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Abstract Several recent works have shown that protein
structure can predict site-specific evolutionary sequence

variation. In particular, sites that are buried and/or have

many contacts with other sites in a structure have been
shown to evolve more slowly, on average, than surface

sites with few contacts. Here, we present a comprehensive

study of the extent to which numerous structural properties
can predict sequence variation. The quantities we consid-

ered include buriedness (as measured by relative solvent

accessibility), packing density (as measured by contact
number), structural flexibility (as measured by B factors,

root-mean-square fluctuations, and variation in dihedral

angles), and variability in designed structures. We obtained
structural flexibility measures both from molecular

dynamics simulations performed on nine non-homologous

viral protein structures and from variation in homologous
variants of those proteins, where they were available. We

obtained measures of variability in designed structures

from flexible-backbone design in the Rosetta software. We
found that most of the structural properties correlate with

site variation in the majority of structures, though the

correlations are generally weak (correlation coefficients of
0.1–0.4). Moreover, we found that buriedness and packing

density were better predictors of evolutionary variation

than structural flexibility. Finally, variability in designed
structures was a weaker predictor of evolutionary vari-

ability than buriedness or packing density, but it was

comparable in its predictive power to the best structural
flexibility measures. We conclude that simple measures of

buriedness and packing density are better predictors of

evolutionary variation than the more complicated predic-
tors obtained from dynamic simulations, ensembles of

homologous structures, or computational protein design.

Introduction

Patterns of amino-acid sequence variation in protein-cod-
ing genes are shaped by the structure and function of the

expressed proteins (Wilke and Drummond 2010; Liberles

et al. 2012; Marsh and Teichmann 2014). As the most basic
reflection of this relationship, buried residues in proteins

tend to be more evolutionarily conserved than exposed

residues (Overington et al. 1992; Goldman et al. 1998;
Mirny and Shakhnovich 1999; Dean et al. 2002). More

specifically, when evolutionary variation is plotted as a

function of Relative Solvent Accessibility (RSA, a measure
of residue buriedness), the relationship falls, on average,

onto a straight line with a positive slope (Franzosa and Xia

2009; Ramsey et al. 2011; Franzosa and Xia 2012; Scherrer
et al. 2012). Importantly, however, this relationship rep-

resents on an average many sites and many proteins. At the

level of individual sites in individual proteins, RSA is often
only weakly correlated with evolutionary variation (Meyer

and Wilke 2013; Meyer et al. 2013; Yeh et al. 2014b).
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Other structural measures, such as residue contact

number (CN), have also been shown to correlate with
sequence variability (Liao et al. 2005; Franzosa and Xia

2009; Yeh et al. 2014b), and some have argued that CN

predicts evolutionary variation better than RSA (Yeh et al.
2014b, a). Because CN may be a proxy for residue and site-

specific backbone flexibility (Halle 2002), a positive trend

between local structural variability and sequence variabil-
ity may also exist (Yeh et al. 2014b). Indeed, several

authors have suggested that such protein dynamics may
play a role in sequence variability (Liu and Bahar 2012;

Nevin Gerek et al. 2013; Marsh and Teichmann 2014).

However, a recent paper argued against the flexibility
model, on the grounds that evolutionary rate is not linearly

related to flexibility (Huang et al. 2014).

While RSA and CN can be calculated in a straightfor-
ward manner from individual crystal structures, measures

of structural flexibility, either at the side-chain or the

backbone level, are more difficult to obtain. Two viable
approaches to measuring structural flexibility are (i) exam-

ining existing structural data or (ii) simulating protein

dynamics. NMR ensembles may approximate physiologi-
cally relevant structural fluctuations. Similar fluctuations

are observed in ensembles of homologous crystal structures

(Maguida et al. 2008; Echave and Fernández 2010). The
thermal motion of atoms in a crystal is recorded in B

factors, which is available for every atom in every crystal

structure. To measure protein fluctuations using a simula-
tion approach, one can either use coarse-grained modeling,

e.g., via Elastic Network Models (Sanejouand 2013), or

atom-level modeling, e.g., via molecular dynamics (MD)
(Karplus and McCammon 2002). However, it is not well

understood which, if any, of these measures of structural

flexibility provide insight into the evolutionary process,
particularly into residue-specific evolutionary variation.

Here, we provide a comprehensive analysis of the extent

to which numerous different structural quantities predict
evolutionary sequence (amino-acid) variation. We consid-

ered two measures of evolutionary sequence variation: site

entropy, as calculated from homologous protein align-
ments, and evolutionary rate. As structural predictors, we

included buriedness (RSA), packing density (CN), and

measures of structural flexibility, including B factors,
several measures of backbone and side-chain variability

obtained from MD simulations, and backbone variability

obtained from alignments of homologous crystal structures.
We additionally considered site variability, as predicted

from computational protein design with Rosetta.

