

A Distributed Approach to Silicon
Compilation

Andreas Olofsson, William Ransohoff, Noah Moroze
Zero ASIC Corporation

Cambridge, MA
{andreas,will,noah}@zeroasic.com

My Background: 25 Years of Pushing Polygons

2007 20161999

Tr
an

si
st

or
s/

H
ou

r

E5
16nm

1024 CPUs
4.5B xtors
1Eng*12M

E4
28nm

64 CPUs
200M xtors
3Eng*3ME3

65nm
16 CPUs

50M xtors
3Eng*3ME1

65nm
16 CPUs

50M xtors
 1Eng*16M

E2
65nm

16 CPUs
50M xtors
1Eng*2M

TS201
130nm
1 CPU

50M xtors
100Eng*24M

TS101
130nm
1 CPU

45M xtors
30Eng*24M

AD9020
350nm
1 CPU

<1M xtors
1Eng*3M

1500X Engineering

Productivity Improvement! LESSONS LEARNED:
● Make PNR part of the arch loop

● Design for Layout (DFL)

● Design for EDA (DFE)

● Fight the FUD (not that hard!)

● Automate everything

SiliconCompiler: A modular build system for hardware

● “Make for hardware”

● Standardized build schema (json)

● Python OO API

● Flowgraph based execution

● Developed with cloud first approach

● Automated actions/metrics tracking

● Built for commercial AND open source

ASIC/FPGA tools.

● SRC: https://github.com/siliconcompiler

● DOCS: https://docs.siliconcompiler.com

https://github.com/siliconcompiler
https://docs.siliconcompiler.com

Basic Operation: Configure, Run, Observe

Compile
Task

SC Driver

Manifest

run()

Data Compile
Task

SC Driver

Manifest

run()

Data Data

Manifest

Compile
Task

SC Driver
Data

run()

Manifest

run()

1. Compilation tasks (ie EDA tools) wrapped with unified driver interfaces

2. Runtime manifest defines the “what, how, when, who, why” of compilation.

3. Sequence of tasks run based on static flowgraph defined in manifest.

4. Every configuration and tracked runtime metric reflected in the manifest.

The Manifest: An Open “CAD Standard”
Group Parameters Examples

asic 46 diearea , maxfanout,

intput/output 2 sdc, rtl, def, …

constraint 8 PVT, SDC, checks, …

options 50 loglevel , skip, optmode, path, …

unit 10 Time, voltage, current, ...

pdk 50 Runset, stackup, process,...

tool 29 Options, exename, license,...

flowgraph 9 Inputs, weights, goals

checklist 9 Rationale, criteria,

metric 45 Setupwns, errors, warnings, …

datasheet 39 Abs voltage, setup, hold

package 32 Dependency, author, …

● A unified compilation manifest

● Standardize all common settings

● Bypass parameters for “one-offs”

● Validated with 5 PDKs, 35+ EDA tools,

ASIC/FPGA/HLS flows

S
ou

rc
e:

 h
ttp

s:
//x

kc
d.

co
m

/

Designer View: Configure, Run, Observe

EDA View: Tools and Flows
setup(): Capture all TCL, cmdline, ENV settings

post_process(): Convert per tool free form text into data Create modular
flows based on
known good tool
configurations.
“mix and match”)

Foundry View: We can do better than “tarballs”!
● Modern PDKs shipped as tar balls with 1000’s of

files.

● Designer responsible for learning structure!

● SC uses JSON schema as golden PDK file manifest

● Python API use to manage setup complexity

● Done: nangate45, sky130, asap7, gf12lp, intel16

setup(): # skywater130.py

IDEA #1: We need “LLVM like IR for CAD”

Our Approach

Total Flows (D=100,E = 4,P = 10) = 114

Status Quo

Total Flows = D x E x P
D = Designs, E = EDA vendors, P = PDKs
Total Flows (D=100,E = 4,P = 10) = 4,000

Lynn Conway, Reminiscences of the VLSI Revolution: How a Series of
Failures Triggered a Paradigm Shift in Digital Design

IDEA #2: Unify config and artifacts in one manifest
• Unfied JSON “Object of Truth”

• Language agnostic

• Tracks setup and metrics

• > 200 dynamic parameters

• ASCII readable

• Signature tracking

• Embedded execution flow

• Job tracking/hashing

• Policy control

• Job history recording

• Package management

IDEA #3: Cradle to Grave Compilation Manifests

• “A checksum for hardware”
• SC wraps around each tool to capture

inputs and outputs.
• Each task produces a golden manifest

along with task outputs.
• A manifest includes all configuration

settings, actions, metrics up to that time.
• Supports automated packaging, audits,

archiving, replay actions, checks
• Typical compressed JSON manifest is

<1MB.

