
S I M O N D O B S O N

E P I D E M I C
M O D E L L I N G – S O M E
N O T E S , M AT H S ,
A N D C O D E

Copyright (c) 2020, Simon Dobson
https://simondobson.org

Self-published by the author

https://github.com/simoninireland/introduction-to-epidemics

ISBN 978-1-83853-565-0

Independent Publishing Network

https://bookisbn.org.uk

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International license. You may not use this book except under the terms of this license, a
copy of which can be obtained from the Creative Commons Corporation at
http://creativecommons.org/licenses/by-nc-sa/4.0/

First printing July 2020

Contents

Acknowledgements 7

Preface 9

Models and modelling 11

Disease progression 19

Compartmented models 29

Network models 41

Making fewer connections 49

Contact tracing 59

Epidemic threshold 69

3

Epidemic modelling – Some notes, maths, and code

Human contact networks 81

Herd immunity 97

Changing individual susceptibility 109

Asymptomatic transmission 129

Physical distancing 155

Conclusion 173

To find out more 177

Notes on production 181

Bibliography 183

Index 187

4 Contents

To everyone trying to understand, control, or treat epidemic disease.
The job will never end. That’s what makes it essential.

Acknowledgements

Thanks to the students and collaborators who have helped me
to get more and more interested in complex networks over
the years, and whose knowledge and enthusiasm have been so
motivating: Davide Cellai, Xue Guo, Peter Mann, John Mitchell,
Stefan Nixon, Martynas Noreika, Aleksejs Sazonovs, Saray Shai,
Anne Smith, Mike Pitcher. The fact that I still understand so
poorly remains my fault.

Thanks to the friends and colleagues who asked about
epidemic modelling and were then sucked into commenting,
proof-reading, and listening to half-formed explanations: Diego
Arenas Contreras, Muffy Calder, Simone Conte, Lisa Dow, Lei
Fang, Ian Gent, Fenella Hayes, Julie McCann, Conor Muldoon,
Riccardo Romano, Juan Ye. No good deed goes unpunished.

Thanks to the University of St Andrews for providing both
a stimulating academic home and access to the computing
resources needed to crunch the numbers.

This book would not exist without covid-19. Whether that is
something to thank it for, or something further to blame it for, I
leave up to you.

7

Preface

We’ve unexpectedly found ourselves in a situation in which
the science of diseases is of critical importance to us all. On an
individual level, we want to know what to expect of lockdowns,
vaccines or other therapies. At a population level, we want to
know how diseases become epidemics and then pandemics, and
how the different strategies might influence their course. Above
all, we want certainty that the disease will be conquered and the
future will be better.

Scientists don’t really do certainty, though. All of science is
based around the models that we construct to tell us about the
things we’re interested in, and the experiments that we conduct
to see whether the models match the reality on the ground. It’s
this combination of model and experiment, trial and error and
correction, that help us understand the world.

But what is a model of a disease? How do they work, and what
can they tell us about what we can expect from epidemics and
other events? I’m writing this book as an attempt to explain the
one small corner of this vast field that I know something about:
how to model epidemics using network science and computer
simulations. It isn’t in any way comprehensive, leaving huge
areas unexplored and a huge number of questions unanswered. I
make it available as a work in progress in the hope that it may be
useful and may encourage an interest in science.

9

Models and modelling

We should first clarify what is means to model something, or to
develop a model: what models are, what we expect from them,
their advantages and limitations.

Models

By model we mean a formal description of some aspects of a
system of interest that we can explore in order to gain insight
into the behaviour of the real system.

A mathematical model consists of one or more equations
expressing the relationships between different quantities. There
are often some parameters involved, quantities whose values are
known or assumed.

One can also have
mechanical models,
of course, such as the
orreries that model the
motions of planets. In some
senses machines are just
computation models that
happen to use analogue
components rather than
digital.

A computational model, by contrast, is a program written to
simulate the behaviour of the system. Such simulations are
almost always based on underlying mathematical models
and include parameters. What do computers provide? Sets of
equations can often be understood (or “solved analytically”) by
purely symbolic means, but many systems of equations can’t
be solved this way and instead need to be solved numerically,
by starting with specific values (numbers) and showing how
they evolve under the equations. Even for equations that can be
solved analytically, computers are often useful tools for helping
to explore large systems, or for visualising the results.

11

Epidemic modelling – Some notes, maths, and code

Uses of models

There are lots of questions we might want to ask about systems,
and these can often give rise to different models drawing on
different styles and approaches to modelling. For definiteness,
let’s discuss some of the questions we might ask about
epidemics.

We might be interested in epidemics in general. How do
changes in infectiousness affect the spread of the disease? What
are the relationships between infectiousness and recovery? How
do different patterns of contacts in a population affect how it
spreads? What are the effects of different countermeasures,
like physical distancing, vaccination, or quarantine? Are there
any patterns in the epidemic, like multiple waves? These are
quite abstract questions that could be asked of any disease, and
answering them might tell us something about how all diseases
behave – including those we haven’t encountered yet.

On the other hand, we might be interested in a specific disease,
or even in a specific outbreak. How will this disease spread
in a population? How about in another country to the one it’s
currently in? How will a particular countermeasure affect the
spread? When will it be safe for the majority of people to return
to work? These are all very concrete questions that depend on
the exact details of the situation about which they’re asked,
and answering them may be massively useful in managing this
situation. (Taylor provides an accessible discussion of the uses
and interpretations of the well-known Imperial College model of
covid-19’s impact on UK NHS bed availability during the 2020

outbreak 1.) 1 Paul Taylor. Susceptible,
infectious, recovered. London
Review of Books, 42(9), May
2020. URL https://www.
lrb.co.uk/the-paper/
v42/n09/paul-taylor/
susceptible-infectious-recovered

The interplay between these two kinds of questions is quite
complicated. In concrete cases we presumably measure the
specifics of the outbreak and work with them. We only have
partial control, for example on enforcing social distancing. It’s
often hard to then make more general predictions about diseases
more widely, to draw conclusions that can be used in other cases.

12 Models and modelling

Epidemic modelling – Some notes, maths, and code

So should we be more abstract? Abstraction typically brings
control over the model: we can explore a whole range of
modes of transmission, for example rather than just the one
we happen to have for this disease. We can explore different
countermeasures in the model without committing to one, which
means there are no consequences for being wrong. We get to
observe some general patterns and draw general conclusions –
which then don’t exactly apply to any real disease.

There’s a saying among
doctors who deal with
outbreaks on the ground:
“When you’ve seen one
pandemic, you’ve . . . seen
one pandemic.” The lessons
learned often don’t translate
to new situations.

On the other hand, the conclusions we draw from these abstract
models can’t be applied blindly to particular situations on the
ground. A good example (which we’ll come to later) concerns
the conditions under which an epidemic can get established in
a population. One would want to be very careful in taking the
results of an abstract investigation of this phenomenon and then
concluding that an epidemic can’t occur in a specific population
– very careful that the model’s assumptions were respected, very
careful that the parameters were known, and so forth. Mistakes
in situations like this can mean that outbreaks get out of control,
and people may die.

Assumptions

The accuracy of a model depends on its assumptions, and how
well these match reality. This issue appears in several guises.
The model’s “mechanics” – the ways it fits its various elements
together – need to match the disease it’s (purporting to be) a
model of. It needs to identify the parameters that control its
evolution. These parameters need to match those of the real
disease.

All these are problematic at the best of times, but especially
when dealing with a new disease that’s not been well-studied.
How infectious is a disease? How long is a person sick for? Does
the disease confer immunity on an individual who’s had it? –
and is that immunity total or partial, permanent or time-limited?
All these factors introduce uncertainties into any conclusions we
draw from modelling.

Assumptions 13

Epidemic modelling – Some notes, maths, and code

Correctness

Whether we’re interested in concrete or abstract questions, we
still have the problem of correctness: does our model produce
the “right” answers? It might not, either because it has been built
incorrectly (has “bugs” in computer terms – but mathematical
equations have them too), or because we don’t know the values
of some of the parameters (especially problematic in the middle
of an outbreak, when measurement often takes a back seat to
treatment), or because there are aspects of the real world that we
haven’t considered but that affect the result (often the case for
more abstract models).

We know quite a lot about building software, much of which
applies to the building of computer models: unit testing,
integration testing, clear documentation, source version control,
and so on. With modelling we then face the additional problem
of deciding whether the code we’ve built is fit for purpose.

Computer scientists often
split the question of assuring
correctness into two parts:
verification (“did we build
the thing right?”) and
validation (“did we build
the right thing?”).

Deciding what “fit” means is an interesting question in its own
right. It’s something we may only know retrospectively: did the
results that came out of the model match what happened on
the ground? We may not be able to measure exactly what did
happen on the ground: did we count all the fatalities, or were
some missed, or mis-diagnosed? For a more abstract model, how
happy are we that our simplifications don’t entirely divorce us
from reality?

Stochastic processes

There’s another problem.

Suppose you have the misfortune of becoming ill. For a fortnight
you are infectious, and there’s a chance that you’ll infect anyone
you meet. Now we know that you don’t infect everyone – no
disease (fortunately) is so contagious – so you infect a fraction
of all those you could have infected. We can’t usually predict this
exactly, but the exact details may matter: rather than infect Aunt

14 Models and modelling

Epidemic modelling – Some notes, maths, and code

Carol, who’s a noted recluse who has no further opportunities to
infect anyone else, you instead happen to infect Cousin Charlotte
who’s a noted party animal and goes on to spread the illness
widely. So even if we know the general pattern of a disease, the
exact way in spreads is affected by chance factors.

A system like this is referred to as a stochastic process. They
include an element of randomness in their very nature: it’s not a
bug, it’s a feature.

One way to think about
what’s happening is that
each run of the model is
sampling the distribution
of possible outcomes.
You expect to seldom see
“unlikely” outcomes and
mainly see “likely” ones –
but sometimes you’ll see
an “unlikely” outcome by
chance.

Now consider what this means for modelling. We can take
exactly the same situation – the same disease, the same
population – run the model twice, get two different answers –
and them both be right! The way to think about this is that each
run is a “possible outcome” of the disease. There may be several
possible outcomes, and they may all be similar – or there may
be radical differences. (We’ll see an example of this in a later
chapter.)

We often think that every problem has a “right” answer, but for
stochastic processes this isn’t the case: there are many “right”
answers. It’s attractive to think that we can simply “debug”
our way out of trouble, but in fact we can’t. There may be
randomness we can’t engineer away.

What to do? Actually, computer science is unusual in “normally”
having single answers. If you ask a biologist how long butterflies
live for, you don’t expect her to go out and observed the lifespan
of every single butterfly before answering. Instead you get a
statistical answer: an average and some variance. It’s the same
for stochastic processes (or models): we run the model several
times (possibly hundreds of times) for the same inputs, and
collate the results.

At least in principle. It can
be tricky to accomplish
in practice, not least
because computer scientists
have expended a lot of
ingenuity in making their
pseudo-random number
sequences less pseudo and
more random.

In a computer model, it’s often possible to actually reproduce
exactly even a stochastic process, because the “random numbers”
we use are actually only pseudo-random and so can be
re-created. That can help in the narrow sense of seeing whether
the model produces the same results given the same inputs
and the same “random” numbers, but it doesn’t help in the

Stochastic processes 15

Epidemic modelling – Some notes, maths, and code

wider sense of capturing the behaviour of a system with inherent
randomness.

Managing our expectations

This is captured by the
classic aphorism, attributed
to the statistician George
Box, that “all models are
wrong, but some are useful
. . . the approximate nature
of the model must always be
borne in mind”.

This all sounds like modelling is a horrible mess. But the
situation isn’t hopeless. We just need to be careful.

The results we get from any model, of any kind, are tentative
and suggestive and can generate insight into the system the
model is seeking to represent, whether concretely or abstractly.
There will always be factors outwith the model’s consideration.
The results aren’t “true” in any exact sense. They need to be
interpreted by people who understand both the phenomena and
models and modelling. This will often lead to the realisation that
the model needs to be changed, or extended or enriched, and
sometimes even simplified and stripped-down, better to answer
the questions that are being posed.

When we quipped in the preface that “scientists don’t really do
certainty”, it’s this that we had in mind.

Science is sometimes criticised for pretending to explain
everything, for thinking that it has an answer to every question.
It’s a curious accusation. As every researcher working in every
laboratory throughout the world knows, doing science means
coming up hard against the limits of your ignorance on a daily
basis – the innumerable things that you don’t know and can’t
do. This is quite different from claiming to know everything. . . .
But if we are certain of nothing, how can we possibly rely on
what science tells us? The answer is simple. Science is not reliable
because it provides certainty. It is reliable because it provides us
with the best answers we have at present. Science is the most we
know so far about the problems confronting us. It is precisely
its openness, the fact that it constantly calls current knowledge
into question, which guarantees that the answers it offers are
the best so far available: if you find better answers, those new
answers become science. . . . The answers given by science are
not reliable because they are definitive. They are reliable because
they are not definitive. They are reliable because they are the best
answers available today. And they are the best we have because

16 Models and modelling

Epidemic modelling – Some notes, maths, and code

we don’t consider them to be definitive, but see them as open
to improvement. It’s the awareness of our ignorance that gives
science its reliability.

—Carlo Rovelli 2. 2 Carlo Rovelli. Reality is not
what it seems: The journey to
quantum gravity. Penguin,
2017. ISBN 978-0-14198321-9

Modelling, like experimentation, is both integral to science and
subject to it: both a tool and an object of study, to be approached
sceptically and refined through time. The study of epidemics is
an excellent example of this process, and we can progressively
refine our models better to reflect our improving understanding.

Questions for discussion

• What can models tell us about real-world disease epidemics?

• Suppose you were asked to advise political leaders on the
basis of what a model predicts. Would you? What would you
want them to know about the process of modelling?

Questions for discussion 17

Disease progression

Everyone suffers from a disease at some point. The lucky
amongst us avoid anything more serious than influenza, measles,
or (in my case, years ago) whooping cough. But all diseases
share some common characteristics: characteristics so common,
in fact, that their mathematical properties are shared by other
processes that aren’t actually diseases at all, including the spread
of computer viruses 3 and the spread of rumours and other 3 Jeffrey Kephart and Steve

White. Directed-graph
epidemiological models
of computer viruses. In
Proceedings of Research
in Security and Privacy,
pages 343–359. IEEE Press,
May 1991. URL http:
//dx.doi.org/10.1109/RISP.
1991.130801

information.

Diseases that must be
vectored through animals
to infect humans are also
known as zoonoses.

The diseases in which we are interested are caused by pathogens,
typically viruses or bacteria: simple living organisms that
make their homes in humans (or other living organisms) and
cause some adverse reaction as a result of their lifecycle. These
pathogens can pass between individuals in a number of ways,
causing the disease to spread. A disease might be airborne,
able to live in the air and be breathed by passing individuals.
It might be spread by droplets, coughed and sneezed into
the environment or deposited on objects and picked up by
future physical contact with the contaminated surfaces. Or
it might be communicable only by direct physical contact,
skin to skin, through sex, or a blood transfusion. It might be
foodborne, transmitted through contaminated food that infects
several people from a common source. It might be vectored
through an animal, as is the case for malaria which has to be
sporead by mosquitoes and can’t spread person-to-person. Even
diseases that don’t require a vector may still incubate in animal
hosts as well as in humans (this is suspected in the case of the

19

Epidemic modelling – Some notes, maths, and code

1918 “Spanish flu” pandemic 4). And finally there is a class of 4 J.S. Oxford, A. Sefton,
R. Jackson, W. Innes, R.S.
Daniels, and N.P.A.S.
Johnson. World War I may
have allowed the emergence
of the ’Spanish’ influenza.
Lancet Infectious Diseases, 2

(2):111–114, February 2002.
URL https://dx.doi.org/10.
1016/S1473-3099(02)00185-8

non-communicable diseases such as cancer or heart disease,
some of which are hereditary: not caused directly by pathogens
but perhaps influenced by their presence, and perhaps made
worse by infections.

A disease becomes an epidemic when it infects a substantial
fraction of a population within a short time. There’s no
universally accepted definition of how large a fraction is needed
to classify an outbreak as an epidemic: for new or rare diseases
even a small number of infections might be considered an
epidemic, while some diseases persist in a population at a low
level and then flare-up epidemically. If an epidemic infects
people in several populations – typically several countries or
several continents – than it is termed a pandemic.

Each different kind of disease will have its own characteristic
pathology, how it affects the body of a person infected. It will
also have its own epidemiology that controls how it spreads.
Clinically, both these characteristics are extremely important; we
will focus here on the epidemiology, but the pathology remains
important because factors involved in how a disease progresses
in individuals may have a profound effect on how it spreads
between individuals.

Disease progression

A person’s infection goes through several periods, starting with
their disease progression;infection. Once infected, the disease
resides latent in their system, developing its presence but not
showing symptoms and not being infectious to others. After this
latent period the disease becomes infectious, capable of being
spread to others. Typically a person’s infectiousness peaks and
dies away before the end of the disease progression.

20 Disease progression

Epidemic modelling – Some notes, maths, and code

These two periods – latent and infectious – control the
transamission of infection. After initial infection there will
be an disease progression;incubation period before the
person shows symptoms of the disease. After the onset of
symptoms, the disease progresses and ends in some disease
progression;resolution: the patient gets better, or dies. If they
recover, they may then have some immunity to further infection.

For different diseases, the lengths of these periods and the ways
they overlap vary. For Type A diseases, the incubation period
is longer than the latent period. This means that a patient can
start to transmit the disease before the disease becomes manifest
in themselves. This happens in cases of measles and covid-19.
In Type B diseases such as SARS or ebola, by contrast, the
incubation period is shorter than the latent period, meaning
that asymptomatic patients cannot infect others. So despite ebola
being a more feared disease than measles, it may be easier to
treat epidemiologically since quarantining patients showing
symptoms will prevent transmission in the general population
(although not to medical staff); in measles, transmission starts
before symptoms show themselves, so quarantine based on
symptoms is less effective. Moreover for some disease the
infectious period may continue after the patient has died: the
corpses of victims of ebola, which is transmitted via bodily
fluids, can be extremely infectious for some time after death,
meaning that funerals become very dangerous loci of potential
infection for mourners.

Disease progression 21

Epidemic modelling – Some notes, maths, and code

How long do the different periods last? For each disease there
will be typical durations, often with substantial variance. In the
case of ebola, for example, a typical timeline would be a 0–3 day
incubation period, a 7–12 day progression to recovery or death,
and a latent period of 2–5 days. The ranges give the variance of
periods, different for different individuals that depend on factors
including the severity of infection and the individual’s overall
health. However, the incubation period for ebola can be up to
21 days, meaning that a suspected case needs to be quarantined
for this period: long enough, in other words, for the disease
symptoms to manifest if the person is actually infected. While
one can test for most diseases (including ebola) in a laboratory,
during an epidemic such tests may overwhelm the public health
infrastructure, making quarantine the most practical option.
(During historical disease outbreaks, of course, quarantine was
the only option.)

22 Disease progression

Epidemic modelling – Some notes, maths, and code

Measuring and modelling epidemics

Epidemiology is the science of creating models of diseases and
their spread that can be analysed, to make predictions or to
simulate the effects of different responses. To do this, we need
to identify the core elements of a disease from the perspective
of transmission: we typically do not need to understand the
disease’s detailed biology, only the timings and other factors that
affect its spread.

We discussed above the periods of diseases, their relationships,
and their different characteristics. We need some other numbers
as well, however, and it turns out that these can be measured
directly in the field.

The most important number is the basic case reproduction
number, denoted R0. R0 represents the total number of
secondary infections expected for each primary infection
in a totally susceptible population. The 0 in R0 stands for
t = 0: the basic case reproduction number applies at the start
of an epidemic. Over the course of an epidemic the value
of R will change as people become immune post-infection,
countermeasures take effect, and so forth, and give rise to a
net case reproduction number indicating how the disease is
reproducing at a given time.

R is affected by three factors:

1. The duration of infectiousness. All other things being equal,
a disease with a longer period of infectiousness has more time
in which to infect other patients.

2. The probability of transmission at each contact. Some
diseases are extremely contagious, with each contact having a
high probability of passing on the infection; others are much
harder to pass on to secondary cases.

3. The rate of contact. Someone coming into contact with
more susceptible individuals will have more opportunities
to generate a secondary case than someone meeting fewer. s

Measuring and modelling epidemics 23

Epidemic modelling – Some notes, maths, and code

The first two factors are characteristic of the disease, derived
from its biology. The third is characteristic of the social
conditions in which the epidemic takes place: it is this factor
that physical distancing, quarantine and so forth affect, by
reducing (ideally to zero) the contacts an infected person has
with uninfected individuals.

The importance ofR

The importance of R is that it indicates whether, and how fast,
a disease can spread through a susceptible population. If R <

1 then we expect fewer than one secondary case per primary.
This means that each “generation” of the disease will be smaller
than the one that infected it, and the disease will die out. If
R = 1 then the disease will perpetuate itself in whatever size of
population was originally infected. Nature is never so precise as
to present us with a disease like this, of course. However, R = 1
is the threshold value at which diseases become epidemics. If
R > 1, the disease will break-out and infect more and more
people.

Exactly how quickly depends on how large R is. For measles,
R ≥ 15 – fifteen new infections for each case – which explains
how measles spread so quickly in unvaccinated populations.
Different strains of influenza have different ranges of R: for the
1918 “Spanish flu” it has been estimated 5 that 1.2 ≤ R ≤ 5 Emilia Vynnycky, Amy

Trindall, and Punam
Mangtani. Estimates of
the reproduction numbers
of Spanish influenza using
morbidity data. International
Journal of Epidemiology,
36:881–889, 2007. URL
http://dx.doi.org/10.1093/
ije/dym071

3.0 in the community (although substantially more in confined
settings). If this sounds benign, remember that this epidemic
killed substantially more people than did the First World War.

In a typical epidemic the number of people infected grows very
quickly. If R = 2 then one person infects two others, who each
infect two others, who each . . . and so on – so each generation
is twice as big as the last). If you plot the size of the epidemic
against time on a graph, it’ll draw out an exponential curve.

24 Disease progression

Epidemic modelling – Some notes, maths, and code

Why we need to be careful aboutR

This sounds like good news: if we know R, we can estimate
the size of the epidemic we’re facing; if we calculate it on an
on-going basis we can monitor how well any countermeasures
we deploy are working, and decide when to relax those
countermeasures.

Well, not quite. There are at least four reasons that mean we
need to be careful not to over-rely on R.

This reason actually drives
all the rest, because it acts as
an amplifier for everything
concerning R.

The first reason is mathematical. R is the exponent of the
equation that controls the epidemic’s size. This is important,
because it means that epidemics behave non-linearly. An R
value of 4 is not twice as bad as an R value of 2: the epidemic
isn’t twice as big, it doubles twice as many times in the same
period. Small differences in the value of R therefore have huge
effects.

It’s true that R = 1 is the critical value, below which an
epidemic dies out. But it doesn’t follow from this that an R
value slightly over 1 is “pretty much 1” and so not a worry. That
non-linearity means that even a small excess in R can lead
to a large outbreak. This has implications for epidemic control
too: reducing the R value to just below 1 isn’t an indication that
everything will then be fine, as a small increase may set things
off again.

The second reason concerns estimation. The most effective way
of estimating R is contact tracing, where infected individuals’
contacts are located and tested – and can then be treated
or isolated if found to be infected themselves. Careful and
widespread “test, trace, and isolate” strategies can be extremely
effective in reducing an epidemic. The number of infected
contacts individuals have on average lets us estimate of R.

But by definition test and trace is “counting in the rear view
mirror”. It tells us how many people were being infected, not
how many people are being infected. There will be a delay
in identifying infected individuals, further delay in finding

Why we need to be careful aboutR 25

Epidemic modelling – Some notes, maths, and code

and testing their contacts, and so forth. If circumstances are
changing, for example through pathogen evolution or it infecting
different social settings, the estimate will be rendered out of
date.

The third reason concerns the consequences of errors. Finding,
tracing, and counting of infected individuals is invariably
error-prone. People will be missed; tests are never 100%
accurate, especially for diseases with long incubation periods
where there may be low pathogen loads in the early stages;
individuals forget whom they were in contact with; tracing
apps don’t work in all circumstances; and so forth. Each of
these errors leads to under-counting secondary infections and
therefore under-estimating R.

Finally we must remember that R is the average number of
secondary cases per primary. The use of averaging (and indeed
other summary statistics) is essential when trying to get the
“big picture” of an epidemic. But it means that the value of R
reported depends not just on the disease but on the population
being averaged over.

To see what this might mean, consider a country consisting of
one city surrounded by a collection of small villages – London
in the Middle Ages might be a good example. Suppose the
disease breaks out ferociously in the city but, because they
are separated and take precautions, the villages see a much
sparser rate of infection. If we were to compute the net case
reproduction rate averaged over the city we’d capture all the
ferocity of the epidemic’s spread. But if we compute the rate over
the whole country, we’d see a far milder epidemic. Because the
same disease is spreading in different circumstances, averaging
may be misleading – too mild for the city, but too large for the
countryside. When interpreting an average, you always need to
know what population has been averaged over. It is possible to
manipulate the reported R value accidentally, or deliberately by
judicious choice of population.

For all these reasons it’s important not to fixate on R. The
fact that it’s a number can sometimes give a false sense of

26 Disease progression

Epidemic modelling – Some notes, maths, and code

security, because numbers suggest certainty and precision –
and measuring R in the midst of an on-going epidemic offers
neither. A value of R that’s reducing over time is a good sign.
But R falling – or seeming to fall – below 1 isn’t enough to prove
that countermeasures are working and can be relaxed.

Growth rates

You may have noticed that the definition of R doesn’t include
time. It’s essentially the ratio of the different sizes of two
“generations” of infection, and so tells us about the way the
disease reproduces itself in a population. But it doesn’t tell us
how fast that reproduction happens: how long does it take for the
“next generation” to come along?

