{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook will try to predict BTC price through:\n", "- RNN: Recurrent Neural Network\n", "- LSTM: Long Short Term Memory\n", "- ES: Early Stopping\n", "- Single-Step and Multi-Step time series forecasting\n", "- Univariate (only input Price) and Multivariate (inputs Price and Volume)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "https://nbviewer.jupyter.org/github/sjuanandres0/crypto/blob/main/Main.ipynb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Parameter settings" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# number of total past observations from the original dataset to be considered\n", "n_past_total = 1200\n", "\n", "# number of past observations to be considered for the LSTM training and prediction\n", "n_past = 30\n", "\n", "# number of future datapoints to predict (if higher than 1, the model switch to Multi-Step)\n", "n_future = 10\n", "\n", "# activation function used for the RNN (softsign, relu, sigmoid)\n", "activation = 'softsign'\n", "\n", "# dropout for the hidden layers\n", "dropout = 0.2\n", "\n", "# number of hidden layers\n", "n_layers = 8\n", "\n", "# number of neurons of the hidden layers\n", "n_neurons = 20\n", "\n", "# features to be considered for training (if only one is Close, then its Univariate, if more, then it's Multivariate)\n", "features = ['Close', 'Volume']\n", "#features = ['Close']\n", "\n", "# number of inputs features (if higher than 1, )\n", "n_features = len(features)\n", "\n", "# patience for the early stopping (number of epochs)\n", "patience = 25\n", "\n", "# optimizer (adam, RMSprop)\n", "optimizer='adam'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Importing libraries" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import os\n", "import numpy as np\n", "np.set_printoptions(suppress=True)\n", "import pandas as pd\n", "pd.set_option('display.float_format', lambda x: '%.3f' % x) #avoid scientific notation\n", "import datetime\n", "import math\n", "from matplotlib import pyplot as plt\n", "from keras.models import Sequential, load_model\n", "from keras.layers import Dense, LSTM, Dropout\n", "from keras.callbacks import EarlyStopping\n", "from sklearn.preprocessing import MinMaxScaler\n", "from sklearn.metrics import mean_squared_error, mean_absolute_error, explained_variance_score\n", "import plotly.express as px\n", "import plotly.graph_objects as go\n", "from plotly.subplots import make_subplots\n", "from IPython.display import Image" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Importing the files" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateOpenHighLowCloseAdj CloseVolume
02014-09-17465.864468.174452.422457.334457.33421056800.000
12014-09-18456.860456.860413.104424.440424.44034483200.000
22014-09-19424.103427.835384.532394.796394.79637919700.000
32014-09-20394.673423.296389.883408.904408.90436863600.000
42014-09-21408.085412.426393.181398.821398.82126580100.000
........................
24542021-06-0635538.60936436.42235304.57835862.37935862.37928913440585.000
24552021-06-0735835.26636790.57033480.64133560.70733560.70733683936663.000
24562021-06-0833589.52034017.38731114.44333472.63333472.63349902050442.000
24572021-06-0933416.97737537.37132475.86537345.12137345.12153972919008.000
24582021-06-1037513.86337513.86336615.18436625.62936625.62952061741056.000
\n", "

2459 rows × 7 columns

\n", "
" ], "text/plain": [ " Date Open High Low Close Adj Close \\\n", "0 2014-09-17 465.864 468.174 452.422 457.334 457.334 \n", "1 2014-09-18 456.860 456.860 413.104 424.440 424.440 \n", "2 2014-09-19 424.103 427.835 384.532 394.796 394.796 \n", "3 2014-09-20 394.673 423.296 389.883 408.904 408.904 \n", "4 2014-09-21 408.085 412.426 393.181 398.821 398.821 \n", "... ... ... ... ... ... ... \n", "2454 2021-06-06 35538.609 36436.422 35304.578 35862.379 35862.379 \n", "2455 2021-06-07 35835.266 36790.570 33480.641 33560.707 33560.707 \n", "2456 2021-06-08 33589.520 34017.387 31114.443 33472.633 33472.633 \n", "2457 2021-06-09 33416.977 37537.371 32475.865 37345.121 37345.121 \n", "2458 2021-06-10 37513.863 37513.863 36615.184 36625.629 36625.629 \n", "\n", " Volume \n", "0 21056800.000 \n", "1 34483200.000 \n", "2 37919700.000 \n", "3 36863600.000 \n", "4 26580100.000 \n", "... ... \n", "2454 28913440585.000 \n", "2455 33683936663.000 \n", "2456 49902050442.000 \n", "2457 53972919008.000 \n", "2458 52061741056.000 \n", "\n", "[2459 rows x 7 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# reading csv\n", "dataset = pd.read_csv('data/yahoo_BTC-USD.csv')\n", "dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# EDA (brief)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2459 entries, 0 to 2458\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Date 2459 non-null object \n", " 1 Open 2455 non-null float64\n", " 2 High 2455 non-null float64\n", " 3 Low 2455 non-null float64\n", " 4 Close 2455 non-null float64\n", " 5 Adj Close 2455 non-null float64\n", " 6 Volume 2455 non-null float64\n", "dtypes: float64(6), object(1)\n", "memory usage: 134.6+ KB\n" ] } ], "source": [ "# checking for nulls\n", "dataset.info()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateOpenHighLowCloseAdj CloseVolume
20392020-04-17nannannannannannan
22142020-10-09nannannannannannan
22172020-10-12nannannannannannan
22182020-10-13nannannannannannan
\n", "
" ], "text/plain": [ " Date Open High Low Close Adj Close Volume\n", "2039 2020-04-17 nan nan nan nan nan nan\n", "2214 2020-10-09 nan nan nan nan nan nan\n", "2217 2020-10-12 nan nan nan nan nan nan\n", "2218 2020-10-13 nan nan nan nan nan nan" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# checking if close is not equal to adj close\n", "dataset[dataset['Close']!=dataset['Adj Close']]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OpenHighLowCloseAdj CloseVolume
count2455.0002455.0002455.0002455.0002455.0002455.000
mean7682.9987903.1977440.7967696.5417696.54112680146147.817
std11719.94212089.89411283.75211731.19311731.19319763751064.923
min176.897211.731171.510178.103178.1035914570.000
25%461.941467.522455.721461.874461.87468840948.000
50%4332.8204413.0904160.8604338.7104338.7104047850000.000
75%9219.1909371.6189041.1989231.5739231.57318823342711.500
max63523.75464863.09862208.96563503.45763503.457350967941479.000
\n", "
" ], "text/plain": [ " Open High Low Close Adj Close Volume\n", "count 2455.000 2455.000 2455.000 2455.000 2455.000 2455.000\n", "mean 7682.998 7903.197 7440.796 7696.541 7696.541 12680146147.817\n", "std 11719.942 12089.894 11283.752 11731.193 11731.193 19763751064.923\n", "min 176.897 211.731 171.510 178.103 178.103 5914570.000\n", "25% 461.941 467.522 455.721 461.874 461.874 68840948.000\n", "50% 4332.820 4413.090 4160.860 4338.710 4338.710 4047850000.000\n", "75% 9219.190 9371.618 9041.198 9231.573 9231.573 18823342711.500\n", "max 63523.754 64863.098 62208.965 63503.457 63503.457 350967941479.000" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# checking the main parameters\n", "dataset.describe()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# use close only and fill NaN with ffil\n", "df = dataset.set_index('Date')[features]#.tail(n_past_total)\n", "df = df.set_index(pd.to_datetime(df.index))\n", "df.fillna(method='ffill',inplace=True)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CloseVolume
Close1.0000.799
Volume0.7991.000
\n", "
" ], "text/plain": [ " Close Volume\n", "Close 1.000 0.799\n", "Volume 0.799 1.000" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# looking at the correlation of the main possible variables\n", "dataset[['Close','Volume']].corr()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "name": "Close", "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462, 1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1492, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1518, 1519, 1520, 1521, 1522, 1523, 1524, 1525, 1526, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1536, 1537, 1538, 1539, 1540, 1541, 1542, 1543, 1544, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1554, 1555, 1556, 1557, 1558, 1559, 1560, 1561, 1562, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1578, 1579, 1580, 1581, 1582, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1592, 1593, 1594, 1595, 1596, 1597, 1598, 1599, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614, 1615, 1616, 1617, 1618, 1619, 1620, 1621, 1622, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1632, 1633, 1634, 1635, 1636, 1637, 1638, 1639, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1649, 1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1658, 1659, 1660, 1661, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1671, 1672, 1673, 1674, 1675, 1676, 1677, 1678, 1679, 1680, 1681, 1682, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1692, 1693, 1694, 1695, 1696, 1697, 1698, 1699, 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735, 1736, 1737, 1738, 1739, 1740, 1741, 1742, 1743, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1758, 1759, 1760, 1761, 1762, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1771, 