On a set of nine viral proteins, RSA and CN generally
performed better at predicting evolutionary site variation

than either measures of structural flexibility or computa-

tional protein design. Among the measures of structural
flexibility, measures of side-chain variability performed

better than measures of backbone variability, possibly

because the former are more tightly correlated with residue
packing. Finally, site variability predicted from computa-

tional protein design performed worse than the best-per-

forming measures of structural fluctuations.

Materials and Methods

Sequence Data, Alignments, and Evolutionary Rates

All viral sequences except influenza sequences were

retrieved from http://hfv.lanl.gov/components/sequence/
HCV/search/searchi.html. The sequences were truncated to

the desired genomic region but did not restrict in any other

way. Influenza sequences were downloaded from http://
www.fludb.org/brc/home.spg?decorator=influenza. We only

considered human influenza A, H1N1, excluding H1N1

sequences derived from the 2009 Swine Flu outbreak or any
sequence before 1998, but we did not place any geographic

restrictions.

For all viral sequences, we removed any sequence that
was not in reading frame, any sequence which was shorter

than 80 % of the longest sequence for a given viral protein

(so as to remove all partial sequences), and any sequence
containing any ambiguous characters. Alignments were

constructed using amino-acid sequences with MAFFT

(Katoh et al. 2002, 2005), specifying the—auto flag to
select the optimal algorithm for the given data set, and then

back-translated to a codon alignment using the original

nucleotide sequence data.
To assess site-specific sequence variability in amino-

acid alignments, we calculated the Shannon entropy (Hi) at

each alignment column i:

Hi ¼ #
X

j

Pij ln Pij; ð1Þ

where Pij is relative frequency of amino acid j at position

i in the alignment.

For each alignment, we also calculated evolutionary
rates, as described (Spielman and Wilke 2013). In brief,

we generated a phylogeny for each codon alignment in

RAxML (Stamatakis 2006) using the GTRGAMMA
model. Using the codon alignment and phylogeny, we

inferred evolutionary rates with a Random Effects Like-

lihood (REL) model, using the HyPhy software (Kosa-
kovsky Pond et al. 2005). The REL model was a variant

of the GY94 evolutionary model (Goldman and Yang

1994) with five x rate categories as free parameters. We
employed an Empirical Bayes approach (Yang 2000) to

infer x values for each position in the alignment. These x
values represent the evolutionary-rate ratio dN/dS at each
site.
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Protein Crystal Structures

A total of nine viral protein structures were selected for
analysis, as tabulated in Table 1. Sites in the PDB struc-

tures were mapped to sites in the viral sequence alignments

via a custom-built python script that creates a consensus
map between a PDB sequence and all sequences in an

alignment.

For each of the viral proteins, homologous structures
were identified using the blast.pdb function of the R

package Bio3D (Grant et al. 2006). BLAST hits were

retained if they had & 35 % sequence identity and & 90 %
alignment length. Among the retained hits, we subse-

quently identified sets of homologous structures with

unique sequences and with mutual pairwise sequence
divergences of & 2; & 5, and & 10 %.

Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were carried out

using the GPU implementation of the Amber12 simulation
package (Salomon-Ferrer et al. 2013) with the most recent

release of the Amber fixed-charge force field (ff12SB; c.f.,

AmberTools13 Manual). Prior to MD production runs, all
PDB structures were first solvated in a box of TIP3P water

molecules (Jorgensen et al. 1983) such that the structures

were at least 10Å away from the box walls. Each individual

system was then energy minimized using the steepest

descent method for 1,000 steps, followed by conjugate
gradient for another 1000 steps. Then, the structures were

constantly heated from 0 to 300 K for 0.1ns, followed by
0.1ns constant pressure simulations with positional

harmonic restraints on all atoms to avoid instabilities dur-

ing the equilibration process. The systems were then
equilibrated for another 5ns without positional restraints,

each followed by 15ns of production simulations for sub-

sequent post-processing and analyses. All equilibration and
production simulations were run using the SHAKE algo-

rithm (Ryckaert et al. 1977). Langevin dynamics were used

for temperature control.

Measures of Buriedness, Packing Density,
and Structural Flexibility

As a measure of residue buriedness, we calculated Relative
Solvent Accessibility (RSA). To calculate RSA, we first

calculated the Accessible Surface Area (ASA) for each

residue in each protein, using the DSSP software (Kabsch
and Sander 1983). We then normalized ASA values by the

theoretical maximum ASA of each residue (Tien et al.

2013) to obtain RSA. We considered two measures of local
packing density, contact number (CN), and weighted con-

tact number (WCN). We calculated CN for each residue as

the total number of Ca atoms surrounding the Ca atom of
the focal residue within a spherical neighborhood of a

predefined radius r0. Following Yeh et al. (2014b), we used

r0 ¼ 13 Å. We calculated WCN as the total number of

surrounding Ca atoms for each focal residue, weighted by

the inverse square separation between the Ca atoms of the
focal residue and the contacting residue, respectively (Shih

et al. 2012).