Obviously the answer is something to do with the latent period
we looked at earlier. The shorter the latent period, the faster an
infected person becomes infectious, and the faster the epidemic
will grow. R tells us nothing useful about this rate of growth.

Clearly this rate matters for tackling an outbreak, as well as for
modelling the progress of a disease in time. For this reason it’s
common to use another, complementary measure of epidemic
behaviour.

When we talked about the exponential growth in epidemic size,
we were still thinking in terms of generations of disease. We can
think in “real” time instead.

Mathematically, the size of an epidemic can be expressed as

N(t) ∝ eλt

where N(t) is the number of cases at time t (measured in some
units) and λ is the growth rate, the number of new cases that
appear per unit of time. The utility of this is that if we know
the growth rate per day and we know how many disease cases
we have now, we can predict how many diseases cases we’ll
have later, tomorrow (or even farther into the future) – and more

Growth rates 27

Epidemic modelling – Some notes, maths, and code

importantly we’ll know the answer in terms of days, not in terms
of disease generations. Even more importantly, we can get λ

directly from time series such as the number of diagnoses cases
by fitting a theoretical curve to the collected data.

A threshold value is
an example of what
mathematicians call a
seperatrix, a value that
divides two regimes of
qualitatively different
behaviour – growing or
shrinking, in this case.

Just as R had a threshold at R = 1 that determined whether the
epidemic was growing or shrinking, so λ = 0 divides growing
(λ > 1) from shrinking (λ < 0) conditions. And just like R, we
need to be careful about reading too much into that: mistakes
or omissions in reporting the ongoing cases can easily cause an
over- or under-estimate of λ.

The values of R and λ are mathematically related, of course,
with the former being found by integrating the latter 6. In 6 Jacco Wallinga and Marc

Lipsitch. How generation
intervals shape the
relationship between growth
rates and reproductive
numbers. Proceedings of the
Royal Society B, 274:599–604,
2007. URL https://doi.org/
10.1098/rspb.2006.3754

fact we can make λ capture just the biological part of the
disease’s spread, while capturing things like social issues and
countermeasures separately as a probability distribution of
infections over time.

Questions for discussion

• Think of a disease you’ve had. How did you catch it? Could
you have done anything to avoid catching it? Was it made
worse by where you lived at the time?

• What can be done to cope with “Type A” diseases, where
people can transmit the disease without showing symptoms of
it?

• Do you think the R number is a useful thing to keep track of
during an epidemic? Why? (Or why not?)

28 Disease progression

Compartmented models

All disease models share some commonalities. Each model will
need to represent the population of people being modelled,
some (or all) of whom will get the disease in the course of the
outbreak. It will need to represent the progress of the disease,
as people are infected, become infectious, recover, and so forth.
It will need some notion of how the disease spreads between
people. And it will need to represent the disease dynamics: how
long the various stages of the disease take, how virulently it
spreads in the population, and so on.

There are many different ways to represent these phenomena,
and each choice gives rise to a different modelling approach.
There are a lot of trade-offs to be made, with more detail
allowing more subtle issues to be captured and explored at the
cost of making the model more complicated to understand and
compute.

Let’s start with what is perhaps the simplest model of an
epidemic, the SIR model.

SIR: A compartmented model of disease

SIR is referred to as a compartmented model of disease. It
represents the progress of the disease by specifying a number
of states or compartments, with everyone in the population being
assigned to exactly one compartment at anytime. The disease

29

Epidemic modelling – Some notes, maths, and code

progresses by having people move between compartments
according to some process.

SIR, as its name suggests, uses three compartments:

• Susceptible (S), representing those people who can catch the
disease;

• Infected (I), representing those people who have caught the
disease and can pass it on; and

• Removed (R), representing those people whose infection has
resolved itself and have been “removed” from progressing the
disease any further.

Notice how simple this is. A person is either infected, or they’re
not. If they are infected, they are infectious: there’s no latency.
And they’re “removed” when their infection resolves, without us
noting whether they recovered or died.

You might ask whether something this simple can tell us
anything: does any real disease work like this? But the simplicity
of the model makes it tractable and easy to study, and once
we’ve got a feel for how these things work we can, if desired,
move onto more detailed models. SIR is just one of the possible
compartmented models: the others include SIS (for diseases
where you can be re-infected once recovered), MSEIR (for
diseases with maternally-conferred temporary immunity),
so so on in dizzying array (see Hethcote7 for a more detailed 7 Herbert Hethcote. The

mathematics of infectious
diseases. SIAM Review, 42

(4):599–653, December 2000.
URL http://dx.doi.org/10.
1137/S0036144500371907

discussion). We’ll look at another model, SEIR, later.

The mathematical model

We now need to describe how individuals move between
compartments. Actually we’ll simply talk about the number
of people in each compartment at each time, and how those
numbers change: we won’t track the disease’s progress in a
specific individual (there’s a whole class of agent-based models
that do this).

30 Compartmented models

Epidemic modelling – Some notes, maths, and code

Suppose we have a population of size N. Let’s represent
the number of people in each compartment by S, I, and
R respectively. Everyone in the population is assigned to
exactly one compartment at any time, so we must always have
S + I + R = N as the sub-populations S, I, and R change.

How does someone become infected? – that is to say, how does
someone move between compartment S and compartment I? In
SIR we assume that the infection passes through contact between
a susceptible individual and an infected one. If we further
assume that everyone in the population meets everyone else
equally often, then there will be S× I = SI encounters between
susceptible and infected individuals in each time period. Think
of the population as crowd milling around, some of whom are
infected.

Clearly not all of these interactions will result in an infection,
but some fraction will, and the result will be that an individual
moves from S to I: remember that in SIR we assume that the
disease passes on instantly. Let’s refer to this as pinfect, the
probability that an I will infect an S in a single contact. There
are SI contacts in each timestep, of which a fraction pinfect will
result in an infection. Putting this all together, the size of S will
reduce by pinfect SI (because the disease causes people to leave S
by becoming infected).

If S is the number of susceptible people, we can denote the
change in S by ∆S, the difference in S at each timestep. As the
disease progresses we expect S to decrease: unless people enter
the population from outside, the number of susceptible people
only goes down since once someone has been infected they don’t
return to being susceptible again (having the disease makes you
immune in this model). Mathematically we can say that

∆S = −pinfect SI

with the minus sign indicating that S is getting smaller.

The value pinfect is called a parameter of the model. The
equations provide a description of the overall behaviour of the
model. Within this, you can change the values of the parameters

The mathematical model 31

Epidemic modelling – Some notes, maths, and code

to explore the different kinds of behaviour possible within the
model. You can make the disease more infectious by making
pinfect larger, for example. It’s often the case that, in models with
several parameters (as SIR has), the values of the parameters will
interact in interesting ways.

What about I? Every person who leaves S (and so ceases to be
susceptible) becomes infected and so enters I. So we’d expect
that the corresponding change in I, ∆I, would increase by the
same amount as ∆S decreased, so as not to lose anyone from the
population. But as well as contracting the disease, people also
recover from it (or die): either way they are “removed” from the
population affected by the disease.

(Whether you recover or die is obviously quite important to you,
but in either event you are no longer infected or susceptible and
so take no further part in the spread of the infection. Epidemic
modelling can seem quite heartless at times.)

In the computational
epidemiology and network
science literatures the
parameter we’ve called pinfect
is usually denoted β, while
premove is denoted α. It’s
easier to understand what’s
going on if we spell the
meaning of the symbols out.

How many people are removed? SIR assumes that, just as a
fraction pinfect of contacts result in infection, a fraction premove of
infected individuals are removed. So the size of I is increased by
susceptible people becoming infected, and reduced by infected
people becoming removed. Putting this together we get

∆I = (pinfect SI)− (premove I)

The final step in the model is to account for removal, whereby
the size of R increases at the same rate as that of I decreases.

∆R = premove I

And that’s SIR: three equations that describe how the sizes of
the three compartments change, and two parameters that define
what fraction of contacts result in infections and what fraction of
infections are removed in a given time period.

Looking at the maths, one can immediately deduce some
things about how an SIR epidemic will progress. Firstly, as
we mentioned, the size of S always decreases, while the size
of R clearly always increases: the only place where anything

32 Compartmented models

Epidemic modelling – Some notes, maths, and code

interesting can happen is in the size of I, which both increases
and decreases.

Secondly, the rate at which I increases depends on how big I is
already: a larger value of I makes for a larger value of ∆I. But
it’s a bit more complicated than that, since it also depends on
the size of S, where a smaller value of S means a smaller value
of ∆I – and we know that S is always getting smaller. So these
two terms – growing through infection and shrinking through
removal – will fight it out as the disease progresses.

To summarise, we know that the sizes of S, I, and R will change
over time. We know that S will shrink and R will grow, and I
will. . . well, will do something that depends on the sizes of S
and I. We also know that I grows at the same rate that S shrinks.

To find out exactly what happens, we need to explore these
equations.

The computational model

To explore SIR, let’s turn the mathematical model of three
equations into a computational model that “runs the numbers”
to show how the epidemic progresses.

We can represent each of the three changes in population
directly as Python functions. Since they share the parameters
pinfect and premove, we’ll define them together using another
function to which we pass the parameters and get back the
change functions.

def make_sir(pInfect, pRemove):

turn the equations into update functions

def deltaS(S, I, R):

return -pInfect * S * I

def deltaI(S, I, R):

return pInfect * S * I - pRemove * I

def deltaR(S, I, R):

return pRemove * I

(continues on next page)

The computational model 33

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

return the three functions

return (deltaS, deltaI, deltaR)

We’ve used as far as possible the same names in the code as we
did in the maths: pInfect for pinfect, deltaS for ∆S, and so forth.
This will help keep things straight in our minds.

This approach to
integration to get a time
series, known as the direct
or Euler method, isn’t safe
in general, as it risks falling
foul of numerical instability
in the equations. There
are several more robust
solutions for the more
complex cases.

How do we “run” the epidemic? We’ve defined the ways in
which the sizes of the sub-populations change. If we start with
some initial sub-populations, we can then compute the change
and add it to the previous population to get the population at
the next timestep. We can do this repeatedly to trace out the
behaviour of the epidemic in time. The result will be a time
series for each sub-population tracking its size over time.

What should the initial sizes of the sub-populations be? Since
we’re interested only in their sizes, we could say that given
N individuals a fraction pinfected are initially infected, while
everyone else is susceptible: no-one starts off removed.

We can code this behaviour up as a single function.

def epidemic_sir(T, N, pInfected, pInfect, pRemove):

create the change functions for these parameters

(deltaS, deltaI, deltaR) = make_sir(pInfect, pRemove)

initial conditions

sss = [N * (1.0 - pInfected)]

iss = [N * pInfected]

rss = [0]

push the initial conditions through the equations

for t in range(1, T):

apply the change functions to the sub-populations of

the previous timestep to compute the changes

ds = deltaS(sss[-1], iss[-1], rss[-1])

di = deltaI(sss[-1], iss[-1], rss[-1])

dr = deltaR(sss[-1], iss[-1], rss[-1])

the value at the next timestep are those at the
(continues on next page)

34 Compartmented models

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

previous timestep plus the value of the change

in that value

sss.append(sss[-1] + ds)

iss.append(iss[-1] + di)

rss.append(rss[-1] + dr)

return the time series

return (list(range(0, T)), sss, iss, rss)

We need the initial conditions for the simulation: the population
size (that won’t change), the number of timesteps we want to
run the simulation for, and the values of the three parameters
pInfected, pInfect, and pRemove. For simplicity let’s fix all these
apart from pInfect. We’ll start with 1/100th of the population
infected (pInfected = 0.01), and 1/1000th of the infected
population recovering in each timestep (pRemove = 0.001).

N = 1000

T = 5000

pInfected = 0.01

pRemove = 0.001

We can then choose different values of pInfect and see
what the simulation shows us about the ways in which the
sub-populations evolve.

import matplotlib

%matplotlib inline

%config InlineBackend.figure_format = 'png'

matplotlib.rcParams['figure.dpi'] = 300

import matplotlib.pyplot as plt

import seaborn

matplotlib.style.use('seaborn')

seaborn.set_context("notebook", font_scale=1.75)

epidemics = {}

for pInfect in [0.0000010, 0.0000020, 0.0000035,

0.0000040, 0.0000050, 0.0000080]:

run the epidemic equations

epidemics[pInfect] = epidemic_sir(T, N, pInfected, pInfect,

↪→ pRemove) (continues on next page)

The computational model 35

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

(fig, axs) = plt.subplots(3, 2, sharex=True, sharey=True,

figsize=(12, 12))

draw the sub-plots for selected values of pInfect

for (pInfect, ax) in [(0.0000010, axs[0][0]),

(0.0000020, axs[0][1]),

(0.0000035, axs[1][0]),

(0.0000040, axs[1][1]),

(0.0000050, axs[2][0]),

(0.0000080, axs[2][1])]:

(ts, sss, iss, rss) = epidemics[pInfect]

draw the graph in the sub-plot

ax.plot(ts, sss, 'r-', label='suceptible')

ax.plot(ts, iss, 'g-', label='infected')

#ax.plot(ts, rss, 'k-', label='removed')

ax.set_title('$p_{\\mathit{Infect}} = ' + '{b:.7f}$'.

↪→format(b=pInfect))

ax.set_xlim([0, T])

ax.set_ylim([0, N])

fine-tune the figure

plt.suptitle('Progress of epidemic for different $p_{\\mathit

↪→{Infect}}$ ($p_{remove} = ' + '{a}$)'.format(a=pRemove))

for i in [0, 1, 2]:

axs[i][0].set_ylabel('population that is...')

for i in[0, 1]:

axs[1][i].set_xlabel('t')

axs[0][0].legend(loc='center left')

plt.show()

36 Compartmented models

Epidemic modelling – Some notes, maths, and code

We’ve engaged in
some mathematical
sleight-of-hand here, in
that what we’ve described as
a discrete model (of people
being susceptible, infected,
and so on) has then be
treated as a continuous model
that represents the sizes
of compartments as real
numbers. In order to work
in this way the three SIR
equations should really be
be phrased as differential
equations rather than as
difference equations so that
the passage from discrete
to continuous time makes
mathematical sense. The
results obtained are the same
in both cases, however.

What are these graphs telling us? Start in the top left. At the
start of the epidemic (when t = 0) we have a very small number
of infected individuals and a very large number of susceptibles.
The number of infecteds grows slowly as the time passes and
the graph moves form left to right. But the disease is not very
infectious: only 0.000001 of contacts leads to infection, just one in
a million. At the start of the epidemic there are 990 susceptible
people and 10 infected (1% of the total population), which means
there can be at most 9900 susceptible-infected contacts. In the
first timestep, then, the equations suggest that approximately
0.01 people become infected.

We can’t infect two-hundreths of a person, of course: clearly
it will take some time for there to be one new person infected.
And once infections start people also start to recover, and the
epidemic clearly never gets going.

The computational model 37

Epidemic modelling – Some notes, maths, and code

But now look at the next diagrams. Even for very modest values
of pinfect – 0.000002 to 0.000008 – we get considerable epidemics.
At the peak of infections around 40–60% of the population is
infected, compared to essentially no-one for the smallest value
of pinfect. And that’s with pinfect still tiny: eight contacts in every
million resulting in an infection.

Consequences

Let those figures sink in for a moment.

The SIR model is telling us that changing the rate of infection
from one in a million to eight in a million is enough to change
the total proportion of infected people in a population from
about 1% to about 60%! To put it another way, the process is very
sensitive, and anything that changes the infection rate by even a
miniscule amount can have an enormous, outsized, effect on the
outbreak.

We have to be careful what we conclude, though. While we’ve
got a “population” and some “contacts”, we haven’t said
anything about the timescale over which we’re talking: it’s all
been abstracted. So the “infection rate” is a somewhat notional
concept that doesn’t directly relate to any particular rate or
disease in the real world. It’s important to remember this and
not draw any unsupported conclusions.

There are some conclusions that are supported, though. Firstly,
we can see that the epidemic grows exponentially once it gets
started. We can also see that it dies away exponentially after its
peak. And we know that the population of infected people is a
dynamic thing, with people recovering and new people being
infected across the outbreak.

38 Compartmented models

Epidemic modelling – Some notes, maths, and code

Questions for discussion

• Look again at the graphs above. Are you surprised by them?
Do they match how you think about, for example, winter flu?

• The numbers we’ve used in our model don’t represent any
particular disease. Do you think we could change that, so that
our abstract model becomes more concrete? How might you
do it?

Questions for discussion 39

Network models

One thing that may be bothering you about SIR is the idea
of a population where all the possible interactions between
individuals take place. You don’t meet everyone in your city,
town, or village like that on a regular basis: that isn’t how
societies work.

Admittedly you get this sort of “complete mixing” in some
scenarios. A school for young children (or, even better, a
toddler’s nursery) perhaps works like this as the children go
out to play together and everyone mixes with everyone else. And
this is why diseases spread so rapidly through nurseries: one
sick child will infect all the others.

In chickenpox the infected
individual – almost always
a child – is latent for 7–10

days after exposure, but only
infectious for about 24 hours
before the symptoms (an
itchy rash) appear.

This phenomenon can be used constructively. When I was a
child it was commonplace for parents to hold “chickenpox
parties” and bring all the neighbouring children together to play
so they could be exposed – and then subsequently be immune
from further infection, since chickenpox confers very strong
immunity.

But in other cases the assumption of complete mixing is going
to break down. And since we know that even a small change
in infectivity can have a dramatic effect on the progress of an
epidemic, can we change SIR to accommodate the social realities
in which there are substantially fewer connections between
individuals that we might expect?

41

Epidemic modelling – Some notes, maths, and code

Networks

There are a couple of ways of answering this question, but the
one we’ll turn to here uses networks.

The term graph is often
used as a synonym for
network.

A network is simply a collection of nodes connected by edges.
A road map is a good example of a network: the nodes are the
road junctions, while the edges (which connect the junctions
together) are the segments of roads. This is the reason we
sometimes refer to the road network: it’s a collection of (bits of)
road that meet at various points.

Another good example of a network – and closer to our current
application – is a social network. In a social network the nodes
are people and the edges are “social links” or “social contacts”
between them. While we usually think of social networks as
being online, like Facebook or Twitter, the idea works in the real
world too: when you meet your family, go shopping, go to work,
or indulge in any of the activities of daily life you add edges to
your social network between yourself and the people you meet.
Typically the number of people you’ll have social contact with
will be considerably less than the entire population. The social
network records the people with whom you have contact, and so
in our application records people whom you might infect or be
infected by.

Do the same thing for everyone in the population, and you
have a social network for that population. The nodes are the
individuals; the edges are the potentially infection-carrying
social contacts. We can then simulate the progress of the
epidemic over this network.

Complete networks

Suppose that, on your travels, you did actually happen to come
into contact with everyone in the population, so that your
social network had edges connecting you to everyone else. And
suppose that everyone else did the same, so that everyone was

42 Network models

Epidemic modelling – Some notes, maths, and code

connected to everyone. This is still a social network – a very
dense one to be sure, perhaps like what happens on a nightclub
dance floor. It also matches the assumptions we made earlier
about complete mixing. So if we ran a simulation of disease
spreading over this network, we’d presumably expect to see the
same results as we did before.

Wouldn’t we?

In the previous chapter we “pushed” an initial population
of nodes through the equations. For a network we can do
something slightly different. Each node represents an individual,
so we have a colleciton of people whose evolution we can
track through the SIR disease (rather than simply counting
them). That will be useful later. But clearly there’s more
“book-keeping” to do in keeping track of everyone. It’s harder,
from a programming perspective, to model the disease on a
network – but in doing so we gain a lot of flexibility, as we’ll see
later.

For the moment, we need to set up a computational simulation
of the people and their connections. Fortunately there we have
software than can help us do this.

import networkx

import epydemic

Since we’re interested in the progress of an epidemic, we’ll create
an SIR process and then add some monitoring to get the same
time series that we got for the continuous case.

class MonitoredSIR(epydemic.SIR, epydemic.Monitor):

def __init__(self):

super(MonitoredSIR, self).__init__()

def build(self, params):

'''Build the observation process.

:param params: the experimental parameters'''

super(MonitoredSIR, self).build(params)

(continues on next page)

Complete networks 43

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

also monitor other compartments

self.trackNodesInCompartment(epydemic.SIR.SUSCEPTIBLE)

self.trackNodesInCompartment(epydemic.SIR.REMOVED)

We can now write a function to perform the simulation for
given parameters of pInfected, pInfect, and pRemove. For
completeness we’ll also pass the function a network over which
to run the simulation. The function sets up the simulation using
epydemic, runs it, and extracts the results.

def network_sir(T, g, pInfected, pInfect, pRemove):

create the simulator

m = MonitoredSIR()

m.setMaximumTime(T)

e = epydemic.SynchronousDynamics(m, g)

set the simulation parameters

param = dict()

param[epydemic.SIR.P_INFECTED] = pInfected

param[epydemic.SIR.P_INFECT] = pInfect

param[epydemic.SIR.P_REMOVE] = pRemove

param[epydemic.Monitor.DELTA] = T / 50 # 50 samples

run the simulation

rc = e.set(param).run()

extract the time series

results = e.experimentalResults()[MonitoredSIR.TIMESERIES]

ts = results[MonitoredSIR.OBSERVATIONS]

sss = results[epydemic.SIR.SUSCEPTIBLE]

iss = results[epydemic.SIR.INFECTED]

rss = results[epydemic.SIR.REMOVED]

return the time series

return(ts, sss, iss, rss)

To test our hypothesis, we need a complete “social network” to
operate over. Such networks are often called complete graphs, with
every node connected by an edge to every other.

44 Network models

Epidemic modelling – Some notes, maths, and code

g = networkx.complete_graph(N)

Finally we can run the equations and the network simulation and
plot them together. If they generate the same results, we’d expect
the two datasets to agree with each other.

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

pInfect = 0.000005 # chosen simply for illustration

run the epidemic equations

(ts, sss, iss, rss) = epidemic_sir(T, N, pInfected, pInfect,

↪→pRemove)

ax.plot(ts, sss, 'r-', label='suceptible (theory)')

ax.plot(ts, iss, 'g-', label='infected (theory)')

#ax.plot(ts, rss, 'k-', label='removed (theory)')

run the corresponding simulation

(sim_ts, sim_sss, sim_iss, sim_rss) = network_sir(T, g,

↪→pInfected, pInfect, pRemove)

ax.plot(sim_ts, sim_sss, 'rs', label='suceptible (simulation)')

ax.plot(sim_ts, sim_iss, 'gs', label='infected (simulation)')

#ax.plot(sim_ts, sim_rss, 'kx', label='removed (simulation)')

fine-tune the figure

plt.title('Equations vs network ($p_{\\mathit{infect}} = ' + '

↪→{b:.7f}$, '.format(b=pInfect) + '$p_{remove} = ' + '{a}$)'.

↪→format(a=pRemove), y=1.05)

ax.set_xlabel('t')

ax.set_xlim([0, T])

ax.set_ylabel('population that is...')

ax.set_ylim([0, N])

ax.legend(loc='center right')

plt.savefig('network-same-beta-alpha.svg')

plt.show()

Complete networks 45

Epidemic modelling – Some notes, maths, and code

Not exactly over, for
reasons we’ll come to later.And so they do: the crosses of the simulation lie over the top of

the solid lines of the SIR equations.

The story so far

To recap, we defined SIR as a process and explored what
happened in a scenario of complete mixing. We then reproduced
these results in a different framework, with the same process
running over a network, also with complete mixing. But clearly
complete mixing isn’t a good model of a social network: you
don’t meet everyone all the time, and therefore don’t get exposed
to all possible infected people.

Real social networks are very different: more “clumpy”, more
uneven, some people with more contacts than others. Everyone
experiences this, and one would think that the differences (in the
social contact structure) will make a difference to the epidemic
(in the way it spreads). This is indeed the case, and we will

46 Network models

Epidemic modelling – Some notes, maths, and code

explore it later.

The simulation we ran above has two parts: the SIR process, and
the network we ran it over – which in this case was a complete
graph. We can of course change the network, and as we do
we can explore how the disease behaves for different kinds of
network. In the spirit of good science, we’ll keep the disease the
same, and only change the context in which it occurs, so that any
changes we observe will be due to change in the network.

Questions for discussion

• We’ve now done two simulations of the same disease model:
with equations, and with simulation. Which do you trust the
results of more? Why?

• (For programmers.) How would you go about building a
simulator for SIR?

Questions for discussion 47

Making fewer connections

If the complete graph is a representation of complete mixing,
how do we represent “incomplete” mixing? With an incomplete
graph, obviously. . .

Of course while there can only be one complete graph with a
given number of nodes, once we start talking about incomplete
graphs we have a huge number of options. We could have a
network with no edges. (How would an epidemic spread over
this network?) Or we could have a network that had a very
uneven distribution of edges. Perhaps we could even extract a
“real” social network from facebook or Twitter data.

The structure of a network is referred to mathematically as its
topology. You can think of this as being “the way it’s connected”
What we’re talking about, then, is exploring how the SIR process
spreads over networks with different topologies.

Characterising a network’s topology

In the networks we’ll be
considering for now the
degree of a node is fixed
when the network is created.
Later on when we encounter
adaptive networks degree
itself becomes a process that
changes with time.

Since we have a range of different topologies, we’ll need some
way of describing their properties so that we can tell them apart.
There are a huge number of such graph metrics that have been
developed, and we’ll encounter a few of them in the course of
this book. For the time being, we’ll start with the most influential
number, the degree of a node, which is simply the number of
edges intersecting each node. Each node has its own degree. In
your social network, the degree of the node that represents you

49

Epidemic modelling – Some notes, maths, and code

is simply the number of people you’re connected to. The degree
of a node is usually denoted k, for no particular reason.

〈k〉 is usually pronounced
“k mean”.For a given network we can enumerate the degrees of every

node, but that’s clearly not going to be very useful for a large
network: you wouldn’t be able to extract any useful information
from the large list of numbers. But we can derive statistics from
such lists. The most important is the mean degree, the “average”
degree of a node, denoted 〈k〉. While the degree of every node
has to be an integer (you can’t have half a friend), the mean
degree of the population overall will typically be a real number.

