Invited: A Distributed Approach to Silicon Compilation

Andreas Olofsson, William Ransohoff, and Noah Moroze
Zero ASIC, Cambridge, MA, USA
{andreas,will,noah}@zeroasic.com

ABSTRACT

Hardware specialization for the long tail of future energy con-
strained edge applications will require reducing design costs by
orders of magnitude. In this work, we take a distributed approach to
hardware compilation, with the goal of creating infrastructure that
scales to thousands of developers and millions of servers. Technical
contributions in this work include (i) a standardized hardware build
system manifest, (ii) a light-weight flowgraph based programming
model, (iii) a client/server execution model, and (iv) a provenance
tracking system for distributed development. These ideas have been
reduced to practice in SiliconCompiler, an open source build system
that demonstrates an order of magnitude compilation speed up
on multiple designs and PDKs compared to single threaded build
systems.

1 INTRODUCTION

With Dennard scaling long gone and Moore’s Law stagnating, many
believe that hardware specialization may be our best option for
extending the current trajectory of exponential year over year im-
provements in electronics [5]. This path is currently blocked by
the high costs of chip design, which can exceed $100M and require
hundreds of person-years per project. Long gone are the days of
the “tall thin designer” that could claim expertise in all aspects of
design. Today’s advanced chip designs are made of large teams with
specialized skills in circuits, floorplanning, packaging, EDA tools,
DTCO, STA, DFT, DFM, LEC, EML, SI, CTS, ESD, OCV, and CDC. Ex-
treme post-Moore hardware specialization will require abstracting
away all of these skills while reducing the cost and time barriers to
the level of software.

A core challenge in modern SoC design is the numerical complex-
ity of optimizing billions of inter-connected physical devices for
power, cost, area, and speed while ensuring that the circuit operates
reliably under all possible temperature, voltage, and process condi-
tions. Tackling these types of NP-hard physical design optimization
challenges has been a core focus of the semiconductor industry over
the last 50 years. Due to this complexity, the effort required to create
hardware designs can be many orders of magnitude higher than
software. Closing this enormous gap will require breakthroughs in
distributed algorithms, programming frameworks, and runtimes
that enable efficient use of distributed warehouse-scale compute
infrastructure throughout the hardware compilation pipeline.

A second fundamental challenge of hardware compilation comes
from the complexity of optimizing for physical goals and scenarios

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC °22, July 10-14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/XXXX XXX XXXXXXX

M JSON
Manifest

Designer

! !] |]

v v v v v

[ovver I orver [l orver W ovver Woer J .

Process Design Kits (PDKs)

Figure 1: SiliconCompiler Architecture

that can’t be easily described mathematically. As an example, the
fields of robotics and autonomous driving have shown that taking
humans out of the loop gets exponentially harder with increasing
quality requirements. Developing an “intelligent” hardware com-
piler that can completely replicate the millions of engineering hours
spent yearly on physical design of SoCs is a once in a generation
grand challenge that requires advances in compilers, algorithms,
models, design, high performance computing, and machine learn-
ing. The scope and breadth of these challenges suggests the need
for a global collaborative effort similar to what we have seen within
Linux, GCC, LLVM, the human genome project, and Python.

The SiliconCompiler project illustrated in Fig. 1 is an open source
build system that aims to address these fundamental challenges
and facilitate the development and deployment of fully automated
hardware compilers. It achieves this through key design decisions
that enable distributed development and distributed execution of
compilation flows.

2 RELATED WORK

Since the beginning of Moore’s Law, the design industry has worked
tirelessly to ensure that designer productivity kept pace with tran-
sistor density doubling every two years. One of the earliest attempts
at automating SoC design was the original “silicon compiler” which
automated the assembly of parametrized building blocks through
customized software [6]. These early compilers were created on a
per domain basis and were too limited in scope to gain widespread
adoption. Still, many ideas from these “compilers” remain relevant
today, as shown by the DARPA-funded Epiphany-V design which
demonstrated assembly and tapeout of a 4.5B transistor chip in
16nm by a single designer on a single server [9].