In most analyses, we actually used the inverse of CN
and/or WCN, iCN ¼ 1=CN and iWCN ¼ 1=WCN. Note

that for Spearman correlations, which we use throughout

here, replacing a variable by its inverse changes the sign of
the correlation coefficient but not the magnitude.

As measures of structural flexibility, we considered

RMSF, variability in backbone and side-chain dihedral
angles, and B factors. We calculated RMSF for Ca
atoms based on both MD trajectories and homologous
crystal structures. For MD trajectories, we calculated

RMSF as

RMSFj ¼
X

i

rðjÞi # rðjÞ0

! "2
" #1=2

ð2Þ

where RMSFj is the root-mean-square fluctuation at site

j; rðjÞi is the position of the Ca atom of residue j at MD

frame i, and rðjÞ0 is the position of the Ca atom of residue

j in the original crystal structure.

To calculate RMSF from homologous structures, we
first aligned the structures using the Bio3D package (Grant

et al. 2006), and then we calculated

Table 1 PDB structures considered in this study

Viral protein PDB
ID

Chain Sequence
length

Number of
sequences

Hemagglutinin precursor 1RD8 AB 503 1039

Dengue protease helicase 2JLY A 451 2362

West nile protease 2FP7 B 147 237

Japanese encephalitis
helicase

2Z83 A 426 145

Hepatitis C protease 3GOL A 557 1021

Rift valley fever
nucleoprotein

3LYF A 244 95

Crimean congo
nucleocapsid

4AQF B 474 69

Marburg RNA
binding domain

4GHA A 122 42

Influenza
nucleoprotein

4IRY A 404 943
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RMSFj ¼
X

i

wi rðjÞi # hr
ðjÞi

! "2
" #1=2

; ð3Þ

where rðjÞi now stands for the position of the Ca atom of

residue j in structure i, hrðjÞi is the mean position of that Ca
atom over all aligned structures, and wi is a weight to
correct for potential phylogenetic relationship among the

aligned structures. The weights wi were calculated using
BranchManager (Stone and Sidow 2007), based on phy-

logenies built with RAxML as before.

To assess variability in backbone and side-chain dihedral
angles, we calculated Var(/), Var(w), and Var(v1). The

variance of a dihedral angle was defined according to the

most common definition in directional statistics: First, a unit
vector xi is assigned to each dihedral angle ai in the sample.

The unit vector is defined as xi ¼ ðcosðaiÞ; sinðaiÞÞ. The

variance of the dihedral angle is then defined as

VarðaÞ ¼ 1# jjhxijj; ð4Þ

where jjhxijj represents the length of the mean hxi, calcu-

lated as hxi ¼
P

i xi=n. Here, n is the sample size. The

variance of a dihedral angle is, by definition, a real number
in the range [0,1], with VarðaÞ ¼ 0 corresponding to the

minimum variability of the dihedral angle and VarðaÞ ¼ 1

to the maximum, respectively (Berens 2009). Since the v1

angle is undefined for Ala and Gly, we excluded all sites

with these residues in analyses involving v1.

B factors were extracted from the crystal structures. We
only considered the B factors of the Ca atom of each

residue.

Sequence Entropy from Designed Proteins

Designed entropy was calculated as described (Jackson
et al. 2013). In brief, proteins were designed using Roset-

taDesign (Version 39284) (Leaver-Fay et al. 2011) using a

flexible-backbone approach. This was done for all PDB
structures in Table 1 as initial template structures. For each

template, we created a backbone ensemble using the

Backrub method (Smith and Kortemme 2008). The tem-
perature parameter in Backrub was set to 0.6, allowing for

an intermediate amount of flexibility. We had previously

found in a different data set that intermediate flexibility
gave the highest congruence between designed and

observed site variability (Jackson et al. 2013).

For each of the nine template structures we designed 500
proteins.

Availability of Data and Methods

All details of simulations, input/output files, and scripts

for subsequent analyses are available to view or

download at https://github.com/clauswilke/structural_pre

diction_of_ER.

Results

Data Set and Structural Variables Considered

Our goal in this work was to determine which structural

properties best predict amino-acid variability at individual
sites in viral proteins. To this end, we selected nine viral

proteins for which we had both high-quality crystal struc-

tures and abundant sequences to assess evolutionary
sequence variation (Table 1). We quantified evolutionary

variability in two ways: by calculating sequence entropies

for each alignment column, and by calculating site-specific
evolutionary-rate ratios x ¼ dN=dS (see Methods for

details). Throughout this paper, we primarily report results

obtained for sequence entropy. Results for x were largely
comparable, with some specific caveats detailed below.

