Computer Assignment 1 - Introduction to R
Machine Learning, Spring 2020
YOUR NAME

Remark. The purpose of this homework is to introduce you to the basics of R: the main software we will use
throughout this course. This is a long homework assignment aimed to be a sort of R Bootcamp. While it is
lengthy, much of this assignment consists of explanations regarding basic things in R.

Instruction. Open the RMarkdown document with suffix “rmd” via RStudio. Click Knit to create a
PDF document (remember to install the necessary packages as described in CA0). The “knit” option can
be changed to pdf or html (or even Word). When submitting the HW, you will need to knit to a pdf
document and print the output for submission in class. The html file in the folder has clickable
links for the various references below on Latex etc. By removing the results='hide' and fig.keep="'none'
options in the code chunks, the code outputs and the plots will display in the created file. For more information
about RStudio, refer to the section Getting Started; for more information about RMarkdown, refer to
the online tutorial and the online manual of knitr by Yihui Xie from RStudio, Inc.

Important caveat: In the past some students have had issues when knitting the file to pdf. If your work
does not show up, knit to html or doc (this seems to usually work fine) and print the output. At the end of
the day all we need to grade your HW is a paper copy of RMarkdown’s output. Please note that this does
NOT mean it is alright to simply turn in a .Rmd file.

Latex: If the file does not compile properly in the initial go around you might need to install Latex onto your
system. See Latex installation for details. You might then need to re-install RStudio. Latex is a fantastic
framework that everyone in the computational world uses to write technical documents. See Tex exchange or
Medium article for more details as to why you should use Latex. See this guide for a beginners introduction.

diagram package: For displaying some of the pictures in the file we used an R package called diagram.
You will need to install this before the file knits properly.

Please turn off the display of example code chunks (by specifying include=FALSE),
complete the exercise code chunks (remember to turn on the eval option), fill in
your name and create a PDF document, then print and submit it.

Basics in R

R is an object-oriented language. Hence the “data” we work on are formatted as a particular object that
meets some structural requirements. This reflects how we as humans understand data; data can take many
forms and look differently depending on what we are observing. Think of a list of test scores. These data are
all numeric (real numbers between 0 and 100), and are only one-dimensional. In contrast, a traditional data
set with multiple rows and columns is multidimensional, and also is not usually limited to just numerical
observations. To understand a data set in R, one should first understand which class of object he/she/they
has on hand, and then figure out the applicable operations on it.

In a hierarchical manner, the more advanced classes consist of ingredients from more fundamental classes.
Vectors, matrices, lists, and data.frames are the most commonly used fundamental classes in data analysis.
So, these next few sections will explain these data types, as well as provide some motivation for why we have
them in the first place.

http://rmarkdown.rstudio.com/lesson-1.html
https://yihui.name/knitr/
https://www.latex-project.org/get/
https://tex.stackexchange.com/questions/1756/why-should-i-use-latex
https://medium.com/@marko_kovic/why-i-write-with-latex-and-why-you-should-too-ba6a764fadf9
http://www.docs.is.ed.ac.uk/skills/documents/3722/3722-2014.pdf

Vectors and Matrices

A vector is a collection of “data” that share the same type (numeric, character, logic or NULL). A matrix
arranges “data” of the same type in two dimensions. Note that there doesn’t exist a “scalar” object, which
would be treated as a vector of length 1.

Create a Vector

The concatenation function c() can be used to manually create a vector in R. When using the c() function,
numbers are entered as a list with commas between each new entry. For example, x <- c(1, 2) creates a
vector and assigns it to the variable x.

To create a vector that repeats n times, we can use the replication function rep(, n). For example, a vector
of five TRUE’s can be obtained by x <- rep(TRUE, 5).

Finally, we can create a consecutive sequence of numbers using the sequence generating function seq(from =
, to = , by =). Here, the from, to and by arguments specify where the sequence begins, ends, and by
how much the sequence increments. For example, the vector (2,4,6,8) can be obtained using x <- seq(2 ,
8, 2). A convenient operator is :, which similar to seq and also creates the consecutive sequence with step
sizes by 1 or —1. Try running 1:4 and 4:1.