The dominant SoC design process over the last 40 years has
been based on mapping (synthesis) of general purpose hardware
design languages (Verilog/VHDL) into standard cell netlists, and

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

then placing and routing these mapped netlists using fully auto-
mated algorithms. These RTL-to-GDS type compilers have served
us well as demonstrated by the thousands of silicon miracles taped
out every year. The inconvenient truth, however, is that modern
RTL based flows are not really true compilers because they require
a significant level of manual work and optimization for each design.
An equivalent in software would be having a C-compiler that re-
quires the user to write a portion of the program in assembly for
every architecture and to manually fix 1000’s of errors in the final
binary executable on every compilation cycle.

To address challenges in design efficiency, DARPA launched
the IDEA research program in 2017 with the ambitious goal of
creating a set of “no human in the loop 24 hour turnaround layout
generators for System-On-Chips, System-In-Packages, and Printed
Circuit Boards” [10]. Open source physical design packages that are
direct results from the IDEA program include OpenROAD (digital
layout), Align and Magical (analog layout), FaSOC (mixed signal),
and ACT (asynchronous design) [1-4].

To make all of these tools interoperate effectively, a compilation
framework is needed for data exchange per design customization.
Commonly used names for these frameworks include: reference
flows, reference methodologies, build systems, and CAD flows. Un-
til recently, all industry frameworks were proprietary and were
generally based on a combination of makefiles, TCL, and various
scripts.

In recent years, a number of open source frameworks have been
developed to address the lack of shared infrastructure for small de-
sign groups, students, and hobbyists. The Hammer project demon-
strated that physical design costs can be greatly reduced by intro-
ducing common IRs and separation of concerns between technology,
EDA tools, and design [12]. The OpenLane project integrated Yosys
(synthesis), OpenROAD (place and route), Magic (LVS/DRC), the
Skywater 130nm open source PDK, and project specific TCL ref-
erence flows to demonstrate the first completely automated fully
open source tapeout flow [11].

For the goal of realizing a general purpose hardware compiler,
some significant challenges remain. Build systems must support
warehouse-scale computing to facilitate performant compilation,
and the framework must enable work to be easily distributed amongst
many developers.

3 APPROACH
3.1 Distributed development

The Internet as we know it would not exist without open standards
like TCP/IP and HTML. For autonomous hardware compilation to
become a reality, we need similar open standards in place for the
hardware development community. The industry currently lacks
an open standard for PDK, EDA, and IP abstraction, making it
impractical to automate the process of translating thousands of
designs to 100’s of PDKs using 100’s of individual executables. A
well specified standard has the potential to reduce the N-squared
translation problem to a 2N order problem [7].

SiliconCompiler addresses this using a standardized schema for
storing and communicating configuration and runtime results of a
hardware compilation. The schema is organized as a human read-
able nested dictionary with parameter leaf cells containing data.
Primitive data types supported for leaf cell values include string,
float, integer, file/directory, and boolean. Data types can also be

Andreas Olofsson, William Ransohoff, and Noah Moroze

design0

Figure 2: Format Translation Challenge

specified as dynamic lists or fixed-length tuples of these primitive
types. In addition to the data and type field, each parameter in-
cludes a set of requirements, configuration, and documentation
fields (scope, require, lock, switch, shorthelp, example, help). All
file-type parameters also include a set of additional fields for prove-
nance traceability (filehash, date, copy, author, hash algorithm).

The schema was designed with the following goals: (i) make
the official schema implementation platform independent, (ii) im-
plement a reference executable that can read and write the offi-
cial JSON schema format to reduce ambiguity, (iii) make every
parameter standalone to simplify adding extensions, (iv) include
documentation and examples inside the parameter definition to
make the specification self documenting and self testing, and (v)
use reserved keywords to enable dynamic dictionary extensions
where appropriate (e.g. library names, tool names). In total, the
schema standard contains approximately 350 dynamic parameters,
split into: source/options (100), EDA tool setup (25), execution flow-
graph (6), PDK setup (50), ASIC methodology (20), library setup
(80), provenance tracking (16), packaging (45), design checklists
(10), and runtime metrics (35).

