
Lessons learned from running
Terraform at reasonable scale
Why easy, when we can make it complicated?
— the unknown platform engineer
Utilizing FluxCD, Weaveworks TF-Controller and boring-
registry at LYNQTECH

2024-01-16 // Daniel Ciaglia <daniel@sigterm.de>

https://www.lynq.tech/

Daniel Ciaglia // Consultant
• Freelance

since 2022
• TIER Mobility SE

Director of Engineering
• kreuzwerker GmbH

Principal Consultant
• Bundesdruckerei GmbH

Senior Support Manager
• [some more]
• SCUBA dive instructor
• AWS User Group Berlin

co-organiser

Today's menu
1. A typical Terraform stack evolution
2. Running Terraform in GitOps
3. Thoughts on the stack
4. Architectural Decision Records summary

(1.1) Typical Terraform stack
evolution1

Stack: Terraform root module2, tracked with 1 state file
Related: Highly recommend talk "Terraform: from zero to
madness" by @Timur Bublik

2 https://developer.hashicorp.com/terraform/language/files#the-root-module

1 your experience might be different
!

https://sessionize.com/timur-bublik/

(1.1.1) in the beginning

• you start your project
• put everything in 1

directory
• maybe split files by

broader domains.

.
├── databases.tf
├── vpc.tf
├── main.tf
├── outputs.tf
└── terraform.tf

(1.1.2) The staging/production split

• oh well, you need a
staging environment

• both environments are
very much the same

• you refactor the code to be
parameterised by variables

• you provide 2 .tfvars
files

.
├── production.tfvars
├── staging.tfvars
├── databases.tf
├── vpc.tf
├── variables.tf
├── main.tf
└── terraform.tf

(1.1.3) Code repetition - I need modules

• you add more services and they
need infra

• the infra is similar
• you want to keep the code DRY3

• you create a repo, codify best
practices, tag them for versioning

• you pull in modules via git

select a specific tag
module "rds" {
 source = "github.com/example/rds?ref=v1.2.0"
}

3 https://en.wikipedia.org/wiki/Don%27trepeatyourself

(1.1.4) The great separation
• as the stack grows, the environments differ
• you start separating the code in larger blocks

• the base environment
• the services

• the code is pulled in as modules
• the services module receives output of base as input

eg. vpc_id or subnets
• terraform apply plan is run manually still

.
├── environments
│ ├── production
│ │ ├── main.tf
│ │ ├── outputs.tf
│ │ └── variables.tf
│ └── staging
│ ├── main.tf
│ ├── outputs.tf
│ └── variables.tf
└── modules
 ├── base
 │ ├── main.tf
 │ ├── outputs.tf
 │ ├── variables.tf
 │ └── vpc.tf
 └── services
 ├── databases.tf
 ├── main.tf
 ├── outputs.tf
 └── variables.tf

(1.1.5) Fast forward
!

 At this point in time I joined the project
"

The situation

• as the stack grows further, the amount of resources does as well
• each run of terraform plan -out plan takes more and more time
• to review and apply changes for developers becomes a dayfilling job
• you start cheating by targeted apply
• you notice that the amount of files downloaded for each terraform

step is enormous4

• you notice that git tags can not be used for semantic versioning
(version)

Possible solutions

• to address the versioning and data transfer issues - use a private
Terraform module registry

• to address the runtime and ownership issue - split the stacks and let
the teams handle them (DevOps style)

4 HashiTalks DACH 2020 - Opinionated terraform modules and a registry

https://www.sigterm.de/2020/12/03/hashitalks-dach/

(1.2) The boring-registry

• TIER Mobility developed their own "boring" Terraform registry without moving parts (hence the
name)
• Details to be found here: https://github.com/boring-registry/boring-registry/
• The important feature for now is support for the Module Registry Protocol

• You provide a S3 bucket, module code and package it in CD via
./boring-registry upload --type s3 (some more flags) ./your-module

• You'll get
semantic versioning

module "rds" {
 source = "registry.example.com/acme/rds/aws"
 version = "~> 0.1"
}

https://developer.hashicorp.com/terraform/internals/module-registry-protocol

(1.3) Separating the service stacks
some Architectural Decisions

Don't

• separate services along team borders5

➡ teams and responsibilities change, always
• share states between services

➡ there are secrets in there!6

➡ read the docs of the terraform_remote_state data
source!

