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▶ Visual objects commonly appear in typical surroundings with
other related objects

▶ Scene context helps us to process the visual world, e.g.
recognize objects more quickly and reliably



▶ V&L systems also often process “real-world” scenes
▶ visual REG: Objects in Photographs

Example from RefCOCO (Kazemzadeh et al., 2014)

▶ Often lots of relations between target and context!
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Do REG systems exploit Scene Context in
similar ways?



Experimental Setup

▶ Question: Does scene context help REG systems to process
target objects, if they are not clearly seen?

▶ Method: Train and test REG systems with and without
scene context with target representations obscured with
varying degrees of random noise

▶ Expectation:
▶ Model performance degrades with increasing noise
▶ exploiting context mitigates the loss



Experimental Setup / Models

Variants of two Transformer-based systems:
1. TRF: Standard Transformer (similar to Panagiaris et al. 2021)

▶ ResNet as visual backbone
2. CC: ClipCap captioning model (Mokady et al., 2021) applied

to the REG task
▶ CLIP as visual backbone, with pre-trained GPT-2

Here: Only discuss TRF results



Experimental Setup / Models
TRFtgt : Target-only
▶ Target, but no context features
▶ Input: [Vt ; Loct]

▶ Vt : ResNet encodings of the target bounding box content
▶ Loct : Target location / size relative to global image

Input for TRFtgt



Experimental Setup / Models

TRFvis : Visual context variant:
▶ Target + visual context features
▶ Input: [Vt ; Loct ; Vc ]

▶ Vc : ResNet encoding of the global image (without target)

Input for TRFvis



Experimental Setup / Models
TRFsym: Symbolic context variant
▶ Target + symbolic context features
▶ Input: [Vt ; Loct ; Sc ]

▶ Sc : Symbolic information about what kind of objects and
stuff the context is composed of

▶ e.g. 25 % street; 15 % vehicles; 15 % buildings; ...

Input for TRFsym



Sc features based on dense 2D maps for Panoptic Segmentation
(Kirillov et al., 2018)

→ Details in paper



Experimental Setup / Models

All variants are trained and tested for three noise settings:
▶ 0.0 → no noise
▶ 0.5 → 50 % of target bounding box replaced with noise
▶ 1.0 → full target bounding box replaced with noise (no visual

target information)
We always use the same setting for training and evaluation.



Results









Results: CIDEr/BLEU
▶ context very effective for compensating noise

▶ scores drop with increasing noise, but mitigated by context
▶ visual context more effective than symbolic context

▶ differences between testA (humans) and testB (other objects)
▶ target-only suffers less on testA

→ human referents are very frequent
▶ context is more helpful on testB

→ other objects are more varied, but appear in more specific
contexts



Human Evaluation
▶ 200 item sample from RefCOCO testB
▶ Instruction: Rate the expression parts which refer to the object

type (e.g. “a black dog”)

Adequate: wine glass
False: fork
Misaligned: bottle
Omission: thing in center



Results: Human Evaluation

▶ context again very effective for compensating noise
▶ Adequacy rates drop with increasing noise, but mitigated by

context
▶ symbolic context is more effective than visual context

▶ identification with only context works surprisingly well: 68 %
for TRFsym with full occlusion!



How exactly does context
improve the predictions?



Copying Strategy

▶ Observation: Systems often
predict referent types which
are also present in the
surrounding scene

▶ Often effective, as many
objects tend to appear in
groups



Copying Strategy: Statistical Analysis

▶ is exploiting context more
effective if the target class is
present in the scene?

▶ correlation study:
adequacy of descriptions vs.
context area covered by
target class

▶ results: systems rather pick
the correct target class, if
objects of the same type are
present in the context

noise corr. p

TRFtgt 0.128 –
TRFvis 0.0 0.109 –
TRFsym 0.154 < 0.05

TRFtgt 0.071 –
TRFvis 0.5 0.186 < 0.01
TRFsym 0.157 < 0.05

TRFtgt 0.046 –
TRFvis 1.0 0.321 < 0.001
TRFsym 0.277 < 0.001



Attention Analysis (TRFvis)
Encoder / Decoder attention to

1. target and context features
2. object types in context (target class vs. other classes)

Results:
▶ No clear picture for Encoder
▶ Decoder Attention: More attention to context and target class

for higher noise



How does Scene Context fit
into the REG task?



Scene Context in REG

▶ In classical works
(Incremental Algorithm) and
work on visual REG:
Distractors taken as most
relevant form of context

▶ considered during Content
Determination: pick target
properties that do not apply
to distractor

(TUNA, van Deemter et al. 2006)

The red couch facing right



Scene Context in REG

▶ Scene context is different,
but complimentary: Which
properties are true (not
distinctive) for the target?
▶ rather effects semantic

than pragmatic aspects
▶ (or other pragmatic

aspects, e.g. Gricean
Maxim of Quality
instead of
Quantity/Relevance)

▶ possibly important for
subsequent pragmatic
processing!

The truck being towed



Conclusion



Do REG systems exploit Scene Context?

▶ Scene Context makes models more resilient against
perturbations in visual target representations

▶ Context affects reference generation at different levels: Can be
exploited to generate distinguishing expressions but also to
ensure that expressions are true in the first place

▶ Is reliance on copying strategy cognitively plausible? Perhaps
not.
▶ further research!
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