As predictors of evolutionary variability, we considered

buriedness, packing density, and residue flexibility. We
additionally considered the variation seen in computa-

tionally designed protein variants. Buriedness quantifies

the extent to which a residue is protected from solvent. We
determined residue buriedness by calculating the relative

solvent accessibility (RSA), which represents the relative

proportion of a residue’s surface in contact with solvent.
Packing density quantifies how many other residues a

given residue interacts with. We determined packing

density by calculating contact number (CN) and weighted
contact number (WCN). CN counts the number of con-

tacts within a sphere of a given radius around the a-

carbon of the focal residue, while WCN weights contacts
by the distance between the two residues. Residue bu-

riedness and packing density tend to be (anti-)correlated

but measure qualitatively different properties of a residue.
In particular, in the core of a protein, buriedness is always

zero but packing density can vary. Because contact

numbers decline as relative solvent accessibility increases,
we replaced CN and WCN with their inverses, iCN ¼
1=CN and iWCN ¼ 1=WCN, in most analyses. Impor-

tantly, as Spearman rank correlations were used, this
substitution only changed the sign of correlations but not

the magnitude.

Measures of structural flexibility assess the extent to
which a residue fluctuates in space as a protein undergoes

thermodynamic fluctuations in solution. We quantified

these fluctuations using several different measures. We
considered B factors, which measure the spatial localiza-

tion of individual atoms in a protein crystal, RMSF, the

root-mean-square fluctuation of the Ca atom over time, and
variability in side-chain and backbone dihedral angles,
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including Var(v1), Var(/), and Var(w). We employed two

broad approaches, one using PDB crystal structures and

one using molecular dynamics (MD) simulations, to obtain
these measurements. Crystal structures yielded measures

for B factors and RMSF; we obtained B factors from

individual protein crystal structures, given in Table 1, and
we calculated RMSF from aligned homologous crystal

structures for those proteins which had sufficient sequence

variation among crystal structures (see Methods and Table
2 for details). MD simulations yielded measures for RMSF

and variability in residue dihedral and side-chain angles.

More specifically, we simulated MD trajectories for all
crystal structures in Table 1. For each protein, we equili-

brated the structure, simulated 15ns of chemical time, and

recorded snapshots of the simulated structure every 10ps
(see Methods for details). We obtained RMSF and angle

variabilities from these snapshots. Additionally, we calcu-

lated time-averaged values of RSA, CN, and WCN. We
also refer to these time-averaged measures as MD RSA,

MD CN, and MD WCN, respectively. Unless specified

otherwise, all results reported below were obtained using
MD RSA, MD CN, and MD WCN.

As an alternative to predicting evolutionary variation

from simple structural measures such as contact density or

backbone flexibility, one can also predict evolutionary

variation via a protein-design approach (Dokholyan and
Shakhnovich 2001; Ollikainen and Kortemme 2013;

Jackson et al. 2013). In this case, one takes the protein

structure of interest, replaces all residue side chains with
randomly chosen alternatives, and uses a coarse-grained or

atom-level energy function to assess which side-chain

choices are consistent with the backbone conformation of
the focal structure. We have recently used this approach to

compare natural and designed sequence variability in cel-
lular proteins (Jackson et al. 2013), and we have found that

(i) flexible-backbone design, where small backbone

movements are allowed during the design phase, outper-
formed fixed-backbone design, and (ii) intermediate

backbone flexibility, obtained via an intermediate design

temperature, produced the highest congruence between
designed and natural sequences. Similarly, Dokholyan and

Shakhnovich (2001) had previously found that an inter-

mediate temperature parameter gave the best agreement
between designed and natural sequences in their model.

Inspired by these prior results, we investigated here how

protein design performed relative to simpler structural
quantities. For all proteins in our study (Table 1), we used

the Rosetta protein-design platform (Leaver-Fay et al.

2011) to generate 500 designed variants. We then calcu-
lated the sequence entropy at each alignment position of

the designed variants. We refer to the resulting quantity as

the designed entropy. We chose a design temperature of
T ¼ 0:6, which was near the optimal range in our previous

work (Jackson et al. 2013).

Evaluating Structural Predictors of Evolutionary

Sequence Variation

We began by comparing the Spearman correlations of

sequence entropy with six different measures of local

structural flexibility: B factors, RMSF obtained from MD
simulations (MD RMSF), and RMSF obtained from crystal

structures (CS RMSF), and variability in backbone and

side-chain dihedral angles (/;w, and v1). The correlation
strengths of these quantities with entropy are shown in

Fig. 1. Significant correlations (P\0:05) are shown with

filled symbols, and non-significant correlations are shown
with empty symbols (P& 0:05). We found that the vari-

ability in backbone dihedral angles, Var(/) and Var(w),

explained the least variation in sequence entropy, while the
variability in the side-chain dihedral angle, Var(v1),

explained, on average, more variation in sequence entropy

than did any other measure of structural flexibility. B
factors and the two measures of RMSF explained, on

average, approximately the same amount of variation in

entropy, even though the results for individual proteins
were somewhat discordant (see also next sub-section).