Do

• Layer your stacks - account, network, clusters and services
• 1 Terraform stack per service

• good for least privilige access
• place the Terraform code into the service repo

• run the TF stacks in automation
• use an indirect way to share information between stacks7

7 TF-CIX as an approach to share information between terraform stacks

6 Sensitive Data in State

5 How TIER switched paradigms - from team- to service-centric

https://developer.hashicorp.com/terraform/language/state/remote-state-data
https://www.sigterm.de/2021/09/02/tier-infra-part-3/
https://developer.hashicorp.com/terraform/language/state/sensitive-data
https://tier.engineering/How-TIER-switched-paradigms-from-team-to-service-centric-Part-1

(1.3.1) Indirect information exchange

• use structured data
➡ ideally JSON for
jsondecode() and
jsonencode()

• use whatever storage you
prefer
➡ SSM Parameter Store or S3

Code for 3 Terraform modules will
be provided

• s3_json_store

CRUD JSON data on S3

• ssm_json_store

CRUD JSON data on SSM
Parameter store

• ssm_json_regex

read SSM parameter with regex

(1.3.2) Write data (base system)

module "ssm_service_data" {
 source = "registry.example.com/foo/ssm_json_store/aws"
 version = "~> 1.0.2"

 path = "/configuration"
 name = "base"
 data = {
 domain = local.domain_name
 environment = local.environment
 environmentClass = local.environmentClass
 backup_plan = local.backup_plan
 networking = {
 vpc_id = module.base.vpc_default_id
 subnet_database_ids = module.base.subnet_private_database_ids
 subnet_k8s_ids = module.base.subnet_private_k8s_ids
 }
 cluster = {
 name = module.eks.cluster_name
 oidc_issuer_url = module.eks.cluster_oidc_issuer_url
 oidc_provider_arn = module.eks.cluster_oidc_provider_arn
 }
 }
}

(1.3.3) Write data (upstream)

module "ssm_service_data" {
 source = "registry.example.com/foo/ssm_json_store/aws"
 version = "~> 1.0.2"

 path = "/configuration"
 name = "upstream"
 data = {
 installed = true

 private = {}
 public = {
 sns = {
 "foo" = {
 "arn" = module.sns_foo.arn
 "name" = module.sns_foo.name
 }
 sqs = {
 "bar" = {
 "arn" = module.bar_queue.arn
 "name" = module.bar_queue.name
 }
 }
 }
 }
}

(1.3.4) Read data (downstream)

module "ssm_data" {
 source = "registry.example.com/foo/ssm_json_store/aws"
 version = "~> 0.1.0"

 path = "/configuration"
 include_filter_regex = "(base|upstream)"
}

module "sns_sqs_subscription_foo" {
 count = try(module.ssm_data.values["upstream"]["installed"], false) ? 1 : 0
 source = "registry.example.com/foo/sns_sqs_subscription/aws"
 version = "~> 0.1"

 sns_arn = nonsensitive(module.ssm_data.values["upstream"]["public"]["sns"]["foo"]["arn"])

 message_retention_seconds = 1209600
 redrive_policy = jsonencode({
 deadLetterTargetArn = module.dead_foo[0].arn
 maxReceiveCount = 5
 })
}

(1.3.5) Downsides of strong decoupling

• Data contracts between stacks
• dependencies
• versioning

• Dependencies of stacks
• TF and Service code must be able

to handle missing dependencies
• reconciliation of TF stacks to check

changed upstreams
• eventually consistent

• Stack orchestration

• state management should be
centralised

• stack execution should be in
automation

• Permission management

• for code changes (eg.
CODEOWNERS)

