
1.  Introduction
Transition metals are crucial cofactors in many biological processes across the tree of life (Dey et al., 2007; 
Holm et al., 1996; Hosseinzadeh & Lu, 2016). The evolving geosphere and biosphere impacted the avail-
ability of metal cofactors and emergence of metabolic pathways in geologic time (Dupont et  al.,  2006; 
Moore et al., 2017). Deep time changes in the geosphere and biosphere provide insight into how the two 
spheres became so intertwined. The transition metal cadmium (Cd) is toxic to many biological systems (Das 
et al., 1997; Flick et al., 1971). Exposure to Cd results in the breakdown of cellular phospholipid bilayers due 
to production of hydrogen peroxide (Khan et al., 2013), and Cd directly damages DNA making the metal a 
potent carcinogen (Coogan et al., 1992; Giaginis et al., 2006).

Despite Cd’s predominantly toxic effects, there are several known instances where Cd in fact participates 
beneficially in biological pathways. For example, Cd is able to substitute for zinc (Zn) at certain functional 
Zn-binding protein sites, such as the pyrimidine DNA nucleotide biosynthesis enzyme aspartate transcar-
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bamoylase (Rosenbusch & Weber, 1971). Carbonic anhydrase (CA) catalyzes the conversion of CO2 and 
HCO3

− in photosynthetic organisms to fix carbon (Badger & Price,  1994; Meldrum & Roughton,  1933; 
Wilbur & Anderson, 1948), and in marine diatoms Cd is known to be used as an alternative cofactor to Zn 
in the CA enzyme (Lane & Morel, 2000; Park et al., 2007; Price & Morel, 1990). While Zn is a more ener-
getically efficient CA cofactor, Cd can function as an effective substitute when Zn availability is low (Lane 
et al., 2005; Xu et al., 2008). Cadmium therefore possesses a micronutrient profile in marine systems with 
lower concentrations in surface waters (∼0.1–0.5 nmol [Cd2+]/kg seawater) and increasing concentrations 
in deeper waters (∼1.0 nmol [Cd2+]/kg seawater; Boyle et al., 1976). The concentration of Cd in seawa-
ter is below the level of Cd toxicity response in the marine diatom Thalassiosira nordenskioeldii (Wang & 
Wang, 2008), and the gradient of Cd in marine waters is impacted by light penetration, the ability of phy-
toplankton to sustain photosynthesis at depth, nonspecific uptake of Cd, and Cd homeostasis in microbial 
cells (Horner et al., 2013).

Basalt, on average, contains approximately 120 parts per billion (ppb) of Cd, and is a major source of Cd to 
the ocean due to weathering and the prevalence of basalt in oceanic crust (Yi et al., 2000). Hydrothermal 
fluids are also major sources of Cd to the ocean, with Cd concentrations up to 2 nM (Douville et al., 2002). 
Volcanoes are the largest source of natural Cd emissions to the atmosphere, followed by biogenic sources, 
aeolian transport, terrestrial biomass burning, and sea-salt spray (Cullen & Maldonado, 2013; Nriagu, 1989). 
The specific environmental factors that influence Cd deposition and cycling vary greatly depending on the 
local ecosystem (Barrow et al., 1989; Bruemmer et al., 1988; Gerth & Brümmer, 1983; Kelly et al., 2001; 
Lock & Janssen, 2003; Yee & Fein, 2001). Within freshwater ecosystems, for example, Cd's availability and 
toxicity depends on the element’s speciation with organic matter, concentration and characteristics of dis-
solved organic carbon, pH, and cations in solution (Sigg & Behra, 2005). By contrast, in more saline waters, 
cationic interactions increase Cd mobility and solubility (Duce et al., 1991). Finally, when Cd interacts with 
soils and minerals, factors such as redox potential, pH, and organic ion presence influence its bioavailability 
(Lock & Janssen, 2003). The wide range of interactions between Cd and the environment create a cascade 
of reactions that have varying impacts on the solubility and mobility of Cd in the environment. These pro-
cesses therefore have a strong impact on the formation of an equilibration cycle between soil runoff and 
water cycling.

