Computer Assignment 4 - PCA and Clustering
Machine Learning, Spring 2020
YOUR NAME

Important note: We are noticing that there have been a lack of informative titles on the plots
turned in for Computer Assignments. This is partly our fault, since not all plots given as examples
have had titles. For the remainder of class we hope to improve on this, just as we hope to instill
in each of you the habit of INFORMATIVE titles. Please try and make your plots as informative
as possible moving forward. This is a valuable skill.

PCA for Authorship Identification

We will now apply above analysis to an interesting real life example.

In 1787, after the American Revolution, the colonies were debating whether to ratify the new Constitution.
Three men - John Jay, James Madison, and Alexander Hamilton - wrote a series of essays in support of the
Constitution, known as the Federalist Papers. In total, 85 papers were included.

Historical evidence shows that Jay authored 5 papers, Madison 14, and Hamilton 51. A further 3 were joint
efforts between Madison and Hamilton. The remaining 12 are disputed. We will use PCA to try to guess at
the authorship of these papers.

We will use a dataset that consists of word proportions of how many times a particular word was used divided
by the total word count of an essay. This dataset is restricted to 70 function words - common words such as
Léa”’ “but”’ al’ld “the”.

Load and parse the data using the following commands:

Load the data
fed = read.csv("Federalist.txt", header = TRUE)

Have a look at the data
head (fed)

Store the authorship wvector separately
auths = fed[, 2]
known = auths != "DIS" & auths != "COL"

auths.known = fed[known, 2]

Limit the data to known authors
fed.known = fed[known, -c(1,2)]

Questions

1. Treating the words as different variables, run PCA on the dataset using the prcomp() command. Here
we use scale = TRUE to rescale the data. Are we centering the data here? (Hint: check the manual
page!!) How many PCs are required to explain 80% of the variation in the data? Plot a screeplot of the
PCs.

pc.fed = prcomp(fed.known, scale = TRUE)
YOUR CODE HERE

https://www.youtube.com/watch?v=VhinPd5RRJw
https://en.wikipedia.org/wiki/Function_word

2. Make individual plots the first 3 PCs. Color the points by author by using the col = auths.known
command in the pairs() function.
YOUR CODE HERE
pairs(pc.fed$x[,1:3], col = auths.known, main = "Pairs Plot of First Three PCs")

Does the data cluster by author? No need to explicitly cluster just yet; simply give your perspective on what
you see in the biplots. How many dimensions would you project onto to separate essays by author?

YOUR ANSWER HERE

Now let’s check to see if clustering confirms what we can see visually! Perform kmeans clustering on the first
two principle components using the following code.

library(ggplot2)

set.seed (1)

km <- kmeans(pc.fed$x[,1:2], centers = 3)

gegplot(, aes(x = pc.fed$x[,1], y = pc.fed$x[,2]1)) +
geom_point (aes(col = as.factor(auths.known), pch = as.factor(km$cluster))) + xlab("First PC") + ylab(
scale_colour_discrete(name = "Author") + scale_shape_discrete(name = "Cluster") + geom_point(aes(x =

Questions

1. Comment on the given plot. How well was kmeans able to distinguish the authorship? YOUR ANSWER
HERE

2. What is the within-cluster sum of squares for this particular clustering?
YOUR CODE HERE

Prediction

We will now use the low-dimensional projection to help us guess about the disputed authorship. The function
predict() will take information from a previous PCA and project new data onto the PC dimensions. Use the
following code to find the projections for the disputed and collaborative essays.

fed.disp = fed[auths == "DIS", -c(1,2)]
fed.collab = fed[auths == "COL", -c(1,2)]
disp.pred

predict(pc.fed, fed.disp)

collab.pred = predict(pc.fed, fed.collab)

Questions

1. Plot the known data in first two PC dimensions, and color it by authorship (this will use col =
auths.known). Then add the projection of the collaborative papers onto the first to PCs to the plot.
We have provided most the the code to the latter plot because it was a little tricky. Make sure to add
an informative title. If you would like a challenge, try to implement this last plot in ggplot (this is
optional).

