Computer Assignment 6 - Classification
Machine Learning, Spring 2020
YOUR NAME

Bayes Rule and Univariate Normal Simulations

Notice, in the above problem, how we created the random_data variable using both the dataframe the runif
functions. This latter function (runif) draws random values from a uniform(0, 1) distribution. As mentioned
in our first few Computing Assignments, R can simulate a number of distributions, including the normal
distributions

W~NG-21) & V~N@1).

For this next exercise, we are going to simulate 300 observations from W and 200 observations from V, and
create another variable Y that classifies from which normal distribution each observation came. Indeed,
W_obs = rnorm(300, mean = -2)

V_obs = rnorm(200, mean = 2)

Y_class = c(rep(0, times = length(W_obs)), rep(l, times = length(V_obs)))

train_data = data.frame(X = c(W_obs, V_obs), Y = Y_class)

Question: Why did we not specify the value for standard deviation in the rnorm function?
YOUR ANSWER HERE

Since we have specified ourselves the model for our data (here: two different normals), we can assess the
performance of any classification technique we use on this data. We will illustrate this by calculating the
Bayes rule for our train_data. To do so, fill in the following quantities

YOUR CODE HERE (Probability of W_obs)
YOUR CODE HERE (Probability of V_obs)

pi_0
pi_1

To start, let’s just calculate the Bayes’ rule for the first observation of train_data. To find the conditional
probability, you may use the density function in R to estimate the PDF and get the appropriate probability
mass for x. That is, let P(z|Y = 0) be the probability mass of « in the sub-population for which ¥ = 0. The
following is an example of how to get a probability mass from an estimated density function using the full
training_data. For your purposes, you will need to use a subset of the training_data instead of the full.

Example of PDF estimation

X_obs = train_datal[1,1]

full_density = density(train_data$X)

index_of_density = sum(full_density$x <= x_obs)
pdf_value_of_x_obs = full_density$y[index_of_density]
pdf_value_of_x_obs

X_obs = train_datal[1,1]

prob_x_given_O = YOUR CODE HERE

prob_x_given_1 = YOUR CODE HERE

Bayes_rule_for_x = prob_x_given_1 * pi_1 / (prob_x_given_1 * pi_1 + prob_x_given_0 * pi_0)

What hypothesis does this Bayes Rule test? Based on our calculation, in which distribution should we classify
x_obs?

YOUR ANSWER HERE

Now, calculate the Bayes Rule for every value, and use them to compute a classifier for every observation in
train_data. (DO NOT do this exhaustively. You should be using built-in features in R and/or a for loop.)
Compare these classifiers with the true classifiers. Calculate, and report, the Bayes’ Risk.

YOUR CODE, AND ANALYSIS, HERE

k-nearest Neighbors and LDA

Using the same train_data from the last exercise, fit a k-nearest neighbors model for k € {1,3,11}. The
code for k = 1 is provided.

YOUR CODE, AND ANALYSIS, HERE.

Take special care to seperate the classtfier from the rest of the data when fitting a

knn model. Constder the following code to give you an idea as to how one does this.

Note, however, that this code is based off of my naming practices, and may require editing

depending on your previous code.

train_data_classifiers = as.factor(train_data$yY)

train_data_observations = data.frame(train_data$X)

knn.1 <- knn(train_data_observations, train_data_observations, cl = train_data_classifiers, k=1)
R_knn_1 = 100 * sum(train_data_classifiers == knn.1)/length(knn.1)

R_knn_1

Comment on the performance for the different values of k. Why does k = 1 do so well? What is it doing
that gives it such great performance?

YOUR ANSWER HERE

Now let’s do the same thing with Fisher’s Linear Discriminate Analysis (LDA). We have provided the follow
code as an example. Assess the risk using the derived predictions (you will need to grab the class attribute
from this variable).

library (MASS)

library(dplyr)

Fit the model

model <- 1lda(Y~X, data = train_data)

Make predictions

predictions <- model >J predict(train_data)

YOUR CODE, AND ANALYSIS, HERE

Method Evaluation

Now that we have explored Bayes’ Rule, k-nearest neighbors, and LDA, we will see how each method performs
on data that was NOT used to originally set them up. Consider the following new data set drawn from the
same random variables W & V.

W_obs = rnorm(150, mean = -2)

V_obs rnorm(50, mean = 2)

Y_class_test = c(rep(0, times = length(W_obs)), rep(l, times = length(V_obs)))
test_data = data.frame(X = c(W_obs, V_obs), Y = Y_class_test)

Use the information from train_data to classify values in the test_data, then compare these calculated
classes with the true classes found in Y_class_test. Report the Bayes’ Risk, and compare it to the same
metric calculated from k-nearest neighbors and LDA.

Hints:

1. In the case of Bayes rule, you will use the same 7y & m; and calculate the conditional probabilities in
the same way, except this time your x_obs will be from test_data. DO NOT use the class labels from
test_data ANYWHERE in this calculation (until you evaluate at the end).

2. Use the manual page 7knn to see how one inputs a different dataset for the “test” parameter. You may
have to separate the observations X from the class labels Y.

3. In a similar fashion, you are expected to read the manual pages for the functions used in the LDA
process.

YOUR CODE, AND ANALYSIS, HERE

Now, let’s do this 1000 more times! During each iteration of the following for loop, use the models you have
created to calculate classifiers for the test_data and calculate the risk for each.

set.seed(13)
all_bayes_risks = c()
all_knn_risks = c()
all_lda_risks = c()

for(iteration in 1:1000){
W_obs = rnorm(150, mean = -2)
V_obs = rnorm(50, mean = 2)
Y_class_test = c(rep(0, times = length(W_obs)), rep(l, times = length(V_obs)))
test_data = data.frame(X = c(W_obs, V_obs), Y = Y_class_test)

YOUR MODEL CODE HERE
bayes_risk = YOUR CODE HERE

knn_risk = YOUR CODE HERE
lda_risk = YOUR CODE HERE

all_bayes_risks = c(all_bayes_risks, bayes_risk)
all _ knn_risks = c(all_knn_risks, knn_risk)
all_lda_risks = c(all_lda_risks, lda_risk)

}

If done correctly, you should have three vectors of risk values, each from a different classification method.
Create an intuitive plot that compares these three values. Make sure this plot compares the values AT THE
SAME INTERATION. Our suggestion would be a line plot with the z-axis as the iteration number and the
y-axis as the risk value, colored by classification method.

YOUR CODE HERE

Comment on your model

YOUR ANSWER HERE

	Bayes Rule and Univariate Normal Simulations
	k-nearest Neighbors and LDA
	Method Evaluation