Various mechanisms of biological pathways involving Cd have been well documented (Beyersmann & 
Hechtenberg, 1997; Lane et al., 2005; Lane & Morel, 2000; Park et al., 2007; Rosenbusch & Weber, 1971; 
Xu et al., 2008), but it is not fully known how the geosphere impacted the availability of Cd and evolution 
of associated biological pathways. Saito et al. (2003) showed that the dissolved concentrations of Cd in the 
ocean would have been altered by changing ocean chemistry at different stages of Earth history. Although 
oceanic basalt and hydrothermal vents are likely the main sources of Cd to the ocean (Yi et al., 2000), min-
erals are important for understanding the geochemistry and solubility of both Cd and Zn to the ocean 
from geological sources through weathering processes (Bertine & Goldberg, 1971; Callender, 2003; Cullen 
& Maldonado, 2013).

Network analysis has emerged as a powerful technique to investigate mineral evolution and mineral ecol-
ogy (Hazen et al., 2019; Hystad et al., 2019; Morrison et al., 2017). Bipartite mineral chemistry network 
analysis includes two classes of nodes, minerals and chemical elements, with network edges connecting 
each mineral node to each one of its constituent element nodes. For example, bipartite network analysis 
has recently been applied to understand redox evolution of cobalt and vanadium and their bioavailability in 
the Archean ocean (Moore et al., 2018, 2020). Here, we examine the mineral records and mineral chemistry 
networks of Cd and Zn to examine and compare the chemistry and location of potentially weatherable Cd 
and Zn mineral sources over different periods of Earth history. We specifically examine the time periods 
relevant to the emergence of marine diatoms and the utilization of Cd as a cofactor in the CA enzyme.

2.  Methods
2.1.  Mineral Chemistry Network Analysis

Bipartite network analysis of Cd and Zn mineral chemistry was performed using the R package dragon 
(Spielman & Moore, 2020). Specifically, we examined Cd’s bipartite mineral chemistry network across the 
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three time periods of ≥2.7 billion years ago (Ga), ≥0.6 Ga, and ≥0.2. We selected the time range of ≥2.7 Ga 
because only one Cd mineral has a maximum (i.e., oldest) known age of ≥2.8 Ga (greenockite). We selected 
the time range of ≥0.6 Ga as it is positioned at the beginning of an increase in all preserved mineral local-
ities, including Cd mineral and Zn mineral localities ([Golden et al., 2019] https://rruff.info/evolution/). 
Finally, we selected the time range of ≥0.2 Ga as this period approximately coincides with the oldest known 
evidence for the presence of diatoms, the only organisms known to use the alternative Cd-CA protein (Al-
terio et al., 2015; Falkowski & Knoll, 2007; Kooistra & Medlin, 1996; Sims et al., 2006).

We performed Louvain community detection cluster analysis (Blondel et al., 2008) using dragon to identify 
associations between minerals and elements in the Cd and Zn combined mineral chemistry network. We 
specifically applied the Louvain community detection method for this study because it optimizes modularity 
when identifying network node communities (Blondel et al., 2008). The Louvain method is a greedy optimi-
zation method and is similar to the network community detection method developed by Clauset et al. (2004).

Mineral data were compiled for analysis from the Mineral Evolution Database (MED; [Golden et al., 2019] 
https://rruff.info/evolution/; Accessed February 3, 2020). The process of assembling, sorting and download-
ing mineral data from the MED is described in detail for carbon minerals by (Morrison et al., 2020). The data 
included 25 Cd mineral species, 307 Cd mineral localities, 255 Zn mineral species, and 10,837 Zn mineral lo-
calities (Cd and Zn minerals in Table S2). Co-located Cd minerals and Zn minerals were identified by com-
paring Mindat locality ID numbers of Cd minerals and Zn minerals, including Cd minerals and Zn minerals 
that contain sulfur (S), cataloged in the MED ([Golden et al., 2019] https://rruff.info/evolution/). Minerals 
with the same Mindat locality ID number are defined as co-located. This study considers Cd and Zn miner-
als to be those in which Cd and Zn are listed in the chemical formula, as defined by the International Miner-
alogical Association (IMA); lists of IMA-defined Cd and Zn minerals can be found at https://rruff.info/ima/. 
Due to tectonic processes, there is a greater probability that older rocks and minerals will be subducted and 
lost to the mantle, resulting in greater preservation of younger minerals (Rapp & Watson, 1995; Taylor & 
McLennan, 1995) and potential age bias in some data from the MED. The maximum known mineral ages 
and associated references of Archean and Proterozoic Cd minerals are given in Table S1. Additionally, we 
performed a Position-Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) search against the 
nr database (all non-redundant proteins sequences in NCBI) to identify any orthologous sequences to the 
known Cd-CA protein from the marine diatom Thalassiosira weissflogii (PDB ID 3BOB).