1772, 1773, 1774, 1775, 1776, 1777, 1778, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1788, 1789, 1790, 1791, 1792, 1793, 1794, 1795, 1796, 1797, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812, 1813, 1814, 1815, 1816, 1817, 1818, 1819, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831, 1832, 1833, 1834, 1835, 1836, 1837, 1838, 1839, 1840, 1841, 1842, 1843, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1852, 1853, 1854, 1855, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2038, 2039, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2049, 2050, 2051, 2052, 2053, 2054, 2055, 2056, 2057, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2067, 2068, 2069, 2070, 2071, 2072, 2073, 2074, 2075, 2076, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2085, 2086, 2087, 2088, 2089, 2090, 2091, 2092, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2108, 2109, 2110, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2120, 2121, 2122, 2123, 2124, 2125, 2126, 2127, 2128, 2129, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2139, 2140, 2141, 2142, 2143, 2144, 2145, 2146, 2147, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2157, 2158, 2159, 2160, 2161, 2162, 2163, 2164, 2165, 2166, 2167, 2168, 2169, 2170, 2171, 2172, 2173, 2174, 2175, 2176, 2177, 2178, 2179, 2180, 2181, 2182, 2183, 2184, 2185, 2186, 2187, 2188, 2189, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2237, 2238, 2239, 2240, 2241, 2242, 2243, 2244, 2245, 2246, 2247, 2248, 2249, 2250, 2251, 2252, 2253, 2254, 2255, 2256, 2257, 2258, 2259, 2260, 2261, 2262, 2263, 2264, 2265, 2266, 2267, 2268, 2269, 2270, 2271, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279, 2280, 2281, 2282, 2283, 2284, 2285, 2286, 2287, 2288, 2289, 2290, 2291, 2292, 2293, 2294, 2295, 2296, 2297, 2298, 2299, 2300, 2301, 2302, 2303, 2304, 2305, 2306, 2307, 2308, 2309, 2310, 2311, 2312, 2313, 2314, 2315, 2316, 2317, 2318, 2319, 2320, 2321, 2322, 2323, 2324, 2325, 2326, 2327, 2328, 2329, 2330, 2331, 2332, 2333, 2334, 2335, 2336, 2337, 2338, 2339, 2340, 2341, 2342, 2343, 2344, 2345, 2346, 2347, 2348, 2349, 2350, 2351, 2352, 2353, 2354, 2355, 2356, 2357, 2358, 2359, 2360, 2361, 2362, 2363, 2364, 2365, 2366, 2367, 2368, 2369, 2370, 2371, 2372, 2373, 2374, 2375, 2376, 2377, 2378, 2379, 2380, 2381, 2382, 2383, 2384, 2385, 2386, 2387, 2388, 2389, 2390, 2391, 2392, 2393, 2394, 2395, 2396, 2397, 2398, 2399, 2400, 2401, 2402, 2403, 2404, 2405, 2406, 2407, 2408, 2409, 2410, 2411, 2412, 2413, 2414, 2415, 2416, 2417, 2418, 2419, 2420, 2421, 2422, 2423, 2424, 2425, 2426, 2427, 2428, 2429, 2430, 2431, 2432, 2433, 2434, 2435, 2436, 2437, 2438, 2439, 2440, 2441, 2442, 2443, 2444, 2445, 2446, 2447, 2448, 2449, 2450, 2451, 2452, 2453, 2454, 2455, 2456, 2457, 2458 ], "xaxis": "x", "y": [ 457.334015, 424.44000199999994, 394.79599, 408.903992, 398.821014, 402.152008, 435.790985, 423.204987, 411.574005, 404.424988, 399.519989, 377.181, 375.46701, 386.944, 383.61499, 375.071991, 359.511993, 328.865997, 320.51001, 330.07901, 336.18701200000004, 352.940002, 365.02600099999995, 361.56201200000004, 362.299011, 378.549011, 390.414001, 400.869995, 394.77301, 382.556, 383.757996, 391.441986, 389.54599, 382.84500099999997, 386.475006, 383.15799, 358.416992, 358.34500099999997, 347.27099599999997, 354.70401, 352.989014, 357.61801099999997, 335.591003, 345.304993, 338.321014, 325.74899300000004, 325.891998, 327.553986, 330.492004, 339.485992, 349.290009, 342.415009, 345.488007, 363.264008, 366.924011, 367.695007, 423.56100499999997, 420.73498499999994, 397.817993, 376.132996, 387.88198900000003, 387.40799, 375.197998, 380.554993, 357.839996, 350.847992, 352.920013, 367.572998, 376.90100099999995, 375.347992, 368.369995, 369.670013, 376.446991, 375.490997, 378.04699700000003, 379.244995, 381.315002, 375.01001, 369.60400400000003, 376.85400400000003, 374.785004, 375.09500099999997, 361.908997, 352.218994, 346.36499, 350.506012, 352.541992, 347.37600699999996, 351.63198900000003, 345.34500099999997, 327.06201200000004, 319.77600099999995, 311.39599599999997, 317.842987, 329.955994, 320.842987, 331.885986, 334.571991, 322.533997, 319.007996, 327.924011, 315.863007, 317.239014, 312.670013, 310.737, 320.192993, 314.24899300000004, 315.032013, 281.082001, 264.195007, 274.47399900000005, 286.18899500000003, 294.33700600000003, 283.34899900000005, 290.40799, 274.79599, 265.660004, 267.79599, 225.86099199999998, 178.102997, 209.84399399999998, 208.097, 199.259995, 210.339005, 214.86099199999998, 211.315002, 226.89700299999998, 233.40600600000002, 232.878998, 247.847, 253.718002, 273.472992, 263.475006, 233.914993, 233.513, 226.42500299999998, 217.464005, 226.972, 238.229004, 227.268005, 226.85299700000002, 217.11099199999998, 222.266006, 227.753998, 223.41200299999997, 220.11000099999998, 219.839005, 219.184998, 221.76400800000002, 235.42700200000002, 257.321014, 234.82499700000002, 233.843002, 243.61000099999998, 236.326004, 240.28300499999997, 243.77900699999998, 244.53399700000003, 235.977005, 238.891998, 238.73500099999998, 237.47000099999997, 236.42599500000003, 253.82800299999997, 254.263, 260.201996, 275.670013, 281.701996, 273.09201, 276.178009, 272.722992, 276.260986, 274.35400400000003, 289.60699500000004, 291.76001, 296.378998, 294.35400400000003, 285.33700600000003, 281.88501, 286.39300499999996, 290.592987, 285.505005, 256.299011, 260.928009, 261.74899300000004, 260.024994, 267.959991, 266.73999, 245.59500099999997, 246.19700600000002, 248.531998, 247.02900699999998, 252.798004, 242.71299700000003, 247.52600099999998, 244.22399900000002, 247.27200299999998, 253.00500499999998, 254.32200600000002, 253.69700600000002, 260.597992, 255.492004, 253.17999300000002, 245.02200299999998, 243.67599500000003, 236.07200600000002, 236.55200200000002, 236.153, 224.587006, 219.15899700000003, 223.83299300000002, 228.57299799999998, 222.882004, 223.356003, 222.600006, 224.626007, 235.268997, 234.17599500000003, 236.462006, 231.268005, 226.38999900000002, 219.42999300000002, 229.285995, 225.854996, 225.80799900000002, 236.145004, 232.07899500000002, 234.92999300000002, 240.358002, 239.018005, 236.121002, 229.781998, 237.334, 243.86300699999998, 241.832001, 240.29600499999998, 242.15800499999997, 241.112, 236.376999, 236.92900099999997, 237.604996, 236.153, 236.80200200000002, 233.128006, 231.94700600000002, 234.018005, 235.34399399999998, 240.348007, 238.871994, 240.95300299999997, 237.11000099999998, 237.11599700000002, 237.28300499999997, 237.40800499999997, 237.09599300000002, 233.34500099999997, 230.190002, 222.92599500000003, 225.80299399999998, 225.873993, 224.32400499999997, 224.951996, 225.619003, 222.880997, 228.488998, 229.048004, 228.80299399999998, 229.705002, 229.981995, 232.401993, 233.542999, 236.82299799999998, 250.895004, 249.28399700000003, 249.007004, 244.606003, 245.212006, 243.944, 246.99000499999997, 244.29600499999998, 240.51499900000002, 242.798996, 243.59399399999998, 250.99000499999997, 249.011002, 257.06399500000003, 263.071991, 258.621002, 255.41200299999997, 256.335999, 260.885986, 271.91299399999997, 269.02999900000003, 266.207001, 270.785004, 269.227997, 284.89401200000003, 293.11499, 310.867004, 292.053986, 287.463989, 285.82901, 278.088989, 279.471985, 274.90100099999995, 273.614014, 278.98098799999997, 275.833008, 277.221985, 276.049011, 288.278015, 288.696991, 292.68600499999997, 293.62399300000004, 294.427002, 289.589996, 287.721985, 284.649994, 281.60101299999997, 282.614014, 281.22699, 285.217987, 281.88198900000003, 278.576996, 279.584991, 260.997009, 265.083008, 264.47000099999997, 270.385986, 266.37600699999996, 264.079987, 265.679993, 261.550995, 258.50698900000003, 257.97601299999997, 211.07899500000002, 226.684006, 235.350006, 232.569, 230.38999900000002, 228.169006, 210.49499500000002, 221.608994, 225.830994, 224.768997, 231.395996, 229.77999900000003, 228.761002, 230.056, 228.121002, 229.28399700000003, 227.18299900000002, 230.298004, 235.018997, 239.83999599999999, 239.847, 243.606995, 238.167999, 238.477005, 240.106995, 235.229004, 230.51199300000002, 230.643997, 230.30400099999997, 229.09100299999997, 229.809998, 232.975006, 231.492996, 231.212006, 227.085007, 230.617996, 230.28300499999997, 234.52900699999998, 235.143997, 234.33999599999999, 232.757004, 239.141998, 236.686996, 236.059998, 237.548996, 237.292999, 238.729996, 238.25900299999998, 240.382996, 246.063004, 242.96899399999998, 242.30400099999997, 243.931, 244.940994, 247.05000299999998, 245.30799900000002, 249.507996, 251.988998, 254.32000699999998, 262.868988, 270.640015, 261.64300499999996, 263.43701200000004, 269.463013, 266.272003, 274.02301, 276.496002, 281.653992, 283.679993, 285.299988, 293.78799399999997, 304.61801099999997, 313.855011, 328.015015, 314.16598500000003, 325.431, 361.18899500000003, 403.416992, 411.56298799999996, 386.35400400000003, 374.47000099999997, 386.48199500000004, 373.36801099999997, 380.25698900000003, 336.819, 311.08401499999997, 338.152008, 336.752991, 332.906006, 320.16598500000003, 330.75100699999996, 335.093994, 334.589996, 326.14898700000003, 322.022003, 326.927002, 324.536011, 