
Computer Assignment 10 - Linear Regression
Machine Learning, Spring 2020

YOUR NAME

In this assignment, we will learn how to implement three important regression techniques - linear regression,
ridge regression and the LASSO - in R. We’ll apply these three modeling techniques to the preloaded R
dataset mtcars.

1.Regression overview and loading the data

Linear regression is used to model a continuous response variable y as a linear combination of p predictors
taking values x1, . . . , xp. Suppose that one observes n samples of y and associated predictors (in this case
y, x1, . . . , xp are all n dimensional vectors). Define X :“ px1x2 . . . xpq as the n ˆ p design matrix. The
stochastic linear regression model of y on x1, . . . xp is given by

p1q : y “ Xβ ` ε

where ε “ pε1, . . . , εpqT is a vector of uncorrelated errors with mean 0 and variance 1 and β “ pβ1, . . . , βpq
T is

the coefficient vector of unknown parameters. We typically assume a stronger condition that εi
iid
„ Np0, 1q to

simplify statistical inference on β0, . . . , βp. One should be careful when applying model (1) as there are many
conditions that should be verified. We don’t discuss these conditions here, though we recommend reading
more about model selection for linear regression.

Recall from class that the least squares estimates β̂ is given by the normal equations:

p2q : β̂ “ pXTXq´1XT y

As we can see from (2), the calculation of β̂ relies upon the invertibility of XTX. Even if we assume p ă n,
we still require that there is no perfectly linear dependence between the predictor vectors x1, . . . , xp. In
other words, we require the design matrix X to have full rank p. When rankpXq ă p, then X suffers from
multicollinearity in which case additional tools are needed for estimation of β. For example, penalization
methods like ridge regression (squared penalization) or Lasso (L1 penalization) can be used to “shrink" the
estimates of β towards the origin.

We will use the mtcars dataset available in R as an example throughout this assignment. This dataset
describes various quantitative features of 32 different automobiles. There are 11 total variables in this dataset.
We will study miles per gallon (mpg) as a function of four other predictors:

1. disp: displacement (cu.in.)
2. hp: gross horsepower
3. drat: rear axle ratio
4. wt: weight (lb/1000)

Load and parse the data with the following code:
#load the data
data(mtcars)
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#create design matrix
X = data.frame(disp = mtcars$disp, hp = mtcars$hp, wt = mtcars$wt, drat = mtcars$drat)

#create response
Y = mtcars$mpg

Questions:

1. To get an initial idea of pairwise relationships among the predictors, plot a grid of pairwise scatterplots
on X using the pairs() command. Comment on the grid of pairwise scatterplots. Do any pair of
predictors appear to share a linear relationship with one another?

YOUR CODE HERE

2. What if a pair of predictors have a perfect linear relationship (i.e their correlation is 1 or -1)? Can we
still estimate β using non-penalized linear regression? In this case, is XTX invertible? Why or why
not?

YOUR ANSWER HERE

3. What can you say about the least squares estimates β̂ when the correlation between a pair of predictors
gets close to 1 or -1? (HINT: think about the what happens to the empirical variance of X in this case.
How does this affect the estimates β̂?)

YOUR ANSWER HERE

2. Linear Regression:

The lm(y ~ x, data) command can be used to run a linear regression of y on x. Here, y and x are both
n dimensional vectors. The data argument is optional and specifies the source (a data frame) which x is
contained. Once a linear regression has been run, we can use the summary( ) command to obtain coefficient
estimates, standard errors of estimates, and p-values measuring the significance of each coefficient in the
fitted model. Please type ?lm for more details. Fit and summarize a linear model of mpg on the remaining
variables using the following code:
linear.reg = lm(Y ~ disp + hp + wt + drat, data = X)
summary(linear.reg)

Now to demonstrate a situation of perfect collinearity, consider including a fifth covariate which is exactly
twice the value of the hp variable. Construct a new design matrix and try fitting a linear model using the
following code:
#construct a new design matrix
X.new = data.frame(X, two.hp = 2*X$hp)
#attempt to fit a linear model
linear.reg.fail = lm(Y ~ disp + hp + wt + drat + two.hp, data = X.new)
#summarize the regression
summary(linear.reg.fail)

Questions:

1. What are the estimated coefficients on each predictor in the linear.reg model?
2. Which of these coefficients are statistically significant (at a 0.05 level)? Write the p-value for each of

the estimated coefficients.
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3. What did R do when we introduced perfect collinearity in linear.reg.fail? Since we know that XTX
is not invertible in this case, how did R still fit the model? (HINT: note that the coefficients on the
original 4 variables remained the same as those in linear.reg.)