YOUR CODE HERE. Change the the above option to eval=TRUE so it displays your work
(otherwise it will NOT be graded!!!). See if you can find different ways to create

these vectors.

For more information, the commands ?c, ?rep and ?seq access to the online R documents for help.
Exercise 1 Using the c, rep or seq commands, create the following 6 vectors:

x1l = (2, .5, 4, 2);

X2 =(2,.5,4,2,1,1,1, 1);

x3 = (1,0, -1, -2);

x4 = (“Hello”," “,”World“,”;*,”Hello World;);

Note: The quotation marks and sometimes the exclamations marks are rendered a little funky in the pdf/html.
Just go with it.

Hint. For x4, take this opportunity to experiment with the paste function.
xb = (TRUE, TRUE, NA, FALSE);

Remark. Check ?NA and class(NA) to learn more about the missing value object NA. This is not relevant
for x5.

x6=(1,2,1,2,1,1, 2,2).

YOUR CODE HERE.

Create a Matrix

A m-by-n matrix can be created by the command matrix(, m, n) where the first argument admits a vector
with length compatible with the matrix dimensions. For example, x <- matrix(1:4, 2, 2) creates a 2-by-2
matrix that arranges the vector (1, 2, 3, 4) by column. To arrange the vector by row, specify the byrow
option as follows: x <- matrix(1:4, 2, 2, byrow = TRUE).

The command binding vectors/matrices by row, rbind, and by column, cbind, are also useful. Check R
documentation for their usages.

Exercise 2. Using the matrix and rbind functions, create

1 2 3 4
1 0 —1 -2
X=1l9 5 4 2
11 1 1

To be more precise, first define a set of four vectors corresponding to the rows of the above matrix and then
use rbind to make a corresponding matrix. Note: you will need to play around with the deparse.level
option in rbind to get the matrix as above. Check out the manual page ?rbind for more information.

X <- YOUR CODE HERE

Indexing

There are a number of ways to extract specific components of a vector.

First, we'll make a vector (1,2,3,4):
x <- 1:4

Here, we grab the wvalues at the first and fourth indices
(which happen to be 1 and 4 in this case):
x[c(1,4)]

We can also grab the first and fourth wvalues this way:
x[c(TRUE, FALSE, FALSE, TRUE)]

Or we can grab all wvalues NOT at the second and third indices:
x[-c(2,3)]

Another approach uses conditional statements, which leads to the so called “conditional selection” technique
as follows.

Again, we'll define a wvector:

x <- 1:4

Observe this componentwise comparison resulting in a logical vector:

x >= 3

Now observe what happens when we use this "logical vector” to index our vector:
x[x >= 3]

We can use & ("and") or | ("or") to get more sophistocated logical statements.
x[x >=1 & x <=3]

Matrix indexing follows similarly to how we index vectors. Indeed,

We'll first make a 3z4 matriz with values rangeing from 1 to 12:

x <- matrix(1:12, 3, 4)

This statement returns values that are in the first and third rows,
but NOT in the first and fourth columns:

x[c(1,3),-c(1,4)]

This statement returns values in the first and third rows,

and any column:

x[c(TRUE,FALSE, TRUE) ,]

Exercise 3. Consider the matrix X from Exercise 2.

o Make a new vector yl consisting of all the elements of X which are negative (strictly less than zero).
Here you are expected to use a logical statement like the ones we saw in Exercise 2.

y1l <- YOUR CODE HERE
yi

e Make a new vector y2 consisting of all the elements of X which are at strictly positive but less than 2.
Again, you should be using a logical statement.
y2 <- YOUR CODE HERE
y2

Lists

A list is a more flexible container of “data” that permits inhomogeneous types. That is, unlike vectors, the
values in a list can vary between numeric and non-numeric types. This is useful if you would like to encapsulate
a bunch of components in an object. The 1ist function explicitly specifies a list and the combining function
c is still applicable. For example,

We'll make a list with many different types and formats.
Text to the left of = specifies the component name:

x <- list(num = 1:4, # "num =" specifies the name of the first component
chac = "hello world!",
logic = c(TRUE,FALSE),
nu = NULL,
mat = matrix(4:1, 2, 2))
y <- list(1234,
"world")

We can still use the c() function to combine two lists into ome list:
c(x, y)

To extract the components in a list, one should use double bracket [[1] instead of a single bracket. If one
has already specified the component names in a list, then the component names can be placed into the bracket
directly. For example, x[["1ogic"]] accesses the third component of x. A more convenient alternative is
the command x$logic.