323.04599, 320.04599, 328.205994, 352.68399, 358.041992, 357.381012, 371.294006, 377.321014, 362.488007, 359.18701200000004, 361.04599, 363.183014, 388.949005, 388.78299, 395.536011, 415.56298799999996, 417.56298799999996, 415.47900400000003, 451.93798799999996, 434.997009, 433.755005, 444.18200700000006, 465.321014, 454.93399000000005, 456.078003, 463.615997, 462.321991, 442.68499800000006, 438.639008, 436.571991, 442.40100099999995, 454.98498499999994, 455.65301500000004, 417.27398700000003, 422.82299800000004, 422.278992, 432.98300199999994, 426.619995, 430.56698600000004, 434.334015, 433.43798799999996, 430.01098600000006, 433.091003, 431.959991, 429.10501100000005, 458.048004, 453.23001100000005, 447.610992, 447.990997, 448.428009, 435.69000199999994, 432.371002, 430.306, 364.330994, 387.536011, 382.299011, 387.167999, 380.14898700000003, 420.23001100000005, 410.261993, 382.492004, 387.490997, 402.971008, 391.72601299999997, 392.153015, 394.971985, 380.289001, 379.47399900000005, 378.255005, 368.766998, 373.056, 374.447998, 369.949005, 389.593994, 386.549011, 376.522003, 376.619995, 373.446991, 376.028992, 381.64898700000003, 379.653992, 384.263, 391.859985, 407.230011, 400.184998, 407.488007, 416.321991, 422.372986, 420.785004, 437.164001, 438.798004, 437.747986, 420.735992, 424.954987, 424.54400599999997, 432.152008, 432.51901200000003, 433.503998, 437.696991, 435.122986, 423.98901399999994, 421.65100099999995, 410.93899500000003, 400.570007, 407.707001, 414.321014, 413.971985, 414.859985, 417.131012, 421.69000199999994, 411.62399300000004, 414.065002, 416.43798799999996, 416.829987, 417.010986, 420.621002, 409.548004, 410.444, 413.755005, 413.307007, 418.088989, 418.04098500000003, 416.39401200000003, 417.177002, 417.945007, 426.76501500000006, 424.23098799999997, 416.51599100000004, 414.81601, 416.72900400000003, 417.959991, 420.872986, 420.903992, 421.444, 424.02999900000003, 423.412994, 422.744995, 420.34899900000005, 419.411011, 421.56399500000003, 422.48300199999994, 425.19000199999994, 423.73400899999996, 424.282013, 429.713013, 430.571991, 427.39898700000003, 428.591003, 435.509003, 441.389008, 449.424988, 445.737, 450.282013, 458.55499299999997, 461.425995, 466.08898899999997, 444.68701200000004, 449.01098600000006, 455.09698499999996, 448.31799299999994, 451.875, 444.66900599999997, 450.303986, 446.72198499999996, 447.97601299999997, 459.60299699999996, 458.53601100000003, 458.548004, 460.48300199999994, 450.89498899999995, 452.72799699999996, 454.76599100000004, 455.670013, 455.67099, 457.56799299999994, 454.162994, 453.78299000000004, 454.618988, 438.714996, 442.675995, 443.18798799999996, 439.32299800000004, 444.15499900000003, 445.98098799999997, 449.59899900000005, 453.384003, 473.46398899999997, 530.039978, 526.232971, 533.864014, 531.385986, 536.919983, 537.971985, 569.19397, 572.72699, 574.97699, 585.5369870000001, 576.596985, 581.64502, 574.630005, 577.469971, 606.72699, 672.783997, 704.3759769999999, 685.559021, 694.4689940000001, 766.307983, 748.908997, 756.22699, 763.7810059999999, 737.226013, 666.651978, 596.116028, 623.97699, 665.2990110000001, 665.1229860000001, 629.367004, 655.275024, 647.0009769999999, 639.8900150000001, 673.336975, 676.296021, 703.7020259999999, 658.664001, 683.6619870000001, 670.6270139999999, 677.330994, 640.562012, 666.52301, 650.960022, 649.3599849999999, 647.658997, 664.551025, 654.4680179999999, 658.0780030000001, 663.255005, 660.767029, 679.458984, 673.106018, 672.864014, 665.6849980000001, 665.012024, 650.6190190000001, 655.55603, 661.284973, 654.096985, 651.783997, 654.35199, 655.034973, 656.992004, 655.0469969999999, 624.68103, 606.271973, 547.465027, 566.35498, 578.289001, 575.0430299999999, 587.778015, 592.6900019999999, 591.054016, 587.801025, 592.103027, 589.119995, 587.559021, 585.5880129999999, 570.473022, 567.23999, 577.439026, 573.216003, 574.317993, 575.630005, 581.697021, 581.307983, 586.7529910000001, 583.414978, 580.182007, 577.760986, 579.651001, 569.947021, 573.9119870000001, 574.106995, 577.5029910000001, 575.471985, 572.302979, 575.5369870000001, 598.211975, 608.633972, 606.590027, 610.435974, 614.544006, 626.315979, 622.861023, 623.508972, 606.7189940000001, 608.242981, 609.241028, 610.684021, 607.155029, 606.973022, 605.984009, 609.8740230000001, 609.22699, 608.312012, 597.148987, 596.2979740000001, 602.84198, 602.625, 600.8259889999999, 608.0430299999999, 606.166016, 604.728027, 605.692993, 609.7349849999999, 613.982971, 610.892029, 612.132996, 610.203979, 612.510986, 613.020996, 617.1209719999999, 619.107971, 616.7520139999999, 618.9940190000001, 641.072021, 636.192017, 636.786011, 640.3779910000001, 638.645996, 641.6309809999999, 639.192993, 637.960022, 630.52002, 630.856995, 632.8280030000001, 657.294006, 657.070984, 653.760986, 657.5880129999999, 678.304016, 688.312988, 689.651001, 714.479004, 701.864014, 700.971985, 729.7930299999999, 740.828979, 688.700012, 703.2349849999999, 703.4180299999999, 711.521973, 703.1309809999999, 709.848022, 723.27301, 715.533997, 716.411011, 705.054016, 702.0310059999999, 705.020996, 711.6190190000001, 744.1979980000001, 740.97699, 751.585022, 751.616028, 731.026001, 739.2479860000001, 751.346985, 744.5939940000001, 740.289001, 741.648987, 735.382019, 732.034973, 735.812988, 735.604004, 745.690979, 756.773987, 777.94397, 771.155029, 773.8720089999999, 758.700012, 764.223999, 768.132019, 770.8099980000001, 772.794006, 774.650024, 769.731018, 780.086975, 780.55603, 781.481018, 778.0880129999999, 784.9069820000001, 790.828979, 790.530029, 792.713989, 800.8759769999999, 834.2810059999999, 864.5399779999999, 921.984009, 898.8220210000001, 896.182983, 907.6099849999999, 933.1979980000001, 975.9210210000001, 973.4970089999999, 961.237976, 963.7429810000001, 998.3250119999999, 1021.75, 1043.839966, 1154.72998, 1013.3800050000001, 902.200989, 908.5850220000001, 911.198975, 902.828003, 907.679016, 777.757019, 804.833984, 823.984009, 818.4119870000001, 821.7979740000001, 831.533997, 907.9379880000001, 886.6179810000001, 899.0729980000001, 895.026001, 921.789001, 924.6729740000001, 921.012024, 892.6870119999999, 901.5419919999999, 917.585999, 919.75, 921.590027, 919.495972, 920.3820189999999, 970.403015, 989.02301, 1011.7999880000001, 1029.910034, 1042.900024, 1027.339966, 1038.150024, 1061.349976, 1063.069946, 994.382996, 988.674011, 1004.4500119999999, 999.1810300000001, 990.6420289999999, 1004.5499880000001, 1007.4799800000001, 1027.439941, 1046.209961, 1054.420044, 1047.869995, 1079.97998, 1115.300049, 1117.439941, 1166.719971, 1173.680054, 1143.839966, 1165.199951, 1179.969971, 1179.969971, 1222.5, 1251.01001, 1274.98999, 1255.150024, 1267.119995, 1272.829956, 1223.540039, 1150, 1188.48999, 1116.719971, 1175.829956, 1221.380005, 1231.920044, 1240, 1249.609985, 1187.810059, 1100.22998, 973.817993, 1036.73999, 1054.22998, 1120.540039, 1049.140015, 1038.589966, 937.5200199999999, 972.778992, 966.724976, 1045.77002, 1047.150024, 1039.969971, 1026.430054, 1071.790039, 1080.5, 1102.170044, 1143.810059, 1133.25, 1124.780029, 1182.680054, 1176.900024, 1175.949951, 1187.869995, 1187.130005, 1205.01001, 1200.369995, 1169.280029, 1167.540039, 1172.52002, 1182.939941, 1193.910034, 1211.670044, 1210.290039, 1229.079956, 1222.050049, 1231.709961, 1207.209961, 1250.150024, 1265.48999, 1281.079956, 1317.72998, 1316.47998, 1321.790039, 1347.890015, 1421.599976, 1452.819946, 1490.089966, 1537.670044, 1555.449951, 1578.800049, 1596.709961, 1723.3499760000002, 1755.359985, 1787.130005, 1848.569946, 1724.2399899999998, 1804.910034, 1808.910034, 1738.430054, 1734.449951, 1839.089966, 1888.6500239999998, 1987.709961, 2084.72998, 2041.199951, 2173.399902, 2320.419922, 2443.639893, 2304.97998, 2202.419922, 2038.869995, 2155.800049, 2255.610107, 2175.469971, 2286.409912, 2407.8798829999996, 2488.550049, 2515.350098, 2511.810059, 2686.810059, 2863.199951, 2732.159912, 2805.6201170000004, 2823.810059, 2947.709961, 2958.110107, 2659.6298829999996, 2717.02002, 2506.3701170000004, 2464.580078, 2518.560059, 2655.8798829999996, 2548.290039, 2589.600098, 2721.790039, 2689.100098, 2705.409912, 2744.909912, 2608.719971, 2589.409912, 2478.449951, 2552.449951, 2574.790039, 2539.320068, 2480.840088, 2434.550049, 2506.469971, 2564.060059, 2601.639893, 2601.98999, 2608.560059, 2518.659912, 2571.340088, 2518.439941, 2372.560059, 2337.790039, 2398.840088, 2357.899902, 2233.340088, 1998.859985, 1929.819946, 2228.409912, 2318.8798829999996, 2273.429932, 2817.600098, 2667.76001, 2810.1201170000004, 2730.399902, 2754.860107, 2576.47998, 2529.449951, 2671.780029, 2809.01001, 2726.449951, 2757.179932, 2875.340088, 2718.26001, 2710.669922, 2804.72998, 2895.889893, 3252.909912, 3213.939941, 3378.9399409999996, 3419.9399409999996, 3342.469971, 3381.280029, 3650.6201170000004, 3884.709961, 4073.26001, 4325.129883, 4181.930176, 4376.629883, 4331.689941, 4160.620117, 4193.700195, 4087.6599119999996, 4001.73999, 4100.52002, 4151.52002, 4334.680176, 4371.600098, 4352.399902, 4382.879883, 4382.660156, 4579.02002, 4565.299805, 4703.390136999999, 4892.009765999999, 4578.77002, 4582.959961, 4236.310059, 