
© 2022 Mayo Foundation for Medical Education and Research

• Our method outperforms the Hotelling T2 Scan Statistic 
both in terms of True Positive and False Negative Rates.

• After determining a changepoint, our Posterior Analysis 
identifies in what way the data changed.

• Now that the performance of this method has been strongly 
verified, it will be applied to in-practice models at the Mayo 
Clinic in Rochester.  A preliminary implementation will be to 
the model in [3].

• Our method identifies changes in a dataset’s missingness 
structure and can therefore find changes not directly tied 
to the distribution of the data.
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BACKGROUND

When a predictive model is in production, it must be monitored 
over time to ensure that its performance does not suffer from drift 
or abrupt changes to data.  Typically, this is done by evaluating the 
algorithm’s predictions to outcome data and ensuring that the 
algorithm maintains an acceptable level of accuracy over time.  
However, it is far preferable to learn about major changes in the 
input data that could affect the model’s performance in real-time, 
long before learning that the performance of the model itself has 
dropped by monitoring outcome data.  Thus, there is large need for 
robust, real-time monitoring of high dimensional input data over 
time.  

OBJECTIVES AND METHODS

Here we consider the problem of change point detection on high-
dimensional longitudinal data with mixed variable types and 
missing values.  We do this by fitting an array of Mixture Gaussian 
Graphical Models to groupings of homogeneous data in time, 
called regimes, which we model as the observed states of a 
Markov process with unknown transition probabilities.   The 
primary goal of this model is to identify when there is a regime 
change, as this indicates a significant change in the input data 
distribution.  To handle the messy nature of real-world data which 
has mixed continuous/discrete variable types, missing data, etc., 
we take a Bayesian latent variable approach. This affords us 
flexibility to handle missing values in a principled manner, while 
simultaneously providing a way to encode discrete and censored 
values into a continuous framework. We take this approach a step 
further by encoding the missingness structure, which allows our 
model to then detect major changes in the patterns of missingness, 
in addition to the structure of the data distributions themselves. We 
assess our approach on simulated data and apply it to an in-
production model for the need for a palliative care consult at Mayo 
Clinic Rochester.
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Bayesian Change Point Detection for 
Mixed Data with Missing Values

Proportion of missing values observed in the Lipase variables over 
300 days in 2020-2021 at the Mayo Clinic in Rochester.  In 

addition to shifts in the data distribution, regime changes can be 
driven by changes in the missingness structure.  A regime change 

occurred around day 160.

FIGURE 1: Observed Proportion of Missing Values in Lipase

FIGURE 2: Example of Model Fit

Example of a single fit of our model, with three regimes over the 
course of nine days.  A Mixture GGM is fit to each regime.  The 

regime vector parameter ɸ encodes the regime structure of this fit.

• We take a fully Bayesian approach to learning a vector of 
regime assignments ɸ, to which we assign a prior 
according to a Markov Process with unknown transition 
probabilities.  Samples from this vector are simulated via a 
Merge-Split-Swap algorithm similar to [1].

• The data within a regime is modeled according to a 
Mixture Gaussian Graphical Model (Mixture GGM), where 
the unknown graph structure is assumed static across 
regimes.

• Mixture GGM parameters, Markov process transition 
probabilities, and regime assignments all learned under a 
Gibbs framework.

• Graph structures across regimes are learned with a 
Double Reversible Jump Metropolis-Hastings Algorithm 
[2].

WE LEARN AN ARRAY OF RANDOM GRAPHS ASSIGNED TO REGIMES

DATA ARE THEN DISTRIBUTED BASED ON THEIR REGIME ASSIGNMENT

MESSY DATA?

NO PROBLEM.

DATA ISSUES AND MODEL CHALLENGES SOLUTIONS
• Missing Data
• Mixed Data (discrete, binary, continuous)
• Censored Values

Bayesian Latent Variables

• HUGE data (n in millions, p ~= 250) Sparsity Assumption on Mixture GGM

• Lack of information for some priors Bayesian Hierarchical Modeling

• Learning parameters for a GGM Double Reversible Jump Metropolis 
Hastings, Conjugate priors.

OUR APPROACH ANTICIPATES 
MAJOR MODERN DATA 
CHALLENGES FACED IN REAL-
WORLD APPLICATIONS

CONTACT

Simulated data is 
unimodal, with 
cont. variable 
types, missing 
values, with a 

mean shift

FIGURE 3: Simulation Study of Changepoint Model vs. Hotelling T2  Scan Statistic

Proportion of times over 300 simulated data sets where a changepoint was located; the true changepoint is at timepoint 8.  We
compare our Changepoint model with regular GGMs, our method with Mixture GGMs, and a Hotelling T2 Scan statistic with a 3-

day memory. 

ONCE A CHANGEPOINT IS LOCATED:
HOW DO WE DETERMINE WHAT CHANGED?
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distributions before and after known changepoint.  The only change 
in the true data distributions is a mean shift in only variables 5 & 6, 

which this method correctly identifies.

FIGURE 2: Analysis of Distribution Change Between Regimes
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Simulated data is 
unimodal, mixed 
variables, has 

missing values, 
and a shift in 
covariance

Simulated data is 
bimodal, mixed 
variables, has 

missing values, and 
a shift in covariance

Simulated data is 
unimodal and 

continuous, but the 
missingness 

structure changes
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