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Analysis Report

round_timestamp
Duration 4.61396 ms (4,613,956 ns)

Grid Size [ 6144,1,1 ]

Block Size [ 1024,1,1 ]

Registers/Thread 21

Shared  Memory/Block 0 B

Shared Memory Requested 64 KiB

Shared Memory Executed 64 KiB

Shared Memory Bank Size 4 B

[0] Quadro K620[0] Quadro K620[0] Quadro K620[0] Quadro K620

GPU UUID GPU-1ef8bc5c-b0a8-9167-636d-16994a50ac47

Compute Capability 5.0

Max. Threads per Block 1024

Max. Threads per Multiprocessor 2048

Max. Shared Memory per Block 48 KiB

Max. Shared Memory per Multiprocessor 64 KiB

Max. Registers per Block 65536

Max. Registers per Multiprocessor 65536

Max. Grid Dimensions [ 2147483647, 65535, 65535 ]

Max. Block Dimensions [ 1024, 1024, 64 ]

Max. Warps per Multiprocessor 64

Max. Blocks per Multiprocessor 32

Single Precision FLOP/s 863.232 GigaFLOP/s

Double Precision FLOP/s 26.976 GigaFLOP/s

Number of Multiprocessors 3

Multiprocessor Clock Rate 1.124 GHz

Concurrent Kernel true

Max IPC 6

Threads per Warp 32

Global Memory Bandwidth 28.8 GB/s

Global Memory Size 1.946 GiB

Constant Memory Size 64 KiB

L2 Cache Size 2 MiB

Memcpy Engines 1

PCIe Generation 2

PCIe Link Rate 5 Gbit/s

PCIe Link Width 16
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1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory 
bandwidth, or instruction/memory latency.  The results below indicate that the performance of kernel "round_timestamp" is most 
likely limited by memory bandwidth. You should first examine the information in the "Memory Bandwidth" section to determine 
how it is limiting performance.

1.1. Kernel Performance Is Bound By Memory Bandwidth
For device "Quadro K620" the kernel's compute utilization is significantly lower than its memory utilization. These utilization 
levels indicate that the performance of the kernel is most likely being limited by the memory system. For this kernel the limiting 
factor in the memory system is the bandwidth of the Device memory.
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2. Memory Bandwidth
Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate 
requested by the kernel. The results below indicate that the kernel is limited by the bandwidth available to the device memory.

2.1. GPU Utilization Is Limited By Memory Bandwidth
The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also 
shows the utilization of each memory type relative to the maximum throughput supported by the memory. The results show that the 
kernel's performance is potentially limited by the bandwidth available from one or more of the memories on the device.

Optimization: Try the following optimizations for the memory with high bandwidth utilization.
	Shared Memory - If possible use 64-bit accesses to shared memory and 8-byte bank mode to achieved 2x throughput.
	L2 Cache - Align and block kernel data to maximize L2 cache efficiency.
	Unified Cache - Reallocate texture data to shared or global memory. Resolve alignment and access pattern issues for global loads 
and stores.
	Device Memory - Resolve alignment and access pattern issues for global loads and stores.
	System Memory (via PCIe) - Make sure performance critical data is placed in device or shared memory.
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3. Instruction and Memory Latency
Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The 
performance of latency-limited kernels can often be improved by increasing occupancy.  Occupancy is a measure of how many 
warps the kernel has active on the GPU, relative to the maximum number of warps supported by the GPU. Theoretical occupancy 
provides an upper bound while achieved occupancy indicates the kernel's actual occupancy. 

3.1. Instruction Latencies
Instruction stall reasons indicate the condition that prevents warps from executing on any given cycle. The following chart shows 
the break-down of stalls reasons averaged over the entire execution of the kernel. The kernel has low theoretical or achieved 
occupancy. Therefore, it is likely that the instruction stall reasons described below are not the primary limiters of performance and 
so should not be considered until any occupancy issues are resolved.
	Constant - A constant load is blocked due to a miss in the constants cache.
	Instruction Fetch - The next assembly instruction has not yet been fetched.
	Memory Dependency - A load/store cannot be made because the required resources are not available or are fully utilized, or too 
many requests of a given type are outstanding. Data request stalls can potentially be reduced by optimizing memory alignment and 
access patterns.
	Not Selected - Warp was ready to issue, but some other warp issued instead. You may be able to sacrifice occupancy without 
impacting latency hiding and doing so may help improve cache hit rates.
	Execution Dependency - An input required by the instruction is not yet available. Execution dependency stalls can potentially be 
reduced by increasing instruction-level parallelism.
	Pipeline Busy - The compute resource(s) required by the instruction is not yet available.
	Synchronization - The warp is blocked at a __syncthreads() call.
	Memory Throttle - Large number of pending memory operations prevent further forward progress. These can be reduced by 
combining several memory transactions into one.
	Texture - The texture sub-system is fully utilized or has too many outstanding requests.

3.2. Occupancy Is Not Limiting Kernel Performance
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU.
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3.3. Occupancy Charts
The following charts show how varying different components of the kernel will impact theoretical occupancy. 
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3.4. Multiprocessor Utilization
The kernel's blocks are distributed across the GPU's multiprocessors for execution. Depending on the number of blocks and the 
execution duration of each block some multiprocessors may be more highly utilized than others during execution of the kernel. The 
following chart shows the utilization of each multiprocessor during execution of the kernel.
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4. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

4.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function 
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited 
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

4.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each 
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The 
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due 
to divergence.
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4.3. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and 
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The 
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.