Table 2 Availability of homologous crystal structures

Viral Protein BLAST
hitsa

Unique sequences

all & 2%b & 5%b & 10%b

Hemagglutinin
precursor

63 17 10 9 7

Dengue protease
helicase

31 13 7 7 7

West nile protease 21 16 10 7 6

Japanese encephalitis
helicase

31 12 7 7 7

Hepatitis C protease 302 33 10 5 4

Rift valley fever
nucleoprotein

95 9 5 5 5

Crimean congo
nucleocapsid

7 4 3 2 2

Marburg RNA binding
domain

63 9 5 3 3

Influenza
nucleoprotein

69 15 4 4 2

Although most viral proteins have many PDB structures available, the
sequence divergence among these structures is low. Therefore, when
calculating RMSF from crystal structures, we considered only those
proteins with at least five homologous structures at 5 % pairwise
sequence divergence (highlighted in bold).
a BLAST hits against all sequences in the PDB, excluding hits with
\35 % sequence identity and \90 % alignment length
b Unique sequences at indicated minimum pairwise sequence
divergence
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Based on results from the above analysis, we proceeded
to compare the relative explanatory power among the best-

performing measures of structural flexibility (Varðv1Þ, MD

RMSF, and B factors) with buriedness (RSA), packing

density (iWCN), and designed entropy. Figure 2 shows the
Spearman correlation coefficients between sequence

entropy and each of the aforementioned quantities, for all

proteins in our analysis. In this figure, several patterns
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Fig. 1 Spearman correlation of sequence entropy with measures of
structural variability. Each symbol represents one correlation coeffi-
cient for one protein structure. Significant correlations (P\0:05) are
shown as filled symbols, and insignificant correlations (P& 0:05) are
shown as open symbols. The quantities Var(w), Var(/), Var(v1), and
MD RMSF were obtained as time-averages over 15ns of MD

simulations. B factors were obtained from individual crystal struc-
tures. CS RMSF values were obtained from alignments of homolo-
gous crystal structures when available. Almost all structural measures
of variability correlate weakly, but significantly, with sequence
entropy
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Fig. 2 Spearman correlation of sequence entropy with measures of
buriedness, packing density, and structural flexibility, as well as with
designed entropy. Each symbol represents one correlation coefficient
for one protein structure. Significant correlations (P\0:05) are shown
as filled symbols, and insignificant correlations (P& 0:05) are shown
as open symbols. The quantities MD RSA, MD iWCN, MD Var(v1),
and MD RMSF were calculated as time-averages over 15ns of MD

simulations. B factors were obtained from crystal structures, and
designed entropy was obtained from protein design in Rosetta.
Compared to the measures of structural variability and to designed
entropy, MD RSA and MD iWCN consistently show stronger
correlations with sequence entropy. Note that results for MD iWCN
are largely identical to those for MD iCN, so only MD iWCN was
included here
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emerged. First, nearly all correlations were positive and

most were statistically significant, with the main exception

of the Marburg virus RNA binding domain (PDB ID
4GHA). This protein only showed a single significant

negative correlation between sequence entropy and

Var(v1). Second, correlations were generally weak, such
that no correlation coefficient exceeded 0.4. Third, on

average, correlations were strongest for RSA and iWCN,

yielding average correlations of q ¼ 0:23 and q ¼ 0:22,
respectively. Fourth, designed entropy performed worse

than RSA or iWCN as a predictor of evolutionary sequence

variability, but it performed roughly the same as the three
flexibility measures in this figure; the values of designed

entropy, Var(v1), MD RMSF, and B factors showed aver-

age correlations of q ¼ 0:13; q ¼ 0:14; q ¼ 0:11, and

q ¼ 0:12, respectively.

MD Time-Averages Versus Crystal-Structure

Snapshots

Except for analyses involving B factors and CS RMSF, we

obtained structural measures by averaging quantities over
MD trajectories. This approach, however, did not reflect

conventional practice for measuring RSA, CN, or WCN,

which are typically measured from individual crystal
structures. Therefore, we examined whether MD time-
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Fig. 3 Spearman correlations of sequence entropy with MD-derived
and crystal-structure derived structural measures. The vertical axes in
all plots represent the Spearman correlation of sequence entropy with
one structural variable obtained from 15ns of molecular dynamics
(MD) simulations. The horizontal axes represent the Spearman’s rank
correlation coefficient of sequence entropy with the same structural
variable as in the vertical axes but measured from protein crystal

structures. Each dot represents one correlation coefficient for one
protein structure. The quantities iCN, iWCN, and RSA have nearly
identical predictive power for sequence entropy regardless of whether
they are derived from MD simulations or from crystal structures. By
contrast, MD RMSF yielded very different correlations than did CS
RMSF
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averages differed in any meaningful way from estimates

obtained from crystal structures, and whether these esti-
mates differed in their predictive power for evolutionary

sequence variation.