3.  Results
Evolving mineral chemistry bipartite networks can be used to examine the relationships between minerals 
and the chemical elements in their ideal chemical formulas through deep time (Spielman & Moore, 2020). 
Figure 1 represents the evolution of Cd mineral chemistry bipartite networks from the oldest known sam-
ples into modern day, clearly illustrating the limited mineral chemistry network expansion prior to 0.6 Ga 
for all minerals, including Cd, and the subsequent dramatic expansion after 0.6 Ga ([Golden et al., 2019; 
Hazen et  al.,  2019; Spielman & Moore,  2020]; https://rruff.info/evolution/, Accessed February 3, 2020). 
Sulfur is the most common mineral-forming element in Cd minerals based the number of Cd minerals that 
contain S and the number of localities at which S-containing Cd minerals occur at all time periods of Cd 
mineralization, with 270 known localities and 16 minerals with Cd and S in their ideal chemical formula. 
Cadmium minerals containing S account for 92% of all dated Cd mineral localities in the MED. Additional-
ly, 8 of the 11 Cd minerals with maximum known ages that are older than 1.8 Ga contain S. The Cd-sulfide 
greenockite, CdS, is the oldest known Cd mineral currently recorded in the MED (maximum age of 4.0 Ga) 
and has the most reported localities of all Cd minerals (196 localities). Hawleyite, CdS, has the second most 
localities at 30, but with a significantly younger maximum known age of 2.74 Ga. Oxygen is the second 
most common element known to form Cd minerals, with 14 minerals containing Cd and O in their ideal 
chemical formula and 41 known localities in the MED. Cadmoselite, CdSe, has the oldest maximum known 
age (2.72 Ga) among Cd minerals that do not contain S or O as an essential constituent. Arsenic (As) and 
lead (Pb) become more prominent mineral-forming elements with Cd from 0.6 to 0.2 Ga, coinciding with a 
general increase in mineral record preservation leading to the present day.

While Cd and Zn have the same outer shell electron configuration and similar chemical properties, 
Zn is much more abundant than Cd in the Earth’s crust (Zn  =  65.5  ppm; Cd  =  0.102  ppm; [Cullen & 
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Maldonado, 2013; Rudnick & Gao, 2003; Wedepohl, 1995]). The mineral record further shows that Zn forms 
a larger number of minerals with a wider range of elements than does Cd (Figure 2). In particular, O and H 
form minerals with Zn much more commonly than they do with Cd; Zn forms nearly 16 times more miner-
als with O than Cd forms with O, with 89% of Zn minerals and 57% of Cd minerals containing O. Zinc forms 
nearly 18 times more minerals with H than Cd forms with H, with 72% of Zn minerals and 43% of Cd min-
erals containing H. Additionally, Zn minerals that contain O or H are found at many more localities (4,110 
localities) than are Cd minerals that contain O or H (41 localities). Zinc minerals that contain O and H also 
contain various other common mineral-forming elements that do not form minerals with Cd (e.g., silicon, 
magnesium, sodium, titanium, etc.; Figure 2). Conversely, Zn forms only approximately 4 times more min-
erals with S than Cd forms with S, with only 25% of Zn minerals containing S while 64% of Cd minerals con-
tain S. Despite the larger number of elements that form minerals with Zn than Cd, Zn minerals that contain 
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Figure 1.  Expanding bipartite mineral chemistry networks depicting all known Cd minerals and their constituent elements at specific time periods ([Golden 
et al., 2019] https://rruff.info/evolution/). (a) All Cd minerals with maximum known ages ≥2.7 billion years ago (Ga); (b) ≥0.6 Ga; (c) ≥0.2 Ga; (d) Present day. 
Mineral nodes are represented by circles (color represents maximum known mineral ages). Element nodes are represented by their chemical symbols. Mineral 
nodes have network connections (referred to as “edges”; edges are unweighted) to each of their constituent elements. For example, greenockite (CdS) has 
network edges connected to Cd and S. Mineral nodes are sized by number of known localities, and element nodes are sized by number of network edges (i.e., 
the number of minerals which contain that element). Networks were created using the dragon R package (Spielman & Moore, 2020). Cd, cadmium; S, sulfur.