For the complete graph every node has exactly the same degree,
being one less that the number of nodes in the network, since
there’s an edge between every node and every other (except
itself). This means that k is always (N − 1) for every node, and
therefore so is 〈k〉.

If this use of the word
“distribution” sounds like
it should be connected to
probability theory – it is.
The degree histogram shows
the relative numbers of
nodes with each different
degree, and so defines the
probability of randomly
choosing a node with degree
k. 〈k〉 is then the expected
value of the degree.

In general things will be more complicated. The degrees of
nodes in a network form a degree distribution, which we can
plot as a histogram to show the number of nodes with each
degree (we do this below). If we use N to represent the number
of nodes in the network, we’ll use Nk to represent the number of
nodes with degree k. Then we can compute 〈k〉 very easily from
this distibution, by summing up the numbers of ndoes with each
degree and then dividing by the number of nodes.

〈k〉 = ∑k Nk
N

There are a lot of other metrics that we could consider, but the
degree distribution is the most important and well-studied.
It’s not the whole story, however, because there are will be a
lot of different networks with the same degree distribution and
mean degree, depending on exactly how the edges that intersect
each node connect to other nodes. So while one side of network
toppology is captured by statistics, there’s another side that
concerns the details of which nodes are adjacent to each other by
having an edge between them: it matters who your friends are,
not just how many you have. We sometimes call the set of nodes
adjacent to a node its neighbours.

50 Making fewer connections

Epidemic modelling – Some notes, maths, and code

ER networks

Let’s start with one of the simplest non-complete topologies.
This topology was initially explored in depth in the late 1950’s
by Paul Erdős and Alfred Rényi 8. They called their approach 8 Paul Erdős and Alfred

Renyi. On random graphs.
Publicationes Mathematicæ, 6:
290–297, 1959

“random graphs”, but that’s a slightly misleading name: we
can produce “random” networks with any topology as we saw
above. Fortunately the influence of Erdős and Rényi has been
so profound that networks of this type are now referred to as
Erdős-Rényi or ER networks.

Alfred Rényi, the other
half of the partnership,
was a noted mathematician
whose very significant
other work has been
rather overshadowed by
his wonderfully productive
association with Erdős.
He was responsible
for the definition of a
mathematician as “a
machine for turning coffee
into theorems”.

(Paul Erdős (pronounced “AIR-dish”) was the most prolific
mathematician of the 20th century. A peripatetic genius, he
owned essentially nothing and travelled between university
mathematics schools seeking problems to work on. He’s also
very “central” in the network of mathematical co-authors,
where someone’s “Erdős number” measures the number of
co-authorships between them and Erdős. (Smaller in better.) His
biography 9 provides a fascinating insight into mathematical

9 Paul Hoffman. The man
who loved only numbers:
The story of Paul Erdőos and
the search for mathematical
truth. Hyperion, 1998. ISBN
978-0-78686362-4

life.)

The idea of an ER network is that there exists an edge between
any pair of nodes with some fixed probability, and the existence
of any edge is independent of the existence of any other.

Building ER networks

Again, in the literature
pedge is usually denoted φ.From this simple description of the degree distribution, an ER

network is also very simple to build. Pick a number of nodes N,
and build the complete graph KN . Remember that the complete
graph has an edge between every pair of nodes. Now pick a
parameter pedge between 0 and 1. Work through all the edges,
and for each edge pick a random number s between 0 and 1. If
s ≤ pedge then keep the edge; if s > pedge, remove it. You’ll end
up with a network in which there’s an edge between each pair of
nodes with a probability pedge. If pedge = 1 we have the complete
graph (we always keep an edge); if pedge = 0 we have the empty

ER networks 51

Epidemic modelling – Some notes, maths, and code

graph (we never keep an edge); and for values in between we
have a more or less sparse collection of edges.

Drawing the result can help get the idea straight.

(fig, axs) = plt.subplots(3, 2, sharex=True, sharey=True,

figsize=(12, 18))

a small network to visualise

N = 20

draw the network for different values of phi

for (phi, ax) in [(0.05, axs[0][0]),

(0.10, axs[0][1]),

(0.25, axs[1][0]),

(0.50, axs[1][1]),

(0.75, axs[2][0]),

(0.99, axs[2][1])]:

create a random ER network

G = networkx.erdos_renyi_graph(N, phi)

draw the network in the sub-plot

networkx.draw_circular(G, ax=ax)

ax.set_title('$p_{edge} = ' + '{p}$'.format(p=phi))

fine-tune the figure

plt.suptitle('ER networks for different values of p_{edge} '

↪→+ '($N = {n})$'.format(n=N))

plt.show()

52 Making fewer connections

Epidemic modelling – Some notes, maths, and code

We sometimes denote the
ER network with N nodes
and a connection probability
pedge by GN,pedge .

At the top left where pedge is small, we have very few edges: 5%
of the possible total, in fact. As we progress towards the bottom
right the network gets more and more dense, until at 99% of

ER networks 53

Epidemic modelling – Some notes, maths, and code

the possible edges it’s quite hard to spot that any are actually
missing at all.

What is 〈k〉 for this topology? The answer turns out to be quite
simple. An ER network has 〈k〉 = pedge

N . Moreover the degree
distribution – the number of nodes with more, or less, edges
than the mean, is a normal distribution, the “bell curve” we see
in many phenomena.

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

a sample network

N = 10000

kmean = 40

phi = (kmean + 0.0) / N

build the network

g = networkx.gnp_random_graph(N, phi)

#G = networkx.erdos_renyi_graph(N, phi)

draw the degree distribution

ks = list(dict(networkx.degree(g)).values())

ax.hist(ks, bins=max(ks))

ax.set_title('ER network degree distribution ($N = {n}, \\

↪→langle k \\rangle = {k}'.format(n=N, k=kmean) + ', p_{edge}

↪→= ' + '{p}$)'.format(p=phi), y=1.05)

ax.set_xlabel('k')

ax.set_ylabel('N_k')

plt.savefig('degree-distribution-er.png')

plt.show()

54 Making fewer connections

Epidemic modelling – Some notes, maths, and code

So about one-third of the nodes (about 675) have a degree
around the mean (40), with the number of nodes having more
(or less) neighbours dropping off on either side of the mean.
There are very few nodes with degrees in single figures, and
very few with degrees of twice the mean – and none with really
large degree. In fact for any network there will be a minimum
degree kmin and a maximum degree kmax. The ER network’s
degree distribution says that the maximum degree is never “too
far” from the mean.

Epidemic spreading on ER networks

From now on we’ll mainly
use 〈k〉 as the parameter for
ER networks rather than
φ: we can convert between
them easily, and 〈k〉 is a
more intuitive idea.

After all that network science we can finally ask ourselves a
disease-related question: what happens as we vary 〈k〉? We
already know that when 〈k〉 = (N − 1) the network has complete
mixing. But what happens as 〈k〉 gets smaller – that is, people
have fewer and fewer contacts with each other – for the same
disease? We’d presumably expect that fewer people will become
infected overall, which also suggests that at some point the

Epidemic spreading on ER networks 55

Epidemic modelling – Some notes, maths, and code

disease will simply die out without affecting very many people
at all.

Let’s see.

We’ll take the same parameters for the size of the network and
the disease that we had before.

N = 2000

T = 5000

pInfected = 0.01

pInfect = 0.0001

pRemove = 0.001

But instead of building a complete graph we’ll build ER
networks and see what happens as we change 〈k〉.

epidemics = {}

for kmean in [10, 20, 30, 40, 50, 100]:

create an ER network

phi = (kmean + 0.0) / N

g = networkx.gnp_random_graph(N, phi)

run the corresponding simulation

epidemics[kmean] = network_sir(T, g, pInfected, pInfect,

↪→pRemove)

(fig, axs) = plt.subplots(3, 2, sharex=True, sharey=True,

↪→figsize=(12, 15))

draw sub-plots for the different values of kmean

for (kmean, ax) in [(10, axs[0][0]),

(20, axs[0][1]),

(30, axs[1][0]),

(40, axs[1][1]),

(50, axs[2][0]),

(100, axs[2][1])]:

(sim_ts, sim_sss, sim_iss, sim_rss) = epidemics[kmean]

ax.plot(sim_ts, sim_sss, 'r.', label='suceptible')

ax.plot(sim_ts, sim_iss, 'g.', label='infected')

ax.set_title('$\\langle k \\rangle = {k}$'.format(k=kmean))

ax.set_xlim([0, T])

ax.set_ylim([0, N])
(continues on next page)

56 Making fewer connections

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

fine-tune the figure

plt.suptitle('SIR over ER networks ($N = {n}'.format(n=N) + ',

↪→p_{\\mathit{Infect}} = ' + '{b:.4f}'.format(b=pInfect) + ',

↪→p_{remove} = ' + '{a}$)'.format(a=pRemove))

for i in [0, 1, 2]:

axs[i][0].set_ylabel('population that is...')

for i in[0, 1]:

axs[2][i].set_xlabel('t')

axs[0][0].legend(loc='center right')

plt.show()

Epidemic spreading on ER networks 57

Epidemic modelling – Some notes, maths, and code

Compare these graphs to the ones earlier and you’ll see the same
shapes: changing 〈k〉 has the same effect as changing pinfect in
terms of moving the peak of infections.

Questions for discussion

• In a network model two people are either connected, or they
aren’t. Is that realistic? Could we change our model to make
it reflect different “strengths of connection”? What might that
let us do?

• We say above that “changing 〈k〉 has the same effect as
changing pinfect”. Can you put that in less mathematical
terms? What does it mean?

58 Making fewer connections

Contact tracing

Let’s now turn to a more detailed look at how an epidemic
spreads, and in particular to the subject of who infects whom.
Working this out is the subject of contact tracing, which is the
process of determining the infection history as the disease passes
through the population. In an SIR infection this boils down to
deducing the pattern of infected individuals over the course of
the disease.

The point of contact tracing is three-fold:

1. It provides data: how many people have been infected in the
population? how many were not infected even though they
were in contact with an infected individual? and so forth.

2. It allows treatment of the infected individuals, possibly before
they are symptomatic.

3. It allows countermeasures to be deployed to reduce the
spread of the diseaase.

In a real epidemic the data-collection aspect is vital, since we
will often now know how contagious a new disease is. The
treatment aspect is also vitally important for the individuals
concerned, since early treatment is often more effective. And for
many diseases there will be effective countermeasures such as
quarantine that can be imposed to reduce the disease’s spread
even further. (We should really consider treatment to be a
countermeasure at the population level, since treated individuals
will probably spread the disease less than the untreated.)

59

Epidemic modelling – Some notes, maths, and code

However, contact tracing in a real epidemic is a laborious
process. We need to identify infected people, either by
testing them or by observation of their symptoms, if these are
sufficiently distinct to permit definitive identification. Then we
need to identify all those with whom they have been in contact
(their contact network) and test (or observe) them to determine if
they are infected – and then repeat the process with their contact
network, and so forth.

Fortunately, in a simulated epidemic, all the information we
need is directly available. We know the contact network a
priori, and can instrument our simulation to determine the
ways in which individuals were infected. We can then use this
instrumented model as a basis for studying disease dynamics,
treatment strategies, and other countermeasures.

Progress of an epidemic

In the case of malaria
the name itself reflects this
idea, being derived from the
Italian mala aria, “bad air”.

Most diseases that spread by contact share a remarkable
property: if you have the disease, someone gave it to you: exactly
one person. Contrary to the notion in earlier ages that all
diseases resulted from “bad air”, in many cases pathogens pass
from one person to another by fairly direct contact. Each contact
offers the possibility of infection from one person to another.

This is a simplification, of course. Some disease are airborne, or
leave long-lived traces on furniture or objects from which they
can be picked up. If a lot of infected people move through the
same space, they increase the “load” of pathogens in the space
and so make infection more likely – and also mask who it was
who actually did the infecting. But for the sorts of infections
we’re currently considering we assume that they pass person to
person.

What, then, does the spread of the disease through the
population look like?

Let’s simplify a little more and assume we have a single infected
person within a wholly susceptible population. How does the

60 Contact tracing

Epidemic modelling – Some notes, maths, and code

infection spread? Let’s trace the infection as it progresses. We’ll
do this a little more “manually” than we have done previously,
just to make the mechanism more explicit.

Compare this to the
description of SIR earlier.We first create a small ER network and “seed” it with a single

infected person, which we store in the network itself as an
attribute. We then step through time and at each step look at
the neighbours of each infected node. If they are susceptible, we
infect them with some probability and – if they become infected
– we record their infection for the next timestap. We also mark
the edge that the infection traversed.

def stepEpidemic(g):

keep track of progress in this timestep

inf = []

extract all the infected ndoes

infecteds = [n for n in g.nodes

if 'infected' in g.nodes[n].keys()]

advance the epidemic

for n in infecteds:

infs = []

if 'infected' in g.nodes[n].keys():

infect every susceptible neighbour

with probability pInfect

for m in g.neighbors(n):

ignore already-infected neighbours

if 'infected' not in g.nodes[m].keys():

decide whether to infect or not

if numpy.random.random() < pInfect:

we're infecting, record this

and the edge the infection traversed

g.nodes[m]['infected'] = True

infs.append(m)

g.edges[n, m]['occupied'] = True

record the infection mapping

if len(infs) > 0:

inf.append((n, infs))

return the mapping of who infected whom

return inf

Progress of an epidemic 61

Epidemic modelling – Some notes, maths, and code

We can then draw the progress of the infection over the network
as time progresses.

def drawEpidemic(g, ax, t):

compute node colours

inf = 0

nodes = list(g.nodes)

ncs = ['blue'] * len(nodes)

for i in range(len(nodes)):

n = nodes[i]

if 'infected' in g.nodes[n].keys():

ncs[i] = 'red'

inf += 1

compute edge colours

edges = list(g.edges)

ecs = ['black'] * len(edges)

for i in range(len(edges)):

(n, m) = edges[i]

if 'occupied' in g.edges[n, m].keys():

ecs[i] = 'red'

draw the contact tree

networkx.draw_circular(g, ax=ax,

node_color=ncs, edge_color=ecs)

ax.set_title('$t = {t}, [I] = {i}$'.format(t=t, i=inf))

(fig, axs) = plt.subplots(3, 2, figsize=(12, 18))

build a small ER contact network

N = 20

pEdge = 0.25

g = networkx.gnp_random_graph(N, pEdge)

infect a single person

g.nodes[0]['infected'] = True

infs = [[(None, [0])]]

pInfect = 0.19

t = 0

for x in range(3):

for y in range(2):

(continues on next page)

62 Contact tracing

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

draw the infected nodes and tramission edges

ax = axs[x][y]

drawEpidemic(g, ax, t)

advance the epidemic

infs.append(stepEpidemic(g))

t += 1

fine-tune the figure

plt.suptitle('Progress of an epidemic ($p_{\\mathit{infect}} =

↪→' + '{i})$'.format(i=pInfect))

plt.show()

Progress of an epidemic 63

Epidemic modelling – Some notes, maths, and code

There are several things to note here. Firstly, look how fast
the number of infected (denoted [I] in the figures) people
increases! The disease rapidly goes from being somewhere to

64 Contact tracing

Epidemic modelling – Some notes, maths, and code

being everywhere, and just explodes as grows: the rate at which it
spreads increases as the proportion of infected people increases,
which is the essential characteristic of exponential growth.

Secondly, notice how few edges were traversed. This makes
sense, because there can only be one “transmission” edge for
every node, which will only be a small fraction of the total
nodes.

Contact trees

We can make this clearer by drawing the process slightly
differently. Instead of drawing the network as a whole and
showing the way the infection spreads, we’ll focus on the
infected nodes only and show how they relate – in other words,
who affected whom.

We start at t = 0 with one infected node. At the next timestep
we’ll draw a second line of nodes that were infected by this
node, connected to it by edges. In the next timestep we’ll draw
a third line of those who were infected by those nodes, and so on
as time progresses.

def drawContactTree(ax, t, ct):

turn the infection list into a network

g = networkx.Graph()

for infs in ct:

for (n, ms) in infs:

for m in ms:

g.add_node(m)

if n is not None:

g.add_edge(n, m)

compute the layers in the tree and the number of

infections from each individual

secondaries = dict()

ns = [0]

layers = [ns]

while len(ns) > 0:

layer = []

(continues on next page)

Contact trees 65

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

for n in ns:

gs = set(g.neighbors(n))

if len(layers) > 1:

gs -= set(layers[-2])

layer.append(list(gs))

if len(gs) > 0:

secondaries[n] = len(gs)

ns = [n for cs in layer for n in cs]

if len(ns) > 0:

layers.append(ns)

compute locations

pos = dict()

dy = 1.0 / (len(layers) + 1)

y = 1.0 - dy / 2

for layer in layers:

dx = 1.0 / (len(layer) + 1)

x = dx

for n in layer:

pos[n] = (x, y)

x += dx

y -= dy

compute R_t

if len(secondaries.keys()) > 0:

Rt = sum(secondaries.values()) / len(secondaries.

↪→keys())

else:

Rt = 0

draw the tree

networkx.draw_networkx(g, pos, ax=ax,

node_color='red', with_labels=False)

ax.set_xlim([0, 1])

ax.set_ylim([0, 1])

ax.axis('off')

ax.set_title('$t = {t}, R = {rt:.2f}$'.format(t=t, rt=Rt))

(fig, axs) = plt.subplots(3, 2, figsize=(12, 12))

t = 0

for x in range(3):

(continues on next page)

66 Contact tracing

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

for y in range(2):

ax = axs[x][y]

layers = infs[:(t + 1)]

drawContactTree(ax, t, layers)

t += 1

fine-tune the figure

plt.suptitle('Progress of an epidemic ($p_{\\mathit{infect}} =

↪→' + '{i})$'.format(i=pInfect))

plt.show()

This layered structure is a contact tree. The topmost node is
patient zero, the first person infected in the epidemic. Those
in the next layer down are the first set of secondary cases, the

Contact trees 67

Epidemic modelling – Some notes, maths, and code

individuals infected by patient zero. And so on. Notice that
because a node stays infected (in this very simple model) it may
continue to infect nodes, so the layers can grow over time as
more secondary cases occuir from each infected.

Computer scientists refer
to the top-most node of a
tree as the root, and always
draw the root at the top of a
tree diagram. Don’t ask me
why.

You’ll notice that in the above diagram R goes down over time.
Why is that? It’s because each individual can only be infected
once and, once infected, can’t be infected again. Later infected
individuals are therefore increasingly likely to have neighbours
who are already infected, and so have less opportunity to pass
on the disease to new people. This phenomenon of the network
“filling up” with infected individuals – and later, in SIR, with
those who’ve been removed – is why epidemics die out naturally
without necessarily infecting the entire population. It’s also the
basis for vaccination, which is a topic we’ll return to later.

Questions for discussion

• Suppose you’re been put in charge of tracking and tracing
people’s contacts. How would you do it? Is there any
technology that would make the job easier?

• Tracing contacts is quite invasive of people’s privacy. Is it
justified when there’s an epidemic happening? How about in
“normal” circumstances?

68 Contact tracing

Epidemic threshold

We’re familiar with the idea that some diseases are more
infectious than others. In real-world epidemics this is embodied
in the case reproduction number R, which counts the number
of secondary infections arising on average from every primary
infection. In network-based modelling it is embodied in pinfect,
the probability that a contact leads to an infection.

But how infectious does a disease have to be to cause an
epidemic? – that is to say, to create infection in a sizeable fraction
of a population?

Clearly these two ideas are related: a disease that passes easily
between people will be more likely to pass to more people. But
it turns out that the relationship isn’t as simple as we might
expect. It’s affected by a number of factors, including the disease
parameters and the topology of the network – in other words,
by the disease and the environment in which it finds itself. This
is important: we’re limited in what we can do about the basic
infectiousness of a disease since that’s defined by its biology,
but the significance of topology opens-up the possibilty of
countermeasures at a population level.

We don’t see this
phenoemnon in
continuous (non-network)
compartmented models, in
which every infection results
in an epidemic of some size.
This shows that the network
approach is capturing
something interesting: it lets
is see phenomena that are
absent from other models.

Looking back at the SIR model on an ER network, we see
patterns in the way it spreads. For very low values of 〈k〉, the
mean degree of the network, the epidemic never really “gets
going”. We can think of this as being what happens when the
disease begins in population that’s too disconnected to spread
the disease before the infected individuals recover (or die).

69

Epidemic modelling – Some notes, maths, and code

This is the other extreme to the fully connected network where
all connections are in play and the propagation of the disease
depends solely on the relationship between the rates of infection
and recovery.

Let’s ask a different question, though. If we fix the topology but
change the infectivity, what happens to the numbers of people
infected? We already know that in the fully-mixed case a very
small change in infectivity results in a massive change in the size
of the epidemic. But that was in a somewhat unrealistic case.

A related question is: for a particular topology, is there a
characteristic degree of infectiousness that’s needed to start an
epidemic, below which one doesn’t occur? To put it another way,
is there an epidemic threshold that a disease on a network must
exceed before it can go epidemic?

The epidemic threshold of an ER network

Let’s look at the case for an ER network, the simplest model
we have. (We’ve already accepted that it’s not a great model of
human contact networks, but we’ll refine this later.)

To locate the epidemic threshold (assuming it exists), we need to
simulate epidemics on networks across a range of infectiousness
– that is to say, for different values of pinfect. If we want to test,
shall we say, 50 different values of pinfect we’ll need to run at least
50 experiments, one per value.

But we know there’s a lot of randomness going on as well. The
networks we create are random; we seed them randomly with
infected individuals; and the disease progression is itself a
random or stochastic process. What if, by chance, we chose as
the seed individuals a group of people who were all right next to
each other, with few other people to infect? Alternatively, what
if, by chance, the infection failed to transmit a large number of
times, and so died out?

There are a number of ways to deal with these issues, but the

70 Epidemic threshold

Epidemic modelling – Some notes, maths, and code

safest, most general, and most straightforward one is to conduct
lots of trials and look at the patterns in the results, possibly
then taking averages of the trials to find the “expected result”
for a given value of pinfect. By repeating the experiment we
reduce the influence of chances that “unlikely” combinations
of circumstances will sway the answer. A suitably large number
of repetitions will often allow us to squeeze out the variance in
the results of the individual simulations.

To professional researchers,
anyway: not so much
for hobby use, although
cloud computing provides
access to fairly affordable
computing resources.

The disadvantage of this approach is that it involves doing a
lot more simulation, which in turn requires more computing
power. Fortunately the scale of compute power we need is
readily available nowadays, and we can conduct experiments
using “clusters” of computers configured identically and each
performing a share of the experiments we need doing.

lab = epyc.ClusterLab(profile='hogun',

notebook=epyc.JSONLabNotebook('datasets/

↪→threshold-er.json'))

with lab.sync_imports():

import time

import networkx

import epyc

import epydemic

import numpy

print('{n} engines available'.format(n = lab.

↪→numberOfEngines()))

importing time on engine(s)

importing networkx on engine(s)

importing epyc on engine(s)

importing epydemic on engine(s)

importing numpy on engine(s)

importing mpmath on engine(s)

72 engines available

from https://nbviewer.jupyter.org/gist/minrk/4470122

def pxlocal(line, cell):

ip = get_ipython()

ip.run_cell_magic("px", line, cell)

ip.run_cell(cell)
(continues on next page)

The epidemic threshold of an ER network 71

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

get_ipython().register_magic_function(pxlocal, "cell")

Because we’re wanting to create a lot of random networks,
we’ll add code to the computational experiment to create them
as required. Otherwise we’d run the risk of doing too many
experiments on the same random network, and being affected by
any features it happened to have.

%%pxlocal

class ERNetworkDynamics(epydemic.StochasticDynamics):

Experimental parameters

N = 'N'

KMEAN = 'kmean'

def __init__(self, p):

super(ERNetworkDynamics, self).__init__(p)

def configure(self, params):

super(ERNetworkDynamics, self).configure(params)

build a random ER network with the given parameters

N = params[self.N]

kmean = params[self.KMEAN]

pEdge = (kmean + 0.09) / N

g = networkx.gnp_random_graph(N, pEdge)

self.setNetworkPrototype(g)

We will conduct our exploration on the same sort of network
we’ve used before – 104 nodes with 〈k〉 = 40 – over 50 values of
pinfect.

test network

lab[ERNetworkDynamics.N] = 10000

lab[ERNetworkDynamics.KMEAN] = 40

disease parameters

lab[epydemic.SIR.P_INFECTED] = 0.001

lab[epydemic.SIR.P_REMOVE] = 0.002

(continues on next page)

72 Epidemic threshold

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

lab[epydemic.SIR.P_INFECT] = numpy.linspace(0.00001, 0.0002,

num=50)

Finally, we’ll set up the number of repetitions. For each point
in the space we’ll create 10 random networks and run the
experiment 10 times on each, re-seeding the network randomly
with infected individuals each time.

m = epydemic.SIR()

e = ERNetworkDynamics(m)

rc = lab.runExperiment(epyc.RepeatedExperiment(

epyc.RepeatedExperiment(e, 10),

10))

A lot of computation now ensues, and eventually we get the
results back.

df = epyc.JSONLabNotebook('datasets/threshold-er.json').

↪→dataframe()

We can now look at the data. Let’s begin by plotting the results
of all the experiments we did – 5000 datapoints in all – to see
that shape of the results.

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

ax.plot(df[epydemic.SIR.P_INFECT],

df[epydemic.SIR.REMOVED], 'r.')

ax.set_xlabel('$p_{\\mathit{infect}}$')

ax.set_ylabel('population that is...')

ax.set_title('Epidemic size vs $p_{\\mathit{infect}}$', y=1.05)

plt.show()

The epidemic threshold of an ER network 73

Epidemic modelling – Some notes, maths, and code

What does this show? Unlike many graphs we see, there are
several points corresponding to each value of pinfect, each
representing the result of a single simulation. The height of
the “line” formed by these points is larger for those parameter
values that show the highest variance.