• for infrastructure changes

• for accessing resources

(1.3.6) Soft data contract between stacks

Post to be found here: https://www.sigterm.de/2024/01/24/data-contract-for-terraform-stacks/

What's "reasonable scale", btw?
• we had 2 dimesions so far

• number of TF stacks for x

• number of environments for y

• and a fixed number of tenants (1) for z

• let's expand the setup to multiple tenants

• with this we'll get a real z dimension

total stacks = stacks * environments *
tenants

To give some numbers: my client LYNQTECH runs
~100 microservices in at least 2 environments per
tenant
for 5+ tenants - north of 1000 stacks

!

https://www.lynq.tech/

(2) Terraform in
GitOps

(2.1.1) FluxCD primer8

What is GitOps?
GitOps is an operational framework that takes DevOps
best practices used for application development such as
version control, collaboration, compliance, and CI/CD, and
applies them to infrastructure automation.
— https://about.gitlab.com/topics/gitops/

• In our context - pull vs. push principle
• You don't care in which environment a stack runs in

• They are ready for your stack and your code is
pulled in (vs. pushed via a pipeline)

8 https://fluxcd.io/flux/components/

(2.1.2) Weaveworks TF Controller9 18

18 Please note: As the tf-runner ServiceAccount is usually very powerful, do not run it in an accessible namespace!

9 https://github.com/weaveworks/tf-controller

(2.2.1) Structure of central FluxCD
configuration
• Each environment must be configurable individually

• has its own entry point for FluxCD

• this allows for configuration of deployed services

• For audit reasons, production environments must
use fixed service versions, others can use semantic
versioning

• Flux applications must be DRY

• do not c&p code

• implication: no individual configuration of apps

• in the central Flux repo there are NO variables,
parameters etc. pp.

• we only document the intent to run a service

• self-configuration happens inside of an
environment

• Use of OCI-based registries for sources only

• everything as a final artefact

• flux push artifact12 is your friend

12 https://fluxcd.io/flux/cmd/flux_push_artifact/

FluxCD as an App of Apps system
.
├── environments
│ ├── client-a
│ │ ├── prod
│ │ │ ├── services
│ │ │ │ ├ _versions.yaml
│ │ │ │ ├ foo.yaml
│ │ │ │ └ bar.yaml
│ │ │ └── system
│ │ └── stage
│ │ ├── services
│ │ └── system
│ ├── client-b
│ [...]
│
├── flux-apps
│ ├── service-stacks
│ │ ├── foo
│ │ ├── bar
│ │ [...]
│ │ └── baz
│ └── system
│ [...]
│ ├── vertical-pod-autoscaler
│ └── weaveworks-gitops

from the perspective of an individual FluxCD
installation

• (0) - cloud and runtime is set up

• provide data for stacks to become conscious

• (1) - load environment

• primary Flux app

• references all secondary service Flux apps

• includes the version tracking ConfigMap

• (2) - load service Flux apps

• contains relevant manifests

• eg. OCI Sources, Terraform, Kustomization

• (3) - apply individual service apps

Primary Flux app

Secondary Flux app

(2.3.1) Post build variable substitution10

• FluxCD's unique possibility to replace variables in
rendered manifests before apply

• in FluxCD repo

• environment specific _versions.yaml becomes
service-versions ConfigMap

• satisfies the "fixed versions" requirement

• In underlying IaC - basic environment information
for a TF stack are written

• base ConfigMap provides client, environment
and other data

• to form the path for Terraform state file

apiVersion: v1
kind: ConfigMap
metadata:
 name: service-versions
data:
 version_foo: "2.5.0"
 version_foo_tf: "~ 0.1.0-0"
 version_vertical_pod_autoscaler: "~> 9.0.0"
 version_vertical_pod_autoscaler_tf: "~ 0.1.0"

apiVersion: v1
kind: ConfigMap
metadata:
 name: init
data:
 clientId: "tenant-a"
 domain: "stage.tenant-a.tld"
 environment: "stage"
 environmentClass: "non-prod"
 region: "eu-central-1"