Figure 2.  Cd and Zn bipartite mineral chemistry network at present day containing all known Zn and Cd minerals 
and their constituent elements. Mineral nodes are sized by number of localities and colored by maximum known age. 
Element nodes are sized by number of network edges. Cd, cadmium; Zn, zinc.
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S still comprise the majority of all known Zn mineral localities (62%). Similarly to Cd and greenockite, the 
Zn sulfide mineral sphalerite is found at by far the largest number of known localities (>4,500 localities).

In the present day Cd-Zn combined network, based on Louvain community detection analysis, Cd clusters 
with S, the abundant Cd sulfide minerals greenockite and hawleyite, the abundant Zn sulfide sphalerite, 
and other abundant Zn sulfides (Figure 3). Other elements that commonly form minerals with both Cd 
and Zn include O, H, As, Fe, Cu, and Pb. Zinc and O each cluster separately given the wide range of other 
elements with which Zn and O each form minerals, but overall there is a great deal of mineral chemistry 
overlap between network clusters 3 (Zn cluster) and 5 (Oxygen cluster). Far less mineral chemistry overlap 
occurs between cluster 1 (Cd and S cluster) and other network clusters (Figure 3), suggesting that the main 
chemical similarities between Cd and Zn minerals exist among Cd and Zn minerals that contain S.

The number of co-located S-containing Cd and Zn minerals increases through geologic time, accounting 
for the vast majority (87%) of all co-located Cd and Zn minerals (Figure 4). Co-located non-S-containing Cd 
minerals and non-S-containing Zn minerals make up a much smaller portion of co-located Cd minerals and 
Zn minerals as illustrated in Figure 4. The majority (81%) of co-located Cd minerals and Zn minerals occur 
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Figure 3.  Cd and Zn bipartite mineral chemistry network at present day containing all known Zn and Cd minerals 
and their constituent elements. Mineral nodes and element nodes are colored by Louvain community detection clusters 
(Blondel et al., 2008). Mineral are sized by number of localities, and element nodes are sized by number of network 
edges. Cd, cadmium; Zn, zinc. Key: brown = cluster 1; pink = cluster 2; purple = cluster 3; teal = cluster 4; gold = 
cluster 5; green = cluster 6; dark orange = cluster 7.

Figure 4.  Total number of localities that S-containing Cd minerals and S-containing Zn minerals co-occur at (brown 
"X" symbols), and total number of localities that non-S-containing Cd minerals and non-S-containing Zn minerals 
co-occur at (black "cross-X" symbols) through geologic time. First GOE = Great Oxidation Event (Farquhar et al., 2000; 
Farquhar & Wing, 2003); Second GOE (Canfield et al., 2007; Fike et al., 2006; Sahoo et al., 2012); Oldest diatom fossils 
(Falkowski & Knoll, 2007; Kooistra & Medlin, 1996; Sims et al., 2006). Cd, cadmium; S, sulfur; Zn, zinc.
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from 0.6 Ga to present day (Figure 4). While there are more O-containing Zn mineral species (i.e., higher 
network degree centrality) than there are S-containing Zn mineral species, S-containing Zn minerals occur 
at more localities than do O-containing Zn minerals. We also observe this trend for S-containing Cd miner-
als (Figure 5). Furthermore, the distributions of network degree centrality values are smaller and more sim-
ilar between Cd minerals and S-containing Zn minerals as compared to the larger distribution of network 
centrality values for all other Zn minerals (Figure 6), illustrating the chemical similarities and, therefore, 
propensity toward similar weathering rates of Cd minerals and S-containing Zn minerals.