At the two extremes of the curve it’s easy to interpret what’s
going on. Low infectivity (at the left) means that almost none of
the population becomes infected, as the disease dies out quickly.
High infectivity (at the right) causes almost all the population to
become infected – although not quite all, it would seem.

But what about the middle part of the curve, between these
extrema? There are two things to notice. Firstly, for each value of
pinfect, there’s substantially more variance. This is the essence
of a stochastic process: you can get different results for the
same starting conditions. Remember, we did 10 experiments on
each random network and still get different answers, so there’s

74 Epidemic threshold

Epidemic modelling – Some notes, maths, and code

something inherently variable at work. But secondly, notice that
for most of the values of pinfect the results are “clustered” into a
small line. Remember that we ran experiments on 10 different
networks, so there’s clearly also some commonality at work in
the process where it gives closely-related (but different) results
for different networks and seeds of infection, even though there’s
still variance.

Let’s zoom-in on part of the curve so see the variation in more
detail.

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

pInfects = df[[pInfect > 0.00003 and pInfect < 0.00008

for pInfect in df[epydemic.SIR.P_INFECT]]]

ax.plot(pInfects[epydemic.SIR.P_INFECT],

pInfects[epydemic.SIR.REMOVED], 'r.')

ax.set_xlabel('$p_{\\mathit{infect}}$')

ax.set_ylabel('population that is...')

ax.set_title('Epidemic size vs $p_{\\mathit{infect}}$ (detail)

↪→', y=1.05)

plt.show()

The epidemic threshold of an ER network 75

Epidemic modelling – Some notes, maths, and code

As pinfect increases the possible sizes of the epidemic start to
vary, from nothing up to maybe a thousand people. As we keep
increasing pinfect the range keeps increasing, but still with some
instances of the epidemic not getting started. This is shown
by the columns of points becoming rather “stretched-out”:
sometimes we get an epidemic of about 4000, sometimes we
get zero. As we keep increasing pinfect the epidemic starts being
consistently larger, with a smaller chance of it failing to take
hold, and the size starts to become more consistent as well: the
variance goes down. Eventually we have a situation in which
around 98% of the experiments result in an epidemic that infects
around 60% of the population.

Error bars usually show
the standard deviation (also
called the standard error) of
the dataset at that point.

We can look at this data slightly differently, by plotting the
average size of the epidemic for each value of pinfect: the average
of our 100 experiments. But we should also keep track of the

76 Epidemic threshold

Epidemic modelling – Some notes, maths, and code

errors, and the standard way of doing this is to include error
bars on the plot.

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

pInfects = sorted(df[epydemic.SIR.P_INFECT].unique())

repetitions = int(len(df[epydemic.SIR.P_INFECT]) /

↪→len(pInfects))

removeds = []

stdErrors = []

for pInfect in pInfects:

removeds.append(df[df[epydemic.SIR.P_INFECT] ==

↪→pInfect][epydemic.SIR.REMOVED].mean())

stdErrors.append(df[df[epydemic.SIR.P_INFECT] ==

↪→pInfect][epydemic.SIR.REMOVED].std())

ax.errorbar(pInfects, removeds, yerr=stdErrors, fmt='r-',

↪→ecolor='0.75', capsize=2.0)

ax.set_xlabel('$p_{\\mathit{infect}}$')

ax.set_ylabel('population that is...')

ax.set_title('Epidemic size vs $p_{\\mathit{infect}}$' + ',

↪→mean of {r} repetitions'.format(r=repetitions), y=1.05)

plt.show()

The epidemic threshold of an ER network 77

Epidemic modelling – Some notes, maths, and code

The “variance of the
variance” is also called the
skewness.

So there’s still a lot of variance in the results. The error bars just
present the same information in a terms of summary statistics
like mean and variance. We can also see that the variance
changes quite considerably: there’s variance in the variance.
Both of these suggest that we should do more experiments to
see whether the values converge more closely to cluster around
their mean. One advantage of simulation is that we can easily do
exactly this, simply by crunching more numbers – a luxury not
present in real-world epidemiology.

But even if the results do cluster more tightly around the
mean, we know from plotting the “raw” results that there’s
an important pattern at work by which sometimes, even
for infectious disieases, an epidemic fails to happen. This
information has been completely lost in the plot of summary
statistics: there’s nothing to suggest that a zero-sized epidemic
is a possible result. There are ways to present summary statistics

78 Epidemic threshold

Epidemic modelling – Some notes, maths, and code

that do show this, but it’s important to realise that averaging by
its nature hides detail – and that detail may be important.

Questions for discussion

• Where is all this variance coming from? – aren’t we getting
exact answers by running simulations in a computer?

• The existence of an epidemic threshold suggests that some
diseases never become epidemics. Is that right?

Questions for discussion 79

Human contact networks

Since we now know that the structure of a network can affect
the way a disease behaves, the obvious question is exactly what
this effect is. A related question, somewhat less abstract, is how
this effect manifests itself on a more realistic model of human
contacts. If we can develop a model that mimics a “real” social
situation, we can get closer to how real epidemics may behave.

Unsurprisingly, modelling human contacts is quite hard. Indeed,
there is as yet no scientific consensus on what sorts of networks
are the “best” model – not least because there are lots of different
social structures to account for. A city is not just a large village:
the ways in which people mix change fundamentally as the
geographic and population scales increase, when you no
longer know your neighbours and when you travel and mix
over a wider area. Even such a simple sentence implies a lot
of mathematical complexity. There is less mixing on a small
scale with neighbours, but more mixing at longer distances with
non-neighbours – and this is before we consider how friendship
networks interrelate, and the effects of disease countermeasures
such as social distancing that suddenly became a feature of
modern life.

Suffice it to say that the study of contact networks is still an
active field of research, being conducted experimentally by the
study of real-world social networks as exposed by social media,
and theoretically by the study of networks with topological
structures that try to reflect how people interact.

81

Epidemic modelling – Some notes, maths, and code

While the “right” model is not yet known, we can still make
progress by making use of (what we claim is) a better model
than the simple ER network, and explore what effects it has.

Social structures

A human contact network has to model the structures we
actually find in human social structures. These structures have
been studied extensively 10,11, and they exhibit huge variation – 10 Duncan Watts. Small

worlds. Princeton Studies
in Complexity. Princeton
University Press, 1999. ISBN
0-691-00541-9
11 Duncan Watts and
Steven Strogatz. Collective
dynamics of ’small-world’
networks. Nature, 393:
440–442, 1998. URL https:
//dx.doi.org/10.1038/30918

far more than we find in, for example, the structure of networks
in natural physical and biological systems. This is perhaps due
to the diversity of cultural factors that drive social structures, or
perhaps because a lot of such networks have been designed for
specific purposes rather than simply evolving at random.

“Celebrity” is perhaps
more suggestive of what’s
going on here.

One common factor is that the degree distribution of a contact
network is not normal (in the mathematical sense) like that of
an ER network. Instead of the number of contacts clustering
around a mean, we tend to observe a small number of nodes
who are very highly connected – far more connected than is
possible in an ER network. These people are sometimes referred
to as “hubs” 12. In disease modelling, “super-spreaders” might 12 Duncan Watts. Small

worlds. Princeton Studies
in Complexity. Princeton
University Press, 1999. ISBN
0-691-00541-9

be a better term: individuals who, if they become infected, can
potentially infect a huge number of others. This has implications
for countermeasures and for vaccination, as we’ll see later.

Contact networks often also exagerate factors that are present in
the basic mathematics. Pick a node in the network at random,
and look at its neighbours: what would you expect their degrees
to be? It turns out that the degrees of the neighbours of a node
chosen at random tend to be greater than that of the node itself.
This is because there are more opportunities to connect to a
node that has high degree than to one with low degree. In a
social setting this means that your friends are typically more
popular than you are: they, on average, have more friends than
average. This is true of any node chosen at random – and so,
paradoxically, while your friends are on average more popular
than you are, their friends are also on average more popular than

82 Human contact networks

Epidemic modelling – Some notes, maths, and code

them. Clearly this can’t be true of everyone in the same network,
and is another exmaple of how averaging can mask important
detail.

Then there’s the issue of randomness. One thing that’s obvious
about friendship networks is that they tend not to be random. If
you have two friends, they are likely to be friends of each other
– although not necessarily, as people often have disjoint sub-sets
of friends. Mathematically this manifests itself as clusters in the
network that are more highly connected that would be expected
in a randomly-connected network: in fact it’s breathtakingly
unlikely for such structures to appear in a randomly-constructed
network. Handling this clustering is mathematically very
challenging, and forms one of the frontiers of current research
13. Better models will improve the way in which we analyse 13 Peter Mann, John

Mitchell, V. Anne Smith,
and Simon Dobson.
Percolation in random
graphs with higher-order
clustering. Technical
Report arXiv:2006.06744,
arXiv, 2020. URL https:
//arxiv.org/abs/2006.06744

social networks and improve our understansing of the processes
(like diseases) that operate over them.

Powerlaw networks

So contact networks have some people who have massively
more contacts than others, or than the average. This is taken to
an extreme on social media, where a relatively small number
of public and celebrity figures have millions of “friends”.
Even though this notion of “friendship” is different to “real”
friendship, we see similar effects in physical contact networks:
the networks that capture how people interact in the real
world. This happens at an individual social level, where some
people are natural (or enforced) recluses while others are social
butterflies. It also happens through factors like work, where
some people – postal workers, shop cashiers, bus drivers,
teachers – interact with far more people, and far more closely,
than do those in other jobs.

Powerlaw networks 83

Epidemic modelling – Some notes, maths, and code

What degree distribution do such networks have? They often
follow a power law, where the probability of a node having
a particular degree. pk ∝ k−α for some power α > 0. These
powerlaw networks 14 describe the structures of networks in a 14 Réka Albert and

Albert-László Barabási.
Statistical mechanics of
complex networks. Reviews
of Modern Physics, 74:
47–97, January 2002. URL
https://dx.doi.org/10.1103/
RevModPhys.74.47

bewildering range of applications: most famously, they describe
both the structure of the underlying engineering of the internet
and numbers of links to web pages 15. These networks are

15 Soon-Hyung Yook,
Hawoong Jeong, and
Albert-László Barabási.
Modelling the Internet’s
large-scale topology.
Proceedings of the National
Academy of Sciences, 99

(21), October 2002. URL
https://doi.org/10.1073/
pnas.172501399

also called BA networks after their discoverers, and scale-free
networks because their large-scale and small-scale structures
look the same.

Power-law networks are not quite right for contact networks,
though, because they can create nodes with really, really high
degree: too high to appear in human social situations. A
variation on the idea was studied by Newman, Watts, and
Strogatz 16 and found to be a better fit. In these networks the

16 M.E.J. Newman, Duncan
Watts, and Steven Strogatz.
Random graph models of
social networks. Proceedings
of the National Academy of
Sciences, 19, 2002. URL
https://dx.doi.org/10.1073/
pnas.012582999

power-law degree distribution is “cut off” before it can get too
large, essentially setting a ceiling on the number of contacts an
individual can have. Unsurprisingly, these networks are known
as powerlaw with cutoff networks.

Building a contact network

Building a contact network means constructing a network where
the nodes have the right degree distribution. In other words,
the nodes in the network having degree k appear in the fraction
predicted by the degree distribution.

When we constructed an ER network we described an algorithm
that, when followed, produced a network with the desired
distribution. We need a different algorithm to handle different
topologies. It turns out that there is a very general algorithm,
called the configuration model, that can construct a random
network with any degree distribution.

To build a network of size N the configuration model takes
a list of N numbers, each describing the degree of a node. It
creates nodes with these degrees and wires their edges together

84 Human contact networks

Epidemic modelling – Some notes, maths, and code

randomly. If we can create the degree sequence we want from a
degree distribution, we can use the configuration model to build
a random network with nodes having those degrees.

We define a function p() that, given a degree k, returns the
probability pk of a node with that degree appearing in the
network. We then define another function to which we provide
this function along with the number of nodes we want, and
which creates the random network. It repeatedly picks a random
degree and then picks a random number betwen 0 and 1. If
this second number is less than the probability of a node with
that degree occurring, it adds the degree to the sequence;
otrherwise it repeats the process for another degree. This
continues until we have N node degrees, whih we can then pass
to the configuration model to wire together.

def generateFrom(N, p, maxdeg=100):

construct degrees according to the distribution given

by the model function

rng = numpy.random.default_rng()

ns = []

t = 0

for i in range(N):

while True:

draw a random degree

k = rng.integers(1, maxdeg)

do we include a node with this degree?

if rng.random() < p(k):

yes, add it to the sequence; otherwise,

draw again

ns.append(k)

t += k

break

the final sequence of degrees has to sum to an even

number, as each edge has two endpoints

if the sequence is odd, remove an element and draw

another from the distribution, repeating until the

overall sequence is even

while t % 2 != 0:

(continues on next page)

Building a contact network 85

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

pick a node at random

i = rng.integers(0, len(ns) - 1)

remove it from the sequence and from the total

t -= ns[i]

del ns[i]

choose a new node to replace the one we removed

while True:

draw a new degree from the distribution

k = rng.integers(1, maxdeg)

do we include a node with this degree?

if rng.random() < p(k):

yes, add it to the sequence; otherwise,

draw again

ns.append(k)

t += k

break

populate the network using the configuration

model with the given degree distribution

g = networkx.configuration_model(ns,

create_using=networkx.

↪→Graph())

return g

We now need to describe the powerlaw-with-cutoff degree
distribution. Mathematically the probability of encountering a
node of degree k under this distribution is given by

pk ∝ k−αe−k/κ

Since the distribution is described by two parameters – the
exponent α and the cutoff κ – we define a function that takes
these two parameters and returns a function that returns pk for
any degree k.

The number C in this
function is just a normalising
constant needed to make the
probabilities for the different
degrees sum to 1 so that
they form a valid probability
distribution.

def makePowerlawWithCutoff(alpha, cutoff):

C = 1.0 / mpmath.polylog(alpha, numpy.exp(-1.0 / cutoff))

def p(k):

(continues on next page)

86 Human contact networks

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

return (pow((k + 0.0), -alpha) * numpy.exp(-(k + 0.0) /

↪→ cutoff)) * C

return p

We can then show the degree distribution that results, by again
creating a network and then plotting a histogram of the degrees
of the nodes.

a small sample network

N = 10000

alpha = 2

cutoff = 40

generate the network from the parameters describing the

degree distribution

g = generateFrom(N, makePowerlawWithCutoff(alpha, cutoff))

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

draw the degree distribution

ks = list(dict(networkx.degree(g)).values())

ax.hist(ks, bins=max(ks))

ax.set_title('Powerlaw-with-cutoff degree distribution ($N =

↪→{n}, \\alpha = {e}, \\kappa = {k}$)'.format(n=N, e=alpha,

↪→k=cutoff), y=1.05)

ax.semilogy()

ax.set_xlabel('k')

ax.set_ylabel('$\\log \\, N_k$')

plt.show()

Building a contact network 87

Epidemic modelling – Some notes, maths, and code

Notice that the number of nodes falls exponentially until it hits
the cutoff (40), after which it becomes very sparse indeed: there
are very few nodes with degrees larger than the cutoff value.

Epidemics spreading on powerlaw networks

Now that we can build a human contact network, we can again
run epidemics over it to see what happens: is there an equivalent
of the epidemic threshold that we saw for ER networks?

Again, we need to conduct some fairly intensive simulation.

lab = epyc.ClusterLab(profile='hogun',

notebook=epyc.JSONLabNotebook('datasets/

↪→threshold-plc.json', create=True))

We define a class that constructs random-powerlaw-with cutoff
networks, essentially just importing the code we developed
above into the simulator.

88 Human contact networks

Epidemic modelling – Some notes, maths, and code

%%pxlocal

class PLCNetworkDynamics(epydemic.StochasticDynamics):

Experimental paramerters

N = 'N'

ALPHA = 'alpha'

CUTOFF = 'cutoff'

def __init__(self, p):

super(PLCNetworkDynamics, self).__init__(p)

def makePowerlawWithCutoff(self, alpha, cutoff):

C = 1.0 / mpmath.polylog(alpha, numpy.exp(-1.0 /

↪→cutoff))

def p(k):

return (pow((k + 0.0), -alpha) * numpy.exp(-(k + 0.

↪→0) / cutoff)) * C

return p

def generatePLC(self, N, alpha, cutoff, maxdeg=100):

p = self.makePowerlawWithCutoff(alpha, cutoff)

rng = numpy.random.default_rng()

ns = []

t = 0

for i in range(N):

while True:

k = rng.integers(1, maxdeg)

if rng.random() < p(k):

ns.append(k)

t += k

break

while t % 2 != 0:

i = rng.integers(0, len(ns) - 1)

t -= ns[i]

del ns[i]

while True:

k = rng.integers(1, maxdeg)

if rng.random() < p(k):

ns.append(k)

t += k

break

return networkx.configuration_model(ns,
(continues on next page)

Epidemics spreading on powerlaw networks 89

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

create_

↪→using=networkx.Graph())

def configure(self, params):

super(PLCNetworkDynamics, self).configure(params)

build a random powerlaw-with-cutoff network

with the given parameters

N = params[self.N]

alpha = params[self.ALPHA]

cutoff = params[self.CUTOFF]

g = self.generatePLC(N, alpha, cutoff)

self.setNetworkPrototype(g)

From this we can build a sample network.

N = 10000

alpha = 2

cutoff = 10

And then define a parameter space over which to to run
experiments. We run a normal SIR process for the range of
infection probabilities (values of pinfect).

test network

lab[PLCNetworkDynamics.N] = N

lab[PLCNetworkDynamics.ALPHA] = alpha

lab[PLCNetworkDynamics.CUTOFF] = cutoff

disease parameters

lab[epydemic.SIR.P_INFECTED] = 0.001

lab[epydemic.SIR.P_REMOVE] = 0.002

lab[epydemic.SIR.P_INFECT] = numpy.linspace(0.00001, 1.0,

num=100)

m = epydemic.SIR()

e = PLCNetworkDynamics(m)

rc = lab.runExperiment(epyc.RepeatedExperiment(

epyc.RepeatedExperiment(e, 10),

10))

90 Human contact networks

Epidemic modelling – Some notes, maths, and code

Much computation again ensues before we can retrieve the
results.

df = epyc.JSONLabNotebook('datasets/threshold-plc.json').

↪→dataframe()

Plotting the size of the resulting epidemic as before then yields
the folowing:

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

cutoffs = df[PLCNetworkDynamics.CUTOFF]

pInfects = df[[kappa == cutoff for kappa in cutoffs]]

ax.plot(pInfects[epydemic.SIR.P_INFECT],

pInfects[epydemic.SIR.REMOVED], 'r.')

ax.set_xlabel('$p_{\\mathit{infect}}$')

ax.set_ylabel('population that is...')

ax.set_title('Epidemic size vs $p_{\\mathit{infect}}$ ' + '($N

↪→= {n}, \\alpha = {a}, \\kappa = {k}$)'.format(n=N, a=alpha,

↪→k=cutoff), y=1.05)

plt.show()

Epidemics spreading on powerlaw networks 91

Epidemic modelling – Some notes, maths, and code

Now that’s a different result! It seems that, for all values of pinfect

we can get an epidemic, and with not a lot of variance between
the repetitions. This is very much unlike the ER network case
for which there was a distinct point of infection below which
epidemics didn’t take hold. Also different is that the size of the
epidemic is relatively fixed at about 60% of the population.

If pinfect isn’t a deciding factor in the emergence of an epidemic,
might it depend on the details of the network topology? We can
explore this by keeping the disease parameters the same but
changing the topological parameters.

cutoff = 2

lab[PLCNetworkDynamics.CUTOFF] = cutoff

rc = lab.runExperiment(epyc.RepeatedExperiment(epyc.

↪→RepeatedExperiment(e, 10), 10))

92 Human contact networks

Epidemic modelling – Some notes, maths, and code

df = epyc.JSONLabNotebook('datasets/threshold-plc.json').

↪→dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

cutoffs = df[PLCNetworkDynamics.CUTOFF]

pInfects = df[[kappa == cutoff for kappa in cutoffs]]

ax.plot(pInfects[epydemic.SIR.P_INFECT],

pInfects[epydemic.SIR.REMOVED], 'r.')

ax.set_xlabel('$p_{\\mathit{infect}}$')

ax.set_ylabel('population that is...')

ax.set_title('Epidemic size vs $p_{\\mathit{infect}}$ ' + '($N

↪→= {n}, \\alpha = {a}, \\kappa = {k}$)'.format(n=N, a=alpha,

↪→k=cutoff), y=1.05)

plt.show()

Epidemics spreading on powerlaw networks 93

Epidemic modelling – Some notes, maths, and code

For a network with a smaller cutoff, meaning a smaller mean
degree for nodes. we still get behaviour that’s independent of
pinfect. But look at the range of the y axis: instead of an epidemic
through 60% of the population, we get a tiny outbreak affecting
less than 5%.

A moment’s thought will explain this. The cutoff is so small
that the network is extremely sparse – there are very few edges
between nodes – so it’s difficult for the disease to spread.
Another way to look at this is that a population with very few
social contacts is very safe from diseases spread by contact.

94 Human contact networks

Epidemic modelling – Some notes, maths, and code

The preponderance of epidemics

If we were to explore this phenomenon systematically, we’d
discover that it’s the value of the exponent and cutoff that
control the size of the disease outbreak not the infectiousness
of the disease. In fact there are two possible regimes for these
networks, one in which epidemics always affect a large fraction of
the population, and one in which they never take off 17. 17 M.E.J. Newman, Duncan

Watts, and Steven Strogatz.
Random graph models of
social networks. Proceedings
of the National Academy of
Sciences, 19, 2002. URL
https://dx.doi.org/10.1073/
pnas.012582999

The network science
community captures this
insight with the catchphrase
“powerlaw networks always
percolate”.

From empirical studies it turns out that human contact networks
tend to have an exponent of about 2, and for such networks
an epidemic will break out for almost any value of the cutoff
above 2 – and will always break out for powerlaw networks
that don’t have a cutoff. Put another way, even a small mean
number of contacts won’t stop an epidemic from spreading
through a population, pretty much regardless of the disease’s
infectiousness. The reason is that the “hubs” of highly connected
individuals, if they are infected, become “super-spreaders” who
disseminate the epidemic widely.

This is a significant result. On the one hand, it’s bad news:
even minor diseases will be spread, driven by the characterics
of the contact network itself. However, on the other hand, it
suggests strategies for containment if we reduce the mean
degree sufficiently, or if we tackle the issue of the hubs acting
as super-spreaders. These ideas are the basis of both vaccination
and social distancing.

Questions for discussion

• Think about your friends and neighbours. Who are the “hubs?
What makes them so?

• Rumours also spread through social networks: people
pass information between each other. Could we model
rumour-spreading (or “fake news”) as a process over the
network? Would it behave like a disease? Why? (Or why not?)

The preponderance of epidemics 95

Herd immunity

Epidemics pass through populations by infecting the susceptible.
In doing so they change the details of the population, leaving
behind a trace of the epidemic’s passing in the changed biology
of those who were infected. In a real epidemic this includes
the human cost of the infections and deaths that occur. But it
also includes other, more epidemiological, traces such a change
in the proportion of the population who remain susceptible to
subsequent infection.

Immunity

By immunity we mean making an individual impervious to
future infection by the disease. Immunity is conferred on an
individual in three main ways.

This isn’t quite the
same as saying that the
immune individual can’t
be re-infected. They are
re-infected, but defeat that
infection far more efficiently
than does a “normal”
individual.

The simplest way to acquire immunity is to have had the disease
before. Having been exposed to (and presumably defeated)
the disease pathogen, the immune system stores information
about the necessary response. If exposed to the pathogen again,
the immune system is able to respond more quickly by having
been sensitised to the pathogen. This means that the immune
response starts more quickly after exposure, with less pathogen
to contend with, and often means that the individual never
becomes symptomatic.

For some diseases, an infection confers immunity on the
pre-natal children of any mothers who are infected. This is a

97

Epidemic modelling – Some notes, maths, and code

clever piece of evolution that means that children born into the
midst of an epidemic are often immune to the disease to which
their mother was exposed.

Many diseases pathogens
can’t cross the placental
barrier, so the mother
doesn’t infect the child but
can still pass on her acquired
immunity.

The widespread use of vaccines in the modern world for
serious diseases is the final way to confer immunity. A vaccine
essentially just pre-sensitises a person’s immune system in the
same way that a pre-occurring infection would do, changing
their individual susceptibility without the disadvantage of
making them sick.

Herd immunity

If immunity is the inability of an individual to contract a
disease, then herd immunity is the corresponding property
for a population that can’t undergo an epidemic of the disease.
More precisely, in a herd-immune population any outbreak of
the disease will tend to die out quickly without infecting a large
fraction of the population.

To understand herd immunity we need to return to the initial
notions we had of how an epidemic grows and persists in
a population. We saw that contact trees capture the case
reproduction number R of an ongoing epidemic. We also saw
that if R ≥ 1 then the epidemic continues, as the next generation
of cases is at least the same size as the previous one. If, however,
R falls and remains below 1, then the size of the next generation
is smaller than the previous one, and if this trend continues then
the disease will die out.

Herd immunity occurs when R � 1 so that any epidemic never
gets started. More importantly, it means that if an epidemic
re-starts through the disease being re-introduced, it won’t get
re-started. This doesn’t mean that no-one ever gets infected in
a herd-immune population: it’s perfectly possible for people to
come into contact with infected individuals from outside, and
to become infected themselves if they aren’t personally immune.
But the disease doesn’t spread from them into the rest of the

98 Herd immunity

Epidemic modelling – Some notes, maths, and code

population.