4376.529785, 4597.120117, 4599.879883, 4228.75, 4226.060059, 4122.939941, 4161.27002, 4130.810059, 3882.5900880000004, 3154.949951, 3637.5200200000004, 3625.040039, 3582.8798829999996, 4065.1999509999996, 3924.969971, 3905.9499509999996, 3631.040039, 3630.6999509999996, 3792.399902, 3682.8400880000004, 3926.070068, 3892.350098, 4200.669922, 4174.72998, 4163.069824, 4338.709961, 4403.740234000001, 4409.319824, 4317.47998, 4229.359863000001, 4328.410156, 4370.810059, 4426.890136999999, 4610.47998, 4772.02002, 4781.990234000001, 4826.47998, 5446.910156, 5647.209961, 5831.790039, 5678.189941, 5725.589844, 5605.509765999999, 5590.689941, 5708.52002, 6011.450195, 6031.600098, 6008.419922, 5930.319824, 5526.640136999999, 5750.799805, 5904.830078, 5780.899902, 5753.089844, 6153.850098, 6130.529785, 6468.399902, 6767.310059, 7078.5, 7207.759765999999, 7379.950195, 7407.410156, 7022.759765999999, 7144.379883, 7459.689941, 7143.580078, 6618.140136999999, 6357.600098, 5950.069824, 6559.490234000001, 6635.75, 7315.540039, 7871.689941, 7708.990234000001, 7790.149901999999, 8036.490234000001, 8200.639648, 8071.259765999999, 8253.549805, 8038.77002, 8253.69043, 8790.919922, 9330.549805, 9818.349609, 10058.799805, 9888.610352, 10233.599609, 10975.599609, 11074.599609, 11323.200195, 11657.200195, 11916.700195, 14291.5, 17899.699219, 16569.400391, 15178.200195, 15455.400391, 16936.800781, 17415.400391, 16408.199219, 16564, 17706.900391, 19497.400391, 19140.800781, 19114.199219, 17776.699219, 16624.599609, 15802.900391, 13831.799805, 14699.200195, 13925.799805, 14026.599609, 16099.799805, 15838.5, 14606.5, 14656.200195, 12952.200195, 14156.400391, 13657.200195, 14982.099609, 15201, 15599.200195, 17429.5, 17527, 16477.599609, 15170.099609, 14595.400391, 14973.299805, 13405.799805, 13980.599609, 14360.200195, 13772, 13819.799805, 11490.5, 11188.599609, 11474.900391, 11607.400391, 12899.200195, 11600.099609, 10931.400391, 10868.400391, 11359.400391, 11259.400391, 11171.400391, 11440.700195, 11786.299805, 11296.400391, 10106.299805, 10221.099609, 9170.540039, 8830.75, 9174.910156, 8277.009766, 6955.27002, 7754, 7621.299805, 8265.589844, 8736.980469, 8621.900391, 8129.970215, 8926.570313, 8598.30957, 9494.629883, 10166.400391, 10233.900391, 11112.700195, 10551.799805, 11225.299805, 11403.700195, 10690.400391, 10005, 10301.099609, 9813.070313, 9664.730469, 10366.700195, 10725.599609, 10397.900391, 10951, 11086.400391, 11489.700195, 11512.599609, 11573.299805, 10779.900391, 9965.570313, 9395.009766, 9337.549805, 8866, 9578.629883, 9205.120117, 9194.849609, 8269.80957, 8300.860352, 8338.349609, 7916.879883, 8223.679688, 8630.650391, 8913.469727, 8929.280273, 8728.469727, 8879.620117, 8668.120117, 8495.780273, 8209.400391, 7833.040039, 7954.47998, 7165.700195, 6890.52002, 6973.529785, 6844.22998, 7083.799805, 7456.109863, 6853.839844, 6811.470215, 6636.319824, 6911.089844, 7023.52002, 6770.72998, 6834.759765999999, 6968.319823999999, 7889.25, 7895.959961, 7986.240234000001, 8329.110352, 8058.669922, 7902.089844, 8163.419922, 8294.30957, 8845.830078, 8895.580078, 8802.459961, 8930.879883, 9697.5, 8845.740234, 9281.509766, 8987.049805, 9348.480469, 9419.080078, 9240.549805, 9119.009766, 9235.919922, 9743.860352, 9700.759766, 9858.150391, 9654.799805, 9373.009766, 9234.820313, 9325.179688, 9043.94043, 8441.490234, 8504.889648, 8723.94043, 8716.790039, 8510.379883, 8368.830078, 8094.319823999999, 8250.969727, 8247.179688, 8513.25, 8418.990234, 8041.779785, 7557.819823999999, 7587.339844, 7480.140137, 7355.879883, 7368.220215, 7135.990234000001, 7472.589844, 7406.52002, 7494.169922, 7541.450195, 7643.450195, 7720.25, 7514.470215, 7633.759765999999, 7653.97998, 7678.240234000001, 7624.919922, 7531.97998, 6786.02002, 6906.919922, 6582.359863000001, 6349.899902, 6675.350098, 6456.580078, 6550.160156, 6499.27002, 6734.819823999999, 6769.939941, 6776.549805, 6729.740234000001, 6083.689941, 6162.47998, 6173.22998, 6249.180176, 6093.669922, 6157.129883, 5903.439941, 6218.299805, 6404, 6385.819824, 6614.180176, 6529.589844, 6597.549805, 6639.140136999999, 6673.5, 6856.930176000001, 6773.879883, 6741.75, 6329.950195, 6394.709961, 6228.810059, 6238.049805, 6276.120117, 6359.640136999999, 6741.75, 7321.040039, 7370.779785, 7466.859863, 7354.129883, 7419.290039, 7418.490234000001, 7711.109863, 8424.269531, 8181.390137, 7951.580078, 8165.009765999999, 8192.150391, 8218.459961, 8180.47998, 7780.439941, 7624.910156, 7567.149901999999, 7434.390137, 7032.850098000001, 7068.47998, 6951.799805, 6753.120117, 6305.799805, 6568.22998, 6184.709961, 6295.72998, 6322.689941, 6297.569824, 6199.709961, 6308.52002, 6334.72998, 6580.629883, 6423.759765999999, 6506.069824, 6308.529785, 6488.759765999999, 6376.709961, 6534.879883, 6719.959961, 6763.189941, 6707.259765999999, 6884.640137, 7096.279785, 7047.160156, 6978.22998, 7037.580078, 7193.25, 7272.720215, 7260.060059, 7361.660156, 6792.830078, 6529.169922, 6467.069824, 6225.97998, 6300.859863000001, 6329.700195, 6321.200195, 6351.799805, 6517.310059, 6512.709961, 6543.200195, 6517.180176, 6281.200195, 6371.299805, 6398.540039, 6519.669922, 6734.950195, 6721.97998, 6710.629883, 6595.410156, 6446.470215, 6495, 6676.75, 6644.129883, 6601.959961, 6625.560059, 6589.620117, 6556.100098, 6502.589844, 6576.689941, 6622.47998, 6588.310059, 6602.950195, 6652.22998, 6642.640136999999, 6585.529785, 6256.240234000001, 6274.580078, 6285.990234000001, 6290.930176, 6596.540039, 6596.109863000001, 6544.430176, 6476.709961, 6465.410156, 6489.189941, 6482.350098, 6487.160156, 6475.740234000001, 6495.839844, 6476.290039, 6474.75, 6480.379883, 6486.390136999999, 6332.629883, 6334.27002, 6317.609863000001, 6377.779785, 6388.439941, 6361.259765999999, 6376.129883, 6419.660156, 6461.009765999999, 6530.140136999999, 6453.720215, 6385.620117, 6409.220215, 6411.27002, 6371.27002, 6359.490234000001, 5738.350098, 5648.029785, 5575.549805, 5554.330078, 5623.540039, 4871.490234000001, 4451.870117, 4602.169922, 4365.939941, 4347.109863000001, 3880.76001, 4009.969971, 3779.1298829999996, 3820.719971, 4257.419922, 4278.84668, 4017.2685549999997, 4214.671875, 4139.87793, 3894.1308590000003, 3956.8937990000004, 3753.9948729999996, 3521.101807, 3419.937256, 3476.114746, 3614.234375, 3502.656006, 3424.588135, 3486.9501950000003, 3313.677246, 3242.4848629999997, 3236.761719, 3252.839111, 3545.864746, 3696.059082, 3745.9506840000004, 4134.441406, 3896.5437009999996, 4014.1826170000004, 3998.980225, 4078.599121, 3815.490723, 3857.297607, 3654.833496, 3923.9187009999996, 3820.4086909999996, 3865.952637, 3742.700439, 3843.5200200000004, 3943.4094240000004, 3836.741211, 3857.717529, 3845.19458, 4076.632568, 4025.2482909999994, 4030.8479, 4035.296387, 3678.924561, 3687.365479, 3661.301025, 3552.953125, 3706.052246, 3630.675293, 3655.006836, 3678.563965, 3657.8393549999996, 3728.5683590000003, 3601.013672, 3576.032471, 3604.577148, 3585.123047, 3600.865479, 3599.765869, 3602.460449, 3583.9658200000003, 3470.450439, 3448.116943, 3486.1816409999997, 3457.792725, 3487.945313, 3521.0607909999994, 3464.013428, 3459.154053, 3466.357422, 3413.767822, 3399.4716799999997, 3666.780273, 3671.203613, 3690.188232, 3648.430664, 3653.528564, 3632.070557, 3616.8808590000003, 3620.8107909999994, 3629.787598, 3673.836182, 3915.7143549999996, 3947.094482, 3999.820557, 3954.118164, 4005.526611, 4142.526855, 3810.42749, 3882.696289, 3854.35791, 3851.047363, 3854.7854, 3859.58374, 3864.415039, 3847.1757810000004, 3761.557129, 3896.375, 3903.9426270000004, 3911.484375, 3901.131592, 3963.313721, 3951.599854, 3905.227295, 3909.15625, 3906.717285, 3924.3691409999997, 3960.9111329999996, 4048.72583, 4025.229004, 4032.507324, 4071.190186, 4087.476318, 4029.326904, 4023.968262, 4035.8264159999994, 4022.1682130000004, 3963.070557, 3985.080811, 4087.0661619999996, 4069.107178, 4098.374511999999, 4106.660156, 4105.404297, 4158.183105, 4879.87793, 4973.021973, 4922.798828, 5036.681152, 5059.817383, 5198.896973, 5289.770996, 5204.958496, 5324.551758, 5064.487793, 5089.539063, 5096.586426, 5167.722168, 5067.108397999999, 5235.55957, 5251.937988000001, 5298.385742, 5303.8125, 5337.88623, 5314.53125, 5399.365234000001, 5572.362305, 5464.866699, 5210.515625, 5279.348145, 5268.291015999999, 5285.13916, 5247.352539, 5350.726563, 5402.697265999999, 5505.283691, 5768.289551, 5831.16748, 5795.708496, 5746.807129, 5829.501465, 5982.45752, 6174.528809, 6378.849121, 7204.771484000001, 6972.371581999999, 7814.915039, 7994.416015999999, 8205.167969, 7884.90918, 7343.895508, 7271.208008, 8197.689453, 7978.309081999999, 7963.327637, 7680.066406, 7881.84668, 7987.371581999999, 8052.543945, 8673.21582, 8805.77832, 8719.961914, 8659.487305, 8319.472656, 8574.501953, 8564.016602, 8742.958008, 8208.995117, 7707.770995999999, 7824.231445, 7822.023437999999, 8043.951172, 7954.12793, 7688.077148, 8000.32959, 7927.714355, 8145.857422, 8230.923828, 8693.833008, 8838.375, 8994.488281, 9320.352539, 9081.762695, 9273.521484, 9527.160156, 10144.556641, 10701.691406, 10855.371094, 11011.102539, 11790.916992, 13016.231445, 11182.806641, 12407.332031, 11959.371094, 