Data Frames

A data.frame is a container that inherits key attributes from lists and matrices, which allows it to hold types
of data that cannot be held in either of these original containers. Data.frames are more flexible in nature, and
for this reason they are the most common container used in R programming. They permit inhomogeneous
data types across columns (components in a list) but forces the components of the list to be vectors of
homogeneous length (so as to be columns in a matrix). With the lists that we just learned, we can have
inhomogeneous types, but we must be at most one-dimensional. With matrices, we can be multidimensional,
but our types must be homogeneous. A data.frame is specifically the type that allows for multidimensional,
inhomogeneous data.

Let’s start with a motivating example. The following creates a score table of 3 students, where the first row
contains character vectors and the last two rows contain numeric data:

c("001", "002", "003"), # ids are characters
c(95, 97, 90), # scores are numericss
c(80, 75, 84))

students <- data.frame(id
score_A
score_B

students

To access the score_ A of student 003, one can follow the manner in a matrix: students[3,2], or that in a
list: students[[[2]] [3], students[["score_A"]][3] or students$score_A[3].

Exercise 4. Applying the conditional selection technique (see the section “indexing” and do not use the
subset function), extract the record of student 003 i.e their id number, and their scores in the two tests.

YOUR CODE HERE

One can also create a matrix or a legitimate list first and then convert it into a data.frame as follows.

First, we create the matrix:

scores <- matrix(c(95, 97, 90, 80, 75, 84), 3, 2)

Then, we convert the matriz into a data.frame:

scores <- data.frame(scores)

Easy!!

Now, let's name the columns

colnames(scores) <- c("score A", "score_B")

and add another column:

id <- c("001", "002", "003")

studentsl <- cbind(id, scores)

students2 <- data.frame(list(id
score_A
score_B

c("OOl", |1002||, ||003u)’
c(95, 97, 90),
c(80, 75, 84))

)

Exercise 5. Create a data.frame object to display the calendar for Jan 2018 as follows. Use what we
have learned so far about creating Vectors, Lists, and Matrices, then convert what you have created into a
data.frame.

Sun Mon Tue Wed Thu Fri Sat
NY 2 3 4 5 6
7 8 9 10 11 12 13
14 MLK 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Jan2018 <- YOUR CODE HERE
Jan2018

Ignore the ## symbols this was just so the above acts like a comment in R.

Hint. Use 1) The character object " " for the spaces; 2) the option row.names = FALSE in print function.

Probability and Distributions

This section explores how to create “randomness” in R and obtain probabilistic quantities.

Discrete Random Sampling

Much of the earliest work in probability theory starts with random sampling, e.g. from a well-shuffled pack
of cards or a well-stirred urn. The sample function applies such procedure to a vector in R. Learn more from
the R documents.

The following exercise means to create a five-fold cross-validating sets, which would be the starting point to
assess the performance of a learned machine in, for example, classification errors.

Challenge Problem (not graded) iris is a built-in data set in R. Check ?iris for more information.
This data set has data on 50 flowers each from 3 species of Iris (setosa, versicolor, and virginica). Randomly
divide iris into five subsets irisl to iris5 (without replacement), thus each subset has 30 rows of the iris
data and further stratified to iris$Species (namely every subset should have 10 rows from each of the 3

species). Hint: One solution to this problem involves first seperating the data by species type, then using
the sample function on the indices 1:50. Look up the functions %in% and which for ways to use this to get
your subsets.