10 https://fluxcd.io/flux/components/kustomize/kustomizations/#post-build-variable-substitution/

(2.3.2) usage example
apiVersion: source.toolkit.fluxcd.io/v1beta2
kind: OCIRepository
metadata:
 name: foo-iac
spec:
 interval: 5m
 provider: aws
 ref:
 semver: "${version_foo_tf}"
 url: oci://xxx.dkr.ecr.eu-central-1.amazonaws.com/iac/foo

apiVersion: infra.contrib.fluxcd.io/v1alpha2
kind: Terraform
metadata:
 name: foo
spec:
 backendConfig:
 customConfiguration: |
 backend "s3" {
 region = "${region}"
 bucket = "terraform-states"
 key = "${clientId}/${environment}/stacks/foo.tfstate"
 role_arn = "arn:aws:iam::xxx:role/tf-${clientId}-${environment}"
 dynamodb_table = "terraform-states-locks"
 encrypt = true
 }
 sourceRef:
 kind: OCIRepository
 name: foo-iac
 vars: []

(2.4.1) Configuration Management
• (Terraform) code is agnostic of environments
• strict division of concerns between cloud and runtime environment

• Helm/Kustomize - Runtime (Kubernetes)
• Terraform - Cloud

• Each Cloud and Runtime environment allow a stack to become concious
• Cloud: SSM data base; Runtime: ConfigMap init
•

!

 pull of configiguration vs. push
• per code stack - data are baked into artifact

• terraform - single configuration.tf
• kustomize - separate overlay directories
• helm - separate values.yaml

(2.4.2) Example
locals {
 service = "foo"
 squad = "bar"
 domain_name = module.ssm_data.values["base"]["domain"]
 cluster_name = module.ssm_data.values["base"]["cluster"]["name"]
 client = nonsensitive(module.ssm_data.values["base"]["clientId"])
 environment = nonsensitive(module.ssm_data.values["base"]["environment"])
 env_class = nonsensitive(module.ssm_data.values["base"]["environment_class"])

 configuration = {
 default = {
 k8s_namespace = local.service
 k8s_sa_name = local.service
 rds_instance_class = "db.t4g.medium"
 }
 client_a = {
 stage = {}
 }
 environment_classes = {
 non-prod = {}
 prod = {
 rds_instance_class = "db.r6g.medium"
 }
 }
 }

 # choose the right configuration based on
 # client/environment/environment class or simply defaults
 selected_configuration = merge(
 local.configuration["default"],
 try(local.configuration[local.client][local.environment], {})
)
}

get the central SSM config parameters
module "ssm_data" {
 source = "registry.example.com/foo/ssm_full_json_store/aws"
 version = "0.3.1"

 path = var.config_map_base_path
 include_filter_regex = "(base|foo|bar)"
}

module "database" {
 source = "registry.example.com/foo/RDS/aws"
 version = "3.5.0"

 identifier = local.service
 squad = local.squad
 rds_engine_version = local.selected_configuration["rds_engine_version"]
 rds_instance_class = local.selected_configuration["rds_instance_class"]
 client_id = local.client
 environment = local.environment
 vpc_id = module.ssm_data.values["base"]["aws"]["vpc_id"]
 subnet_ids = module.ssm_data.values["base"]["aws"]["subnet_public_ids"]
 # [...]
}

(2.4.3) Connecting Cloud and Runtime
• remember: division of concerns - cloud and runtime