How does this come about? When discussing R we saw that it
is affected by three things: the duration of infectiousness, the
probability of disease transmission per contact, and the rate of
contacts between infected and susceptible individuals. The first
two are properties of the disease, while the second is a property
of the environment in which it finds itself. A herd-immune
population is one in which the number of contacts between
susceptible and infected individuals is too low to sustain
an outbreak, because there are too few susceptibles around.
Essentially herd immunity fragments the topology of the contact
network to reduce the value of R below the critical threshold of
1.

Epidemics on a residual network

There are other disease
models such as SIS in which
people become susceptible
again after infection, and
these can be used to study
endemic diseases that
remain active over a long
time .

Saray Shai and Simon
Dobson. Coupled adaptive
complex networks. Physical
Review E, 87(4), April 2013.
URL https://dx.doi.org/10.
1103/PhysRevE.87.042812

We can model the effects of herd immunity by using the idea
of a disease repeatedly being introduced to the same contact
network. We let the disease run through the population, and
then note that, for SIR infections, anyone who has been removed
from the population cannot be re-infected, and indeed takes no
further part in the disease dynamics. We are left with a residual
network into which we re-introduce the disease by seeding it
with new infected individuals, and see what happens.

The important thing to notice is that the second epidemic is
caused by the re-introduction of the same disease, with the same
infectiousness and period of infection. Will this instance of the
disease spread? – only if the residual network is such that the
disease can take hold in it. If the first epidemic caused enough
nodes to be removed, then this may prevent a second epidemic
in the same population (or, more accurately, in a large sub-set
of the fraction of the population who weren’t infected the first
time).

This is another way to think about herd immunity. By removing
nodes from the population it changes its topology so that disease

Epidemics on a residual network 99

Epidemic modelling – Some notes, maths, and code

propagation is no longer possible, or at least occurs at a radically
smaller level. Any subsequent outbreaks are in some sense
“squashed by the topology” even though the biology of the
situation is unchanged.

For simplicity let’s return to ER networks. (The same arguments
work perfectly well on powerlaw networks too.) We create a
small network and run an SIR epidemic over it, choosing disease
parameters that we know will create an epidemic.

N = 5000

kmean = 20

T = 5000

pInfected = 0.01

pInfect = 0.0002 # above the epidemic threshold

pRemove = 0.002

g = networkx.gnp_random_graph(N, (kmean + 0.0) / N)

param = dict()

param[epydemic.SIR.P_INFECTED] = pInfected

param[epydemic.SIR.P_INFECT] = pInfect

param[epydemic.SIR.P_REMOVE] = pRemove

param[epydemic.Monitor.DELTA] = T / 50

m1 = MonitoredSIR()

e1 = epydemic.StochasticDynamics(m1, g)

rc1 = e1.set(param).run()

We can now see how many nodes were infected in the course
of the epidemic (the size of the R compartment) and how many
escaped infection and remain susceptible.

print('Remaining susceptible {s}, removed {r}'.format(s=len(m1.

↪→compartment(epydemic.SIR.SUSCEPTIBLE)), r=len(m1.

↪→compartment(epydemic.SIR.REMOVED))))

Remaining susceptible 1376, removed 3624

100 Herd immunity

Epidemic modelling – Some notes, maths, and code

Quite a large epidemic, but one that left a substantial number
uninfected. We now construct the residual network by deleting
all the nodes who are (or have been) infected, leaving the
susceptibles. We don’t touch the edges between the nodes that
remain.

h = m1.network().copy()

h.remove_nodes_from(m1.compartment(epydemic.SIR.INFECTED))

h.remove_nodes_from(m1.compartment(epydemic.SIR.REMOVED))

As a sanity check, the number of nodes in the residual network
should match the number of susceptible nodes who were left
after the first epidemic.

print('Order of residual network {o}'.format(o=h.order()))

Order of residual network 1376

We now run the same disease on this network without touching
the experimental parameters.

m2 = MonitoredSIR()

e2 = epydemic.StochasticDynamics(m2, h)

rc2 = e2.set(param).run()

What is the result? We can plot the progress of the two
epidemics side by side: the “main” epidemic and the secondary
infection on the residual network.

(fig, axs) = plt.subplots(1, 2, sharey=True, figsize=(12, 6))

plot the first epidemic

ax = axs[0]

timeseries1 = rc1[epyc.Experiment.RESULTS][epydemic.Monitor.

↪→TIMESERIES]

ts1 = timeseries1[epydemic.Monitor.OBSERVATIONS]

ss1 = timeseries1[epydemic.SIR.SUSCEPTIBLE]

is1 = timeseries1[epydemic.SIR.INFECTED]

rs1 = timeseries1[epydemic.SIR.REMOVED]

ax.plot(ts1, ss1, 'r-', label='susceptible')

ax.plot(ts1, is1, 'g-', label='infected')

(continues on next page)

Epidemics on a residual network 101

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

ax.plot(ts1, rs1, 'k-', label='removed')

ax.set_xlabel('t')

ax.set_ylabel('population that is...')

ax.set_title('First epidemic')

ax.legend(loc='center right')

plot the second epidemic on the residual network

ax = axs[1]

timeseries2 = rc2[epyc.Experiment.RESULTS][epydemic.Monitor.

↪→TIMESERIES]

ts2 = timeseries2[epydemic.Monitor.OBSERVATIONS]

ss2 = timeseries2[epydemic.SIR.SUSCEPTIBLE]

is2 = timeseries2[epydemic.SIR.INFECTED]

ax.plot(ts2, ss2, 'r-', label='susceptible')

ax.plot(ts2, is2, 'g-', label='infected')

ax.set_xlabel('t')

ax.set_title('Second epidemic')

ax.legend(loc='center right')

fine-time the figure

plt.suptitle('Progress of two epidemics on the same contact

↪→network', y=1.05)

axs[0].set_ylabel('population that is...')

_ = plt.show()

The first epidemic happens as we would expect: a burst of

102 Herd immunity

Epidemic modelling – Some notes, maths, and code

infections followed by a dying-away. But the second epidemic
looks as though nothing happens. We can check by looking at
the final compartment sizes.

print('Remaining susceptible {s}, removed {r}'.format(s=len(m2.

↪→compartment(epydemic.SIR.SUSCEPTIBLE)), r=len(m2.

↪→compartment(epydemic.SIR.REMOVED))))

Remaining susceptible 1340, removed 36

So the same disease barely affected any nodes, despite being
re-introduced.

Why is this? The first epidemic changed the topology of the
network. Specifically it reduced the mean degree of nodes
because so many of the nodes were removed. In doing so
it reduced the disease’s opportunities to spread, effectively
reducing R below the critical threshold.

print('Mean degree of initial network {kmean}'.

↪→format(kmean=kmean))

print('Mean degree of residual network {kmean:.2f}'.

↪→format(kmean=numpy.mean(list(dict(h.degree()).values()))))

Mean degree of initial network 20

Mean degree of residual network 5.50

We can show this graphically – if less scientifically usefully – by
plotting the progress of the disease through the network.

(fig,axs) = plt.subplots(1, 3, figsize=(12, 5))

colours fgor compartments

colours = dict()

colours[epydemic.SIR.SUSCEPTIBLE] = 'red'

colours[epydemic.SIR.INFECTED] = 'green'

colours[epydemic.SIR.REMOVED] = 'black'

plot the final network of the first epidemic,

colouring for compartment

ax = axs[0]

(continues on next page)

Epidemics on a residual network 103

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

final = m1.network()

pos1 = networkx.drawing.layout.random_layout(final)

ncs = [colours[m1.getCompartment(n)] for n in final.nodes()]

networkx.draw_networkx(final, pos=pos1, ax=ax,

node_color=ncs, node_size=5,

with_labels=False, edgelist=[])

ax.axis('off')

ax.set_title('After first epidemic')

plot residual network for the second epidemic

ax = axs[1]

final = m2.network()

pos2 = { n: pos1[n] for n in pos1.keys() if n in final.nodes()

↪→}

networkx.draw_networkx(final, pos=pos2, ax=ax,

node_color=colours[epydemic.SIR.

↪→SUSCEPTIBLE],

node_size=5, with_labels=False,

↪→edgelist=[])

ax.axis('off')

ax.set_title('Residual susceptibles')

plot the final network of the second epidemic

ax = axs[2]

ncs = [colours[m2.getCompartment(n)] for n in final.nodes()]

networkx.draw_networkx(final, pos=pos2, ax=ax,

node_color=ncs, node_size=5,

with_labels=False, edgelist=[])

ax.axis('off')

ax.set_title('After second epidemic')

fine-tune figure

plt.suptitle('Progress of two epidemics', y=1.05)

the figure we've created is large -- very large,

actually -- because of the large network. Since we

don't want to create a large notebook, we generate

and save the # file without displaying it and then

re-load the saved image

plt.savefig('herd-finals.png', dpi=300, bbox_inches='tight')

plt.close(fig)

104 Herd immunity

Epidemic modelling – Some notes, maths, and code

In the left-hand panel we have the network after the first
epidemic, with black nodes being those that have been infected.
In the middle panel we remove these nodes, leaving only the
residual susceptibles. (We’ve not drawn the edges for reasons
of scale.) In the right-hand panel we show the network after
the second epidemic – look carefully to find the nodes that
were infected! The visual first impression is what’s important,
though: after the first epidemic the network had been mostly
infected, but after the second it was largely untouched despite
the fact that the same disease was introduced both times. The
population has been rendered herd-immune by its first brush
with the disease. Even though some people were infected, the
disease never took hold a second time.

The complexities of immunity

This description makes things sound simple. Infecting the
population once means that they can’t, as a body, be infected
again, and so the risks of subsequent disease outbreaks are
minimised.

The complexities of immunity 105

Epidemic modelling – Some notes, maths, and code

Not quite. There are more things we need to consider.

Firstly, and most importantly, gaining herd immunity through
infection means that a lot of people have to become sick.
Depending on the disease, that can result in a lot of misery and
a lot of death. We glossed-over the difference between these
two factors in using SIR as our disease model, but we need to
remember that “removed” (in the SIR sense) includes both those
who recovered and those who died – neither of whom, in this
simple model, take any further part in this or future epidemics.

While the difference between being recovered and being dead
therefore doesn’t matter mathematically, it matters a lot to
the individuals concerned – or rather, it matters to those who
survive. If a disease with even a low death rate infects 60% of a
population that still potentially means a lot of deaths.

Secondly, a further assumption of SIR is that immunity is
a binary event: one is either susceptible or removed, and if
susceptible one is entirely susceptible and if removed one is
completely removed. If one becomes infected, one switches
instantaneously between these two classes. These assumptions
aren’t an accurate model of real diseases.

In many diseases, infection by the disease confers only partial
immunity to further infection. Essentially this decreases an
individual’s own personal probability pinfect, making them less
likely to be infected at subsequent encounters.

In other diseases, infection confers temporary immunity so
that an individual’s pinfect changes with time, perhaps dropping
to zero immediately after recovery and rising over time. The
exact way in which immunity decays may be different too,
perhaps rising steadily or perhaps jumping, and perhaps
eventually reaching a “normal” level as though the first infection
hadn’t occurred. And of course one can always have the case of
temporary partial immunity that combines the features of both.

To these complexities we also need to add uncertainty. In an
epidemic of a new disease we almost certainly don’t know what,
if any, immunity infection confers. This implies that we don’t

106 Herd immunity

Epidemic modelling – Some notes, maths, and code

know whether a recurrence of the disease will result in another
epidemic or not.

All this means that achieving herd immunity isn’t a viable
strategy for managing new diseases with large potential
epidemic sizes, even if they’re known (or assumed) to have
relatively low mortality rates. A tiny fraction of a huge number
can still be considerable. Fortunately herd immunity is not the
only management strategy we have available to us.

Questions for discussion

• How would you work out whether a particular disease
conferred full immunity, or only partial immunity?

• Is partial immunity any help in managing a disease? – it still
leaves people at risk after infection

Questions for discussion 107

Changing individual susceptibility

We now turn to countermeasures that we can take to reduce the
size of an epidemic.

There are several ways we can approach this. In this chapter
we’ll look at ways in which we can change an individual’s
response to potential infection. By making individuals less likely
to be infected, we reduce the chances that an encounter will
result in secondary infection and therefor reduce the chance of
the disease spreading widely. We’ll see that it matters how many
individuals’ susceptibility we modify, and often which individuals.

(In a later chapter we’ll look at an alternative approach which
leaves individual susceptibilities alone but changes the topology
of encounters at the population level.)

Vaccination changes susceptibility at a biological level, by
changing an individual’s immune response, and in this chapter
we’ll talk about the ways in which vaccines affect epidemic
spreading in a population. But it’s important to remember
that the same effect can be achieved at a physical level, with no
vaccine and in fact no biological interventions at all, as we’ll see
later. From the perspective of epidemic spreading both biological
and physical approaches behave in largely the same way.

109

Epidemic modelling – Some notes, maths, and code

Vaccines

Edgar Allan Poe’s short
story The Masque of the
Red Death fictionalises
the ineffectiveness of this
strategy, especially when
faced with a supernatural
opponent.

For most of history we have been unable to affect the progress
of diseases by biological means. Instead, we’ve been limited to
using topology – isolation and quarantine – to reduce the spread
of a disease, or slow down its progress. For many diseases
these approaches were ineffective given the dynamics of the
disease and the conditions of daily life for the majority of the
population, and even being sufficiently rich to lock oneself away
was not guaranteed to spare one from infection.

This changed at the turn of the nineteenth century with the
introduction of vaccines. Vaccination was first tried at scale
by Sir Edward Jenner, who realised the similarities between
smallpox – a ravaging disease and a cause of immense suffering
– and cowpox, a far milder complaint commonly encountered
in milkmaids who picked it up from cattle. This proved to be
the first in a long line of innovations that have now erradicated
smallpox entirely.

Vaccines work by priming a person’s immune system so that,
if they are later infected, they already have the immunological
machinery needed to fight the pathogen off. Critically, this
reduces the time between infection happening and the immune
response starting, meaning that there is less pathogen to fight
off and therefore a better chance of preventing the infection
taking hold in that individual. Sometimes this can be so effective
that the individual is unaware they were even infected; more
commonly they suffer a milder version of the disease, with less
severe symptoms from which they recover more quickly.

There are lots of ways to build a vaccine. One can do as Jenner
did and use a mild variant of the disease one is interested
in. One can take the actual disease and produce a denatured
version that cannot cause infection but does nevertheless prime
the immune system. Modern vaccines are often even more
specific than this, identifying some of the surface proteins
that characterise the pathogen and introducing only them as a
primer.

110 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

Immunology is an immense subject, but fortunately we don’t
need to understand its mechanics – how it works in individuals –
to understand its epidemiology – how it works in populations. In
fact, as we’ll see, we don’t need a vaccine in order to still get the
effects of vaccination.

Epidemics on human contact networks

Let’s revisit human contact networks as a substrate
for an epidemic. Such a contact network resembles a
powerlaw-with-cutoff topology rather than the “normal”
topology of an ER network: there are nodes that have degrees
(contacts) substantially larger than the mean of the network
overall. We made the point that such networks are very good at
spreading diseases.

How good? Human contact networks have different cutoffs,
the point at which the probability of having nodes with higher
degrees reduces dramatically. We can explore what this means
by picking the dynamics of a disease and varying the cutoff to
see how the same disease propagates on networks with different
topologies.

network parameters

N = 10000

alpha = 2

simulation time

T = 1000

disease dynamic parameters

pInfected = 0.001

pInfect = 0.01

pRemove = 0.002

set up the experiment

lab = epyc.Lab()

lab[epydemic.SIR.P_INFECTED] = pInfected

lab[epydemic.SIR.P_INFECT] = pInfect

(continues on next page)

Epidemics on human contact networks 111

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

lab[epydemic.SIR.P_REMOVE] = pRemove

lab[PLCNetworkDynamics.N] = N

lab[PLCNetworkDynamics.ALPHA] = alpha

lab[PLCNetworkDynamics.CUTOFF] = numpy.linspace(10, 80,

num=4)

lab[epydemic.Monitor.DELTA] = T / 50

perform one monitoried epidemic

m = MonitoredSIR()

e = PLCNetworkDynamics(m)

lab.runExperiment(e)

Plotting the results for the different cutoff values yields the
following.

df = lab.dataframe()

cutoffs = df[PLCNetworkDynamics.CUTOFF].unique()

(fig, axs) = plt.subplots(2, 2, sharex=True, sharey=True,

figsize=(10, 10))

for (ax, cutoff) in [(axs[0][0], cutoffs[0]),

(axs[0][1], cutoffs[1]),

(axs[1][0], cutoffs[2]),

(axs[1][1], cutoffs[3])]:

rc = df[df[PLCNetworkDynamics.CUTOFF] == cutoff]

timeseries = rc[MonitoredSIR.TIMESERIES].iloc[0]

ts = timeseries[MonitoredSIR.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(ts, sss, 'r.', label='suceptible')

ax.plot(ts, iss, 'g.', label='infected')

#ax.plot(ts, rss, 'ks', label='removed')

ax.set_title('$\\kappa = {kappa:.0f}$'.

↪→format(kappa=cutoff))

ax.set_xlim([0, T])

ax.set_ylim([0, N])

ax.legend(loc='upper right')

(continues on next page)

112 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

fine-tune the diagram

plt.suptitle('SIR over powerlaw networks for different cutoffs

↪→($N = {n}, \\alpha={a}$)'.format(n=N, a=alpha))

for y in range(2):

axs[y][0].set_ylabel('population that is...')

for x in range(2):

axs[1][x].set_xlabel('t')

plt.show()

This is telling us that networks with a small maximum number
of contacts (κ = 10) have relative small epidemics that appear
quite slowly: the “peak” of the infections occurs farther into the
outbreak. As we increase κ we see larger epidemics happening
faster (closer to the start of the outbreak), until the results seem
to stabilise and not change much as we continue to increase κ:
a maximum of about 30 contacts seems to be enough to infect
about half the popuation at the peak.

Epidemics on human contact networks 113

Epidemic modelling – Some notes, maths, and code

Vaccination in SIR

We’ve obviously simplified
this, as anyone who’s caught
a disease for which they’ve
been vaccinated will know.
Vaccination doesn’t always
give full immunity against
infection.

What does vaccination look like in the SIR model? A vaccinated
individual is one who cannot catch the disease. In model terms
it means that an individual who exhibits that characteristics of
having already had the disease, and having been “removed” into
the R compartment. In fact this is what’s happening biologically
as well: a vaccinated individual has been exposed to a substance
that renders them the same as if they’d had the disease, without
actually requiring them to have had it. The effect we’re looking
for is herd immunity, where there are insufficient susceptible
individuals in a population to let the disease establish itelf. But
critically we’re looking for herd immunity without having the
disease pass through the population first, with all the suffering and
(possibly) death that this might entail.

We could model vaccination using a new compartment, leading
to a model that might be called SIVR capturing the vaccinated
individuals V. But in conditions of total vaccinated immunity
the V individuals will behave identically to the R individuals,
so we may as well simply treat them identically too. (If we
were wanting to explore partial immunity through vaccination
then SIVR would let us have, for example, different values of
pinfect depending on whether it’s an S or a V individual being
potentially infected: V becomes a halfway-house between S
(fully susceptible) and R (fully removed).

Vaccinating the population at random

For many years seasonal
influenza vaccines were
grown in chicken eggs,
meaning that they were
unsuitable for vegans and
anyone with a dairy allergy.
Modern flu vaccines aren’t
created this way.

Most vaccines are applied broadly to a population, typically in
childhood for a range of common diseases which most people
will face. Ideally everyone is vaccinated; in practice some are
missed for various reasons, in some the vaccine will not “take”,
some must avoid it for unrelated medical reasons, and so forth.

We could try to model the ways in which this process happens in
detail, but the overall effect is very similar to the case where we

114 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

take a population and randomly vaccinate some percentage of
the individuals before starting the infection. Since this is SIR, this
means that we randomly assign some fraction pvaccinated of nodes
to the R compartment.

class MonitoredVaccinatedSIR(epydemic.SIR, epydemic.Monitor):

P_VACCINATED = 'pVaccinated' #: Probability that an

individual is initially

↪→removed.

def __init__(self):

super(MonitoredVaccinatedSIR, self).__init__()

def build(self, params):

'''Build the observation process.

:param params: the experimental parameters'''

super(MonitoredVaccinatedSIR, self).build(params)

change the initial compartment probabilities to

↪→vaccinate (remove) some fraction

pInfected = params[epydemic.SIR.P_INFECTED]

pVaccinated = params[self.P_VACCINATED]

self.changeCompartmentInitialOccupancy(epydemic.SIR.

↪→INFECTED, pInfected)

self.changeCompartmentInitialOccupancy(epydemic.SIR.

↪→REMOVED, pVaccinated)

self.changeCompartmentInitialOccupancy(epydemic.SIR.

↪→SUSCEPTIBLE, 1.0 - pInfected - pVaccinated)

also monitor other compartments

self.trackNodesInCompartment(epydemic.SIR.SUSCEPTIBLE)

self.trackNodesInCompartment(epydemic.SIR.REMOVED)

We can choose any number we like for pvaccinated, with 60% being
a typical target for immunisation campaigns.

pVaccinated = 0.6

Leaving all other experimental parameters the same from above,
let’s choose a value of κ = 57 as a cutoff that we saw created an
epidemic in a unvaccinated population, and run an experiment

Vaccinating the population at random 115

Epidemic modelling – Some notes, maths, and code

where we first vaccinate (remove) a fraction of nodes at random.

lab[MonitoredVaccinatedSIR.P_VACCINATED] = pVaccinated

lab[PLCNetworkDynamics.CUTOFF] = 57

m = MonitoredVaccinatedSIR()

e = PLCNetworkDynamics(m)

lab.runExperiment(e)

df = lab.dataframe()

We can then see the progress of the same epidemic on the same
network topology, but in the presence of an effective vaccine
applied to a fraction of the population.

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

rc = df[df[MonitoredVaccinatedSIR.P_VACCINATED] == 0.6]

results = rc.iloc[0]

timeseries = results[epydemic.Monitor.TIMESERIES]

ts = timeseries[MonitoredVaccinatedSIR.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(ts, sss, 'r.', label='suceptible')

ax.plot(ts, iss, 'g.', label='infected')

#ax.plot(ts, rss, 'ks', label='removed')

ax.set_xlim([0, T])

ax.set_xlabel('t')

ax.set_ylim([0, N * (1.0 - pVaccinated - pInfected)])

ax.set_ylabel('population that is...')

ax.set_title('SIR epidemic in the presence of {v:.0f}%

↪→vaccination ($\\kappa = {k}$)'.

↪→format(v=results[MonitoredVaccinatedSIR.P_VACCINATED] * 100,

↪→k=results[PLCNetworkDynamics.CUTOFF]), y=1.05)

ax.legend(loc='upper right')

plt.show()

116 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

Comparing this to the figure above shows quite a dramatic
reduction in the outbreak size.

But wait! – there might be a problem Look at the y-axis in
this graph. Notice that the maximum susceptible population
is about 4000, even though the network has 10000 nodes. A
moment’s thought shows why: we modelled vaccination as
being pre-emptively removed, leaving fewer susceptibles. Could
it be that this result is what we’d expect on a smaller network? In
other words, is there a size effect coming into play as we move
from 10000 down to 4000 individuals?

We should be careful and check this possibility. We can do so by
working out the size of the unvaccinated population and creating
a network with the same topology of this size, and then running
our epidemic over it.

Nsmall = int(N * (1.0 - pVaccinated - pInfected))

lab[PLCNetworkDynamics.N] = Nsmall
(continues on next page)

Vaccinating the population at random 117

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

m = MonitoredSIR()

e = PLCNetworkDynamics(m)

lab.runExperiment(e)

df = lab.dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot epidemic on unvaccinated network

rc = df[df[PLCNetworkDynamics.N] == Nsmall]

results = rc.iloc[0]

timeseries = results[epydemic.Monitor.TIMESERIES]

ts = timeseries[MonitoredVaccinatedSIR.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(ts, sss, 'r.', label='suceptible (no vaccination)')

ax.plot(ts, iss, 'g.', label='infected (no vaccination)')

#ax.plot(ts, rss, 'ks', label='removed')

plot results on same-sized network reduced in

size by vaccination

rc = df[df[MonitoredVaccinatedSIR.P_VACCINATED] == 0.6]

results = rc.iloc[0]

timeseries = results[epydemic.Monitor.TIMESERIES]

ts = timeseries[MonitoredVaccinatedSIR.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(ts, sss, 'ro', label='suceptible (post vaccination)')

ax.plot(ts, iss, 'go', label='infected (post vaccination)')

#ax.plot(ts, rss, 'ks', label='removed')

ax.set_xlim([0, T])

ax.set_xlabel('t')

ax.set_ylim([0, Nsmall])

ax.set_ylabel('population that is...')

ax.set_title('SIR epidemic with and without vaccination ($N =

↪→{n}, \\kappa = {k}$)'.format(n=Nsmall,

↪→k=results[PLCNetworkDynamics.CUTOFF]), y=1.05)

ax.legend(loc='center right')

(continues on next page)

118 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

plt.show()

The first thing to see is that the two graphs are different:
it’s not just the size of the network that affects things. In the
small-but-unvaccinated network we see a larger epidemic; in the
vaccinated network we see a much smaller and slower outbreak.
What is different between the two cases, since the networks are
the same size?

A moment’s thought may suggest the answer. We’ve created
two networks with the same topology, one where a fraction of
nodes are removed by vaccination, and one where a number of
nodes really had been removed (or rather, were never present in
the network in the first place). Both networks have high-degree
nodes, as we’d expect for powerlaw-with-cutoff networks. But in
the latter (vaccinated) case, some of those high-degree nodes will
have been vaccinated and so are not able to spread the disease.

Vaccinating the population at random 119

Epidemic modelling – Some notes, maths, and code

And since the disease spreads through contact between S and
I nodes, we lose the opportunity to infect a high-degree node
that could act as super-spreaders able to infect a large number
of nodes. And that reduction in super-spreading is enough to
change the dynamics of the disease.