As shown in Table 3, RSA, CN, and WCN from crystal
structures were highly correlated with their corresponding

MD trajectory time-averages, for all protein structures we

examined (Spearman correlation coefficients of [ 0:9 in
all cases). Furthermore, the correlation coefficients we

obtained when comparing the crystal-structure based
measures to sequence entropy were virtually identical to

coefficients obtained from the MD trajectory correlations

(Fig. 3a–c). Thus, in terms of predicting evolutionary

variation, RSA, CN, and WCN values obtained from static

structures performed as well as their MD equivalents
averaged over short time scales.

By contrast, correlations between corresponding MD

RMSF to CS RMSF measures were sometimes quite dif-
ferent, with correlation coefficients ranging from 0.218 to

0.723 (Table 3). Consequently, for the two proteins for

which MD RMSF was the least correlated with CS RMSF
(hepatitis C protease and Rift Valley fever nucleoprotein),

the strength of correlation between site entropy and RMSF

depended substantially on how RMSF was calculated
(Figs. 1 and 3d).

Finally, we examined whether correlations between

sequence entropy and B factors or the two RMSF measures
were comparable (Fig. 4). Again, we found that
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Fig. 4 Spearman correlations of sequence entropy with measures of
structural variability. Vertical and horizontal axes represent Spearman
correlations of the indicated quantities. Each dot represents one

correlation coefficient for one protein structure. MD RMSF, CS
RMSF, and B factors all explain different amounts of variance in
sequence entropy for different proteins
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Fig. 5 Spearman correlations of structural quantities with sequence
entropy and with the evolutionary-rate ratio x. Nearly all points fall
below the x ¼ y line, indicating that structural quantities generally
predict as much as or more variation in sequence entropy than in x

Table 3 Correlations between quantities obtained from MD trajec-
tories and from crystal structures

Quantity min q max q hqi SD (q)

RSA 0.937 0.981 0.948 0.012

CN 0.964 0.993 0.976 0.008

WCN 0.973 0.991 0.984 0.006

RMSF 0.218 0.723 0.502 0.181

For each quantity and each protein, we calculated the Spearman
correlation q between the values obtained from MD time-averages
and the values obtained from viral protein crystal structures. Note that
crystal structures for all nine proteins were used for RSA, CN, and
WCN calculations, but only the six proteins for which we had suffi-
cient crystal structure variability were used for CS RMSF. We then
calculated the minimum, maximum, mean, and standard deviation of
these correlations
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correlations between sequence entropy and B factors were
generally different from those obtained for both MD RMSF

and CS RMSF. This result highlighted that, while B fac-

tors, MD RSMF, and CS RMSF all measure backbone
flexibility, they each contain distinct information about

evolutionary sequence variability in our data set.

Sequence Entropy Versus Evolutionary-Rate Ratio x

In the previous subsections, we used sequence entropy as a
measure of site-wise evolutionary variation. While

sequence entropy is a simple and straightforward measure

of site variability, it has two potential drawbacks. First,

while measured from homologous protein alignments,
sequence entropy doesn’t correct for the phylogenetic

relationship of those alignment sequences. Hence, entropy

can be biased if some parts of the phylogeny are more
densely sampled than others. Second, entropy does not take

the actual substitution process into account. As a result, a

single substitution near the root of the tree can result in a
comparable entropy to a sequence of substitutions toggling

back and forth between two amino acids.

To consider an alternative quantity of evolutionary
variation that doesn’t suffer from either of these draw-

backs, we calculated the evolutionary-rate ratio x ¼
dN=dS for all proteins at all sites, and repeated all analyses
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Fig. 6 Principal Component (PC) Regression of sequence entropy
against the structural variables. a Variance in entropy explained by
each principal component. For most proteins, PC1 and PC3 show the
strongest correlations with sequence entropy. Significant correlations
(P\0:05) are shown as filled symbols, and insignificant correlations
(P& 0:05) are shown as open symbols. b and c Composition of the
three leading components. Red arrows represent the loadings of each

of the structural variables on the principal components; black dots
represent the amino acid sites in the PC coordinate system. The
variables RSA, iWCN, MD RMSF, and Var(v1) load strongly on PC1
and weakly on PC2, while B factor and designed entropy load
strongly on PC2 and weakly on PC1. Interestingly, B factor and
designed entropy also load strongly on PC3, but in opposite directions
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with x instead of entropy. We found that results generally

carried over, but with somewhat weaker correlations. Fig-
ure 5 plots, for each protein, the Spearman correlations

between x and our various predictors versus the correlation

between entropy and our predictors. Most data points fall
below the x ¼ y line and are shifted downwards by

approximately 0.1. Thus, correlations of structural quanti-

ties and designed entropy with x are, on average,
approximately 0.1 smaller than correlations of the same

quantities with sequence entropy.