The PSI-BLAST search performed using the seed Cd-CA sequence from the marine diatom Thalassiosira 
weissflogii (PDB ID 3BOB) did not reveal any related sequences. Therefore, it is either possible that the Cd-
CA is a lineage-specific evolutionary innovation in these diatom species, or further environmental metagen-
omics studies may reveal other species which also possess this protein.

4.  Discussion
Although the mineral chemistry of Cd throughout Earth’s history is less extensive than that of many other 
transition metals, Cd’s chemical associations and mineral formation with S (Figures 1–3) are important to 
Cd geochemical cycling (Saito et al., 2003). Cadmium sulfides readily precipitate under acidic and alkaline 
conditions (Milligan, 1934; Rittner & Schulman, 1943) and are known to be highly weatherable (Bertine & 
Goldberg, 1971; Callender, 2003; Cullen & Maldonado, 2013). Weathered Cd sulfides or trace amounts of 
Cd associated with S in basalt therefore represent a potential source of dissolved Cd to the environment, 
particularly given the relative abundance of S-containing Cd minerals compared to all other Cd minerals 
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Figure 5.  Cadmium and Zn bipartite mineral chemistry network containing all known Zn and Cd minerals and 
their constituent elements. Mineral nodes (brown) are sized by number of localities. Element nodes are sized by total 
number of mineral localities that each element occurs at in either a Cd or Zn mineral. Element nodes are colored by 
network degree: the number of network lines (i.e., edges) connected to each element (e.g., the number of Cd or Zn 
mineral species that each element occurs in). Cd, cadmium; Zn, zinc.

Figure 6.  Plot of network centrality values for each mineral node in the combined Cd and Zn network by maximum mineral age in billions of years (Ga). Cd, 
cadmium; S, sulfur; Zn, zinc.
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(Figure 1). Conversely, Zn is roughly 650 times more abundant than is Cd in the Earth’s crust (Cullen & 
Maldonado, 2013; Rudnick & Gao, 2003; Wedepohl, 1995). This stark difference contributes to a substan-
tially higher abundance of Zn mineral species compared to Cd mineral species, as well as the occurrence of 
Zn minerals at many more localities than Cd minerals ([Golden et al., 2019] https://rruff.info/evolution/). 
However, similar to S-containing Cd minerals, the high relative abundance of S-containing Zn mineral 
localities compared to all other Zn minerals (Figures 2 and 3), and the high weatherability of Zn sulfides 
(Robson et  al.,  2014; Stanton,  2005), indicate that Zn sulfides represent a potential source of Zn to the 
environment.

Despite the differences in mineral chemistry between Cd and Zn, the S-containing minerals and sulfide 
complexation of the two elements share certain characteristics. Approximately 64% of Cd mineral species 
contain S, while only 25% of Zn mineral species contain S, resulting in Cd and S clustering together in the 
combined Cd-Zn mineral chemistry network (Figure 3). Multiple Zn and Cd sulfide compounds have com-
parable stability constants and display similar dissolved concentration fluctuations in response to chang-
ing physical and chemical conditions in seawater (Al-Farawati & van den Berg, 1999; Cutter et al., 1999; 
Luther et al., 1996; Zhang & Millero, 1994). Furthermore, bioinorganic chemical modeling work by Saito 
et  al.  (2003) determined that dissolved concentrations of Cd and Zn were much lower in both the fer-
ro-sulfidic Archean ocean (Shen et al., 2001) and the sulfidic Proterozoic ocean (Canfield, 1998; Poulton 
et al., 2004) compared to the modern oxic ocean. The biological importance of late-evolving Zn-binding 
proteins in eukaryotes, and the increased bioavailability Zn in oxygenated waters of the Phanerozoic eon in-
dicate that Zn was a crucial cofactor in eukaryotic evolution (Dupont et al., 2006, 2010). Mineral chemistry 
can shed additional light on how Cd availability allowed the element to be a replacement cofactor for Zn in 
CA of diatoms, and support the biogeochemical links between Cd and Zn described in Saito et al. (2003) by 
characterizing chemical associations of the two elements.

