Analysis Report

v3

Duration 932.612 us
Grid Size [1024,1,1]
Block Size [1024,1,1]
Registers/Thread 32

Shared Memory/Block 28 KiB
Shared Memory Requested 64 KiB
Shared Memory Executed 64 KiB
Shared Memory Bank Size 4B

[0] Quadro K620

GPU UUID GPU-1ef8bc5c-b0a3-9167-636d-16994a50ac4 7
Compute Capability 5.0

Max. Threads per Block 1024

Max. Threads per Multiprocessor 2048

Max. Shared Memory per Block 48 KiB

Max. Shared Memory per Multiprocessor 64 KiB

Max. Registers per Block 65536

Max. Registers per Multiprocessor 65536

Max. Grid Dimensions

[2147483647, 65535, 65535]

Max. Block Dimensions

[1024, 1024, 64]

Max. Warps per Multiprocessor 64

Max. Blocks per Multiprocessor 32

Single Precision FLOP/s 863.232 GigaFL OP/s
Double Precision FLOP/s 26.976 GigaFLOP/s
Number of Multiprocessors 3

Multiprocessor Clock Rate 1.124 GHz
Concurrent Kernel true

Max IPC 6

Threads per Warp 32

Globa Memory Bandwidth 28.8 GB/s

Globa Memory Size 1.946 GiB

Constant Memory Size 64 KiB

L2 Cache Size 2MiB

Memcpy Engines 1

PCle Generation 2

PCleLink Rate 5 Ghit/s

PCle Link Width 16

1. Compute, Bandwidth, or Latency Bound

Thefirst step in analyzing an individual kernel isto determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "v3" ismost likely limited by
instruction and memory latency. Y ou should first examine the information in the "Instruction And Memory Latency" section to
determine how it islimiting performance.

1.1. Kernel Performance I s Bound By Instruction And Memory L atency

Thiskernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Quadro
K620". These utilization levelsindicate that the performance of the kernel is most likely limited by the latency of arithmetic or
memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates |latency issues.

100%

- Memory operations
- Control-flow operations
- Arithmetic operations
[] Memory (Device)

Utilization
@
I

Compute Memory (Device)

2. Instruction and Memory Latency

Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
results bel ow indicate that the GPU does not have enough work because instruction execution is stalling excessively.

2.1. Instruction Latencies May Be Limiting Performance

Instruction stall reasons indicate the condition that prevents warps from executing on any given cycle. The following chart shows
the break-down of stalls reasons averaged over the entire execution of the kernel. The kernel has good theoretical and achieved
occupancy indicating that there are likely sufficient warps executing on each SM. Since occupancy is not an issueit is likely that
performance is limited by the instruction stall reasons described below.

Constant - A constant load is blocked due to a miss in the constants cache.

Instruction Fetch - The next assembly instruction has not yet been fetched.

Memory Dependency - A load/store cannot be made because the required resources are not available or are fully utilized, or too
many requests of a given type are outstanding. Data request stalls can potentially be reduced by optimizing memory alignment and
access patterns.

Not Selected - Warp was ready to issue, but some other warp issued instead. Y ou may be able to sacrifice occupancy without
impacting latency hiding and doing so may help improve cache hit rates.

Execution Dependency - An input required by the instruction is not yet available. Execution dependency stalls can potentially be
reduced by increasing instruction-level parallelism.

Pipeline Busy - The compute resource(s) required by the instruction is not yet available.

Synchronization - Thewarp isblocked at a__syncthreads() call.

Memory Throttle - Large number of pending memory operations prevent further forward progress. These can be reduced by
combining several memory transactions into one.

Texture - The texture sub-system is fully utilized or has too many outstanding requests.

Optimization: Resolve the primary stall issue; other.

Stall Reasons

memory
dependency

execution
dependency

texture

synchronization ——— instruction

fetch
not
selected

memory
throttle

constant
pipe
busy

;

2.2. Occupancy IsNot Limiting Kernel Performance
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU.

Variable

Occupancy Per SM
Active Blocks
Active Warps
Active Threads

Occupancy

Warps

Threads/Block

Warps/Block

Block Limit

Registers
Registers/Thread
Registers/Block

Block Limit

Shared Memory

Shared Memory/Block

Block Limit

Achieved | Theoretical Device Limit

59.92 64

2048

93.6% 100%

1024

32

32

32768

28672

2.3. Occupancy Charts
The following charts show how varying different components of the kernel will impact theoretical occupancy.