Multi-Variate Analysis of Structural Predictors

The various structural quantities we have considered are by

no means independent of each other. Measures of buried-

ness and packing density co-vary with each other, as do
measures of structural flexibility. Further, the latter co-vary

with the former, as does designed entropy. Therefore, we

conducted a joint multivariate analysis, which included
most structural quantities considered in this work. We

employed this strategy to determine the extent to which

these quantities contained independent information about
sequence variability while additionally assessing whether

combining multiple structural quantities yielded improved

predictive power. We employed a principal component
(PC) regression approach, which has previously been used

successfully to disentangle genomic predictors of whole-

protein evolutionary rates (Drummond et al. 2006; Bloom
et al. 2006). For each analysis described below, we first

carried out a PC analysis of the predictor variables (i.e., the

structural quantities such as RSA and RMSF), and we
subsequently regressed the response (either sequence

entropy or x) against the individual components. Note that

variables were not rank-transformed for this analysis.
For a first PC analysis, we pooled all structural quanti-

ties and then regressed entropy against each PC separately,

for all proteins in our data set. This strategy allowed us to
analyze all proteins in our data set individually but in such

a way that results were comparable from one protein to the

next. We excluded CS RMSF from this analysis, so that we
could include results from all nine viral proteins. The

results of this analysis are shown in Fig. 6. The first

component (PC1) explained, on average, the largest
amount of variation in sequence entropy (see Fig. 6a). PC3

yielded the second-highest r2 value, on average, while all

other components explained very little variation in
sequence entropy. When looking at the composition of the

components, we found that RSA, iWCN, RMSF, and

Var(v1) all loaded strongly on PC1, while PC2 and PC3
where primarily represented by designed entropy and B

factors (see Fig. 6b and c). RMSF also had moderate

loadings on PC3. Interestingly, designed entropy and B

factors load with equal signs on PC2 but with opposite

signs on PC3.
We interpreted PC1 to represent a buriedness/packing-

density component. By definition, PC1 measures the largest

amount of variation among the structural quantities, and all
structural quantities reflect to some extent the buriedness of

residues and the number of residue-residue contacts. PC2

and PC3 were more difficult to interpret. Since designed
entropy and B factors loaded strongly on both but with two

different combinations of signs, we concluded that the most
parsimonious interpretation was to consider PC2 as a

component representing sites with high designed entropy

and high spatial fluctuations (as measured by B factors) and
PC3 representing sites with high designed entropy and low

spatial fluctuations. Using these interpretations, our PC

regression analysis suggested that of all the structural
quantities considered here, residue buriedness/packing was

the best predictor of evolutionary variation. Designed

entropy was a useful predictor as well, but it tended to
perform better at sites with low spatial fluctuations.

For a second PC analysis, we included the predictor CS

RMSF, which therefore restricted the data set to include
only six proteins (see Table 2). This analysis, which

retained sequence entropy as the response variable, yielded

comparable results to the first PC analysis. The main dif-
ferences occurred in PC2 and PC3, where CS RMSF

generally loaded in the opposite direction of B factor, and

either in the same (PC2) or the opposite (PC3) direction of
designed entropy (Fig. S1).

Finally, we redid the two PC analyses described above,

but instead with x as the response variable (Figs. S2
and S3). Again, these results were largely comparable to

results from PC analyses with sequence entropy as the

response.

Discussion

We have carried out a comprehensive analysis of the extent

to which different structural quantities predict sequence
evolutionary variation in nine viral proteins. We found that

measures of buriedness and local packing generally per-

formed better than measures of structural flexibility. Fur-
ther, the former measures also performed better than a

computational protein-design approach that employed a

sophisticated all-atom force field to determine allowed
amino-acid distributions at each site. Finally, there was no

difference in predictive power between structural quantities

obtained from averaging structural quantities over 15ns of
MD simulations versus taking the same quantities from

individual crystal structures.

Our results are broadly in agreement with recent work
by Echave and collaborators (Yeh et al. 2014b; Huang et al.
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2014). These authors found that RSA and CN showed

comparable correlation strengths with evolutionary
sequence variation (Yeh et al. 2014b). Further, they dem-

onstrated that the observed relationship between evolu-

tionary variation and residue–residue contacts was not
consistent with a flexibility model that puts evolutionary

variability in proportion to structural flexibility (Huang

et al. 2014). Instead, a mechanistic stress model, in which
amino-acid substitutions cause physical stress in proportion

to the number of residue–residue contacts affected, could
explain all the observed data (Huang et al. 2014).

The correlation strengths we observed were consistently

lower than those observed previously (Jackson et al. 2013;
Yeh et al. 2014b). We believe that this result was due to

our choice of analyzing viral proteins instead of the cellular

proteins or enzymes used in prior works. First, while viral
sequences are abundant, their alignments may not be as

diverged as alignments that can be obtained for sequences

from cellular organisms. For example, our influenza
sequences spanned only approximately one decade.