• Terraform stack writes structured data as JSON

• Runtime pulls in data via External Secrets Operator16

• Reloader watches and upgrades Pods with their
associated data

module "ssm_service_data" {
 source = "registry.example.com/foo/ssm_json_store/aws"
 version = "1.0.2"

 path = "/configuration"
 name = "foo"
 data = {
 installed = true
 private = {
 database = {
 database_name = module.database.databas
 database_username = module.database.database_username
 endpoint = module.database.endpoint
 reader_endpoint = module.database.reader_endpoint
 port = module.database.cluster_port
 }
 }
 public = {}
 }
}

apiVersion: external-secrets.io/v1beta1
kind: ExternalSecret
metadata:
 name: foo-secrets-ssm
spec:
 target:
 name: foo-secrets-ssm
 data:
 # [...]
 - remoteRef:
 key: /configuration/foo
 property: private.database.database_username
 secretKey: DATABASE_USER
 - remoteRef:
 key: /configuration/foo
 property: private.database.endpoint
 secretKey: DATABASE_HOST

kind: Deployment
metadata:
 annotations:
 reloader.stakater.com/auto: "true"

16 https://external-secrets.io/, stakater/Reloader

https://external-secrets.io/latest/
https://github.com/stakater/Reloader

(2.5) Specifics of TF-Controller

(2.5.1) Traffic

• each stack has its own tf-runner pod

• Decision: no persistent pods between runs
for security reasons (permissions of SA)

• Sizing example: terraform-provider-
aws_5.31.0_darwin_arm64.zip = 84MB

• NAT costs (AWS specific issue; GCP lowered
egress costs to $0 recently)
• reconcile every 30'

• terraform init for each execution

• 100 stacks * 48 runs/day * ~100MB
providers * $0,052/GB = 480GB/$24,96
day/environment

• boring-registry to the rescue
!

• caching, pull-through proxy

• Provider Network Mirror Protocol

• provider stored and delivered as S3 objects

•

"

 use S3 VPC endpoints

https://github.com/boring-registry/boring-registry/#provider-network-mirror

.terraformrc

credentials "my.terraform-registry.foo.bar" {
 token = "7H151553CUr3!" # we are 1337
}

provider_installation {
 network_mirror {
 url = "https://my.terraform-registry.foo.bar/v1/mirror/"
 include = ["*/*"]
 }
}

(2.5.2) Kubernetes resources

• each reconcile cycle triggers
one tf-runner pod per stack

• each tf-runner pods consumes
• ~800m CPU
• ~150M Memory

• This would spawn a lot of
machines at times

• using k8s limits based on
priorityClass

apiVersion: scheduling.k8s.io/v1
description: used to limit the number of terraform runners
kind: PriorityClass
metadata:
 name: terraform
value: 0 # same priority as everybody else

apiVersion: v1
kind: ResourceQuota
metadata:
 name: terraform-runners
spec:
 hard:
 pods: "10"
 scopeSelector:
 matchExpressions:
 - operator: In
 scopeName: PriorityClass
 values:
 - terraform

(2.6) Weave Policy Engine17

• based on Rego and similar to Open
Policy Agent

• Goal: auto approve Terraform
changes
• Decision: no destroy/recreate
• Decision: no direct IAM resources

(only via controlled modules)
• ⚠ not an easy task - talk of its own

17 Weave Policy Engine, Integrate TF Controller with Flux Receivers and Alerts, Open Policy Agent

https://docs.gitops.weave.works/docs/policy/intro/
https://weaveworks.github.io/tf-controller/use-tf-controller/flux-receiver-and-alert/
https://www.openpolicyagent.org/

(2.7) Weave GitOps UI11

aka - the missing FluxCD UI

11 https://github.com/weaveworks/weave-gitops and https://docs.gitops.weave.works/

(3.0) Is it production ready?
• tf-controller is sometimes uncertain about the

state
• slow development of tf-controller, thank you

HashiCorp
• in principle ready for OpenTofu13

• the talk uses features from a pre-release14

• observability is not ideal
• eg. finding all Terraform Manifests, which

have a pending plan

Be honest, where are you in the project?