How super are super-spreaders?

Let’s look at some numbers. Firstly, how many contacts does the
most highly-connected node have?

g = m.network()

ks = sorted(list(dict(networkx.degree(g)).values()))

print('Maximum degree = {kmax}'.format(kmax=max(ks)))

Maximum degree = 62

That’s a high number. What about the number of contacts for an
averagely-connected node?

print('Mean node degree = {kmean:.2f}'.format(kmean=numpy.

↪→mean(ks)))

Mean node degree = 2.59

Very different, and it’s this feature that differentiates a human
contact network from an ER network: the existence of nodes
with degrees that are much higher than the average. In fact such
networks have a long tail of nodes with high degrees: only a
small number relative to the size of the network overall, but
nonetheless able to pass infection.

h = 10

print('Highest {h} nodes by degree {l}'.format(h=h, l=ks[-h:]))

Highest 10 nodes by degree [43, 44, 45, 46, 46, 50, 54, 54, 56,

↪→ 62]

120 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

There are other ways
we could do this too, for
example by making the
probability of vaccinating a
node inversely proportional
to its degree.

How important are these individuals in the spread of the
disease? We can study that by excluding them from our model
vaccination programme. Instead of vaccinating some fraction
of the network, after vaccination we will make sure that some
fraction of the highest-degree nodes are susceptible. Essentially
we swap high-degree nodes for lower-degree nodes in our
vaccination programme.

class MonitoredVaccinatedLowDegreeSIR(MonitoredVaccinatedSIR):

K_HIGH_FRACTION = 'k_high_fraction'

def __init__(self):

super(MonitoredVaccinatedLowDegreeSIR, self).__init__()

def setUp(self, params):

super(MonitoredVaccinatedLowDegreeSIR, self).

↪→setUp(params)

look through the fraction of high-degree nodes and

make them susceptible again, replacing them with

another node chosen at random

rng = numpy.random.default_rng()

g = self.network()

ns = list(g.nodes())

h = int(len(ns) * params[self.K_HIGH_FRACTION])

degrees = dict(networkx.degree(g))

ks = sorted(list(degrees.values()))

ks_high = set(ks[-h:])

ns_high = [n for n in ns if degrees[n] in ks_high]

for n in ns_high:

if self.getCompartment(n) == self.REMOVED:

node is removed, make it susceptible again

self.setCompartment(n, self.SUSCEPTIBLE)

choose another node and remove it in

place of the node we just forced to

be susceptible

while True:

i = rng.integers(0, len(ns) - 1)

(continues on next page)

How super are super-spreaders? 121

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

m = ns[i]

if self.getCompartment(m) == self.

↪→SUSCEPTIBLE:

found a susceptible node, remove it

self.setCompartment(m, self.REMOVED)

break

Running the experiment, again with the same disease parameters
and network topology as before, shows us the effects of this
failure in vaccination.

kHighFraction = 0.08 # highest-degree 8%

lab[MonitoredVaccinatedLowDegreeSIR.K_HIGH_FRACTION] =

↪→kHighFraction

lab[PLCNetworkDynamics.N] = N

m = MonitoredVaccinatedLowDegreeSIR()

e = PLCNetworkDynamics(m)

lab.runExperiment(e)

df = lab.dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

rc = df[df[MonitoredVaccinatedLowDegreeSIR.K_HIGH_FRACTION] ==

↪→kHighFraction]

results = rc.iloc[0]

timeseries = results[epydemic.Monitor.TIMESERIES]

ts = timeseries[MonitoredVaccinatedSIR.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(ts, sss, 'r.', label='suceptible')

ax.plot(ts, iss, 'g.', label='infected')

#ax.plot(ts, rss, 'ks', label='removed')

ax.set_xlim([0, T])

ax.set_xlabel('t')

ax.set_ylim([0, N * (1.0 - pInfected - pVaccinated) + N *
↪→kHighFraction])

(continues on next page)

122 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

ax.set_ylabel('population that is...')

ax.set_title('SIR epidemic without vaccination of {khigh:.0f}%

↪→highest-degree nodes ($N = {n}, \\kappa = {k:.0f}$)'.

↪→format(khigh=kHighFraction * 100, n=N,

↪→k=results[PLCNetworkDynamics.CUTOFF]), y=1.05)

ax.legend(loc='upper right')

plt.show()

Letting a small fraction of the high-degree nodes – i.e., the most
connected individuals – remain susceptible changes the epidemic
again, making it larger and faster. It’s not only the size of the
vaccinated population that counts: it’s who we vaccinate (or, in
this case, don’t vaccinate) that really matters. Missing even a
small fraction of the highly connected will radically reduce the
effectiveness of a vaccination programme.

Targetted vaccination

So the existence of high-degree nodes offers an opportunity for
the disease to infect far more individuals if those nodes are not
protected by vaccination.

Targetted vaccination 123

Epidemic modelling – Some notes, maths, and code

But this also offers opportunities for further countermeasures. If
high-degree nodes are important in spreading the disease, what
if – instead of vaccinating at random – we instead explicitly target
those nodes that we believe are the most important in spreading
the disease? That might make our programme more effective. It
might also mean that we could perform a smaller, more focused,
programme, where instead of vaccinating widely at random we
vaccinate narrowly but in a focused, “smart” way.

We can explore this too. Rather than perform random
vaccination, we instead target a specific fraction of the
highest-degree nodes.

class MonitoredVaccinatedHighDegreeSIR(MonitoredSIR):

K_VACCINATED_FRACTION = 'k_vaccinated_fraction'

def __init__(self):

super(MonitoredVaccinatedHighDegreeSIR, self).__init__

↪→()

def setUp(self, params):

super(MonitoredVaccinatedHighDegreeSIR, self).

↪→setUp(params)

look for the fraction of highest-degree nodes

and vaccinate (remove) them

g = self.network()

ns = list(g.nodes())

h = int(len(ns) * params[self.K_VACCINATED_FRACTION])

degrees = dict(networkx.degree(g))

ks = sorted(list(degrees.values()))

ks_high = set(ks[-h:])

ns_high = [n for n in ns if degrees[n] in ks_high]

for n in ns_high:

remove (vaccinate) the node

self.setCompartment(n, self.REMOVED)

How large a fraction do we need to target? Let’s be ambitious
and start small, vaccinating only 2% of nodes – thirty times
fewer than before.

124 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

kVaccinatedFraction = 0.02 # top 2% highest-degree nodes

lab[MonitoredVaccinatedHighDegreeSIR.K_VACCINATED_FRACTION] =

↪→kVaccinatedFraction

m = MonitoredVaccinatedHighDegreeSIR()

e = PLCNetworkDynamics(m)

lab.runExperiment(e)

df = lab.dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

rc = df[df[MonitoredVaccinatedHighDegreeSIR.K_VACCINATED_

↪→FRACTION] == kVaccinatedFraction]

results = rc.iloc[0]

timeseries = results[epydemic.Monitor.TIMESERIES]

ts = timeseries[MonitoredVaccinatedSIR.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(ts, sss, 'r.', label='suceptible')

ax.plot(ts, iss, 'g.', label='infected')

#ax.plot(ts, rss, 'ks', label='removed')

ax.set_xlim([0, T])

ax.set_xlabel('t')

ax.set_ylim([0, N])

ax.set_ylabel('population that is...')

ax.set_title('SIR epidemic vaccinating only the {kvac:.0f}%

↪→highest-degree nodes ($N = {n}, \\kappa = {k:.0f}$)'.

↪→format(kvac=kVaccinatedFraction * 100, n=N,

↪→k=results[PLCNetworkDynamics.CUTOFF]), y=1.05)

ax.legend(loc='upper right')

plt.show()

Targetted vaccination 125

Epidemic modelling – Some notes, maths, and code

That’s quite amazing! With almost no-one vaccinated – 200 in
a network of 10000 – we both reduce and slow the epidemic.
Both these effects are important. The total number of people
infected is smaller, but so too is the “ramp-up” at the start of the
epidemic, which means less stress is placed on health systems
dealing with the influx of sick peoiple.

When people talk of flattening the curve, this is the effect they’re
aiming at – achieved in this case through targeted vaccination of
a tiny fraction of the population.

This reduction in vaccination effort makes it faster, cheaper, and
more reliable – if we can identify and target the super-spreaders.
But this might be possible, because we know that the
super-spreaders are the highest-degree nodes, who are simply
the ones with the most exposure to other people. In the modern
world a person’s contact degree is often at least partially a
function of their job, and so by targeting those whose jobs bring
them into contact with the most people – and especially into
contact with the most infected people – we can create a very
effective vaccination strategy and roll it out quickly.

126 Changing individual susceptibility

Epidemic modelling – Some notes, maths, and code

“Vaccination” without vaccines

We said at the beginning of this chapter that immunology was
an enormously complicated topic but one whose details didn’t
matter for population-level modelling. The experiments we
conducted above have hopefully convinced you of this.

But if this is the case, then it’s not vaccination that’s the
important feature for our purposes. Any technology that behaves
like a vaccine preventing the infection of those we treat, will have
the same effect.

What technologies might these be? An obvious example is
personal protective equipment such as face masks, surgical
gloves, and the like, issued to those whom we identify as being
in high-contact professions such as care workers, medical
workers, bus drivers, and the like – anyone who, if they were
to become infected, would have the opportunity to spread
the disease to a disproportionate number of others. Most
importantly this doesn’t require that we protect everyone, just
that we protect the most important people in the contact network,
whom we identify by their contact degree.

Questions for discussion

• What groups in society would you choose for targetted
vaccination?

• Would you be happy just doing targetted vaccination, or
would you want “general” vaccination too?

• If we never have a vaccine for a disease, how can we protect
ourselves against it?

“Vaccination” without vaccines 127

Asymptomatic transmission

Since we first introduced the SIR model you may have had the
niggling suspicion that – while it’s obviously a simple model
of a disease – maybe it’s too simple. We know from looking
at diseases’ progression (and from experience) that diseases
are much more complicated than SIR suggests. In particular,
many of them (the Type A diseases) have incubation periods
longer than their latent periods, meaning that an individual
can infect others while not showing any outward symptoms.
This asymptomatic transmission is a problem for disease
control, since it means that infectious people aren’t immediately
identifiable, either by people noticing their symptoms or by them
noticing their own symptoms themselves.

There is of course nothing sacrosanct about SIR. It’s a model: a
generally useful one for studying disease phenomena, but one
that we can (and should) either ditch or enrich whenever we
see deficiencies or want to explore some new phenomena. One
possible extension to SIR is to allow asymptomatic transmission,
leading to a model that includes individuals who have been
“exposed” to the disease, and who are infectious but not yet
visibly symptomatic.

SEIR

SEIR is another compartmented model of disease. Like SIR,
it includes compartments for individuals who are susceptible

129

Epidemic modelling – Some notes, maths, and code

to infection, infected (and infectious), and removed from
the disease by recovery or death. However, it adds a fourth
compartment:

• Exposed (E), representing those people who have caught
the disease and can pass it on but who are not yet showing
symptoms

Exposed individuals, like infected individuals, can transmit the
disease to neighbouring (if we are using a networked model)
susceptibles. They also transition from exposed to infected at
some rate, capturing how their symptoms develop.

In the same way as we developed a mathematical model of SIR
in terms of how the populations of the different compartments
changed over time, we can do the same thing for SEIR. We
expect to see another equation showing how the population
of E changes, and indeed we do:

∆S = −pinfect SI − pinfectA SE

∆E = pinfect SI + pinfectA SE− psymptoms E

∆I = psymptoms E− premove I

∆R = premove I

What this says is that ∆S, the change in population of S, reduces
S in two ways: infections coming from infected individuals
at a rate that depends on the number of susceptible-infected
interactions in the population – exactly as happens in SIR – but
also additionally from exposed (asymptomatic) individuals at
a rate (which may be different) that depends on the number
of susceptible-exposed interactions. The number of exposed
individuals grows at this rate, and decreases as exposed
individuals develop symptoms and become infected.

Notice that we now have four compartments and four
parameters:

• pinfect, the probability that a susceptible-infected interaction
results in infection;

• pinfectA, the probability that a susceptible-exposed interaction

130 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

results in infection;

• psymptoms, the probability that an exposed individual will show
symptoms; and

• premove, the probability that an infected individual will be
removed.

The pros and cons of a richer model

It’s reasonable to ask at this point why we don’t always use
SEIR instead of SIR, since it’s clearly closer to the way a lot of
real-world diseases behave. Isn’t SIR too simple, when an only
slightly more complex model is readily available in SEIR?

There are two basic arguments to make here. Firstly, SEIR
has twice as many parameters as SIR: four instead of two,
each of which controls some aspect of how the process works.
An alternative, and very suggestive, name for the number of
parameters is the number of degrees of freedom a model has. A
model with more degrees of freedom has more “knobs you can
turn” to change its behaviour. And this is both good and bad.
It’s good because it lets us fine-tune the model, possibly produce
additional effects that a simpler model (with fewer degrees of
freedom) wouldn’t show. But it’s bad because that means there’s
more work to do to fully explore all the things a model might
do. If we’re modelling a “real” disease, we have to collect twice
as many parameters about it. Some of these might be hard to
collect: how would you go about funding pinfectA, the rate of
asymptopmatic infection, when by definition asymptomatic
people are hard to find?

The second argument cuts to the heart of scientific
model-making. As we’ve seen, SIR lets us demonstrate a lot of
interesting phenomena. It varies depending on the infection rate,
depending on the network topology, depending on the way we
apply individual countermeasures, and so forth – and we haven’t
finished yet! We can say a lot about diseases in general from
SIR, even though there are lots of diseases that it can’t robustly

The pros and cons of a richer model 131

Epidemic modelling – Some notes, maths, and code

capture and for which in detail SEIR is better. So whether a given
model is “correct” depends to a large extent on the questions
we’re asking.

This is related to the
principle of Occam’s razor,
which may be paraphrased
as “keep things as simple as
possible (but no simpler)”.

Scientists generally prefer the simplest model that’s complex
enough to answer the questions they’re asking. That often
means minimising the number of degrees of freedom in a model,
to simplify exploration and to avoid any risk that it might be
“steered” in a particular direction by unfounded assumptions.
It also means that a lot of detail is elided, with the danger that
some of this detail may turn out to be important. This is what
makes science itself into a process of continuous error and
correction.

Simulating SEIR

We can of course build simulations of SEIR running over a
network – so let’s do so.

We now have four parameters to specify instead of SIR’s two:
the rate pinfectA of asymptomatic transmission (from exposed
individuals to susceptibles), and the rate psymptoms at which
symptoms show themselves. We’ll explore the way in which
asymptomatic transmission affects the size of the eventual
outbreak. SEIR also includes an additional event when a person
is exposed to the disease (and becomes infectious). We re-use the
infected event as when the person becomes symptomatic.

lab = epyc.ClusterLab(profile='hogun',

notebook=epyc.JSONLabNotebook('datasets/

↪→seir-er.json', create=True))

Monitoring an SEIR epidemic is essentially the same as the way
we monitored SIR: we record the sizes of the compartments as
the epidemic progresses.

%%pxlocal

(continues on next page)

132 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

class MonitoredSEIR(epydemic.SEIR, epydemic.Monitor):

def __init__(self):

super(MonitoredSEIR, self).__init__()

def build(self, params):

'''Build the observation process.

:param params: the experimental parameters'''

super(MonitoredSEIR, self).build(params)

also monitor other compartments

self.trackNodesInCompartment(epydemic.SEIR.SUSCEPTIBLE)

self.trackNodesInCompartment(epydemic.SEIR.REMOVED)

Let’s explore the outbreak on an ER network again, choosing
some values for the different disease parameters and then
exploring how the results vary with the value of pinfectA.

network parameters

N = 10000

kmean = 40

SEIR disease parameters

pExposed = 0.001

pSymptoms = 0.002

pRemove = 0.002

pInfect = 0.000075

lab[ERNetworkDynamics.N] = N

lab[ERNetworkDynamics.KMEAN] = kmean

lab[epydemic.SEIR.P_EXPOSED] = pExposed

lab[epydemic.SEIR.P_SYMPTOMS] = pSymptoms

lab[epydemic.SEIR.P_REMOVE] = pRemove

lab[epydemic.SEIR.P_INFECT_SYMPTOMATIC] = pInfect

lab[epydemic.SEIR.P_INFECT_ASYMPTOMATIC] = numpy.linspace(0.

↪→00001, 0.0002, num=50)

m = epydemic.SEIR()

e = ERNetworkDynamics(m)

(continues on next page)

Simulating SEIR 133

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

rc = lab.runExperiment(epyc.RepeatedExperiment(

epyc.RepeatedExperiment(e, 10),

10))

After much computation, we can plot the results. We’ll also show
the value of “normal” infection (by symptomatic individuals) for
comparison.

df = epyc.JSONLabNotebook('datasets/seir-er.json').dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population and

the value of symptomatic infection

ax.plot(df[epydemic.SEIR.P_INFECT_ASYMPTOMATIC],

df[epydemic.SEIR.REMOVED], 'r.')

ax.plot([pInfect, pInfect], [0, N], 'b:')

ax.set_xlabel('$p_{\\mathit{infectA}}$')

ax.set_ylabel('population that is...')

ax.set_title('Epidemic size vs $p_{\\mathit{infectA}}$', y=1.

↪→05)

_ = plt.show()

134 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

Compare this with the diagram we drew for the epidemic
threshold, and you’ll see that the epidemic takes off a lot earlier
– which is probably what we expected, since there’s more
infection going on. In fact even a very small amout of early
infection is enough to cause an outbreak.

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

pInfectAs = df[[pInfect > 0.0 and pInfect < 0.00003

for pInfect in df[epydemic.SEIR.P_INFECT_

↪→ASYMPTOMATIC]]]

ax.plot(pInfectAs[epydemic.SEIR.P_INFECT_ASYMPTOMATIC],

pInfectAs[epydemic.SEIR.REMOVED], 'r.')

ax.set_xlabel('$p_{\\mathit{infectA}}$')

ax.set_ylabel('population that is...')

ax.set_title('Epidemic size vs $p_{\\mathit{infectA}}$', y=1.

↪→05) (continues on next page)

Simulating SEIR 135

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

_ = plt.show()

How sensitive is the model to asymptomatic infection? To
what extent can asymptomatic infection make a less infectious
disease behave like a more infectious disease that doesn’t have
asymptomatic transmission? And perhaps most importantly, can
we do anything about it? It’s this last question that we’ll turn to
now.

Adaptive countermeasures and quarantine

We earlier discussed an approach to epidemic control that
involved targeting individual susceptibility, eliminating the

136 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

possibility of particular individuals becoming infected. This
was enough to fragment the contact network and so affect the
behaviour of the epidemic.

We’ll now look at a completely different strategy for
countermeasures. Instead of affecting individuals while leaving
the network intact, we’ll instead leave the individuals as they
are but change the network as the epidemic spreads. That is to
say, we’ll change the structure of contacts – who’s connected to
whom – in response to the spread of the disease through the
population. This leads to a family of adaptive countermeasures,
since we take action to change the network in response to
(adapting to) the process (disease) flowing through it.

The term “quarantine”
comes from the Italian
phrase for “forty days”
(quaranta giorni). When
Venice suffered an outbreak
of the Black Death in the
14th century, the Venetians
established a system
whereby ships arriving in
port had to moor off remote
islands in the lagoon for
forty days until they were
judged to be disease-free –
possibly the first modern
example of effective disease
control .

Sara Toth Stub. Venice’s
Black Death and the dawn
of quarantine. Sapiens, April
2020. URL https://www.
sapiens.org/archaeology/
venice-quarantine-history/

The simplest and best-known adaptive control measure is
quarantine, whereby we isolate individuals who are (or may
be) infected to prevent them infecting others. A proactive
quarantine isolates all incoming individuals for as long as
it takes to pass through the expected infectious period of
whatever disease they might be carrying. A reactive or adaptive
quarantine waits until a person shows symptoms and then
isolates them, which avoids detaining the uninfected but at
the risk of allowing infected (and possibly infectious) people
to circulate.

However it’s done, the goal of quarantine is to reduce the
effective R value of the disease such that any epidemic is
contained, ideally failing to take hold or at least being smaller
and less intense than would otherwise be the case.

Reducing infection through partial quarantine

Let’s introduce quarantine into our models. In the spirit of
simplicity, we’ll look first at SIR.

How does quarantine manifest itself in SIR? Infection in SIR
happens when the disease passes from an infected individual
to a susceptible one. Quarantine is an adaptive strategy – it
happens in parallel with infection – so we’ll be introducing

Reducing infection through partial quarantine 137

Epidemic modelling – Some notes, maths, and code

a way of changing the network. When the disease passes to
a formerly-susceptible person, we’ll changes that person’s
connections in some way.

If this strategy was performed perfectly and immediately it
would immediately stamp-out an SIR infection. Every time
someone became infected, that person would be immediately
and completely isolated, and so would be unable to infect
anyone else. The original “seeding” of infected individuals
would infect some of their neighbours, but those neighbours
would then never affect anyone else (because they’d have no
connections through which to pass the disease), and so the
disease would immediately come to an end.

This clearly isn’t very interesting. Nor is it very possible, other
than as a theoretical best-case: in practice one would either leave
infected people connected for some time before identifying and
isolating them; or would only manage to isolate them from
a fraction of their susceptible neighbours; or both. For our
purposes we’ll focus on the second option. When someone
becomes infected, we immediately select some fraction of
their susceptible neighbours and remove the connection to the
newly-infected person. (Shai and Dobson explored this approach
in a slightly more complicated scenario 18, for endemic diseases 18 Saray Shai and Simon

Dobson. Coupled adaptive
complex networks. Physical
Review E, 87(4), April 2013.
URL https://dx.doi.org/10.
1103/PhysRevE.87.042812

travelling through semi-isolated populations.)

pquarantine would be an
alternative (and possibly
better) name for this
parameter.

Quarantine manifests itself as network rewiring: when a node
becomes infected, we change the nodes to which it is connected,
removing some fraction Prewire of its adjacent susceptible
neighbours. This naturally means that there are then fewer nodes
that the newly-infected node can infect in its turn.

We introduce this into our model in two ways. Firstly, we
change the behaviour of infection to include the quarantine step.
Second, we define the rewiring operation over all the node’s
neighbours.

%%pxlocal

class AdaptiveSIR(MonitoredSIR):

(continues on next page)

138 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

P_REWIRE = 'pRewire' #: Parameter for the probability

of rewiring an SE or SI edge.

def __init__(self):

super(AdaptiveSIR, self).__init__()

def build(self, params):

super(AdaptiveSIR, self).build(params)

store the parameters for later

self._pRewire = params[self.P_REWIRE]

def quarantine(self, n):

g = self.network()

rng = numpy.random.default_rng()

run through all the neighbours of the infected node

ms = list(g.neighbors(n))

for m in ms:

if self.getCompartment(m) == self.SUSCEPTIBLE and

↪→rng.random() <= self._pRewire:

selected a susceptible neighbour to rewire,

remove its link to us

self.removeEdge(n, m)

rewire to another random susceptible

mprime = self.locus(self.SUSCEPTIBLE).draw()

self.addEdge(m, mprime)

def infect(self, t, e):

(n, _) = e

perform a normal infection event

super(AdaptiveSIR, self).infect(t, e)

quarantine the newly-infected node

self.quarantine(n)

This is quite a subtle operation, so we should test that we have
it coded correctly. A simple “unit test” we can perform is to
check the progress of the same epidemic in two different cases

Reducing infection through partial quarantine 139

Epidemic modelling – Some notes, maths, and code

for which we know what the answer should be:

• when the probability that a susceptible neighbour will be
rewired, prewire = 0, so that no rewiring occurs (which should
behave identically to normal SIR); and

• when prewire = 1 and all susceptible neighbours are
immediately rewired, which should extinguish the epidemic
with almost no infection beyond the initial “seeds”.

(To expand the second point slightly, we will see the initially
infected nodes infect some of their neighbours before they are
removed. But those secondary infections wil be immediately
and perfectly quarantined and so will have no opportunity to
infect any other nodes. We’ll therefore see one “generation” of
secondary infections, and no more.)

We’ll run the same disease for these two scenarios.

network parameters

N = 2000

kmean = 40

simulation time

T = 5000

disease parameters

pInfected = 0.01

pInfect = 0.0001

pRemove = 0.001

experimental parameters common to both experiments

params = dict()

params[ERNetworkDynamics.N] = N

params[ERNetworkDynamics.KMEAN] = kmean

params[epydemic.SIR.P_INFECTED] = pInfected

params[epydemic.SIR.P_INFECT] = pInfect

params[epydemic.SIR.P_REMOVE] = pRemove

params[epydemic.Monitor.DELTA] = T / 50

create model and experiment over ER network

m = AdaptiveSIR()

(continues on next page)

140 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

m.setMaximumTime(T)

e = ERNetworkDynamics(m)

no rewiring

params[AdaptiveSIR.P_REWIRE] = 0.0

rc_0 = e.set(params).run()

perfect rewiring

params[AdaptiveSIR.P_REWIRE] = 1.0

rc_1 = e.set(params).run()

(fig, axs) = plt.subplots(1, 2, sharey=True,

figsize=(12, 6))

plot the two cases side by side

for (ax, rc, caption) in [(axs[0], rc_0, 'No rewiring ($p_

↪→{rewire} = 0.0$)'),

(axs[1], rc_1, 'Perfect rewiring (

↪→$p_{rewire} = 1.0$)')]:

results = rc[epyc.Experiment.RESULTS]

timeseries = results[epydemic.Monitor.TIMESERIES]

ts = timeseries[epydemic.Monitor.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(ts, sss, 'r.', label='suceptible')

ax.plot(ts, iss, 'g.', label='infected')

#ax.plot(ts, rss, 'ks', label='removed')

ax.set_xlim([0, T])

ax.set_xlabel('t')

ax.set_ylim([0, N])

ax.legend(loc='center right')

ax.set_title(caption)

fine-tune figure

axs[0].set_ylabel('population that is...')

fig.suptitle('SIR on ER for different rewirings ($N = {n}, \\

↪→langle k \\rangle = {k}$)'.format(n=N, k=kmean), y=1.05)

_ = plt.show()

Reducing infection through partial quarantine 141

Epidemic modelling – Some notes, maths, and code

Compare the left-hand plot with those we created earlier. The
right-hand plot clearly shows very minimal infection.