10817.155273, 10583.134766, 10801.677734, 11961.269531, 11215.4375, 10978.459961, 11208.550781, 11450.84668, 12285.958008, 12573.8125, 12156.512695, 11358.662109, 11815.986328, 11392.378906, 10256.058594, 10895.089844, 9477.641602, 9693.802734, 10666.482422, 10530.732422, 10767.139648, 10599.105469, 10343.106445, 9900.767578, 9811.925781, 9911.841797, 9870.303711, 9477.677734, 9552.860352, 9519.145508, 9607.423828, 10085.62793, 10399.668945, 10518.174805, 10821.726563, 10970.18457, 11805.65332, 11478.168945, 11941.96875, 11966.407227, 11862.936523, 11354.024414, 11523.579102, 11382.616211, 10895.830078, 10051.704102, 10311.545898, 10374.338867, 10231.744141, 10345.810547, 10916.053711, 10763.232422, 10138.049805, 10131.055664, 10407.964844, 10159.960938, 10138.517578, 10370.820313, 10185.5, 9754.422852, 9510.200195, 9598.173828, 9630.664063, 9757.970703, 10346.760742, 10623.540039, 10594.493164, 10575.533203, 10353.302734, 10517.254883, 10441.276367, 10334.974609, 10115.975586, 10178.37207, 10410.126953, 10360.546875, 10358.048828, 10347.712891, 10276.793945, 10241.272461, 10198.248047, 10266.415039, 10181.641602, 10019.716797, 10070.392578, 9729.324219, 8620.566406, 8486.993164, 8118.967773, 8251.845703, 8245.915039, 8104.185547, 8293.868164, 8343.276367, 8393.041992, 8259.992188, 8205.939453, 8151.500488, 7988.155762, 8245.623047, 8228.783203, 8595.740234, 8586.473633, 8321.756836, 8336.555664, 8321.005859, 8374.686523, 8205.369141, 8047.526855, 8103.911133, 7973.20752, 7988.560547, 8222.078125, 8243.720703, 8078.203125, 7514.671875, 7493.48877, 8660.700195, 9244.972656, 9551.714844, 9256.148438, 9427.6875, 9205.726563, 9199.584961, 9261.104492, 9324.717773, 9235.354492, 9412.612305, 9342.527344, 9360.879883, 9267.561523, 8804.880859, 8813.582031, 9055.526367, 8757.788086, 8815.662109, 8808.262695, 8708.094727, 8491.992188, 8550.760742, 8577.975586, 8309.286133, 8206.145508, 8027.268066, 7642.75, 7296.577637, 7397.796875, 7047.916992, 7146.133789, 7218.371094, 7531.663573999999, 7463.105956999999, 7761.243651999999, 7569.629883, 7424.29248, 7321.988281, 7320.145508, 7252.034668000001, 7448.307617, 7546.996581999999, 7556.237793000001, 7564.345215, 7400.899414, 7278.119629000001, 7217.427245999999, 7243.134276999999, 7269.68457, 7124.673828, 7152.301758, 6932.480469, 6640.515136999999, 7276.802734000001, 7202.844238, 7218.816406, 7191.158691, 7511.588867, 7355.628418000001, 7322.532227, 7275.155762, 7238.966797, 7290.088379000001, 7317.990234000001, 7422.652831999999, 7292.995117, 7193.599120999999, 7200.174316, 6985.470215, 7344.884276999999, 7410.656738, 7411.317383, 7769.219238, 8163.692383, 8079.862793000001, 7879.071289, 8166.554198999999, 8037.537598000001, 8192.494141, 8144.194336, 8827.764648, 8807.010742, 8723.786133, 8929.038086, 8942.808594, 8706.245117, 8657.642578, 8745.894531, 8680.875977, 8406.515625, 8445.43457, 8367.847656, 8596.830078, 8909.819336, 9358.589844, 9316.629883, 9508.993164, 9350.529297, 9392.875, 9344.365234, 9293.521484, 9180.962891, 9613.423828, 9729.801758, 9795.943359, 9865.119141, 10116.673828, 9856.611328, 10208.236328, 10326.054688, 10214.379883, 10312.116211, 9889.424805, 9934.433594, 9690.142578, 10141.996094, 9633.386719, 9608.475586, 9686.441406, 9663.181641, 9924.515625, 9650.174805, 9341.705078, 8820.522461, 8784.494141, 8672.455078, 8599.508789, 8562.454102, 8869.669922, 8787.786133, 8755.246094, 9078.762695, 9122.545898, 8909.954102, 8108.116211, 7923.644531, 7909.729492, 7911.430176000001, 4970.788086, 5563.707031, 5200.366211, 5392.314941, 5014.47998, 5225.629395, 5238.438477000001, 6191.192871, 6198.77832, 6185.066406, 5830.254883, 6416.314941, 6734.803711, 6681.062988000001, 6716.44043, 6469.79834, 6242.193848, 5922.042969, 6429.841797, 6438.644531, 6606.776367, 6793.624512, 6733.387206999999, 6867.527344, 6791.129395, 7271.78125, 7176.414551000001, 7334.098633, 7302.089355, 6865.493164, 6859.083008, 6971.091797, 6845.037598000001, 6842.427734000001, 6642.109863000001, 7116.804198999999, null, 7257.665039, 7189.424805, 6881.958495999999, 6880.323242, 7117.20752, 7429.724609000001, 7550.900879000001, 7569.936035, 7679.867187999999, 7795.601073999999, 7807.058594, 8801.038086, 8658.553711, 8864.766602, 8988.59668, 8897.46875, 8912.654297, 9003.070313, 9268.761719, 9951.518555, 9842.666016, 9593.896484, 8756.430664, 8601.795898, 8804.477539, 9269.987305, 9733.72168, 9328.197266, 9377.013672, 9670.739258, 9726.575195, 9729.038086, 9522.981445, 9081.761719, 9182.577148, 9209.287109, 8790.368164, 8906.93457, 8835.052734, 9181.017578, 9525.750977, 9439.124023, 9700.414063, 9461.058594, 10167.268555, 9529.803711, 9656.717773, 9800.636719, 9665.533203, 9653.679688, 9758.852539, 9771.489258, 9795.700195, 9870.094727, 9321.78125, 9480.84375, 9475.277344, 9386.788086, 9450.702148, 9538.024414, 9480.254883, 9411.84082, 9288.018555, 9332.34082, 9303.629883, 9648.717773, 9629.658203, 9313.610352, 9264.813477, 9162.917969, 9045.390625, 9143.582031, 9190.854492, 9137.993164, 9228.325195, 9123.410156, 9087.303711, 9132.488281, 9073.942383, 9375.474609, 9252.277344, 9428.333008, 9277.967773, 9278.807617, 9240.34668, 9276.5, 9243.614258, 9243.213867, 9192.836914, 9132.227539, 9151.392578, 9159.040039, 9185.817383, 9164.231445, 9374.887695, 9525.363281, 9581.072266, 9536.892578, 9677.113281, 9905.166992, 10990.873047, 10912.823242, 11100.467773, 11111.213867, 11323.466797, 11759.592773, 11053.614258, 11246.348633, 11205.892578, 11747.022461, 11779.773438, 11601.472656, 11754.045898, 11675.739258, 11878.111328, 11410.525391, 11584.93457, 11784.137695, 11768.871094, 11865.698242, 11892.803711, 12254.402344, 11991.233398, 11758.283203, 11878.37207, 11592.489258, 11681.825195, 11664.847656, 11774.595703, 11366.134766, 11488.363281, 11323.397461, 11542.5, 11506.865234, 11711.505859, 11680.820313, 11970.478516, 11414.03418, 10245.296875, 10511.813477, 10169.567383, 10280.351563, 10369.563477, 10131.516602, 10242.347656, 10363.138672, 10400.915039, 10442.170898, 10323.755859, 10680.837891, 10796.951172, 10974.905273, 10948.990234, 10944.585938, 11094.34668, 10938.271484, 10462.259766, 10538.459961, 10225.864258, 10745.548828, 10702.290039, 10754.4375, 10774.426758, 10721.327148, 10848.830078, 10787.618164, 10623.330078, 10585.164063, 10565.493164, 10684.428711, 10804.000977, 10621.664063, 10679.136719, 10923.62793, null, 11296.361328, 11384.181641, null, null, 11429.506836, 11495.349609, 11322.123047, 11358.101563, 11483.359375, 11742.037109, 11916.334961, 12823.689453, 12965.891602, 12931.539063, 13108.0625, 13031.173828, 13075.248047, 13654.21875, 13271.285156, 13437.882813, 13546.522461000002, 13780.995116999999, 13737.109375, 13550.489258000001, 13950.300781, 14133.707031, 15579.848633000001, 15565.880859, 14833.753906, 15479.567383000001, 15332.31543, 15290.902344, 15701.339844, 16276.34375, 16317.808594, 16068.138672, 15955.587891, 16716.111328, 17645.40625, 17804.005859, 17817.089844, 18621.314453, 18642.232422, 18370.001953, 18364.121094, 19107.464844, 18732.121094, 17150.623047, 17108.402344, 17717.414063, 18177.484375, 19625.835938, 18802.998047, 19201.091797, 19445.398438, 18699.765625, 19154.230469, 19345.121094, 19191.630859, 18321.144531, 18553.916016, 18264.992188, 18058.904297, 18803.65625, 19142.382813, 19246.644531, 19417.076172, 21310.597656, 22805.162109, 23137.960938, 23869.832031, 23477.294922, 22803.082031, 23783.029297, 23241.345703, 23735.949219, 24664.791016, 26437.037109, 26272.294922, 27084.808594, 27362.4375, 28840.953125, 29001.720702999995, 29374.152344, 32127.267577999995, 32782.023438, 31971.914063, 33992.429688, 36824.363281, 39371.042969, 40797.609375, 40254.546875, 38356.441406, 35566.65625, 33922.960938, 37316.359375, 39187.328125, 36825.367188, 36178.140625, 35791.277344, 36630.074219, 36069.804688, 35547.75, 30825.699219, 33005.761719, 32067.642577999995, 32289.378906, 32366.392577999995, 32569.849608999997, 30432.546875, 31649.605469, 34316.386719, 34269.523438, 33114.359375, 33537.175781, 35510.289063, 37472.089844, 36926.066406, 38144.308594, 39266.011719, 38903.441406, 46196.464844, 46481.105469, 44918.183594, 47909.332031, 47504.851563, 47105.515625, 48717.289063, 47945.058594, 49199.871094, 52149.007813, 51679.796875, 55888.132813, 56099.51953099999, 57539.945313, 54207.320313, 48824.425781, 49705.332031, 47093.851563, 46339.761719, 46188.453125, 45137.769531, 49631.242188, 48378.988281, 50538.242188, 48561.167969, 48927.304688, 48912.382813, 51206.691406, 52246.523438, 54824.117188, 56008.55078099999, 57805.12109400001, 57332.08984400001, 61243.085938, 59302.31640599999, 55907.19921900001, 56804.90234400001, 58870.89453099999, 57858.921875, 58346.65234400001, 58313.64453099999, 57523.421875, 54529.14453099999, 54738.945313, 52774.265625, 51704.160156, 55137.3125, 55973.51171900001, 55950.74609400001, 57750.19921900001, 58917.69140599999, 58918.83203099999, 59095.80859400001, 59384.3125, 57603.890625, 58758.554688, 59057.87890599999, 58192.359375, 56048.9375, 58323.953125, 58245.00390599999, 59793.234375, 60204.96484400001, 59893.453125, 63503.45703099999, 63109.695313, 63314.01171900001, 