3.Ridge Regression:

The lm.ridge(y „ x, data, lambda) command is used to run a ridge regression of y on x with ridge parameter
lambda. Here, y, x and data have the same interpretation as in the lm() function described in question 2.
The lm.ridge() command is available in the MASS package in R, so be sure to load this package before use.
Importantly, one must specify the ridge parameter λ for his/her/their choice of model. One principled way to
choose λ is through cross validation.

For the moment, let’s try a few fixed values of λ. First, fit a ridge regression for a fixed value of λ “ 1. Also,
calculate the distance β̂ is from the origin (a.k.a the magnitude of β̂) using the following code:
#run ridge regression with lambda = 1
ridge.reg.1 = lm.ridge(Y ~ disp + hp + wt + drat, data = X, lambda = 1)

#get a summary of the fit
coef.ridge.1 = coef(ridge.reg.1)

#calculate the magnitude of the estimated coefficient vector
dist.reg.1 = sum(abs(coef.ridge.1))

Questions:

1. Write the estimated coefficients for the fitted model with λ “ 1. What is magnitude of β̂ in this model?
2. Fit a ridge regression with λ “ 0. Write down the estimated coefficients and the magnitude of β̂. How

do the estimated coefficients here compare to those found with non-penalized linear regression? Explain
why your observation makes sense.

YOUR CODE HERE

3. Fit a ridge regression with λ “ 10, 50, 100, and 1000. For each value, calculate the magnitude of the
estimated coefficient vector. What happens to the magnitude of β̂ as you increase λ? This is an example
of the “shrinkage" effect of ridge regression.

YOUR CODE HERE

4.LASSO:

The glmnet(X, y, lambda) command can be used to fit the LASSO model of y on X. The glmnet package
contains the functions required to conduct LASSO. Download this package before proceeding using the
install.packages() and library() commands. Like ridge regression, the LASSO relies on the choice of a penalty
parameter, (call it λ1). The glmnet(X, y, lambda) command is used to fit a LASSO regression with specified
parameter lambda. In contrast to the lm() and ridge.lm() commands, the glmnet(X, y, lambda) command
requires X to be an nˆ p design matrix. As usual, y is the n dimensional vector of responses. Once again,
we can choose the “best" λ1 using cross validation but we’ll come back to this later. The coef() command is
used to summarize the estimated coefficients of the model. Fit a LASSO model with λ1 “ 1 to the mtcars
data and calculate the magnitude of the estimated coefficients using the following commands:
#conduct a cross validation study to fit minimum MSE model
lasso.fit.1 = glmnet(as.matrix(X),Y,lambda = 1)
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#summarize the estimated coefficients
coef.lasso.1 = coef(lasso.fit.1)

#calculate the magnitude of estimated coefficients
dist.lasso.1 = sum(abs(coef.lasso.1))

Questions:

1. Write the estimated coefficients for the fitted model with λ1 “ 1. What is the magnitude of β̂ in this
model?

2. Fit the LASSO with λ1 “ 0. Write down the estimated coefficients and the magnitude of β̂. Do
these estimates match (or are within a precision error close to) those found in the non-penalized linear
regression?

YOUR CODE HERE

3. Fit the LASSO with λ1 “ 10, 50, 100, and 1000. For each value, calculate the magnitude of the estimated
coefficient vector. What happens to the magnitude of β̂ as you increase λ? Why do you think this is?

YOUR CODE HERE

4. In this assignment, we considered a dataset where n ą p. If we had a situation where p ą n, what
modeling framework would you consider using to fit a linear regression? If you do not remove any of
the variables, can we use non-penalized linear regression when p ą n?

5. High Dimensional LASSO:

We will repeat the analysis that was done in class. Start by uncommenting and running the following code
to install the BicocManager and bcellViper packages. If you are having any difficulties installing these
packages, you can seek further instruction here.
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("bcellViper")
# install.packages("HDCI")
library(bcellViper)
data(bcellViper)
gene_expressions = data.frame(t(assayDataElement(dset,'exprs')))

The installation of the above packages needs only to be done once, and can be re-commented after this initial
run.

Questions

1. Run an OLS model on the gene_expressions data, using ADA as your response variables, and the
remaining variables as your predictors. Comment on any irregularities in the model output. Explain
why you are not getting a reasonable number for your degrees of freedom in the model summary.

YOUR CODE, AND ANALYSIS, HERE

2. Now run 5 different LASSO models on this data, using any λ values of your choosing. Report how
many non-zero β coefficients each model has. Plot the number of non-zero coefficients as a function of
λ. Comment on any trend you observe.

4

http://bioconductor.org/packages/3.10/data/experiment/html/bcellViper.html


YOUR CODE, AND ANALYSIS, HERE
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