The high number of localities for S-containing Cd minerals and S-containing Zn minerals compared to 
non-S-containing Cd and Zn minerals, and the closer overlapping range of network degree centrality val-
ues and shared elements between Cd minerals and S-containing Zn minerals represents similar chemical 
attributes between Cd minerals and S-containing Zn minerals compared to all other non-S-containing Zn 
minerals (Figures 5 and 6). Our results suggest that the common co-location of S-containing Cd and Zn 
minerals (Figure 4), in concert with the similar stability constants of Cd sulfides and Zn sulfides in seawater 
(Al-Farawati & van den Berg, 1999; Cutter et al., 1999; Luther et al., 1996; Zhang & Millero, 1994), would 
result in simultaneous weathering and availability of Cd and Zn to the environment. Co-weathering of 
S-containing Cd and Zn minerals would provide a direct source of Cd to marine diatoms if Zn were deplet-
ed, moreso than if Cd were weathered from a distant separate source that was not directly linked to the Zn 
source through aqueous/marine transport. The mutual mineral chemistry properties (Figures 3, 5 and 6) 
and shared localities (Figure 4) of S-containing Cd and Zn minerals allow for weatherability and simulta-
neous transport of Cd and Zn to marine waters, thus supporting the biogeochemical link between the two 
elements described in Saito et al. (2003).

Similar chemical and physical properties of Cd and Zn additionally underscore the various geochemical 
links between the two elements. Cadmium and Zn are both group 12 elements in the periodic table with 
similar electron configuration, and both elements predominantly occur in the Cd2+ and Zn2+ redox states 
(Nriagu,  1980). The surface coatings of Zn sulfides commonly contain Cd, and certain Zn silicates and 
carbonates can contain up to 1.25% concentration of Cd (Cullen & Maldonado, 2013; Fleischer et al., 1974; 
Gong et al., 1977; Nriagu, 1980). The Zn sulfide sphalerite generally contains 0.2 to 1.0 wt.% Cd, and in some 
cases Cd content in sphalerite can be as high 13.2 wt.% (Cook et al., 2009). Indeed, Cd was first isolated and 
discovered as a trace metal impurity in Zn carbonates (Cullen & Maldonado, 2013), further demonstrating 
the connection between these two elements. Therefore, the weathering of trace amounts of Cd associated 
with Zn minerals, particularly the highly abundant mineral sphalerite, would be an additional simulta-
neous source of both Cd and Zn to the environment beyond only the weathering of co-located Cd- and 
Zn-containing minerals and basalts.

The comparable mineral chemistry and common co-occurrence of Cd and Zn may also have contributed to 
the similar biological usage Cd and Zn in the CA enzymes of certain marine diatoms. By catalyzing the con-
version of CO2 and HCO3

− in photosynthetic organisms to fix carbon, CA represents an important enzyme 
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in the global carbon cycle (Badger & Price, 1994; Meldrum & Roughton, 1933; Wilbur & Anderson, 1948). 
Zinc is a crucial cofactor in the function of CA, but it has also been discovered that Cd can serve as an alter-
native metal cofactor in CA for marine diatoms when Zn is depleted in the environment (Lane et al., 2005; 
Lane & Morel, 2000; Park et al., 2007; Price & Morel, 1990; Xu et al., 2008). Diatoms are highly productive 
primary producers that rapidly deplete nutrients in surface waters during blooms and influence global Zn 
biogeochemistry (Vance et al., 2017). Studies have also shown that Zn may limit primary production in 
diatom dominated sub-arctic waters (Coale, 1991; Crawford et al., 2003). Therefore, the weathering and 
availability of co-located S-containing Cd and Zn minerals, and trace Cd in Zn minerals, may support CA 
function and primary production by diatoms during Zn scarcity.