61572.789063, 60683.820313, 56216.18359400001, 55724.265625, 56473.03125, 53906.08984400001, 51762.273438, 51093.652344, 50050.867188, 49004.253906, 54021.75390599999, 55033.117188, 54824.703125, 53555.109375, 57750.17578099999, 57828.05078099999, 56631.078125, 57200.29296900001, 53333.539063, 57424.007813, 56396.515625, 57356.40234400001, 58803.77734400001, 58232.31640599999, 55859.796875, 56704.57421900001, 49150.535156, 49716.191406, 49880.535156, 46760.1875, 46456.058594, 43537.511719, 42909.402344, 37002.441406, 40782.738281, 37304.691406, 37536.632813, 34770.582031, 38705.980469, 38402.222656, 39294.199219, 38436.96875, 35697.605469, 34616.066406, 35678.128906, 37332.855469, 36684.925781, 37575.179688, 39208.765625, 36894.40625, 35551.957031, 35862.378906, 33560.707031, 33472.632813, 37345.121094, 36625.628906 ], "yaxis": "y" }, { "name": "Volume", "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462, 1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1492, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1518, 1519, 1520, 1521, 1522, 1523, 1524, 1525, 1526, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1536, 1537, 1538, 1539, 1540, 1541, 1542, 1543, 1544, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1554, 1555, 1556, 1557, 1558, 1559, 1560, 1561, 1562, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1578, 1579, 1580, 1581, 1582, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1592, 1593, 1594, 1595, 1596, 1597, 1598, 1599, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614, 1615, 1616, 1617, 1618, 1619, 1620, 1621, 1622, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1632, 1633, 1634, 1635, 1636, 1637, 1638, 1639, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1649, 1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1658, 1659, 1660, 1661, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1671, 1672, 1673, 1674, 1675, 1676, 1677, 1678, 1679, 1680, 1681, 1682, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1692, 1693, 1694, 1695, 1696, 1697, 1698, 1699, 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735, 1736, 1737, 1738, 1739, 1740, 1741, 1742, 1743, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1758, 1759, 1760, 1761, 1762, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1771, 1772, 1773, 1774, 1775, 1776, 1777, 1778, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1788, 1789, 1790, 1791, 1792, 1793, 1794, 1795, 1796, 1797, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812, 1813, 1814, 1815, 1816, 1817, 1818, 1819, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831, 1832, 1833, 1834, 1835, 1836, 1837, 1838, 1839, 1840, 1841, 1842, 1843, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1852, 1853, 1854, 1855, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2038, 2039, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2049, 2050, 2051, 2052, 2053, 2054, 2055, 2056, 2057, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2067, 2068, 2069, 2070, 2071, 2072, 2073, 2074, 2075, 2076, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2085, 2086, 2087, 2088, 2089, 2090, 2091, 2092, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2108, 2109, 2110, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2120, 2121, 2122, 2123, 2124, 2125, 2126, 2127, 2128, 2129, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2139, 2140, 2141, 2142, 2143, 2144, 2145, 2146, 2147, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2157, 2158, 2159, 2160, 2161, 2162, 2163, 2164, 2165, 2166, 2167, 2168, 2169, 2170, 2171, 2172, 2173, 2174, 2175, 2176, 2177, 2178, 2179, 2180, 2181, 2182, 2183, 2184, 2185, 2186, 2187, 2188, 2189, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2237, 2238, 2239, 2240, 2241, 2242, 2243, 2244, 2245, 2246, 2247, 2248, 2249, 2250, 2251, 2252, 2253, 2254, 2255, 2256, 2257, 2258, 2259, 2260, 2261, 2262, 2263, 2264, 2265, 2266, 2267, 2268, 2269, 2270, 2271, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279, 2280, 2281, 2282, 2283, 2284, 2285, 2286, 2287, 2288, 2289, 2290, 2291, 2292, 2293, 2294, 2295, 2296, 2297, 2298, 2299, 2300, 2301, 2302, 2303, 2304, 2305, 2306, 2307, 2308, 2309, 2310, 2311, 2312, 2313, 2314, 2315, 2316, 2317, 2318, 2319, 2320, 2321, 2322, 2323, 2324, 2325, 2326, 2327, 2328, 2329, 2330, 2331, 2332, 2333, 2334, 2335, 2336, 2337, 2338, 2339, 2340, 2341, 2342, 2343, 2344, 2345, 2346, 2347, 2348, 2349, 2350, 2351, 2352, 2353, 2354, 2355, 2356, 2357, 2358, 2359, 2360, 2361, 2362, 2363, 2364, 2365, 2366, 2367, 2368, 2369, 2370, 2371, 2372, 2373, 2374, 2375, 2376, 2377, 2378, 2379, 2380, 2381, 2382, 2383, 2384, 2385, 2386, 2387, 2388, 2389, 2390, 2391, 2392, 2393, 2394, 2395, 2396, 2397, 2398, 2399, 2400, 2401, 2402, 2403, 2404, 2405, 2406, 2407, 2408, 2409, 2410, 2411, 2412, 2413, 2414, 2415, 2416, 2417, 2418, 2419, 2420, 2421, 2422, 2423, 2424, 2425, 2426, 2427, 2428, 2429, 2430, 2431, 2432, 2433, 2434, 2435, 2436, 2437, 2438, 2439, 2440, 2441, 2442, 2443, 2444, 2445, 2446, 2447, 2448, 2449, 2450, 2451, 2452, 2453, 2454, 2455, 2456, 2457, 2458 ], "xaxis": "x", "y": [ 21056800, 34483200, 37919700, 36863600, 26580100, 24127600, 45099500, 30627700, 26814400, 21460800, 15029300, 23613300, 32497700, 34707300, 26229400, 21777700, 30901200, 47236500, 83308096, 79011800, 49199900, 54736300, 83641104, 43665700, 13345200, 17552800, 35221400, 38491500, 25267100, 26990000, 13600700, 11416800, 5914570, 16419000, 14188900, 11641300, 26456900, 15585700, 18127500, 11272500, 13033000, 7845880, 18192700, 30177900, 12545400, 16677200, 8603620, 12948500, 15655500, 19817200, 18797000, 16834200, 8535470, 24205600, 30450100, 15838900, 45783200, 58945000, 29589200, 15727500, 11905600, 41518800, 32222500, 18931800, 25233200, 29850100, 15273000, 15151600, 30930100, 25442200, 18601700, 8748030, 22946500, 15375600, 9194440, 11763000, 12364100, 13340100, 14529600, 15181800, 7009320, 6491650, 18898700, 32915500, 16427700, 32431300, 16989800, 11675900, 12415200, 17264200, 30864900, 37567900, 39173000, 23823100, 20856700, 15207600, 22315100, 16574200, 15092300, 9883640, 16410500, 15185200, 11676600, 12302500, 12528300, 13942900, 8036550, 7860650, 33054400, 55629100, 43962800, 23245700, 24866800, 19982500, 18718600, 15264300, 18200800, 18880300, 72843904, 97638704, 81773504, 38421000, 23469700, 30085100, 18658300, 24051100, 29924600, 33544600, 24621700, 24782500, 33582700, 106794000, 44399000, 44352200, 32213400, 26605200, 23348200, 29128500, 30612100, 40783700, 26594300, 22516400, 24435300, 21604200, 17145200, 27791300, 21115100, 17201900, 15206200, 42744400, 49732500, 56552400, 28153700, 27363100, 25200800, 18270500, 23876700, 12284200, 19527000, 16400000, 14200400, 11496200, 13619400, 44013900, 13949300, 25213700, 40465700, 50461300, 41383000, 41302400, 28918900, 17825900, 22067900, 59178200, 67770800, 33963900, 32585200, 31421500, 22612300, 11970100, 21516100, 21497200, 57008000, 52732000, 18456700, 17130100, 18438100, 22811900, 40073700, 35866900, 25730000, 17274900, 16040900, 21699400, 23009600, 22672000, 22877200, 26272600, 23146600, 12493500, 19649200, 20034200, 18467400, 30086400, 21643500, 28882000, 16365200, 12387900, 31181800, 31719000, 22562000, 24805400, 20429800, 12939000, 15021500, 18364700, 24978000, 23847900, 17036000, 21448700, 13957200, 28943700, 38574000, 21469200, 18936500, 33818600, 18815300, 12535500, 18494100, 21223400, 23929100, 29587200, 29064400, 27445500, 19790500, 15019100, 20892300, 19282600, 27180100, 24413700, 16329400, 11089700, 11134300, 16780300, 14241900, 15499400, 15108900, 27003000, 14605000, 11508000, 14423900, 16425000, 18837000, 13829600, 14805000, 14098600, 14730800, 26090500, 20459000, 17752400, 14728100, 18056500, 11131500, 13318400, 23378400, 28353100, 15904800, 14416000, 14017700, 13305300, 12165900, 19912100, 41612000, 43858400, 30980200, 23965300, 20608100, 10600900, 17692500, 15108700, 17344900, 16133100, 13983500, 20488600, 15137600, 34742900, 44533800, 27029800, 21551900, 19033800, 15620400, 44156100, 49154800, 28857600, 36980200, 40301200, 100390000, 41109900, 56405000, 62053900, 28727200, 27486600, 49482600, 27591400, 25187100, 15332500, 22711400, 22930700, 19389800, 18531300, 37199400, 20662200, 16032300, 30592000, 25453600, 24672600, 21635800, 23629100, 18995000, 17722200, 21474100, 21908700, 20128000, 18792100, 42484800, 58533000, 23789600, 20979400, 25433900, 26815400, 27685500, 27091200, 19321100, 29717000, 21617900, 42147200, 60869200, 32275000, 23173800, 23205900, 18406600, 59220700, 61089200, 31808000, 21905400, 31336600, 17142500, 19412600, 20710700, 20575200, 18760400, 17482000, 20962400, 20671400, 25473700, 21192200, 26879200, 23635700, 21215500, 19224700, 17962600, 18478800, 20997800, 19177800, 20144200, 18935400, 20242200, 12712600, 14444700, 19678800, 25009300, 17254100, 25097800, 22363600, 13724100, 14179900, 24713000, 22691300, 19743500, 20488800, 19677900, 16482700, 12999000, 23335900, 27535100, 22999200, 18515300, 17353100, 15912700, 16827300, 17388300, 28198500, 27462600, 25223500, 35901500, 43199600, 22434300, 25258800, 30889800, 25637300, 37808600, 29442500, 25942400, 45717100, 