The choice of an ASCII JSON file for the design database over
an optimized binary implementation implies a larger memory and
disk footprint, but since the manifest doesn’t actually contain any
physical design data (only pointers), this is a non-issue. The file
sizes of gzip-compressed SiliconCompiler manifests range from a
few KB for a small design in FreePDK45 to a few hundred KB at
an advanced FinFet node. Compared to chip design physical data
which ranges from GB to TB, the overhead of the SiliconCompiler
manifest is negligible.

While the SiliconCompiler JSON schema exactly defines the
standard for compilation configuration and tracking, it is too low
level to be programmed directly. Specialized data markup languages
like YAML, JSON, and XML are not equipped with the constructs
and abstractions needed for productive development of complex
projects. To raise the level of abstraction, we developed an object
oriented Python API and programming model to interface with the
schema. The API includes 6 low level core functions for interfacing
directly with the manifest (set/get/add/getkeys/getdict/valid)
and 30+ higher level functions for configuring compilation runs
and inspecting results after compilation.

To enable encapsulation and reuse of configuration, SiliconCom-
piler supports several categories of dynamic modules that contain
setup code for PDKs, libraries, flows, and targets. Targets are a
special category that themselves load flows, libraries, and a PDK
that could be used together for multiple designs. The configuration
performed by these modules can be accessed using a set of "load"
functions: load_pdk, load_lib, load_flow, and load_target.

Invited: A Distributed Approach to Silicon Compilation

import siliconcompiler

def main()
chip = siliconcompiler.chip()
yhp;u\ ource', 'heartbeat.v')

esign', 'heartbeat')

onstraint’, eartheat ic')
chip.load_targect('freepdka5_demo')
chip.run()

chip.summary()

chip. show()

Figure 3: Example illustrating the basics of compiling RTL
to GDS using the SiliconCompiler Python API.

The combination of an open standard and dynamic modules is
crucial for distributed development. These modules allow us to
provide an open reference implementation without having to hard-
code technology specific information, which is often encumbered by
NDAs. They also allow reuse and distributed development within an
organization, where different engineers could be in charge of writ-
ing setup modules for PDKs, libraries, and flows, which could then
be reused in any number of combinations in any number of design
projects. Looking forward, PDK, IP, and EDA vendors could even
ship SiliconCompiler setup modules to enable easy integration by
end-users, distributing the design effort and ultimately eliminating
the inefficiencies of repeated work.

3.2 Distributed execution

Along with enabling distributed development, SiliconCompiler needs
to enable transparent distributed execution to tackle the computa-
tional complexity of advanced designs. Compiling a design with Sil-
iconCompiler entails writing a build script, such as the one in Fig. 3,
that includes a minimum of three distinct steps: (i) Create an instan-
tiation of the Chip class that encapsulates the design build process
for the lifetime of the program. (ii) Configure the compilation param-
eters by setting values in the schema using the set ()/add()/load_*
access methods. (iii) Call the Chip run() method to start compila-
tion.

A single atomic run() call has many benefits in terms of im-
plementation flexibility, and it is enabled by our schema, which
includes all information required to describe what executable steps
the compilation entails. The backbone of the execution model is the
flowgraph, which consists of a set of connected nodes and edges.
A node is an executable tool performing some task, and an edge
is the connection between those tasks. SiliconCompiler defines a
task as an atomic combination of a step and an index, where a step
is defined as a discrete function performed within the compilation
flow such as synthesis, linting, placement, routing, etc, and an index
is defined as variant of a step operating on identical source data
with some compilation options changed. The ability to parallelize
steps via indexing enables automation and parallelization of design
parameter sweeps. Fig. 4 shows an example of a flowgraph.

Since all of this information is encapsulated in the schema, the
operations performed by run() can execute anywhere. Silicon-
Compiler supports a remote client/server execution model where
the flowgraph can be transparently executed on a server, and it
supports the Slurm job scheduler for distributing execution of in-
dividual nodes in the flowgraph across multiple machines. The
SiliconCompiler runtime automatically resolves dependencies and
handles synchronization to ensure tasks are scheduled properly.