Make sure you label the axes and plot appropriately.
CODE FOR PLOTTING THE KNOWN DATA HERE

To add the collaborative papers
NOTE: Make sure to run the 'plot' and 'legend' commands simultaneously. It will NOT WORK

if you do it line by line.

all.classifiers = as.factor(c(as.character(auths.known), rep("COL", times =nrow(collab.pred))))
plot(rbind(pc.fed$x[,1:2], collab.pred[,1:2]), col = all.classifiers, main = "Plot of First Two PCs;
legend(-10, 5,legend = c("AH", "COL", "JJ", "JM"), col = as.character(1:4), pch=rep(l, times = 4))

Based on this plot, who do you think did the primary work on the collaborations?
YOUR ANSWER HERE

2. Now add the projection of the disputed papers to the plot. Mimic what was done on the previous plot
to do this. Based on this, who do you think authored the 12 papers?

YOUR CODE HERE

k-means

Now that we have seen a basic example of how to use kmeans with the Federalist papers, we are going to get
further practice with a gene data example.

Load and parse the TCGA data from the course website using the following commands:

#Load the data

trial.sample = read.table("TCGA_sample.txt", header = TRUE)
#Store the subtypes of tissue and the gene ezxpression data
Subtypes = trial.samplel[,1]

Gene.Expression = as.matrix(trial.sample[,2:2001])

To run the k-means algorithm on the rows of a matrix X, the kmeans(X, k, iter.maz) command can be used
where k is the number of clusters to find and iter.max is the maximum number of iterations used to find the
k partition. Once you run y = kmeans(z,k,iter.max), you can type y$cluster to obtain the cluster labels of
the data points. Also, you can type y$tot.withinss to obtain the total within cluster sum of squares (WCSS)
for the identified partition.

Recall that k-means searches for the partition of the data that minimizes the WCSS for a fixed k. To get an
idea of how k affects the WCSS, run k means for k from 1 to 20 and calculate the WCSS for each partition.
Then, plot the WCSS across k by using the following code:

withinss = rep(NA, 20)

for(k in 1:20){
z = kmeans(Gene.Expression,k,iter.max = 100)
withinss[k] = z$tot.withinss

}

plot(withinss, xlab = "k", ylab = "WCSS", main = "k means on TCGA")

Questions:

1. Comment on WCSS as a function of k. Do your findings from the above plot make intuitive sense?
Why or why not?

2. Comment about the WCSS at k = 2.

3. Re-run k means for k£ = 2 and compare the cluster labels for the results at k = 2 with the true subtype
labels. What proportion of each cluster contains “Normal” and “Basal” subtypes?

Co.

k-means with Principal Component Analysis

It would be nice if we could visualize the clusters we just found, like we did with the Federalist Papers data.
However, the TCGA data we are using has 2000 dimensions - and this is just a subset of the full data, which
has about 20,000 genes! Luckily, we already have a way to reduce the dimensions of a dataset: PCA!

Perform PCA on the dataset Gene.Fzxpression using the following code:

pc.tcga = prcomp(Gene.Expression)

Questions:

1. Plot the projections in the first two PC dimensions. Color by subtype using the col = Subtypes command
in plot(). Make sure to label your axes. Do the subtypes appear to cluster in this low-dimensional
projection?

YOUR CODE HERE

2. Now plot the first two PC dimensions, coloring by the cluster you found in Part 1, Question 3. How
well do these clusters appear to match the true subtypes?

YOUR CODE HERE

3. Perform k-means using only the first two PC dimensions. Plot the data one more time, coloring by the
clusters found. What is the total within-cluster sum of squares for this clustering?

set.seed (1)
k.pca = kmeans(pc.tcga$x[,1:2], centers = 2)
YOUR CODE HERE

4. In your own words, explain why using PCA to reduce the number of dimensions from 2000 to 2 did not
significantly change the results of k-means.

