{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Azure Analysis Example" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a demo notebook showing how to use **azure** pipeline on a signal using the `orion.analysis.analyze` function. For more information about the usage of microsoft's anomaly detection API, view their documentation [here](https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Load the data\n", "\n", "In the first step, we load the signal that we want to process.\n", "\n", "To do so, we need to import the `orion.data.load_signal` function and call it passing\n", "either the path to the CSV file or the name of the signal to fetch fromm the `s3 bucket`.\n", "\n", "In this case, we will be loading the `S-1`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | timestamp | \n", "value | \n", "
|---|---|---|
| 0 | \n", "1222819200 | \n", "-0.366359 | \n", "
| 1 | \n", "1222840800 | \n", "-0.394108 | \n", "
| 2 | \n", "1222862400 | \n", "0.403625 | \n", "
| 3 | \n", "1222884000 | \n", "-0.362759 | \n", "
| 4 | \n", "1222905600 | \n", "-0.370746 | \n", "