Each compilation task is configured by schema values, and upon
completion the schema is written back to disk with results from

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

import0
(surelog)

e

syn0
(yosys)

synl
(y OSVS)

symum()
(minimum)

—

floorplan0
(openroad)

e

lecO
(yosys)

Figure 4: Simple flowgraph with four parallel synthesis tasks.

source sc_manifest.tcl
set sc_option [dict get sc_cfg eda my_tool variable . . .]
run_command -option $sc_option

Figure 5: Schema EDA Tool Interface Example

the task. The per-design schema based configuration and recording
database is called a manifest.

The JSON manifest enables a simple implementation, since it
can be easily serialized and sent to many machines in a distributed
system to give them complete information about the build. The
SiliconCompiler runtime relies on the manifest’s file pointers to
bundle required files and pass them to each machine. In order to save
bandwidth, the schema supports selectively determining which files
will be copied to machines versus assumed to exist. For example,
if each machine in a cluster has access to large PDK files they can
be marked as copy=False, but smaller design-specific files can be
marked as copy=True, since they will be constantly changing as
the designer makes updates on their client machine. Each file-type
schema parameter has a sensible default that can be overriden.

All executables called during compilation are directly controlled
by the manifest file. In the case of EDA tools, which are generally
controlled by TCL, this turns out to be an excellent choice. Advanced
physical design flows can include 10-50K lines of highly optimized
proprietary TCL code that cannot easily be generated directly from
Python. A more practical approach is to write the SiliconCompiler
standard manifest as a large TCL dictionary and then to create a
thin driver that assigns dictionary variables to the various private
reference flow variables. This driver approach has already been
demonstrated successfully with the open source OpenROAD tools
and several state of the art proprietary commercial reference flows.

By encapsulating all options required to fully describe a build,
SiliconCompiler’s schema enables a distributed execution model
where the schema can be serialized, sent to multiple machines in a
distributed cluster, and used to directly drive EDA tools. Wrapping
this entire execution in an atomic run() function that can be im-
plemented by multiple backends enables SiliconCompiler builds to

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Table 1: SiliconCompiler Project Statistics

Metric
PDK drivers Open (3), Proprietary (2)
Tool drivers Open (18), Proprietary (20)
Documentation 319 pages
Code Size (LOC) 17K Python, 2K TCL
CI Tests 122
Contributors 8
Popularity 6.9K downloads, 413 Github stars
1000 = heartbeat-job0
== picorv-job0
aes-job

= heartbeat-job1
== picorv-job1

aes-job1

Runtime / N (s)

2 4 6 8 10 12 14 16
Variations per step (N)

Figure 6: Compiler Scaling Results

transparently scale from a single client machine to a remote server
to a many-node datacenter. This is crucial for enabling performant
compilation of complex designs without increasing complexity from
the perspective of the designer.

4 PROJECT STATUS

The SiliconCompiler project was released as an open source repos-
itory under an Apache 2.0 license at on December 3, 2021. It can
be found at https://github.com/siliconcompiler. Table 1 shows key
metrics for the project as of March 15, 2022. Open source tools
supported by the project so far include: bambu, bluespec, chisel,
ghdl, icarus, klayout, magic, netgen, nextpnr, openroad, surelog,
sv2v, verilator, vpr, and yosys.

The results in Fig. 6, demonstrate the performance scalability of
the programming mode and runtime while compiling RTL examples
into GDS at the skywater130 node using the Yosys, OpenROAD,
and Klayout tools. The measurements were taken on a 10 core (20
threads) Intel® Core™ i9 CPU @ 3.70GHz x 20, 64GB of RAM. Job0
runs n independent tasks for syn, place, cts, and route stages with
minimization steps to select the best result. The same goes for Job1,
except for the route stage which is run with a single set of options
to reduce run time.

5 FUTURE DIRECTIONS

1) Package management: A core component of modern soft-
ware development is a method for effective packaging and dis-
tribution of known good code. Examples include Cargo (Rust), Pip
(Python), npm (Javascript), dpkg (Debian), and Docker (applica-
tions). Since our schema already includes the necessary infrastruc-
ture for recording all information about the source code and configu-
ration switches needed for compilation, the process of encapsulating
the information as a JSON package is straightforward.