Having acquired some confidence in the correctness of the code,
we can explore the effect of different values of prewire on the size
of epidemic. We’ll do this by performing experiments across the
parameter range, with 100 repetitions of each to see what the
variance is like.

lab = epyc.ClusterLab(profile='hogun', notebook=epyc.

↪→JSONLabNotebook('datasets/sir-quarantine.json', create=True))

lab[ERNetworkDynamics.N] = N

lab[ERNetworkDynamics.KMEAN] = kmean

lab[epydemic.SIR.P_INFECTED] = pInfected

lab[epydemic.SIR.P_INFECT] = pInfect

lab[epydemic.SIR.P_REMOVE] = pRemove

lab[epydemic.Monitor.DELTA] = T / 50

adaptation

lab[AdaptiveSIR.P_REWIRE] = numpy.linspace(0.0, 1.0,

num=100)

rc = lab.runExperiment(epyc.RepeatedExperiment(

epyc.RepeatedExperiment(e, 10),

10))

142 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

Again this requires quite a lot of computation, but then we can
plot the results.

df = epyc.JSONLabNotebook('datasets/sir-quarantine.json').

↪→dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

ax.plot(df[AdaptiveSIR.P_REWIRE],

df[epydemic.SIR.REMOVED], 'r.')

ax.set_xlabel('p_{rewire}')

ax.set_ylabel('population that is...')

ax.set_title('SIR epidemic size vs $p_{rewire}}$ ' + '($N = {n}

↪→, \\langle k \\rangle = {k}, '.format(n=N, k=kmean) + 'p_{\\

↪→mathit{infect}} = ' + '{p}$)'.format(p=pInfect), y=1.05)

plt.savefig('sir-er-rewiring.png', dpi=300)
_ = plt.show()

That perhaps isn’t what we might have expected! At low rates

Reducing infection through partial quarantine 143

Epidemic modelling – Some notes, maths, and code

of rewiring the epidemic still infects a lot of the network. But
around prewire = 0.5 there’s an abrupt change, and the size of the
epidemic collapses to near zero, albeit with a lot of variance
between different experiments. This suggests that there’s a
critical region within which rewiring (quarantine, remember)
interact with detailed features of the network, so the effect is
more or less dramatic depending on the exact details of how the
rewiring happens.

Quarantining people before they’re symptomatic

That’s about all we can say about quarantine in SIR – but in
SEIR we have more options. Specifically we can explore the test,
trace, and isolate strategy by looking to quarantine people who
are exposed but currently asymptomatic: in other words, when
we encounter a symptomatic (infected) person, we trace their
contacts, test them, and isolate any that we find to be infected.

This is the importance of SEIR as a model. It lets us explore
additional countermeasures, specifically those that rely on
detecting asymptomatic individuals.

Of course no such programme will be 100% effective, so
alongside our probability prewire of rewiring susceptible
neighbours away from infected (and now also exposed) nodes,
we’ll have a probability pdetect determining the probability that
an exposed neighbour of an infected individual will be detected
by the test and trace process. To be clear: prewire says how
effective quarantine is, while pdetect says how effective testing
is.

(You’ll notice we just introduced two new degrees of freedom
into our SEIR model: that’s six parameters now, a lot to be
working with.)

Again, we can add our scheme to the standard SEIR model.
We’ll use the same quarantine function since that process
hasn’t changed, but we now perform it when an exposed

144 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

node develops symptoms, and quarantine some fraction of its
neighbouring exposed nodes.

%%pxlocal

class AdaptiveSEIR(MonitoredSEIR):

P_DETECT = 'pDetect' #: Parameter for the probability

of detecting an exposed

neighbour of an infected node.

P_REWIRE = 'pRewire' #: Parameter for the probability

of rewiring an SE or SI edge.

def __init__(self):

super(AdaptiveSEIR, self).__init__()

def build(self, params):

super(AdaptiveSEIR, self).build(params)

store the parameters for later

self._pDetect = params[self.P_DETECT]

self._pRewire = params[self.P_REWIRE]

def quarantine(self, n):

g = self.network()

rng = numpy.random.default_rng()

ms = list(g.neighbors(n))

for m in ms:

if self.getCompartment(m) == self.SUSCEPTIBLE and

↪→rng.random() <= self._pRewire:

a susceptible neighbour, remove link to us

self.removeEdge(n, m)

rewire to another random susceptible

mprime = self.locus(self.SUSCEPTIBLE).draw()

self.addEdge(m, mprime)

def symptoms(self, t, n):

perform a normal becoming-symptomatic event

super(AdaptiveSEIR, self).symptoms(t, n)

g = self.network()

rng = numpy.random.default_rng()

(continues on next page)

Quarantining people before they’re symptomatic 145

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

examine all neighbours and look for exposed

nodes to quarantine

ms = list(g.neighbors(n))

for m in ms:

if self.getCompartment(m) == self.EXPOSED and rng.

↪→random() <= self._pDetect:

detected an exposed individual,

quarantine them

self.quarantine(m)

quarantine the newly symptomatic node

self.quarantine(n)

Notice that we’ve got two places where we look at the
neighbours of a node and decided what to do with them.
In symptoms() we look for exposed neighbours, detect them
with probability pdetect, and quarantine them if we do; in
quarantine() we look for susceptible neighbours and rewire
them with probability prewire. If we set pdetect = 1, our
test-and-trace regime is perfect; if we set prewire = 1, then our
isolation regime is perfect.

Again, let’s unit-test the code by looking at two extreme cases,
where pdetect = 0 and pdetect = 1, keeping the value of prewire the
same.

network parameters

N = 10000

kmean = 40

SEIR disease parameters

pExposed = 0.001

pSymptoms = 0.002

pRemove = 0.002

pInfect = 0.000075

adaptation

pRewire = 0.5

146 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

experimental parameters common to both experiments

params = dict()

params[ERNetworkDynamics.N] = N

params[ERNetworkDynamics.KMEAN] = kmean

params[epydemic.SEIR.P_EXPOSED] = pExposed

params[epydemic.SEIR.P_SYMPTOMS] = pSymptoms

params[epydemic.SEIR.P_REMOVE] = pRemove

params[epydemic.SEIR.P_INFECT_SYMPTOMATIC] = pInfect

params[epydemic.SEIR.P_INFECT_ASYMPTOMATIC] = pInfect

params[epydemic.Monitor.DELTA] = T / 50

params[AdaptiveSEIR.P_REWIRE] = pRewire

create model and experiment over ER network

m = AdaptiveSEIR()

m.setMaximumTime(T)

e = ERNetworkDynamics(m)

no detection

params[AdaptiveSEIR.P_DETECT] = 0.0

rc_0 = e.set(params).run()

perfect detection

params[AdaptiveSEIR.P_DETECT] = 1.0

rc_1 = e.set(params).run()

(fig, axs) = plt.subplots(1, 2, sharey=True, figsize=(12, 6))

plot the two cases side by side

for (ax, rc, caption) in [(axs[0], rc_0, 'No detection ($p_

↪→{detect} = 0.0$)'),

(axs[1], rc_1, 'Perfect detection (

↪→$p_{detect} = 1.0$)')]:

results = rc[epyc.Experiment.RESULTS]

timeseries = results[epydemic.Monitor.TIMESERIES]

ts = timeseries[epydemic.Monitor.OBSERVATIONS]

sss = timeseries[epydemic.SEIR.SUSCEPTIBLE]

ess = timeseries[epydemic.SEIR.EXPOSED]

iss = timeseries[epydemic.SEIR.INFECTED]

rss = timeseries[epydemic.SEIR.REMOVED]

ax.plot(ts, sss, 'r.', label='suceptible')

ax.plot(ts, ess, 'b.', label='exposed')

ax.plot(ts, iss, 'g.', label='infected')

(continues on next page)

Quarantining people before they’re symptomatic 147

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

#ax.plot(ts, rss, 'ks', label='removed')

ax.set_xlim([0, T])

ax.set_xlabel('t')

ax.set_ylim([0, N])

ax.legend(loc='center left')

ax.set_title(caption)

fine-tune figure

axs[0].set_ylabel('population that is...')

fig.suptitle('SEIR on ER for different detection of exposed

↪→individuals ($N = {n}, \\langle k \\rangle = {k}'.format(n=N,

↪→ k=kmean) + ', p_{rewire} = ' + '{p}$)'.format(p=pRewire),

↪→y=1.05)

_ = plt.show()

With no detection (in the left-hand plot) of exposed nodes
we see an epidemic break out, albeit quite a small one. The
exposed nodes start spreading infection silently, but since they’re
never detected the only countermeasures that happen are a
50%-effective quarantine of infected nodes. In the right-hand
plot the perfect detection means that the countermeasures are
very effective, even when the quarantine is only 50% effective.

Let’s see what effect detection efficiency has. Remember, pdetect

is the probability that an exposed neighbour of an infected
individual will be detected and then quarantined: you can think
of it as a measure of how effectively we’re doing the “test” and
“trace” parts of “test, trace, and isolate”. We probably expect
that a more effective detection regime – where more exposed

148 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

individuals are detected earlier – will have the effect of reducing
the size of the epidemic.

lab = epyc.ClusterLab(profile='hogun', notebook=epyc.

↪→JSONLabNotebook('datasets/seir-quarantine.json',

↪→create=True))

We need to pick values for the other parameters in the model, so
let’s rather arbitrarily say that asymptomatic and symptomatic
infection happen with the same probability, and that we have a
quarantine regime that’s 50%-effective both for infected people
and for those we uncover through testing.

lab[ERNetworkDynamics.N] = N

lab[ERNetworkDynamics.KMEAN] = kmean

lab[epydemic.SEIR.P_EXPOSED] = 0.001

lab[epydemic.SEIR.P_REMOVE] = 0.002

lab[epydemic.SEIR.P_INFECT_ASYMPTOMATIC] = 0.000075

lab[epydemic.SEIR.P_INFECT_SYMPTOMATIC] = 0.000075

lab[epydemic.SEIR.P_SYMPTOMS] = 0.002

lab[epydemic.Monitor.DELTA] = T / 50

adaptation

pRewire = 0.5

lab[AdaptiveSEIR.P_REWIRE] = pRewire

lab[AdaptiveSEIR.P_DETECT] = numpy.linspace(0.0, 1.0,

num=100)

m = AdaptiveSEIR()

e = ERNetworkDynamics(m)

rc = lab.runExperiment(epyc.RepeatedExperiment(

epyc.RepeatedExperiment(e, 10),

10))

More simulation results in the following.

df = epyc.JSONLabNotebook('datasets/seir-quarantine.json').

↪→dataframe()

Quarantining people before they’re symptomatic 149

Epidemic modelling – Some notes, maths, and code

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

results = df[df[AdaptiveSEIR.P_REWIRE] == pRewire]

ax.plot(results[AdaptiveSEIR.P_DETECT],

results[epydemic.SEIR.REMOVED], 'r.')

ax.set_xlabel('p_{detect}')

ax.set_ylabel('population that is...')

ax.set_title('SEIR epidemic size vs $p_{detect}}$ ' + '($N =

↪→{n}, \\langle k \\rangle = {k}, '.format(n=N, k=kmean) + 'p_

↪→{rewire} = ' + '{p}$)'.format(p=pRewire), y=1.05)

_ = plt.show()

Perhaps a little disappointing: it seems that detection doesn’t
have much effect in this case. You’ll notice that it’s not no effect:
there are cases right across the graph in which the size of the
outbreak is around zero, but in the majority of cases there is a
large epidemic.

150 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

Might this be to do with the effectiveness of quarantine? If we
adopt an 80%-effective regime, what then happens?

pRewire = 0.8

lab[AdaptiveSEIR.P_REWIRE] = pRewire

rc = lab.runExperiment(epyc.RepeatedExperiment(

epyc.RepeatedExperiment(e, 10),

10))

df = epyc.JSONLabNotebook('datasets/seir-quarantine.json').

↪→dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

results = df[df[AdaptiveSEIR.P_REWIRE] == pRewire]

ax.plot(results[AdaptiveSEIR.P_DETECT],

results[epydemic.SEIR.REMOVED], 'r.')

ax.set_xlabel('p_{detect}')

ax.set_ylabel('population that is...')

ax.set_title('SEIR epidemic size vs $p_{detect}}$ ' + '($N =

↪→{n}, \\langle k \\rangle = {k}, '.format(n=N, k=kmean) + 'p_

↪→{rewire} = ' + '{p}$)'.format(p=pRewire), y=1.05)

plt.savefig('seir-er-rewiring.png', dpi=300)
_ = plt.show()

Quarantining people before they’re symptomatic 151

Epidemic modelling – Some notes, maths, and code

Very different! What are we seeing?

Firstly, notice that in almost all cases we have some examples of
epidemics with very small outbreaks, suggesting that even low
detection rates can make a difference. But at low values of pdetect

that difference is really rather sparse: it doesn’t happen often.

As pdetect increases – that is, as testing and tracing becomes
more effective, we start to see a strange effect: a “waterfall” of
results. Remember that each point on the graph represents a
single experimental epidemic. Within the waterfall, some of
these experiments have huge outbreaks, some have none, and
some fall in between. This may suggest that the really detailed
structure of the network makes a difference: some small thing is
enough to change the way the stochastic process evolves and so
swing the results.

Then as we continue to increase pdetect we see something else.
The “waterfall” continues, but suddenly there are no really large
outbreaks. Detection and quarantine aren’t stopping epidemics
from happening, but they are limiting their size. Finally we see

152 Asymptomatic transmission

Epidemic modelling – Some notes, maths, and code

very effective control when we have perfect detection – although
still imperfect control, because of the imperfect quarantine.

Questions for discussion

• What sort of detection activities might you impose in an
epidemic? How effective would it be? What could you do
to make it more effective?

• What would happen if you had vaccination and test, trace, and
isolate in place at the same time? Would one compensate for
weaknesses in the other?

Questions for discussion 153

Physical distancing

Quarantine seems to be very effective, especially when carried
out strongly enough and when combined with effective detection
of exposed individuals. But you need to get a lot right for it to
work. Maybe there’s another way?

Some people never develop
symptoms: for some reason
their immune systems
suppress the disease enough
to keep them well, but not
enough to eliminate it and
stop them being infectious.
The most famous case of this
phenomenon is “Typhoid
Mary” , who infected a
large number of people
with typhoid fever despite
showing no symptoms
herself.

Filio Marinelli, Gregory
Tsoucalas, Marianna
Karaminou, and George
Androutsos. Mary Mallon
(1869–1938) and the history
of typhoid fever. Annals
of Gastroenterology, 26(2):
123–134, 2013. URL https:
//www.ncbi.nlm.nih.gov/
pmc/articles/PMC3959940/

Let’s go back to basics. In SEIR-style diseases we have the
possibility of individuals walking around and spreading the
disease without showing any symptoms. There is by definition
no way (absent testing) to spot these individuals until (and
unless) they show symptoms. So the challenge is to stop these
infectious-but-asymptomatic individuals from coming into
contact with susceptible individuals.

What if we re-structure the contact network so that people
only have contact with a small group of people, and reduce the
amount of mixing between those groups? If someone is infected
in spite of everything then they’ll probably infect their own
group, but they’ll be less opportunity to infect other groups.
This strategy is referred to as physical distancing, reducing and
re-structuring the connections within a population.

A physically-distanced contact network

Physical distancing is another topological approach to epidemic
control. It works by changing the network over which the
disease operates, rather than addressing the disease itself. Such

155

Epidemic modelling – Some notes, maths, and code

approach is well-suited to new diseases and those for which
there are few effective therapies.

What does “physical distancing” mean in network terms? We
can understand it best by thinking about the actual conditions of
socially-distant lockdown, and then re-creating this structure as a
network.

Sometimes referred to as
social distancing, although
that feels like an oxymoron:
it also sounds uncomfortably
close to “social isolation”,
which indeed is one of
its major dangers as a
technique.

The idea of physical distancing is to place individuals in small
“bubbles” of contact – typically just their own immediate family
– with whom they interact strongly, and weaken the connections
that any family member has with individuals in other bubbles.
Within a bubble, infection of one person will probably transfer
quickly to most or all all of the other members. But the ability of
the disease to pass between bubbles is substantially reduced,
since there is relatively little contact between them. One
can reduce the inter-bubble transmission even further using
quarantine when someone realises they are infected.

In network terms, the bubbles are complete graphs (everyone
in a bubble meets everyone else) whose size depends on the
size of the family. We could set all families to the same size,
say 4; alternatively we could draw family sizes from some
probability distribution where the average size of a family is
4.5 (2 adults with the proverbial 2.5 children) but we allow
larger and smaller families to occur. Larger families risk more
infections if a member is infected.

We now need to link the bubbles. In each bubble, some person
or people meet with the outside world: perhaps they’re the
designated shopper, or someone in a key role whose work brings
them into contact with others. We then need to connect these
people to other bubbles.

This description still leaves quite a lot to be decided:

• What is the distribution of family sizes? Are large families
really unusual? Or do they follow a “normal” distribution?

• How many people in each family connect to the outside? Is it
always one or two? Might a large family have more contacts?

156 Physical distancing

Epidemic modelling – Some notes, maths, and code

• How do those in contact outside their family group connect
with others? Are some people significantly more connected
than others?

These decisions are simply additional degrees of freedom (again)
for our model – with all that this entails.

Creating such a network means addressing all these issues.
There’s a trick we can perform, though. Notice that while the
detailed choices change, the structure of the network doesn’t.
This means that, just as our disease models have parameters that
we can change, so does our socially-distanced network – with
the difference that the network parameters are given by choices
of probability distributions as well as single numbers. But the
solution is the same: define what it means to build the network,
providing these distributions as parameters that are “plugged
in” to the same structure-building process.

Building the network involves a complicated piece of code – the
most complicated we’ve seen so far.

def distanced_graph(N, clusterSizeDistribution,

↪→contactDistribution, clusterContactDistribution):

build the initial graph

g = networkx.Graph()

build the clusters, each being a complete

graph K_s of size s, labelled uniquely

within the overall graph

rng = numpy.random.default_rng()

n = 0

cid = 1

clusters = []

while n < N:

build the cluster's graph with a random size

s = clusterSizeDistribution()

K_s = networkx.complete_graph(s)

relabel the cluster graph so all nodes in the final

social distence graph have unique integer labels

networkx.relabel_nodes(K_s, lambda l: n + l,

copy=False)

(continues on next page)

A physically-distanced contact network 157

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

add to the graph and list of clusters

label edges with the cluster they belong to

(numbered from 1) and the size of the cluster

g.add_nodes_from(K_s.nodes,

cluster=cid, cluster_size=s)

g.add_edges_from(K_s.edges,

cluster=cid, cluster_size=s)

clusters.append(K_s)

n += s

cid += 1

draw the number of contact nodes per cluster from

from the distribution

contacts = []

for c in clusters:

s = c.order()

d = contactDistribution(s)

contacts.append(d)

decide on the arity of each contact node

stubs = []

for i in range(len(clusters)):

c = clusters[i]

first i node labels (since all nodes are

identical in K_s)

ls = list(c.nodes())[:contacts[i]]

for l in ls:

draw the number of contacts for this node

e = clusterContactDistribution(n)

append e copies of the node label to

the list of stubs

stubs.extend([l] * e)

if number of stubs isn't even, add one to a

randomly-chosen node (don't favour

already-high-degree nodes

if len(stubs) % 2 > 0:

us = list(set(stubs))

j = rng.integers(len(us))

stubs.append(us[j])

(continues on next page)

158 Physical distancing

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

shuffle the stubs until there are no edge

pair with the same endpoints

rng.shuffle(stubs) # may leave loops

while True:

look for pairtings of stubs and others

within the same cluster, and break them

randomly (without changing the degree

distribution)

swaps = 0

for i in range(0, len(stubs), 2):

if g.nodes[stubs[i]]['cluster'] == g.nodes[stubs[i

↪→+ 1]]['cluster']:

self loop, swap with another

randomly-chosen stub

j = rng.integers(len(stubs))

t = stubs[i + 1]

stubs[i + 1] = stubs[j]

stubs[j] = t

swaps += 1

if swaps == 0:

no swaps, we're finished

break

connect the nodes by pulling pairs of stubs

and creating an edge between them

for i in range(0, len(stubs), 2):

label inter-bubble edges as cluster 0 of size 0

g.add_edge(stubs[i], stubs[i + 1],

cluster=0, cluster_size=0)

return the graph and list of cluster sizes

return (g, list(map(lambda h: h.order(), clusters)))

This function takes four parameters – the size of network and
three probability-distribution functions – and returns a network
and a list of the bubble sizes. Within the network it creates the
social bubbles and labels them uniquely, and then connects the
bubbles together randomly.

A physically-distanced contact network 159

Epidemic modelling – Some notes, maths, and code

Making some choices

We can’t get away from making choices about these degrees of
freedom indefinitely, though – and in fact that time has arrived.

Since we’re interested in large-scale phenomena, let’s make some
simple choices:

• Families whose sizes are normally-distributed integers with a
mean of 4.5 and a standard deviation of 2

• A normal distribution of contacts in each family

• Exponentially-distributed links betyween connections, to
allow for very connected individuals

Since it makes no sense to allow entirely isolated families, those
with no size, and “connected” individuals with no contacts, we
cut off all the distributions with a minimum of 1.

def averageFamily():

rng = numpy.random.default_rng()

return max(int(rng.normal(4.5, 2)), 1)

def coupleOfContacts(s):

rng = numpy.random.default_rng()

return max(int(rng.normal(min(s / 2, 2), 1)), 1)

def expInterBubble(n):

rng = numpy.random.default_rng()

return max(int(rng.exponential(10.0)), 1)

These three functions, coupled with the network size, are enough
to build our network.

N = 1000

(g, clusters) = distanced_graph(N, averageFamily,

↪→coupleOfContacts, expInterBubble)

We can check the various elements of this network. For example,

160 Physical distancing

Epidemic modelling – Some notes, maths, and code

we can check what range of family “bubble” sizes we have, and
how connected the various contact individuals are.

print('Mean family size of {s:.2f} (range {minf}-{maxf})'.

↪→format(s=numpy.mean(clusters), minf=min(clusters),

↪→maxf=max(clusters)))

print('Most connected individual has {k} contacts'.

↪→format(k=max(dict(g.degree()).values())))

Mean family size of 4.00 (range 1-10)

Most connected individual has 55 contacts

We could also draw the network to inspect it, colouring the
nodes with the size of cluster they belong to – although that
turns out not to be especially revealing.

def draw_distanced(g, cmap=None,

color='cluster_size',

ax=None):

fill in defaults

if cmap is None:

cmap = plt.get_cmap('viridis')

if ax is None:

ax = plt.gca()

work out the colours

ncs = list(map(lambda n: g.nodes[n][color],

g.nodes()))

ecs = list(map(lambda e: g.edges[e][color],

g.edges()))

draw with spring layout, which seems to

give good results

networkx.draw_spring(g,

ax=ax,

with_labels=False,

node_size=50,

node_color=ncs,

edge_color=ecs,

cmap=cmap,

edge_cmap=cmap)

(continues on next page)

Making some choices 161

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

fig = plt.figure(figsize=(12, 12))

ax = fig.gca()

draw network

cmap = plt.get_cmap('viridis')

draw_distanced(g, cmap=cmap)

add key (see https://matplotlib.org/examples/api/colorbar_

↪→only.html)

bounds = list(range(min(clusters), max(clusters)))

norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)

ax1 = fig.add_axes([0.95, 0.15, 0.05, 0.7])

cb2 = matplotlib.colorbar.ColorbarBase(ax1, cmap=cmap,

norm=norm,

boundaries=bounds,

ticks=bounds,

spacing='proportional',

orientation='vertical')

plt.savefig('physical-distancing.png', dpi=300)
_ = plt.show()

162 Physical distancing

Epidemic modelling – Some notes, maths, and code

This isn’t a useless plot, once we know that more
highly-connected clusters sit in the centre with less-connected
clusters pushed to the outside. We can see these less-connected
clusters, and in particular see that they have a range of colours,
indicating that they’re of different sizes – and therefore giving
confidence that the algorithm hasn’t (for example) only made
large clusters highly connected.

Disease and distancing

Now we can run a disease process over our network. We’ll stick
to SIR to reduce the number of degrees of freedom we have to
deal with: running with SEIR would be easy to do too, of course,
but presents us with even more choices.

What do we expect from a disease in these circumstances? The
purpose of physical distancing is to reduce the connectivity
of people, which (all things being equal) should reduce the
disease’s spread. But it does so by building tight clusters of
individuals within bubbles, meaning that infecting one person
is likely to infect everyone. And we’ve used an exponential
distribution of contacts to allow the creation of high-degree
hubs, meaning that infecting one of these will potentially infect a
lot of others.

The best we can probably say at this stage, then, is that . . . it’s
complicated. Which is just the sort of situation simulation is
intended for.

lab = epyc.ClusterLab(profile='hogun',

notebook=epyc.JSONLabNotebook('datasets/

↪→sir-phydist.json', create=True))

If we cast the above code into a format suitable for running as an
experiment, we can then look at how an epidemic proceeds for a
sample point in the parameter space.