32108800, 46331800, 50808100, 64495900, 78305000, 48598100, 37001100, 101918000, 206162000, 263900000, 151824992, 122687000, 56625100, 51817600, 68224400, 95797904, 107070000, 78477800, 52003000, 38612000, 44213100, 47980100, 51001600, 43783800, 45011100, 53152900, 28200500, 23439400, 27478900, 29362600, 41666900, 106105000, 55179100, 36816600, 40409300, 71701600, 60452200, 54160500, 50714900, 35784100, 66282200, 77762000, 63455800, 57801400, 90917200, 52138900, 110944000, 131969000, 55050600, 130496000, 83121104, 107944000, 47978400, 60220100, 47892700, 75409400, 77639696, 50840400, 47161400, 57157200, 39078500, 116166000, 53591200, 49638600, 51596500, 46889400, 45996600, 36278900, 30096600, 39633800, 38477500, 34522600, 34042500, 87562200, 56993000, 32278000, 35995900, 40450000, 115607000, 173888000, 43945500, 153351008, 120352000, 45319600, 54403900, 46819800, 121720000, 68338000, 91546600, 56247400, 54824800, 59062400, 58147000, 47424400, 59247900, 86125296, 30284400, 37894300, 51656700, 40378700, 45933400, 69285504, 43825000, 49249300, 37076300, 47671100, 55318500, 85130896, 74375600, 67042800, 61911700, 74469800, 74070496, 73093104, 83193600, 76752600, 55711300, 93992096, 89820704, 85385200, 85244896, 67743696, 70798000, 61486000, 41893600, 53033400, 60694700, 74895800, 74955296, 100484000, 90856096, 135384992, 91212496, 85762400, 70311696, 70012304, 81022896, 73969696, 92712896, 74322800, 95259400, 66781700, 65185800, 83528600, 104940000, 58423000, 45947900, 61655400, 66813300, 61444200, 68346704, 52560000, 44650400, 71229400, 68522800, 75411504, 66034100, 60215200, 51235700, 45681200, 38053700, 50634300, 60718000, 59091000, 57858600, 63454700, 49792700, 73478600, 50747500, 70728800, 69060400, 45281000, 54801500, 39392800, 52125900, 55670900, 52810500, 72890096, 68204704, 58804400, 50485400, 68198400, 87091800, 78971904, 93564896, 74064704, 49258500, 69322600, 40660100, 92127000, 59366400, 50407300, 50440800, 72796800, 38364500, 40315000, 55493100, 58956100, 50605200, 59849300, 60845000, 37209000, 28514000, 59171500, 64100300, 86850096, 96027400, 81987904, 42762300, 39657600, 50582500, 65783100, 65231000, 65203800, 164780992, 181199008, 148736992, 87958704, 138450000, 86061800, 60378200, 122020000, 94925296, 68874096, 72138896, 107770000, 80265800, 71301000, 66991900, 82357000, 277084992, 243295008, 186694000, 99223800, 271633984, 363320992, 252718000, 136184992, 174511008, 309944000, 266392992, 253462000, 224316992, 126656000, 109225000, 122134000, 138384992, 142456000, 138980000, 134431008, 112354000, 129512000, 92008400, 130476000, 134960992, 258091008, 141970000, 180536000, 102532000, 107910000, 138172992, 131449000, 98511400, 81673104, 50330200, 74407904, 69465000, 61203300, 94636400, 60491800, 134169000, 69532200, 118184000, 78176496, 225135008, 147460992, 86428400, 60703500, 38456100, 110818000, 121887000, 330932992, 207982000, 125292000, 66127900, 80797296, 82398400, 61194100, 92228096, 102905000, 74514400, 69218000, 43563000, 60851100, 57262300, 58405200, 54443000, 59896600, 50631600, 45301400, 38299400, 72844000, 85349200, 56328200, 136130000, 48856800, 59698300, 86301600, 110398000, 70342400, 75840896, 76923400, 79910800, 159014000, 97942896, 82446800, 78529104, 75032400, 86713000, 64550200, 45016800, 73610800, 72812304, 86920600, 47877700, 59464600, 64963400, 37140300, 48679400, 54796400, 72710896, 82776200, 67085300, 51067000, 35359500, 33977800, 59153800, 49422400, 48722600, 55658600, 56122400, 56357000, 39249800, 46798300, 49801600, 68077504, 56812100, 64071400, 42345900, 39243400, 67481104, 103590000, 92370200, 61620700, 58144600, 39035400, 40298100, 58063600, 65546700, 69381696, 56957300, 55951000, 78556496, 54474600, 62218200, 90378800, 88877104, 96105296, 81145504, 134760992, 100665000, 97064400, 130527000, 84865200, 172808000, 99907696, 53752300, 59902200, 65047100, 79660800, 132429000, 68807800, 63119700, 64622500, 80318096, 62993000, 72038496, 141294000, 108579000, 87363104, 110608000, 154116000, 60802400, 129906000, 76543800, 85919296, 67807600, 54962700, 52601800, 61888600, 68511104, 84070800, 80461904, 127605000, 69547296, 60557900, 106363000, 116218000, 96426096, 80111904, 68705296, 53843100, 57313400, 76571000, 81645600, 75979000, 81580096, 83608200, 78989800, 60524400, 74886400, 99629296, 155576000, 200027008, 275564000, 137727008, 143664992, 123771000, 167308000, 236630000, 199320000, 187474000, 99135104, 147775008, 222184992, 185168000, 344945984, 510199008, 351876000, 279550016, 158715008, 141876992, 115808000, 310928992, 222326000, 168968000, 93063296, 71013600, 82755200, 155095008, 225676992, 105625000, 86728400, 111158000, 116573000, 73588600, 111349000, 120831000, 131958000, 125594000, 68979600, 60851700, 78227296, 164582000, 150110000, 145820992, 201278000, 155064000, 114208000, 111762000, 146007008, 201855008, 407220000, 190452000, 102261000, 67530000, 100607000, 137946000, 89759400, 122277000, 136474000, 99073504, 77423296, 109478000, 186868992, 136100000, 189454000, 330759008, 139960992, 116486000, 131570000, 184956000, 229056992, 368275008, 315739008, 183270000, 134127000, 153656992, 291256000, 332603008, 212283008, 563795968, 283320000, 227176000, 380276992, 245306000, 297804992, 638568000, 706598976, 621302016, 406648000, 286529984, 337391008, 380840992, 248540000, 491038016, 435803008, 303668000, 372535008, 326332000, 298457984, 352968992, 447287008, 289633984, 514187008, 580444032, 436310016, 414784000, 511222016, 317022016, 209312000, 242343008, 215883008, 216182000, 288702016, 351968992, 254827008, 203559008, 183231008, 253206000, 270524000, 288060992, 315108000, 272167008, 249320000, 258951008, 235806000, 242556000, 329631008, 449196992, 527488992, 422705984, 413115008, 713624000, 477337984, 583795968, 933548992, 946035968, 582529984, 1080029952, 1340320000, 1167920000, 915723008, 799489984, 740984000, 579635008, 437196000, 731529024, 959044992, 1064729984, 894321024, 1157289984, 961336000, 1147859968, 1942220032, 1378749952, 1725379968, 2406700032, 1763480064, 1700480000, 1147139968, 994625024, 1443970048, 1544829952, 1653180032, 1317030016, 1514950016, 1355120000, 1369309952, 2089609984, 1517709952, 1281170048, 1348950016, 2018889984, 1752400000, 2569530112, 1781200000, 1696560000, 2026259968, 1195190016, 1534509952, 1178659968, 1446840064, 1854189952, 1626579968, 1097939968, 961318976, 982750016, 1161100032, 1663280000, 1489789952, 1183869952, 949979008, 860273024, 779913984, 803747008, 964112000, 985516032, 941566016, 761956992, 917411968, 733329984, 527856000, 1111200000, 1329760000, 1117410048, 835769984, 882502976, 993608000, 1182870016, 1201760000, 1512450048, 1245100032, 2249260032, 1489449984, 1177129984, 1072840000, 866473984, 1460089984, 937404032, 789104000, 1380099968, 803745984, 705942976, 860574976, 1324669952, 1094950016, 804796992, 1002120000, 1945699968, 1105030016, 1482279936, 1752760064, 1468960000, 1515110016, 2021190016, 2219589888, 3159089920, 2463089920, 3258050048, 2272039936, 2553359872, 2941710080, 2975820032, 2109769984, 2800890112, 3764239872, 2369819904, 2037750016, 1727970048, 1511609984, 1537459968, 1959330048, 2486080000, 1937849984, 1944930048, 2599079936, 2722139904, 1933190016, 2987330048, 2697969920, 2172100096, 1844620032, 2700890112, 1386230016, 1679090048, 1557330048, 1864530048, 2219409920, 2716310016, 4148069888, 1818400000, 1239149952, 1943209984, 1563980032, 1213830016, 1411480064, 1194829952, 928113984, 768014976, 1374210048, 1043740032, 1686880000, 1712320000, 1367049984, 1207449984, 1208210048, 1431730048, 1288019968, 1116770048, 1161769984, 1069939968, 906928000, 1313869952, 1968739968, 1597139968, 1222279936, 2791610112, 3615480064, 1669030016, 1976039936, 2008070016, 1821570048, 2399269888, 1780540032, 2354429952, 2207099904, 2034630016, 2401840128, 2735699968, 1966989952, 1905040000, 1710130048, 1403920000, 2859040000, 1772150016, 2311379968, 2870320128, 4653770240, 3369860096, 2483800064, 2380410112, 3111899904, 2326340096, 4602200064, 3226249984, 5208249856, 4908680192, 8957349888, 6263249920, 3197110016, 4200880128, 5123809792, 4651670016, 3667190016, 3149319936, 3488450048, 4277609984, 3633530112, 4225179904, 5058610176, 4342060032, 5475579904, 5653320192, 6348819968, 11568799744, 8310689792, 6783119872, 5138500096, 6608309760, 6132409856, 6895260160, 12656300032, 17950699520, 21135998976, 13911300096, 13433299968, 12153900032, 14603799552, 12976900096, 13777399808, 14309999616, 12740599808, 13314599936, 14839499776, 16894499840, 22149699584, 16516599808, 22197999616, 13086000128, 11572299776, 10664699904, 13454300160, 12487600128, 12336499712, 13025500160, 14452599808, 12136299520, 10291200000, 16846600192, 16871900160, 21783199744, 23840899072, 18314600448, 15866000384, 18413899776, 16659999744, 18500800512, 16534099968, 12065699840, 12763599872, 11084099584, 12750799872, 18853799936, 18830600192, 15020399616, 10740400128, 11801700352, 9935179776, 10537400320, 9660609536, 9940989952, 8873169920, 9746199552, 7583269888, 8350360064, 7107359744, 8637859840, 8041160192, 9959400448, 12726899712, 7263790080, 7073549824, 9285289984, 13999800320, 