Andreas Olofsson, William Ransohoff, and Noah Moroze

2) Education: There is currently a severe shortage of SoC physi-
cal designers in the US and at the current graduation rate, this gap
will never get filled. Barriers to effective workforce development in-
clude: (i) information sharing restrictions imposed by NDAs/EULAs,
(ii) high complexity of setting up physical design infrastructure,
and (iii) impedance mismatches between the students’ expectations
(Python, Stackoverflow, Google, Github) and current industry real-
ity (TCL). A low cost (or free) cloud based physical design platform
could remove many barriers to effective workforce development.

3) Language Support: SiliconCompiler already supports a num-
ber of high level front end hardware design frameworks, including:
Bambu (HLS), Migen (Python), Chisel, and Bluespec. Given the low
barrier to driver development, we expect the list of supported DSLs
to grow rapidly as the community expands.

4) Manual Design: SiliconCompiler has so far only been tested
with automated compilation flows. Human centric design flows such
as analog/mixed signal, package, and board design could also benefit
from the standardized build system for simulation, IP packaging,
archiving, and manufacturing tape outs.

5) Machine Learning;: SiliconCompiler natively supports Ma-
chine Learning thanks to the Python API and standardized metrics
schema, but additional effort is needed to develop data sets, ML
use cases, and API enhancements to support advanced machine
learning concepts [8].

6 CONCLUSION

In this paper we have presented the SiliconCompiler project, an
open source build system aiming to reduce the barrier to creating
fully automated hardware compilers.

REFERENCES

[1] Tutu Ajayi, Vidya A Chhabria, Mateus Fogaca, Soheil Hashemi, Abdelrahman
Hosny, Andrew B Kahng, Minsoo Kim, Jeongsup Lee, Uday Mallappa, Marina
Neseem, et al. 2019. Toward an open-source digital flow: First learnings from the
openroad project. In Proceedings of the 56th Annual Design Automation Conference
2019. 1-4.

[2] Tutu Ajayi, Sumanth Kamineni, Yaswanth K Cherivirala, Morteza Fayazi, Kyumin
Kwon, Mehdi Saligane, Shourya Gupta, Chien-Hen Chen, Dennis Sylvester, David
Blaauw, et al. 2020. An open-source framework for autonomous SoC design with
analog block generation. In 2020 IFIP/IEEE 28th International Conference on Very
Large Scale Integration (VLSI-SOC). IEEE, 141-146.

[3] Samira Ataei, Wenmian Hua, Yihang Yang, Rajit Manohar, Yi-Shan Lu, Jiayuan
He, Sepideh Maleki, and Keshav Pingali. 2021. An Open-Source EDA Flow for
Asynchronous Logic. IEEE Design & Test 38, 2 (2021), 27-37.

[4] Tonmoy Dhar, Kishor Kunal, Yaguang Li, Meghna Madhusudan, Jitesh Poojary,
Arvind K Sharma, Wenbin Xu, Steven M Burns, Ramesh Harjani, Jiang Hu, et al.
2020. ALIGN: A system for automating analog layout. IEEE Design & Test 38, 2
(2020), 8-18.

[5] John L Hennessy and David A Patterson. 2019. A new golden age for computer
architecture. Commun. ACM 62, 2 (2019), 48—60.

[6] Dave Johannsen. 1979. Bristle blocks: A silicon compiler. In 16th Design Automa-
tion Conference. IEEE, 310-313.

[7] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

[8] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim

Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi,

et al. 2021. A graph placement methodology for fast chip design. Nature 594,

7862 (2021), 207-212.

Andreas Olofsson. 2016. Epiphany-v: A 1024 processor 64-bit risc system-on-chip.

arXiv preprint arXiv:1610.01832 (2016).

[10] Andreas Olofsson. 2018. Silicon Compilers - Version 2.0. Keynote, http://www.
ispd.cc/slides/2018/k2.pdf.

[11] Mohamed Shalan and Tim Edwards. 2020. Building OpenLANE: a 130nm
openroad-based tapeout-proven flow. In Proceedings of the 39th International
Conference on Computer-Aided Design. 1-6.

[12] Edward Wang, Adam Izraelevitz, Colin Schmidt, Borivoje Nikolic, Elad Alon,
and Jonathan Bachrach. 2018. Hammer: Enabling reusable physical design. In
Workshop on Open-Source EDA Technology (WOSET).

[9