Although several classes of CA proteins exist, Cd is only found in one specific class of CA (ζ-CA) which 
has an overall unique structure surrounding the metal cofactor ion (i.e., Zn or Cd; Alterio et al., 2012; Am-
ata et al., 2011; Xu et al., 2008). In contrast, Zn CA occurs in a wide range of taxa from microbes to plants 
(Pinter & Stillman, 2014; Supuran, 2016). The diatoms that are known to use Cd during periods of Zn scar-
city prefer Zn when it is available, due to the greater enzymatic efficiency and faster yield rate of inorganic 
carbon when using Zn as the metal cofactor (Lane et al., 2005; Xu et al., 2008). The only other class of CAs 
known to have a similar structure to ζ-CA is β-CA, such that both enzymes have two cysteine residues and 
one histidine residue that bind either Zn or Cd (Supuran, 2016; Xu et al., 2008). The evolutionary history of 
CAs remains an open question, largely due to the limited known occurrences of to ζ-CA. Indeed, β-CA has 
been found in largely photosynthetic plants and algae, while ζ-CA appears, potentially, specific to marine 
diatoms (Amata et al., 2011; Moroney et al., 2001; Sültemeyer, 1998). However, the highly similar structures 
between ζ-CA and β-CA, coupled with their distinct phylogenetic distributions, suggests an ancient evolu-
tionary divergence.

Despite the structural similarities between ζ-CA and β-CA, organisms that synthesize β-CA do not use Cd as 
an alternative cofactor to Zn (Day & Franklin, 1946; Rowlett, 2010) as β-CA synthesizing organisms are not 
able incorporate Cd into the CA active site without exhibiting a normal toxic cellular response to Cd expo-
sure. Phytochelatins (PCs) are crucial proteins found in ζ-CA synthesizing organisms that actively transport 
Cd ions to the CA complex for carbon fixation and inhibit the toxic shock response diatoms experience 
when taking in Cd ions, thus allowing Cd to be utilized in the CA metal cofactor site (Ahner et al., 1995; Lee 
et al., 1996; Wu et al., 2016). Phytochelatin synthase proteins are activated by the presence of Cd and other 
potentially toxic ions (e.g., Arsenic, As; [Schmöger et al., 2000; Uraguchi et al., 2017]) and the PC proteins 
themselves are composed from Glutathione (Cysteine, Glutamic acid, and Glycine), which function to form 
tight covalent bonds around the metallic ions (i.e., chelation; Grill et al., 1985, 1989). The evolution of PC 
proteins was thus crucial for the utilization of Cd by diatoms when Zn is unavailable in the environment.

The oldest known diatom fossils are approximately 180 million years old (Falkowski & Knoll, 2007; Kooistra 
& Medlin, 1996; Sims et al., 2006), which dates to after the oxygenation of the oceans (Canfield, 1998; Scott 
et al., 2008) and the subsequent increase in Zn and Cd bioavailability in ocean waters (Saito et al., 2003). 
Phanerozoic continental weathering was also enhanced by the colonization of land by terrestrial plants 
(Berner, 1992), which could have impacted the mobilization of co-located S-containing Cd and Zn minerals 
(Figure 4) to coastal waters. Given that diatoms are known to be highly productive primary producers that 
quickly use up available dissolved nutrients (Armbrust, 2009; Furnas, 1990; Mahadevan et al., 2012), the 
availability of Cd from weathered S-containing minerals following rapid Zn depletion by highly productive 
diatom blooms may have influenced the evolution of ζ-CA and PCs involved in Cd utilization.

5.  Conclusions
Despite the limited mineral chemistry of Cd, the relative abundance of highly weatherable S-containing Cd 
minerals compared to other Cd minerals, and the co-location of S-containing Cd and Zn minerals were like-
ly contributing factors in the availability and utilization of Cd as an alternative cofactor to Zn in CA. Zinc 
forms minerals with a wider range of elements than Cd, but the shared S-containing mineral chemistry, 
solubility, and localities of the two metals enhanced their biogeochemical link. The capability of diatoms 
to use Cd as a cofactor in CA, during a stage of Earth history characterized by dramatic change in the ge-
osphere and biosphere, enhanced carbon fixation by diatoms during periods of Zn scarcity. Alterations to 
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the biogeochemical cycles of Zn and Cd exemplify the importance of the coevolution of the geosphere and 
biosphere in shaping primary production in the modern ocean.

Data Availability Statement
Data presented in this manuscript can be accessed from the MED ([Golden et al., 2019]; https://rruff.info/
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