# Third-Party Notices This project incorporates and builds upon work from the following sources. ## PostForecasts.jl The postprocessing module (`src/postprocess/`) is a Rust port of functionality from [PostForecasts.jl](https://github.com/lipiecki/PostForecasts.jl), a Julia package for probabilistic forecast postprocessing. **Original Authors**: Bartosz Lipiecki and contributors **License**: MIT License **Reference**: The design and algorithms are based on the following research: - Gneiting, T., & Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. *Journal of the American Statistical Association*, 102(477), 359-378. ### Features Ported - Conformal Prediction (Split, Cross-Validation, Jackknife+) - Historical Simulation - Normal Predictor - Isotonic Distributional Regression (IDR) - Quantile Regression Averaging (QRA) - Conformalize (recalibration of quantile forecasts) ## Conformal Prediction The conformal prediction implementation is based on: - Romano, Y., Patterson, E., & Candès, E. J. (2019). Conformalized Quantile Regression. *Advances in Neural Information Processing Systems*, 32. - Barber, R. F., Candès, E. J., Ramdas, A., & Tibshirani, R. J. (2021). Predictive Inference with the Jackknife+. *The Annals of Statistics*, 49(1), 486-507. ## Isotonic Distributional Regression The IDR implementation is based on: - Henzi, A., Ziegel, J. F., & Gneiting, T. (2021). Isotonic Distributional Regression. *Journal of the Royal Statistical Society: Series B*, 83(5), 963-993. ## Quantile Regression Averaging The QRA implementation is based on: - Nowotarski, J., & Weron, R. (2015). Computing Electricity Spot Price Prediction Intervals Using Quantile Regression and Forecast Averaging. *Computational Statistics*, 30(3), 791-803. ## StatsForecast Some forecasting models and baseline methods are inspired by [StatsForecast](https://github.com/Nixtla/statsforecast) by Nixtla. **License**: Apache License 2.0 ## tsfresh The time series feature extraction module (`src/features/`) is inspired by [tsfresh](https://github.com/blue-yonder/tsfresh), a Python library for automatic extraction of relevant features from time series. **Original Authors**: Blue Yonder GmbH and contributors **License**: MIT License **Reference**: - Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package). *Neurocomputing*, 307, 72-77. ### Features Inspired By tsfresh - Approximate entropy, sample entropy, permutation entropy - Complexity measures (C3, CID, Lempel-Ziv) - Autocorrelation and partial autocorrelation features - Distribution features (skewness, kurtosis) - Trend and stationarity tests ## Other Dependencies This project uses several Rust crates as dependencies. See `Cargo.toml` for the complete list. Each dependency is used under its respective license: - `chrono` - MIT/Apache-2.0 - `faer` - MIT - `statrs` - MIT - `thiserror` - MIT/Apache-2.0 - `rand` - MIT/Apache-2.0 - `rustfft` - MIT/Apache-2.0 - `rayon` - MIT/Apache-2.0 - `anofox-regression` - MIT --- If you believe any attribution is missing or incorrect, please open an issue or pull request.