32

64

2048

100%

1024

32

32

65536

65536

32

65536

32

Grid Size: [1024,1,1] (1024 blocks) Block Size: [1024,1,1] (1024 threads)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0 5 10 15 20 25 30 35 40 45 50 55 60 64

256 512 768 1024 1280 1536 1792 2048

0% 15% 30% 45% 60% 75% 90% 100%

0 128 256 384 512 640 768 896 1024

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0 8192 16384 24576 32768 40960 49152 57344 65536
| 2]
0 16k 32k 48k 64k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

= = 1
0 16k 32k 48k 64k
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Varying Block Size

64 T —
,—'54"@1024
—
56 T
48 1
40 +
=
@
.
b4
T 2T o
=4
S —
24 +
16 + —
—
s 4
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Threads Per Block
Varying Register Count
64 Q@
64 @ 32
56
48 +
20 +
32 1
24 +
16 +
s 4
0 3744 7488 11232 14976 18720 22464 26208 29952 33696 37440 21184 44928 48672 52416 56160 59904 65536

Registers Per Thread

Varying Shared Memory Usage

64 °
64 @28k

48 +

20 +

24

4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 44k 48k 52k 56k 60k 64k

Shared Memory Per Block (bytes)

2.4. Multiprocessor Utilization

The kernel's blocks are distributed across the GPU's multiprocessors for execution. Depending on the number of blocks and the
execution duration of each block some multiprocessors may be more highly utilized than others during execution of the kernel. The
following chart shows the utilization of each multiprocessor during execution of the kernel.

100%

Utilization
g

SMO0 SM1

Multiprocessor

3. Compute Resour ces
GPU compute resources limit the performance of akernel when those resources are insufficient or poorly utilized.
3.1. Function Unit Utilization

Different types of instructions are executed on different function units within each SM. Performance can be limited if afunction

unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.

Load/Store - Load and store instructions for shared and constant memory.
Texture - Load and store instructions for local, global, and texture memory.
Single - Single-precision integer and floating-point arithmetic instructions.
Double - Double-precision floating-point arithmetic instructions.

Special - Special arithmetic instructions such as sin, cos, popc, etc.
Control-Flow - Direct and indirect branches, jumps, and calls.

High

Med

Utilization Level

Low

H =

Single Double Special

Load/Store Texture Control-Flow

3.2. Instruction Execution Counts

The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructionsin that class. The

"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

100%

90%

80%

70%

50%

40%

Execution Count (% of total)

30%

20%

10%
- — I == B =

FP32 FP64 Integer Control-Flow Load/Store Bit-Convert Comm. Misc.

Inactive

3.3. Floating-Point Operation Counts

The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operationsin that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

90%
80%

70%

50%
40%

30%

Execution Count (% of total)

20%

L

FP32 Add FP32 Mul FP32 Mul-Add FP Special FP64 Add FP64 Mul FP64 Mul-Add

4. Memory Bandwidth

Memory bandwidth limits the performance of akernel when one or more memoriesin the GPU cannot provide data at the rate
requested by the kernel.

4.1. Memory Bandwidth And Utilization

The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory.

Transactions Bandwidth Utilization

Shared Memory

Shared Loads 229376 33.722 GB/s
Shared Stores 229376 33.722 GB/s
[]
Shared Total 458752 67.444 GB/s B B N B B N B B N B N
Idle Low Medium High Max
L2 Cache
Reads 962496 35.375GB/s
Writes 131078 4.818 GB/s
L |
Total 1093574 40.193 GB/s B B N B B " B B " B N
Idle Low Medium High Max
Unified Cache
Local Loads 0 0B/s
Local Stores 0 0B/s
Global Loads 1966080 34.926 GB/s
Global Stores 131072 4.817 GB/s
Texture Reads 1048576 38.539 GB/s
L ||
Unified Total 3145728 78.283 GB/s B B N B B " B B B B i
Idle Low Medium High Max
Device Memory
Reads 138792 5.101 GB/s
Writes 130863 4.81 GB/s
L |
Total 269655 9.911 GB/s B B N B B " B B N B N
Idle Low Medium High Max
System Memory
[PCle configuration: Gen2 x16, 5 Gbit/s |
[]
Reads 0 0B/s B B N B B N B B N B N
Idle Low Medium High Max
L ||
Writes 5 183.769 kB/s | = B N B B N B B N B i

Idle Low Medium High Max