• In the middle of cutting the large TF stacks

•

!

 very useful tool: minamijoyo/tfmigrate

• Automatic approvals are yet to come

• Branch Planner needs to be implemented to
enable full developer ownership

• after IaC migration, services move to FluxCD as
well

14 https://github.com/weaveworks/tf-controller/releases/tag/v0.16.0-rc.3

13 https://www.opentofu.org/

https://github.com/minamijoyo/tfmigrate
https://weaveworks.github.io/tf-controller/branch-planner/

(3.1) Why not the BACK stack15?
• Backstage (B): A self-service portal to empower

developers
• Argo CD (A): A GitOps-based continuous delivery (CD)

tool for streamlined software delivery.
• Crossplane (C): A universal control plane simplifying

self-service infrastructure provisioning through
abstractions.

• Kyverno (K): A Policy as Code (PaC) tool

• existent Terraform stack and knowledge did not justify re-
write of IaC

• Crossplane is bound to 1 kubernetes cluster (state in
etcd) where Terraform is bound to a state file

• Introduction of Backstage was out of scope

• ArgoCD vs. FluxCD

• ArgoCD's handling of Helm charts (templated and
applied)

• TF-Controller as part of FluxCD eco-system

• ArgoCD has UI and concept of multi-cluster baked in

• Kyverno "runs as a dynamic admission controller"
can not be used as a decision engine

15 Introducing the BACK Stack! - https://www.youtube.com/watch?v=SMlR12uwMLs

(3.2) Downsides

• development and local testing of TF code is hard

• possibly via Branch Planner

• only for Github sources
• Terraform module registry - so batteries included for developers?

yes, kind of, but

• Terraform understanding needed

• it is hard to grock the stack data exchange concept

• we provide template repositories, use case documentation

• TF-Controller: (un)interruptable pods needed (for writing states)

• missing UI (for TF-Controller) and Monitoring APIs

• implicit data contracts between Terraform stacks

(3.2.1) - An uncertain future

2024-02-06 - https://www.linkedin.com/feed/update/urn:li:activity:7160295096825860096/

(3.3) Upsides

• all domains (code, kubernetes and cloud environment) follow the same pattern

• same CI and CD

• same artefact type (OCI)

• similar release cycles

• single entry point for Product Owners

• IaC runner can be replaced

• TF-Controller is just a controlled terraform executor

• migration to eg. Spacelift.io or others possible

• break-the-glas scenario supported (manual stack execution)

• Terraform/OpenTofu eco-system can be reused

• providers

• knowledge and modules

(3.4) Thanksides
• LYNQTECH GmbH for granting permission

to share information and code

•

!

 LYNQTECH is hiring
https://www.lynq.tech/jobs/

• All colleagues who were and are part of
this journey

• The FluxCD Community and WeaveWorks
for their software

2024-01-16 // Lessons learned from running Terraform at reasonable scale // Daniel Ciaglia <daniel@sigterm.de>

https://www.lynq.tech/

(4.0) Architectural decisions
General FluxCD

• Each tenant environment must be configurable individually

• For audit reasons, production envs must use fixed
service versions

• Applications, in the central repo, must be DRY. No
inidividual stacks.

• Use of OCI-based registries for sources only (exception:
external Helm)

• Code is agnostic of environments and is not parameterised

• Each cloud (AWS) and runtime (Kubernetes)
environment allows a stack to become concious

• kustomize style data baked into artifact

• Secrets synchronised via External-Secret Operator

• Kubernetes cluster should be treated as cattle

TF-Controller

• No vendor lock-in; re-usability of eco-system strong plus
• Terraform providers
• Terraform OSS modules

• No persistent pods between runs
• Aim for Auto approval for Terraform changes

• no destroy/recreate
• no direct IAM resources (only via controlled modules)
• only approved top-level module sources

Image sources
1. FluxCD documentation - https://fluxcd.io/flux/components/

2. Weave GitOps // Terraform Controller documentation -
https://weaveworks.github.io/tf-controller/

3. Weave GitOps // The Policy Ecosystem - https://
docs.gitops.weave.works/docs/policy/getting-started/

