping task contains all the kernel registers saved immediately before task switching. 
These are the callee saved registers that we need to restore before returning to previous kernel 
code. Below the saved registers is the kernel call stack- this is just a regular stack that we will 
return to when we switch back to this task. The stack and base pointers for sleeping tasks are 
saved by the kernel so it knows where the stack for a given sleeping process resides.


For the active task, when executing in kernel mode, the kernel stack is used as the processor 
stack (in esp). When the kernel eventually reaches the bottom of its stack, it will perform an iret 

to return to user mode by consuming the iret context at the base of the kernel stack. Active 

tasks running in user mode have empty kernel stacks on PwnyOS. Tasks pass a return value back 
to their parent task by switching to its stack and setting eax to the return value on exit.


There are many more details to context switching beyond the scope of this introduction, but 
hopefully this brief introduction was useful to someone! 

saved kernel regs

kernel stack

…

saved user regs

iret context

kernel stack

…

saved user regs

iret context

saved kernel regs

kernel stack

…

saved user regs

iret context

Sleeping Task Active Task Sleeping Task



Signals 
Now that we’ve taken a look at an overview of interrupt handling and context switching, how does 
PwnyOS handle user-mode interrupts (signals)? At the start of every asynchronous control transfer 
(syscalls, exceptions, interrupts), PwnyOS pushes all the registers in the following configuration:












The bottom 5 registers are actually just the interrupt context pushed by the processor. The error 
code is sometimes pushed by exception handlers, and if it wasn’t pushed, PwnyOS will just push 
an empty value there. The rest of the registers are saved right on the stack (except for esp, which 
was already saved as part of the interrupt context).


Every kernel method inspects the saved registers, and if cs indicates we came from usermode, the 

kernel will store a pointer to this structure as the saved user register struct. This is used for a 
variety of things in the kernel, and most notably is used for signal delivery.


edi

esi

ebp

ebx

edx

ecx

eax

optional error code

eip

cs

eflags

esp

ss

esp

To 0xFFFFFFFF

To 0x00000000

Stack Growth



When a signal is detected, the kernel needs to modify the user registers such that the next 
instruction executed is the first instruction of the registered signal handler. The kernel also needs to 
provide the user program a means of restoring all its current registers as they are back to the 
current instruction. The following pseudocode describes how the kernel delivers a signal:


First, the kernel allocates some space for a bit of linkage trampoline code on the stack. This 
trampoline performs the following:


Next, the kernel pushes a copy of the entire register struct (from edi down to ss) onto the stack 

just above the trampoline. Then, the kernel pushes the address of the trampoline to the user stack. 
This leaves the user stack in the following state:


Finally, the user regs struct is updated to point eip at the appropriate signal handler, the general 

purpose registers are zeroed, and esp is updated to reflect the new stack. When the signal 

handler performs ret, it will jump to the trampoline and execute the sigreturn syscall with esp 

pointing to the copy of the user regs from immediately before the signal was executed.


allocate SIGNAL_TRAMPOLINE_LEN bytes on user stack

memcpy SIGNAL_TRAMPOLINE to user stack


let trampoline_addr = user stack


allocate sizeof(user_regs_t) bytes on user stack

memcpy user_regs to user stack


allocate sizeof(uint32_t) bytes on user stack

memcpy trampoline_addr to user stack

mov eax, SYS_SIGRET

int 0x80

trampoline address

copy of user regs

trampoline code

old user stack 
contents

esp



The sigreturn syscall reads a saved user register struct from the top of the user stack and 

restores all the user registers to the values contained in that struct. For security purposes, not all 
registers are read.


The following registers are restored: edi, esi, ebp, ebx, edx, ecx, eax, eip, esp, eflags.


The following registers are ignored: the error code, cs, ss.


The sigreturn and sighandler_install syscalls are described in more detail in the 

updated syscalls section of this document. 



Updated Syscalls 
All of the system calls described in the documentation for PwnyOS 1.0 are still present in PwnyOS 
1.1, with the sole exception of the SANDBOX_SPECIAL syscall. Additionally, all sandboxing 

restrictions have been lifted, as the PwnyOS 1.1 challenges give you root to start with.


sighandler_install


This system call allows the user process to register a handler with the kernel to execute when a 
signal is detected. The handler address is verified to be a valid user address. When the signal is 
fired the user stack will be modified to include a linkage trampoline that calls sigreturn, the 

saved user registers at signal dispatch time, and a return address pointing to the trampoline.


sigreturn


Reads a user register context from the user stack and restores all the registers (except for ss and 

cs) to the values contained on the stack. This undoes the effects of a signal.


getphys


Returns the physical address of the mmap page, if it was allocated. 

Name Number (eax) Arg 1 (ebx) Arg 2 (ecx) Return Value

sighandler_install 14 handler index handler address 0 on success, -1 
on failure

sigreturn 15 - - Doesn’t return on 
success, -1 on 
failure

getphys 16 - - Physical address of 
the mmap page



Port IO 
x86 architectures support two flavors of IO: memory-mapped and port IO. Memory mapped IO 
allows a kernel to communicate with devices by reading and writing memory. Port based IO allows 
a kernel to communicate with devices using special in and out instructions.


More information on port IO can be found here: https://wiki.osdev.org/I/O_Ports.


The primary ATA PIO hard drive controller is located from IO ports 0x1F0 to 0x1F7.


https://wiki.osdev.org/I/O_Ports


Standard IO 
PwnyOS standard IO uses one file descriptor for both reads and writes- file descriptor 0. This is 
unlike the Linux behavior using file descriptors 0, 1, and 2 for standard IO.


So, to read from the terminal in shellcode, call read with FD = 0. To write to the terminal, call write 
with FD = 0.


Standard IO is buffered, and when using the serial connection, the buffer limits all input to 256 
bytes. Buffered input is flushed every time the return key is pressed. 



Paging 
x86 provides two different methods for memory permission restriction: segmentation and paging. 
PwnyOS uses paging, which is the choice many modern operating systems make. Paging 
partitions the entire address space into a flat sequence of blocks called “pages.” In short, all of 
memory is partitioned into 4MB sections, which can themselves be partitioned into 4KB sections 
with various permissions. The layout of pages is controlled by a structure called the page directory, 
which itself is comprised of page tables or huge pages. More specific information on paging in 32-
bit x86 can be found at: https://wiki.osdev.org/Paging.


Additionally, more details can be found in the AMD Architecture Programmer’s Manual Volume 2: 
System Programming (https://www.amd.com/system/files/TechDocs/24593.pdf) Section 5.


The special control register cr3 contains the address of the page directory table as a physical 

address. Writing a physical address to cr3 will cause the Translation Lookaside Buffer (TLB) to be 

flushed, and update the system page table mappings accordingly. Ring 0 privileges are required to 
write a new page directory to cr3.


https://wiki.osdev.org/Paging
https://www.amd.com/system/files/TechDocs/24593.pdf
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License 
Copyright 2021 SIGPwny


Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
associated documentation files (the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do 
so, subject to the following conditions:


The above copyright notice and this permission notice shall be included in all copies or substantial 
portions of the Software.


THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 
THE SOFTWARE.