YOUR ANSWER HERE

Thinking further about inital cluster centers

When passing a number x as the argument for centers to the kmeans algorithm, x cluster centers are chosen
randomly, points are assigned to a cluster based on these centers, and then the cluster centers are iteratively
updated in an attempt to find the centers that minimize total within-cluster sum of squares. The number of
times kmeans updates is controlled by the argument iter.max. To examine how the choice of initial centers
affects the algorithm, we will disable the updating steps via iter.max and choose some initial cluster centers
of our own.

library(ggplot2)
First, we create a dummy data set
set.seed(10)
random_data = data.frame(x = runif (4000),
y = runif (4000),
group = rep(NA, times = 8000))
random_data[which(random_data$x < 0.33 & random_data$y < 0.33 |
random_data$x > random_data$y < 0.33 |
random_data$x < random_data$y > 0.66 |
random_data$x > random_data$y > 0.66 |
(random_data$x > O 33 & random_data$x < 0.66 &
random_data$y > 0.33 & random_data$y < 0.66)),]1$group = "Group 1"

OOO
0’1(,003
D W O»
IR

random_data[which(is.na(random_data$group)),]$group = "Group 2"

This data set looks like:

ggplot(random_data, aes(x = x, y =y, col = group)) + geom_point() +
ggtitle("Plot of Dummy Data")

Plot of Dummy Data

1.00- e

0.75-
group

> 0.50- ® Group1l
® Group 2

0.25-

0.00 -

0.00 0.25 0.50 0.75 1.00
X

We'll perform the kmeans with two rTandom centers:

random.km = kmeans(random_datal[,1:2], centers = 2, iter.max = 1)

ggplot(random_data, aes(x = x, y = y, col = group, pch = as.factor(random.km$cluster))) +
geom_point () +
scale_shape_discrete(name = "Cluster") +
ggtitle("Plot of Dummy Data; Clustered")

Plot of Dummy Data; Clustered

1.00 - ozt?:segg?oo&.:ig’rf %‘A§Ifl“‘ A A‘:‘Af:

0.75-

Cluster
o« 1
A 2
> 0.50 -
group
® Groupl
0.25 4 ® Group2
0.00-
0.00 0.25 0.50 0.75 1.00
X

Which gives the following within-cluster sum of squares:
random.km$tot.withinss

[1] 829.424

my_centers = random_data[1:2, 1:2]

random.km = kmeans(random_datal,1:2], centers = my_centers, iter.max = 1)

ggplot (random_data, aes(x = x, y =y, col = group, pch = as.factor(random.km$cluster))) +
geom_point () +
scale_shape_discrete(name = "Cluster") +
ggtitle("Plot of Dummy Data; Clustered")

Plot of Dummy Data; Clustered

1.00- 03?:.:}.,"!:: .‘;’.’x .'..?;}73;.,-.%. (3 0.‘}-' and o2 o
E e E AT TR

S °
0.791 K gde Cluster
o 4 1
8o °
° O‘E& » A 2
e v
> 0.50- bt e A
Al group
. ® Groupl
24 ® Group?2
0.25- i

g

N ' E

A

0.00- %ﬁ‘m
0.00

0.25 0.50 0.75 1.00

random.km$tot.withinss

[1] 847.1953

Don’t just look at the number!! Can you see how the clusters themselves changed? Now, choose your own
cluster centers! These do not need to be actual observed points from our data. Try something weird, and
report the total within-cluster sum of squares. Did it change? Was it better or worse than the random choice?
Comment as to why you think that is.

YOUR CODE, AND ANALYSIS, HERE

	PCA for Authorship Identification
	Questions
	Questions

	Prediction
	Questions

	k-means
	Questions:

	k-means with Principal Component Analysis
	Questions:

	Thinking further about inital cluster centers