Disease and distancing 163

Epidemic modelling – Some notes, maths, and code

%%pxlocal

class PhyDistNetworkDynamics(epydemic.StochasticDynamics):

Experimental parameters

N = 'N'

BUBBLE_MEAN = 'bubbleMean'

BUBBLE_STDDEV = 'bubbleStddev'

INTERBUBBLE_EXP= 'interBubbleExp'

def __init__(self, p):

super(PhyDistNetworkDynamics, self).__init__(p)

def bubbleSize(self):

rng = numpy.random.default_rng()

return max(int(rng.normal(self._bubbleMean,

self._bubbleStddev)), 1)

def contacts(self, s):

rng = numpy.random.default_rng()

return max(int(rng.normal(min(s / 2, 2), 1)), 1)

def interBubble(self):

rng = numpy.random.default_rng()

return max(int(rng.exponential(self._

↪→interBubbleExponent)), 1)

def distanced(self, N):

g = networkx.Graph()

rng = numpy.random.default_rng()

n = 0

cid = 1

clusters = []

while n < N:

s = self.bubbleSize()

K_s = networkx.complete_graph(s)

networkx.relabel_nodes(K_s,

lambda l: n + l, copy=False)

g.add_nodes_from(K_s.nodes,

cluster=cid, cluster_size=s)

g.add_edges_from(K_s.edges,
(continues on next page)

164 Physical distancing

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

cluster=cid, cluster_size=s)

clusters.append(K_s)

n += s

cid += 1

contacts = []

for c in clusters:

s = c.order()

d = self.contacts(s)

contacts.append(d)

stubs = []

for i in range(len(clusters)):

c = clusters[i]

ls = list(c.nodes())[:contacts[i]]

for l in ls:

e = self.interBubble()

stubs.extend([l] * e)

if len(stubs) % 2 > 0:

us = list(set(stubs))

j = rng.integers(len(us))

stubs.append(us[j])

rng.shuffle(stubs)

while True:

swaps = 0

for i in range(0, len(stubs), 2):

if g.nodes[stubs[i]]['cluster'] == g.

↪→nodes[stubs[i + 1]]['cluster']:

j = rng.integers(len(stubs))

t = stubs[i + 1]

stubs[i + 1] = stubs[j]

stubs[j] = t

swaps += 1

if swaps == 0:

break

for i in range(0, len(stubs), 2):

g.add_edge(stubs[i], stubs[i + 1],

cluster=0, cluster_size=0)

return g

(continues on next page)

Disease and distancing 165

Epidemic modelling – Some notes, maths, and code

(continued from previous page)

def configure(self, params):

super(PhyDistNetworkDynamics, self).configure(params)

N = params[self.N]

self._bubbleMean = params[self.BUBBLE_MEAN]

self._bubbleStddev = params[self.BUBBLE_STDDEV]

self._interBubbleExponent = params[self.INTERBUBBLE_

↪→EXP]

g = self.distanced(N)

self.setNetworkPrototype(g)

network size

N = 10000

simulation time

T = 5000

disease parameters

pInfected = 0.01

pInfect = 0.0003

pRemove = 0.002

experimental parameters common to both experiments

params = dict()

params[PhyDistNetworkDynamics.N] = 10000

params[PhyDistNetworkDynamics.BUBBLE_MEAN] = 4.5

params[PhyDistNetworkDynamics.BUBBLE_STDDEV] = 2.0

params[PhyDistNetworkDynamics.INTERBUBBLE_EXP] = 10.0

params[epydemic.SIR.P_INFECTED] = pInfected

params[epydemic.SIR.P_INFECT] = pInfect

params[epydemic.SIR.P_REMOVE] = pRemove

params[epydemic.Monitor.DELTA] = T / 50

create model and experiment over distance network

m = MonitoredSIR()

m.setMaximumTime(T)

e = PhyDistNetworkDynamics(m)

rc = e.set(params).run()

166 Physical distancing

Epidemic modelling – Some notes, maths, and code

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

timeseries = rc[epyc.Experiment.RESULTS][epydemic.Monitor.

↪→TIMESERIES]

tss = timeseries[epydemic.Monitor.OBSERVATIONS]

sss = timeseries[epydemic.SIR.SUSCEPTIBLE]

iss = timeseries[epydemic.SIR.INFECTED]

rss = timeseries[epydemic.SIR.REMOVED]

ax.plot(tss, sss, 'r-', label='susceptible')

ax.plot(tss, iss, 'g-', label='infected')

#ax.plot(tss, rss, 'k-', label='removed')

ax.set_xlabel('t')

ax.set_ylabel('population that is...')

ax.legend(loc='center right')

fine-time the figure

ax.set_title('SIR on a physically distant network ($p_{\mathit

↪→{infect}} = ' + '{p}$)'.format(p=pInfect), y=1.05)

_ = plt.show()

Disease and distancing 167

Epidemic modelling – Some notes, maths, and code

Compare this to the same disease on an ER network. The
epidemic doesn’t really get started in the network, even for a
value of pinfect that previous experience would suggest would
be sufficient. We can explore this by checking the size of the
epidemic across a range of infectiousness values.

network parameters

lab[PhyDistNetworkDynamics.N] = 10000

lab[PhyDistNetworkDynamics.BUBBLE_MEAN] = 4.5

lab[PhyDistNetworkDynamics.BUBBLE_STDDEV] = 2.0

lab[PhyDistNetworkDynamics.INTERBUBBLE_EXP] = 10.0

disease parameters

lab[epydemic.SIR.P_INFECTED] = pInfected

lab[epydemic.SIR.P_INFECT] = numpy.linspace(0.0, 0.0008,

num=100)

lab[epydemic.SIR.P_REMOVE] = pRemove

lab[epydemic.Monitor.DELTA] = T / 50

168 Physical distancing

Epidemic modelling – Some notes, maths, and code

m = MonitoredSIR()

m.setMaximumTime(T)

e = PhyDistNetworkDynamics(m)

lab.runExperiment(epyc.RepeatedExperiment(

epyc.RepeatedExperiment(e, 10),

10))

df = epyc.JSONLabNotebook('datasets/sir-phydist.json').

↪→dataframe()

fig = plt.figure(figsize=(8, 8))

ax = fig.gca()

plot the size of the removed population

ax.plot(df[epydemic.SIR.P_INFECT],

df[epydemic.SIR.REMOVED], 'r.')

ax.set_xlabel('$p_{\\mathit{infect}}$')

ax.set_ylabel('population that is...')

ax.set_title('SIR with physical distancing ($N = {n}$)'.

↪→format(n=N), y=1.05)

plt.savefig('sir-phydist.png', dpi=300)

plt.show()

Disease and distancing 169

Epidemic modelling – Some notes, maths, and code

Comparing this with the same disease on ER networks we see
that the epidemic takes off similarly. Why is this? – it would
need more exploration, but the way we set up the socially
distanced model did include powerlaw-distributed contacts
between bubbles. It could be that these superspreaders are
responsible for spreading the disease between bubbles, at which
point is spreads easily within them.

This brings up an important point about social distancing, and
in particular about how to weaken such a lockdown. The size
of bubbles, and their interconnection doesn’t matter as long
as there is no infection present in the bubble – but it matters
critically when there is infection, and especially if one of the
bubble’s contact points is highly connected. This makes the issue
of acceptable behaviour very important, since smaller, more
isolated, bubbles will both incur less infection within themselves
(since there are fewer people) and potentially transmit less (by

170 Physical distancing

Epidemic modelling – Some notes, maths, and code

having fewer outside contacts).

Questions for discussion

• The case of Typhoid Mary raises some troubling questions.
Is it right to lock someone up when they’re done nothing
personally wrong, to protect the community? What
alternatives were there, before treatments like antibiotics were
available? What might we do today?

• Physical distancing doesn’t have to be uniform for everyone.
Some people are in more need of protection (“shielding”) than
others. How could we introduce this into a model?

Questions for discussion 171

Conclusion

Many are fleeing, everyone is fearful, you are neither – splendid,
magnificent! For what is more foolish than to fear what you
cannot avoid by any strategy, and what you aggravate by fearing?
What is more useless than to flee what will always confront you
wherever you may flee?

—Petrarch, Letters of Old Age.

What, then, can we conclude from this brief and superficial look
at epidemic modelling on networks? I would like to think that
there are several broad take-away messages.

The most important message by far is that – despite using
advanced mathematics, detailed sets of parameters, and
extensive computer simulation – modelling remains an inexact
science. It’s important to qualify that word “inexact”: while
models and simulations can generate results in extraordinary
volume and with great precision, the interpretation of those
results inevitably involves judgement calls. Many details remain
unknown, and in many cases unknowable, perhaps because
they cannot be properly measured, or perhaps because they
change so fast that measurement is quickly outdated by events.
Whatever the reason, no model in itself tells us anything; rather,
they provide evidence to guide our thinking.

A corollary to this is that the policy responses to an epidemic
can only partially be driven by, determined by, or justified by,
the results of modelling. Policy remains an essentially political
activity, and while it may be “driven by” or “informed by”
science, there will always be other factors needing to be included

173

Epidemic modelling – Some notes, maths, and code

that may skew a final decision away from what a scientist
may view as “correct”. Many real-world problems are wicked,
impossible to solve because of inherent contradictions and the
compromises they imply, but mandating an immediate response
nonetheless.

In many ways this makes modelling more important, not less.
A model provides only a limited view onto any problem. But
the fact that it can provide a view onto any problem means
that we can explore problems we haven’t yet faced, explore
techniques we couldn’t yet deploy in reality, and so forth. It is
at least important to understand things that can’t happen as it
is to understand those that can, if only to cut down the space of
possibilities that need further consideration.

The second take-away message is the scientific underpinnings of
many policies with which we’re familiar – so much so that they
sometimes feel almost part of the world’s folklore. Vaccination,
quarantine, physical distancing, herd immunity, and so forth
are all susceptible to exploration and variation. And the science
can expose commonalities that are not initially obvious: that
the provision of protective equipment behaves like vaccination,
for example, in the way it can be used to reduce the dangers of
super-spreading. This can lead to alternative approaches.

The third message concerns countermeasures. We saw when
we discussed adaptive countermeasures that variations in the
efficacy with which the processes were carried out made a huge
difference to the results. In the real world, of course, one may
be stuck with ineffective processes: an imprecise test, a limited
number of testers-and-tracers, and so forth. This may defeat even
a well-thought-through strategy.

The implication of this is that to impose any set of
countermeasures is to conduct an experiment – and the same
is true of any attempt to unwind a countermeasure, such as for
example when coming our of a physical distancing lockdown.
It’s possible that the strategy will fail, and that measures will
need to be re-imposed. This may be difficult for people to
take, especially if they’ve not been warned of the possibility

174 Conclusion

Epidemic modelling – Some notes, maths, and code

beforehand.

The final message is the most important for me as an academic:
the democracy of science. People sometimes feel that science
is something alien, requiring endless qualifications, state or
corporate sponsorship, and access to techniques and tools that
are out of reach of the amateur. Nothing could be further from
the truth.

Science, as practiced by real scientists, is largely just an exerciseb
scientific method – that has evolved over the years to help stop us
misleading ourselves. The framework isn’t a barrier to entry into
science; rather, it’s a guide to help identify simple truth within a
complex reality.

The quotation from Rovelli with which we opened this book
highlights that the conclusions drawn by science are always
tentative and open to question, refutation, and overthrow.
It’s working within this framework that makes a practice into
science, not the letters after the practitioner’s name. And while
we hope that well-qualified people are right sufficiently often to
be trusted, that’s an authority that has to be earned and justified
by a willingness to accept correction as part of the process of
truth-finding.

If this book shows anything, I hope it’s that computational
science is within the reach of everyone. It’s not the preserve of
academics, although academic scientists have developed many of
the ideas and tools; it doesn’t need supercomputers, although
they’re often useful; and no-one should be afraid of posing
questions: any question, sincerely asked, is worth asking, and
worth the cost of working towards an answer.

175

To find out more

To learn more about historical epidemics

The 1918 or “Spanish” flu is very much in the news close to its
centenary. Spinney’s book is the definitive source 19. 19 Laura Spinney. Pale Rider:

The Spanish flu epidemic of
1918 and how it changed the
world. Vintage, 2018. ISBN
978-1-78470-3

The Black Death of the fourteenth century has had a huge
number of histories written about it – and to show that history
is a process and not a state, is still generating new works that
encourage us to revisit both the sociology and the science.
Ziegler addresses the full sweep 20; Hatcher explores it from 20 Philip Ziegler. The Black

Death. Sutton, 2003. ISBN
978-0-75093202-8

the perspective of a village 21; while Sloane deals with a capital
21 John Hatcher. The Black
Death: An intimate story of a
village in crisis, 1345–1350.
Phoenix, 2009. ISBN
978-0-75382307-1

city 22. The plague also had a unique and extensive effect on

22 Barney Sloane. The
Black Death in London. The
History Press, 2011. ISBN
978-0-75242829-1

literature, being observed by many writers including the poet
Petrarch, who wrote extensively of its effects on Florence 23. An

23 Paula Findlen. Petrarch’s
plague: Love, death,
and friendship in a
time of pandemic. The
Public Domain Review,
June 2020. URL https:
//publicdomainreview.org/
essay/petrarchs-plague

accessible yet detailed scientific treatment is still waiting to be
written.

To learn about epidemiology in practice

The European Centre for Disease Prevention and Control’s
field epidemiology manual 24 is an open-source collaboration

24 Field epidemiology
manual wiki, 2019. URL
https://wiki.ecdc.europa.
eu/fem

intended as a field guide and training resource for
epidemiologists in the midst of an epidemic. A dose of reality
on top of theoretical treatments.

177

Epidemic modelling – Some notes, maths, and code

To learn more about network science

As well as being one of the scientific pioneers, Albert-Lászl’o
Barabási has written extensively and accessibly about complex
networks and their applications. His book Linked: the new science
of networks 25 is probably the best-known introductory work, 25 Albert-László Barabási.

Linked: The new science of
networks. Perseus, 2003.
ISBN 978-0-738-20667-7

with the follow-up on “bursty” processes 26 also well worth

26 Albert-László Barabási.
Bursts: The hidden patterns
behind everything you do,
from your e-mail to the Bloody
Crusades. Plume, 2011. ISBN
978-0-452-29718-0

reading.

For a more social science perspective, Watts’ book on small
worlds 27 explores issue such as rumour spreading and the

27 Duncan Watts. Small
worlds. Princeton Studies
in Complexity. Princeton
University Press, 1999. ISBN
0-691-00541-9

ways in which different social structures can be understood
mathematically.

Textbooks and reference works on network science

The absolute best textbook on the mathematics of networks is
that by Newman, another pioneer of the field 28. Sayama deals 28 M.E.J. Newman. Networks:

an introduction. Oxford
University Press, 2010. ISBN
978-0-19-920665-0

with networks as part of a wider introduction to modelling
complex systems 29. Porter and Gleeson have produced a

29 Hiroki Sayama.
Introduction to the modeling
and analysis of complex
systems. SUNY Open
Textbooks, 2015. ISBN
978-1-942341-06-2

freely-available tutorial 30. Kiss, Miller, and Simon’s book

30 Mason Porter and James
Gleeson. Dynamical
systems on networks: a
tutorial. Technical Report
arXiv:1403.7663v1, arXiv,
2014. URL http://arxiv.org/
abs/1403.7663v1

on epidemic spreading on networks is probably the most
comprehensive recent mathematical treatment, and has some
associated Python code 31.

31 István Kiss, Joel
Miller, and Péter Simon.
Mathematics of epidemics
on networks, volume 46

of Interdisciplinary
Applied Mathematics.
Springer-Verlag, 2017.
ISBN 978-3-319-50804-7.
URL http://dx.doi.org/10.
1007/978-3-319-50806-1

To do your own experiments

All the simulations done in this book use code that’s either
contained in the book itself or available in public-domain
libraries. All code, diagrams, and generated datasets for this
book are available for download from the project’s GitHub repo,
where you will also find the requirements.txt file needed
to create a Python virtual environment capable of running
everything (or indeed of re-creating the book in its entirety).

There’s nothing exclusive about science, so please feel free to

178 To find out more

Epidemic modelling – Some notes, maths, and code

download the code and run your own experiments – and then
please share them, and your results, with the community! You’re
then essentially engaging in the same processes of modelling,
simulation, and experimentation as professional researchers.

To do your own experiments 179

Notes on production

Writing this book has meant bringing together text, mathematics,
and code, using a large array of open-source tools. It’s amazing
what you can get your hands on these days, and I’m grateful to
the contributors to the various projects for their creativity and
generosity.

The book is written with a combination of “markdown”
text and Jupyter notebooks to allow executable content. It
was then assembled using Jupyter Book to drive the Sphinx
documentation generator, and hosted on GitHub Pages.

The book is typeset by letting Sphinx drive the LaTeX typesetting
system. The style is based on Edward Tufte’s books on scientific
visualisation, as implemented by the Tufte-LaTeX Developers.

Simulations are all written in Python 3 and expressed using the
epydemic library for network simulation, which itself is built on
top of the networkx library for representing and manipulating
networks in Python.

The mathematics makes heavy use of the numpy. The diagrams
are all generated using matplotlib together with seaborn to
improve the graphical presentation, as well as some of the
network visualisation functions built into networkx.

For the experiments where a lot of numbers are being crunched
we use the epyc computational experiment management
library and pandas to handle the resulting datasets. The
large experiments use a compute cluster (“hogun”) with 11

181

Epidemic modelling – Some notes, maths, and code

machines each with 16Gb of memory and two 4-core Intel
Xeon E3-1240@3.4MHz processors; all other experiments
are performed on a 2017-vintage MacBook Pro with 16Gb of
memory and a dual-core Intel i5@3.1GHz processor.

All text, code, and diagrams are available for download from the
project’s GitHub repo.

182 Notes on production

Bibliography

Field epidemiology manual wiki, 2019. URL https://wiki.ecdc.
europa.eu/fem.

Réka Albert and Albert-László Barabási. Statistical mechanics
of complex networks. Reviews of Modern Physics, 74:47–97,
January 2002. URL https://dx.doi.org/10.1103/RevModPhys.
74.47.

Albert-László Barabási. Linked: The new science of networks.
Perseus, 2003. ISBN 978-0-738-20667-7.

Albert-László Barabási. Bursts: The hidden patterns behind
everything you do, from your e-mail to the Bloody Crusades. Plume,
2011. ISBN 978-0-452-29718-0.

Paul Erdős and Alfred Renyi. On random graphs. Publicationes
Mathematicæ, 6:290–297, 1959.

Paula Findlen. Petrarch’s plague: Love, death, and friendship in
a time of pandemic. The Public Domain Review, June 2020. URL
https://publicdomainreview.org/essay/petrarchs-plague.

John Hatcher. The Black Death: An intimate story of a village in
crisis, 1345–1350. Phoenix, 2009. ISBN 978-0-75382307-1.

Herbert Hethcote. The mathematics of infectious diseases. SIAM
Review, 42(4):599–653, December 2000. URL http://dx.doi.org/
10.1137/S0036144500371907.

Paul Hoffman. The man who loved only numbers: The story of Paul
Erdőos and the search for mathematical truth. Hyperion, 1998.
ISBN 978-0-78686362-4.

183

Epidemic modelling – Some notes, maths, and code

Jeffrey Kephart and Steve White. Directed-graph epidemiological
models of computer viruses. In Proceedings of Research in
Security and Privacy, pages 343–359. IEEE Press, May 1991.
URL http://dx.doi.org/10.1109/RISP.1991.130801.

István Kiss, Joel Miller, and Péter Simon. Mathematics of epidemics
on networks, volume 46 of Interdisciplinary Applied Mathematics.
Springer-Verlag, 2017. ISBN 978-3-319-50804-7. URL http:
//dx.doi.org/10.1007/978-3-319-50806-1.

Peter Mann, John Mitchell, V. Anne Smith, and Simon Dobson.
Percolation in random graphs with higher-order clustering.
Technical Report arXiv:2006.06744, arXiv, 2020. URL https:
//arxiv.org/abs/2006.06744.

Filio Marinelli, Gregory Tsoucalas, Marianna Karaminou, and
George Androutsos. Mary Mallon (1869–1938) and the history
of typhoid fever. Annals of Gastroenterology, 26(2):123–134,
2013. URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3959940/.

M.E.J. Newman. Networks: an introduction. Oxford University
Press, 2010. ISBN 978-0-19-920665-0.

M.E.J. Newman, Duncan Watts, and Steven Strogatz. Random
graph models of social networks. Proceedings of the National
Academy of Sciences, 19, 2002. URL https://dx.doi.org/10.1073/
pnas.012582999.

J.S. Oxford, A. Sefton, R. Jackson, W. Innes, R.S. Daniels, and
N.P.A.S. Johnson. World War I may have allowed the
emergence of the ’Spanish’ influenza. Lancet Infectious Diseases,
2(2):111–114, February 2002. URL https://dx.doi.org/10.1016/
S1473-3099(02)00185-8.

Mason Porter and James Gleeson. Dynamical systems on
networks: a tutorial. Technical Report arXiv:1403.7663v1,
arXiv, 2014. URL http://arxiv.org/abs/1403.7663v1.

Carlo Rovelli. Reality is not what it seems: The journey to quantum
gravity. Penguin, 2017. ISBN 978-0-14198321-9.

184 Bibliography

Epidemic modelling – Some notes, maths, and code

Hiroki Sayama. Introduction to the modeling and analysis of complex
systems. SUNY Open Textbooks, 2015. ISBN 978-1-942341-06-2.

Saray Shai and Simon Dobson. Coupled adaptive complex
networks. Physical Review E, 87(4), April 2013. URL
https://dx.doi.org/10.1103/PhysRevE.87.042812.

Barney Sloane. The Black Death in London. The History Press,
2011. ISBN 978-0-75242829-1.

Laura Spinney. Pale Rider: The Spanish flu epidemic of 1918 and how
it changed the world. Vintage, 2018. ISBN 978-1-78470-3.

Sara Toth Stub. Venice’s Black Death and the dawn of
quarantine. Sapiens, April 2020. URL https://www.sapiens.
org/archaeology/venice-quarantine-history/.

Paul Taylor. Susceptible, infectious, recovered. London
Review of Books, 42(9), May 2020. URL https://
www.lrb.co.uk/the-paper/v42/n09/paul-taylor/
susceptible-infectious-recovered.

Emilia Vynnycky, Amy Trindall, and Punam Mangtani. Estimates
of the reproduction numbers of Spanish influenza using
morbidity data. International Journal of Epidemiology, 36:881–889,
2007. URL http://dx.doi.org/10.1093/ije/dym071.

Jacco Wallinga and Marc Lipsitch. How generation intervals
shape the relationship between growth rates and reproductive
numbers. Proceedings of the Royal Society B, 274:599–604, 2007.
URL https://doi.org/10.1098/rspb.2006.3754.

Duncan Watts. Small worlds. Princeton Studies in Complexity.
Princeton University Press, 1999. ISBN 0-691-00541-9.

Duncan Watts and Steven Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, 1998. URL
https://dx.doi.org/10.1038/30918.

Soon-Hyung Yook, Hawoong Jeong, and Albert-László Barabási.
Modelling the Internet’s large-scale topology. Proceedings of
the National Academy of Sciences, 99(21), October 2002. URL
https://doi.org/10.1073/pnas.172501399.

185

Epidemic modelling – Some notes, maths, and code

Philip Ziegler. The Black Death. Sutton, 2003. ISBN
978-0-75093202-8.

186 Bibliography

Index

adaptive network, 137

adjacency, 50

asymptomatic transmission, 129

averaging, 26

chickenpox, 41

compartment, 29

exposed, 130

infected, 30

removed, 30

susceptible, 30

compartmented model, 29, 129

complete graph, 49, 50, 156

complete mixing, 41, 49

computer virus, 19

configuration model, 84

contact, 42, 156

contact bubbles, 156, 170

contact network, 42, 82, 99, 111

contact tracing, 25, 59

contact tree, 67

contacts, 23

correctness, 14, 117, 139

countermeasures, 59, 69, 109,
137, 144, 174

covid-19, 12, 21

degree, 49, 55, 120

degree distribution, 50, 82, 84

degrees of freedom, 131, 144,
157, 160

difference equation, 31

disease progression
incubation period, 21

infection, 20

infectious period, 20

latent period, 20

resolution, 21

distribution, 15

exponential, 160

normal, 54, 82, 160

powerlaw, 84

ebola, 21, 22

edges, 42

epidemic, 20

epidemic threshold, 70

epidemiology, 20, 23

ER network, 51, 69

events
exposed, 132

infected, 31, 132

removed, 32

exponential growth, 24, 65

flattening the curve, 126

generation, 24

graph metrics, 49

growth rate, 27

herd immunity, 98, 114, 174

hubs, 82

immunity, 97

influenza, 19, 24, 114

integration, 34

k mean, see mean degree

long tail, 120

malaria, 19, 60

mean degree, 50, 55, 69

measles, 19, 21, 24

model, 11

models
abstract, 13

assumptions, 13

computational, 11, 33

mathematical, 11, 130

neighbours, 50, 146

network, 42

nodes, 42

pandemic, 20

parameter, 31, 86, 130, 138, 159,
173

partial immunity, 106, 114

pathogen, 19

pathology, 20

patient zero, 67

percolation, 95

physical distancing, 155, 174

powerlaw network, 84

187

Epidemic modelling – Some notes, maths, and code

with cutoff, 84, 111

quarantine, 22, 24, 59, 110, 137,
155, 174

R value, 23, 69, 98, 137

random numbers, 15

residual network, 99

rewiring, 138

SARS, 21

seeding, 70, 99

seeding with infection, 61

SEIR, 129, 144, 155, 163

sensitivity, 25, 37, 38, 70, 136

seperatrix, 28

simulation, 11, 42, 173

SIR, 29, 43, 49, 69, 90, 99, 114,
137, 163

SIS, 30, 99

size effect, 117

skewness, 78

social network, see contact
network

Spanish flu, 19, 24

standard deviation, 76

stochastic process, 15, 70, 74

super-spreaders, 82, 95, 120

targetted vaccination, 124

test, trace, and isolate, 25, 144

testing, 14

threshold, 24, 28

topology, 49, 69

transamission, 21

transmission, 23, 28

modes of transmission, 19

Typhoid Mary, 155

vaccine, 98, 110, 174

variance, 22, 71

version control, 14

whooping cough, 19

wicked problems, 174

188 Index