YOUR CODE HERE

iris.bfold <- list(irisl, iris2, iris3, iris4, irisb)

Distributions

Needless to say, R is a language geared toward statistical analysis, and thus there are many probability
distributions that are avaliable as built-in functions. To obtain the density function, cumulative distribution
function (CDF), quantile (inverse CDF') and pseudo-random numbers from a specific distribution, one only
needs to prefix the distribution name given below by d, p, q and r respectively.

Distributions R Names Key Arguments

Uniform unif min, max
Normal norm mean, sd
x? chisq df, ncp
Student’s t t df, ncp
F f df1, df2, ncp
Exponential exp rate
Gamma gamma shape, scale
Beta beta shapel, shape2, ncp
Logistic logis location, scale
Binomial binom size, prob
Poisson pois lambda
Geometric geom prob
Hypergeometric hyper m, n, k
Negative Binomial nbinom size, prob

Check from their plots.

plot(dnorm, xlim = c(-5, 5)) # bell curve of Normal density
plot(plogis, xlim = c(-5, 5)) # Logistic/Sigmoid function (CDF of Logtistic distribution)

Appendix A

There are no exercises in this appendix. Its purpose is to provide more information about the topics covered
in this assignment. Reading this material is encouraged, but not required.

Additional material on Lists

With lists, only ONE index, instead of a vector of indices, can be placed into the double bracket! Explore in
the following example to see the difference as compared to the single bracket indexing.

<,

<D 32

C11 <- list(C21 = "C21",

c22 = "C22",
Cc23 = "C23")
C26 <- list(C31 = "C31",
C32 = "C32")
C13 <- list(C27 = "C27",
c28 = "C28",
C29 = "C29")
C12 <- list(C24 = "C24",
C25 = "C25",
C26 = C26)
P <- list(C11 = C11,
Cl12 = C12,
C13 = C13)

subtree rooted at Ci2
P[[2]]
P$C12

subtree (leaf) rooted at C24
P[[c(2,1)]]
P$C12$C24

subtree rooted at C26
P[[c(2,3)]]
P$C12$C26

subtree (leaf) rooted at C31
P[[c(2,3,1)]]
P$C12$C26$C31

Additional material on Probability Distributions

The following two-sample t-test shows the usages of qt, pt and rnorm. Recall that a two-sample homoscedastic
t-test statistic is

62:(nx—1)8§+(ny—1)532/7 T X-Y

d
= ——— ~lpytny—2 under Hyp: pux = py.
nx +ny —2 PO 4+ L
nx ny

twosam <- function(x, y, alpha = 0.05)

{

It conducts a two-sample homoscedastic t-test on = and y

n.x <- length(x); n.y <- length(y)
mean.x <- mean(x); mean.y <- mean(y)
var.x <- var(x); var.y <- var(y)
mean.diff <- mean.x - mean.y
df <-n.x + n.y - 2
sigma <- ((n.x - 1) * var.x + (n.y - 1) * var.y) / df
var.diff <- (1/n.x + 1/n.y) * sigma
t <- mean.diff / sqrt(var.diff)
t.alpha <- qt(1 - alpha/2, df)
output <- list(t = t,
df = df,
p.-value = 2 * pt(-abs(t), df),
confint = c(lower = mean.diff - sqrt(var.diff) * t.alpha,
upper = mean.diff + sqrt(var.diff) * t.alpha),
mu = c(mu.x = mean.x, mu.y = mean.y),
sigma = sigma)
return(output)
}
x1 <- rnorm(40, 0, 1)
x2 <- rnorm(50, 0, 1)
x3 <- rnorm(50, 1, 1)
twosam(x1l, x2)
t.test(xl, x2, var.equal = TRUE)
twosam(x1l, x3)
t.test(xl, x3, var.equal = TRUE)

	Basics in R
	Vectors and Matrices
	Create a Vector
	Create a Matrix
	Indexing

	Lists
	Data Frames

	Probability and Distributions
	Discrete Random Sampling
	Distributions

	Appendix A
	Additional material on Lists
	Additional material on Probability Distributions