Despite the high mutation rates observed in RNA viruses,

the evolutionary variation that can accumulate over this
time span is limited. This relatively lower evolutionary

divergence makes resolving differences between more and

less conserved sites much more difficult. Second, many
viral proteins experience a substantial amount of selection

pressure to evade host immune responses. The resulting

positive selection on viral sequences may mask evolu-
tionary constraints imposed by structure. For example,

influenza hemagglutinin displays positive selection

throughout the entire sequence, regardless of the extent of
residue burial (Meyer and Wilke 2013; Meyer et al. 2013;

Suzuki 2006; Bush et al. 1999). However, the results we

obtained here for viral proteins are broadly consistent with
the results obtained earlier for cellular proteins (Dokholyan

and Shakhnovich 2001; Franzosa and Xia 2009; Jackson

et al. 2013; Yeh et al. 2014b), indicating that viral proteins
evolve under many of the same biophysical selection

pressures that cellular proteins experience.

We have found here that correlations between sequence
entropy and structural quantities were consistently higher

than correlations between the evolutionary-rate ratios x
and structural quantities. Surprisingly, in a recent study on
cellular proteins, Yeh et al. (2014a) found that entropy

performed worse than quantities assessing substitution

rates. One possible explanation for this discrepancy is
again our choice of viral sequences. Our sequence align-

ments almost certainly contained some polymorphisms,

whereas the sequences of Yeh et al. (2014a) likely did not.
It is known that polymorphisms may diminish the reli-

ability of x estimates (Kryazhimskiy and Plotkin 2008).

While the effect of polymorphisms on sequence entropy is
not known, it seems plausible that entropy would be less

sensitive to them than x is. Alternatively, since viral pro-

teins frequently experience positive selection, rate esti-
mates may be confounded by this selection pressure and

thus less reflective of constraints imposed by protein

structure. By contrast, even under positive selection amino-
acid distributions at sites would have to be consistent with

the constraints imposed by the protein structure, and

entropy would remain sensitive to these constraints.
We found that simple measures of buriedness or packing

density, such as RSA or CN, were better predictors of
evolutionary variation than was sequence variability pre-

dicted from computational protein design. In other words,

simple quantities that can be obtained trivially from PDB
structures performed better than a sophisticated protein-

design strategy that makes use of an all-atom energy

function and requires thousands of CPU-hours to complete.
This result highlights that, even though computational

protein design has yielded impressive results in specific

cases (Kuhlman et al. 2003; Röthlisberger et al. 2008;
Fleishman et al. 2011), this approach remains limited in its

ability to predict evolutionary variation. Similarly, we have

previously found that flexible-backbone design with
Rosetta produced designs whose surface and core were too

similar (Jackson et al. 2013). We attributed this discrep-

ancy to either the solvation model or the model of back-
bone flexibility we used (Backrub, see Smith and

Kortemme 2008). The results we found here suggest that

the model of backbone flexibility may indeed be the cause
of at least some of the discrepancies between predicted and

observed site variability. In particular, in our PC regression

analysis, the component in which designed entropy loaded
opposite to B factor and MD RMSF generally had the

second-highest predictive power for evolutionary variabil-

ity, after the component representing buriedness/packing
density. In sum, designed entropy was a better predictor for

evolutionary sequence variability for sites with less struc-

tural flexibility compared to sites with more flexibility.
Even though RSA and CN remain the best currently

known predictors of evolutionary variation, neither quan-

tity has particularly high predictive power. One reason why
predictive power may be low is that neither quantity

accounts for correlated substitutions at interacting sites.

Yet such correlated substitutions happen regularly. For
example, covariation among sites encodes information

about residue–residue contacts and 3D structure (Halabi

et al. 2009; Burger and Nimwegen 2010; Marks et al. 2011;
Jones et al. 2014), and evolutionary models that incorpo-

rate residue–residue interactions tend to perform better

than models that do not (Rodrigue et al. 2005; Bordner and
Mittelmann 2014). An improved predictor of evolutionary

variation would have to correctly predict this covariation

from structure. In principle, computational protein design,
which takes into consideration the atom-level details of the
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protein structure, should properly reproduce covariation

among sites. However, a recent analysis showed that there
are significant limitations to the covariation that is pre-

dicted (Ollikainen and Kortemme 2013). In addition,

covariation in designed proteins is quite sensitive to the
type of backbone variation modeled during design, and

improved models of backbone flexibility may be required

for improved prediction of covariation among sites (Olli-
kainen and Kortemme 2013).
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Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie
J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O,
Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp
elimination catalysts by computational enzyme design. Nature
453:190–195

Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration
of the cartesian equations of motion of a system with constraints:
molecular dynamics of n-alkanes. J Comput Phys 23:327–341
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