AD-HOC FILE SYSTEM

TOOL-A

SCRIPT/
PERSON

TOOL-B

SCRIPT/
PERSON

TOOL-C

SCRIPT/
PERSON

SRC
FILES

GDSII

Status Quo
Unstructured
text dumps

Silicon Compiler

IMPORT TOOL TOOL

SRC
FILES

GDSII

Manifest file
(JSON)

Standardized IN/OUT +
Manifest

All sources copied
into compilation
project

IDEA #4: Stop abusing YAML/JSON for setup!

• “JSON is an open standard file format and data
interchange format” [wiki]

• Not a programming language
• Doesn’t scale with complexity!
• Instead, use set/get pattern to drive json values

through Python.
Function Description

set/add() Set, add manifest
value

get() Get manifest value

getkeys() Return list of
manifest keys

Create API to leverage
the awesome power of
Python!

IDEA #5: Scalable execution model
“Serial Legacy Flow”

● Make files, BASH, Python, PERL,...
● SMP centric (not cloud centrics
● Fork/join parallelism with LSF/GRD
● LSF/Grid
● Low productivity and agility
● Not elastic
● No support for client/server architeture

“Cloud First Flow”

● Static flowgraph execution model
● Fow defined in schema manifest
● Python wrapper functions for ease of use
● Single call run() task for by user
● Runtime schedules on local machine or remote
● Built in SLURM job management

IDEA #6: Standardize Metrics

TOOL A

TOOL B

TOOL C

SC
JSON

MANIFEST
ML,

ANALYSIS

Warnings

WaRnInGs

WARNINGS

warnings=10

Downstream analysis needs consistent data,

not unstructured text!

Prof. Kahng, Jinwook Jung (IBM Research), Seungwon Kim and
Ravi Varadarajan gave Tutorial #1, "IEEE CEDA DATC RDF and
METRICS2.1: Toward a Standard Platform for ML-Enabled EDA
and IC Design"

• 40+ standardized terms

• Error/warnings/drvs

• PPA

• Runtime resources

• Design data (bufs, regs,...)

IDEA #7: Client/Server model to remove barriers

Observation Architecture Decision
Linux has 1% market share Support Windows, MacOS, Linux natively
Installation/EDA/PDK pain for EDA is real Zero install client/server remote REST API
Modern chip design needs massive compute Platform agnostic scalable execution model
Cloud compute can be expensive Support local execution

IDEA #8: Auto-generated documentation

• Most OSS projects don’t document well
• Address problem through automation
• Everything starts with the JSON schema
• Inspired by Sphinx, doxygen
• Make documentation a design principle
• Based on Sphinx auto-doc system
• Custom Python code for all scalable

docs generators (schema, flows, tools,
pdks, libraries, target).

• 338 pages of docs and counting!
• https://docs.siliconcompiler.com

https://github.com/siliconcompiler

IDEA #9: Built-to-last

• Build to scale (LLVM inspired)
• Plan for 10 years
• Developer redundancy
• Ensure long term funding
• Make wise dependencies choices!
• Leverage others (surelog,OR,...)

Demonstrator #1: Gallery of Python generated layouts

Heartbeat (FreePDK45) GCD (FreePDK45)

CVA6/Ariane
(Sky130)

Heartbeat + padring (Sky130)

ZeroSoC (Sky130)

Caravel (Sky130)

Heartbeat w/ padring
(Sky130)

● https://github.com/The-OpenROAD-Project/OpenROAD

-flow-script

● Created SC “flow/Makefile.py” to replicate

“flow/Makefile” (130 Python LOC)

● See “flow/scripts/sc” for rest of code

Try it!

$ python3 Makefile.py -DESIGN_CONFIG=<config.mk>

Demonstrator #2: OpenROAD flow integration

Chameleon
(sky130)

Microwatt
(sky130)

BlackParrot
(freepdk45)

Ibex
(freepdk45)

uart
(asap7)

tinyrocket
(freepdk45)

https://github.com/The-OpenROAD-Project/OpenROAD-flow-script
https://github.com/The-OpenROAD-Project/OpenROAD-flow-script

Demonstrator #3: Design of Experiments
Task:
● Select the settings that gives the best PPA

for your design.
Experiment:
● RTL2GDS flow using Yosys/Openroad
● Run N independent jobs for syn, place,

cts, route.
● Built-in min step selects best one
● See examples/benchmark/benchmark.py

Conclusions:
● 10X speedup demonstrated
● Static flowgraphs a good fit for CAD!
● Python multiprocessing “good enough”
● Manifest read/write overhead minimal
● Runs on SMP machines and in cloud

Summary: This is just the beginning…

PDKs intel16, gf12lp, sky130, asap7, freepdk45

Languages C (Bambu), SV, VHDL, Chisel,
Migen/Amaranth, Bluespec

Simulation Verilator, Icarus, GHDL

Synthesis Yosys, Vivado, Synopsys, Cadence

ASIC APR OpenRoad, Synopsys, Cadence

FPGA APR VPR, nextpnr, Vivado

Viewer OR Klayout, Cadence, Synopsys

DRC/LVS Magic, Mentor, Synopsys

SiliconCompiler released Dec 2021