9169280000, 9346750464, 6784820224, 7780960256, 6122189824, 6256439808, 5696719872, 7909819904, 9062540288, 7296159744, 8660880384, 8744009728, 7652089856, 9926540288, 9405339648, 8040079872, 7739500032, 6917929984, 5706939904, 7287690240, 6966179840, 6936189952, 7317279744, 7620590080, 6690570240, 6084149760, 6468539904, 6832169984, 8797910016, 7186089984, 8704190464, 5386319872, 6296370176, 6457399808, 5991139840, 6438230016, 6834429952, 5289379840, 4426149888, 6639190016, 6729110016, 6361789952, 6043129856, 5530390016, 5954120192, 5664600064, 4569880064, 5921039872, 5378250240, 4935289856, 6361229824, 6289509888, 4553269760, 4532100096, 4333440000, 5499700224, 4936000000, 5639320064, 3766810112, 3976610048, 3652499968, 4894060032, 4272750080, 4641889792, 8906250240, 7764460032, 5191430144, 5244480000, 5631309824, 6900879872, 6529909760, 7063209984, 8438110208, 7548550144, 6629899776, 6925190144, 10678800384, 11083100160, 8970559488, 7566289920, 7805479936, 8853000192, 8673920000, 7713019904, 7558159872, 10207299584, 8217829888, 7651939840, 7222280192, 7394019840, 7415869952, 7226890240, 6906699776, 8488520192, 6821380096, 5866379776, 7364149760, 6705710080, 6760220160, 5862530048, 5764190208, 4712399872, 5191059968, 5154990080, 5137010176, 6491120128, 6049220096, 4867829760, 4051539968, 4056519936, 5040600064, 5662660096, 4922540032, 5127130112, 4921460224, 4939299840, 4851760128, 4993169920, 4961739776, 4692259840, 4485799936, 4227579904, 3845220096, 5804839936, 4745269760, 4654380032, 5052349952, 5138710016, 3955389952, 3194170112, 3104019968, 4039200000, 4057029888, 3888640000, 3529129984, 5079810048, 3431360000, 4566909952, 5500810240, 3279759872, 3296219904, 3467800064, 3966230016, 4543860224, 4788259840, 4396930048, 4672309760, 4176689920, 4999240192, 4313959936, 3961080064, 3386210048, 3718129920, 4052430080, 3644859904, 3770170112, 3805400064, 2923670016, 3285459968, 4725799936, 5961950208, 6103410176, 5111629824, 4936869888, 3726609920, 3695460096, 5132480000, 7277689856, 5845400064, 4899089920, 5195879936, 3988750080, 4107190016, 5551400000, 5287530000, 4797620000, 4214110000, 4627150000, 4268390000, 3679110000, 3925900000, 4682800000, 5064430000, 4267040000, 4528680000, 4047850000, 5665250000, 4083980000, 5301700000, 4895450000, 4328420000, 4992990000, 3984520000, 3311170000, 3665100000, 3377180000, 4668110000, 3426180000, 4097820000, 3312600000, 3295500000, 4019000000, 4659940000, 4145880000, 4463250000, 4495650000, 4116050000, 4329540000, 4087760000, 4273640000, 5800460000, 5523470000, 4264680000, 3835060000, 3671890000, 3714100000, 3849910000, 4064230000, 4210910000, 4076220000, 3216300000, 3273730000, 3910780000, 4180090000, 4431340000, 4348110000, 6531940000, 4509660000, 4197500000, 4177310000, 4726180000, 4437300000, 4606810000, 5014430000, 4363690000, 4002280000, 4000970000, 3979260000, 3887310000, 3838410000, 3671500000, 3259740000, 3306630000, 3979460000, 3580810000, 3787650000, 5181640000, 3783500000, 3064030000, 3085320000, 7370770000, 4074800000, 4088420000, 3924080000, 3578870000, 3379130000, 3253610000, 3672860000, 3716150000, 3424670000, 3230550000, 3306050000, 3393250000, 3445190000, 4199910000, 3781100000, 4191240000, 3789400000, 4234870000, 3658640000, 4390020000, 4174800000, 4700040000, 4941260000, 4665260000, 4346820000, 3705320000, 3939060000, 4295770000, 4503800000, 7398940000, 7032140000, 5279320000, 4303150000, 4159680000, 7039560000, 8428290000, 6120120000, 4569370000, 4871490000, 4679500000, 6825640000, 6476900000, 5998720000, 7280280000, 6503347767, 6048016717, 5375314093, 5262697895, 5089570994, 5028069239, 5302481574, 5878333109, 6835615448, 5305024497, 4947372847, 5020968740, 4696765188, 4139364829, 4343372456, 4372763663, 3551763561, 3744248994, 5409247918, 5911325473, 6810689119, 8927129279, 7206015706, 5605823233, 6151275490, 7240968501, 6158207293, 5326547918, 5130222366, 5631554348, 4991655917, 4770578575, 4661840806, 4324200990, 5244856836, 4530215219, 4847965467, 5137609824, 5597027440, 5228625637, 5306593305, 5115905225, 6874143796, 5538712865, 4778170883, 4681302466, 5651384490, 5537192302, 5394457145, 5464420383, 5002961727, 5955691380, 5582489560, 5004347059, 5313623556, 5433755649, 5262869046, 5265847539, 5098183235, 5570752966, 6908930483, 5897159493, 5955112627, 5831198271, 5422926707, 5071623601, 5043937584, 5332718886, 5227549545, 5482196038, 5004962683, 7735623101, 6158833645, 6282256903, 6277056434, 6480384532, 6438903823, 6271044418, 6091952231, 5934744052, 7039512503, 9908216640, 9933626655, 8693373948, 7775128102, 7826525254, 8922258316, 10794227451, 9318796067, 7931218996, 8301309684, 8399767798, 7661247975, 7578786076, 7253558152, 9029175788, 10174126415, 9175291529, 9584165519, 10638638944, 10796103518, 9713267607, 10125901903, 9809887079, 9469184841, 10480789570, 9394210605, 9856166973, 8221625400, 9646954186, 9344919956, 10175916388, 10831212662, 9252935969, 9578850549, 9144851065, 10359818883, 10707678815, 10897131934, 9353915899, 10918665557, 9732688060, 9045122443, 10157794171, 21315047816, 22899891582, 18251810240, 16837325387, 16929795194, 16655416140, 17154113634, 14722104361, 15504590933, 16555616019, 13675206312, 10823289598, 10391952498, 12290155061, 11618660197, 12438480677, 13256489918, 13780238655, 13169647522, 13731844223, 14601631648, 15867308108, 17048033399, 15330283408, 16812108040, 13111274675, 12819992056, 13735490672, 13878964574, 13679528236, 14644460907, 18720780006, 17567780766, 14808830723, 15737171804, 18026409033, 15320605300, 16784645411, 19419875368, 28867562329, 27773333680, 28677672181, 32031452227, 28344112920, 33167197581, 30066644905, 21354286562, 25902422040, 23843404340, 25127245056, 24719473175, 24457107820, 25919126991, 22256813107, 26677970091, 27949839564, 24226919267, 23473479966, 29246528551, 25365190957, 22488303544, 20266216022, 22004511436, 24609731549, 21760923463, 19474611077, 19141423231, 16522722810, 16610726547, 18689275117, 17107279932, 19034432883, 18669407147, 19831162906, 18371033226, 23348550311, 15562951919, 15848210536, 15546809946, 17846823784, 20624008643, 29995204861, 20998326502, 19271652365, 24879684533, 45105733173, 39977475223, 35087757766, 29923961128, 27256473494, 29378589324, 31015895223, 30796494294, 25920294033, 23838480210, 21092024306, 19369044277, 23482551458, 28167921523, 33627574244, 28595327690, 23534692797, 21042616384, 22486000001, 25384047207, 24151199070, 24569921549, 25187024648, 20727426310, 20206615155, 17130580467, 16334414913, 17851916995, 17398734322, 15821952090, 14495714483, 16817809536, 13738687093, 13791445323, 13829811132, 16631520648, 17165337858, 17489094082, 15352685061, 16530894787, 23875988832, 23635107660, 22194988641, 19481591730, 18339989960, 18125355447, 15774371518, 13647198229, 16681503537, 19990838300, 22899115082, 20228207096, 13778035685, 12999813869, 16038264603, 15053082175, 19473084768, 17097508856, 15627023886, 15451030650, 14153856610, 18438654080, 14762609503, 17603790323, 17045878501, 13595263986, 11454806419, 11445355859, 17248102294, 19384917989, 16742664769, 14551239508, 19536574783, 15307366476, 13670567493, 17595943368, 14906809639, 15428063426, 15323563925, 14109864675, 13468713124, 12043433567, 15160167779, 15304603363, 16169268880, 19937691247, 14734189639, 13425266806, 13199651698, 15144925408, 25002886689, 21744728353, 19258205289, 16408941156, 14141152736, 13034629109, 17115474183, 15305343413, 13125712443, 13668823409, 13139456229, 12200497197, 13160830305, 18009742607, 15592264032, 19384942333, 17618660671, 19604381101, 14532641605, 13808286059, 15151387859, 15220412632, 16071646996, 14313052244, 15651592610, 13797825640, 15504249442, 15868748866, 16803377857, 21942878958, 16268708849, 28705065488, 44496255609, 32593129501, 30948255332, 28426779937, 27706531577, 26583653947, 24324691031, 21242676385, 21132220847, 26170255634, 26198609048, 23133895765, 22700383839, 24333037836, 17578630606, 20587919881, 20265510765, 20309769107, 17545755405, 19084739975, 21796856471, 16495389808, 18668638897, 21579470673, 21083613816, 20764300437, 22514243371, 34242315785, 21008924418, 30433517289, 42685231262, 21129505542, 23991412764, 19050116751, 19709695456, 17158194786, 18720708479, 17082040706, 14797485769, 21664240918, 18816085231, 18104466307, 15453520564, 15409908086, 17872021272, 18249031195, 16350490689, 18927080224, 17125736940, 17137029730, 16881129804, 20213265950, 22363804217, 31836522778, 25904604416, 22633815180, 19312552168, 23134537956, 27831788041, 22991622105, 21559505149, 22787010034, 22777360996, 21365673026, 22445257702, 22874131672, 21167946112, 18565664997, 20802083465, 28111481032, 18444271275, 19725074095, 23276261598, 28767291327, 31672559265, 24045990466, 28714583844, 25521165085, 22903438381, 22482910688, 44841784107, 40102834650, 31313981931, 36372139320, 32337772627, 34217320471, 26422375678, 24097418512, 22600204051, 25770680779, 24397913026, 19647331549, 22177678796, 28647338393, 34398744403, 30682598115, 32378792851, 29432489719, 25922656496, 30835736946, 30934096509, 29893183716, 35222060874, 37628823716, 34522718159, 35172043762, 35807884663, 39386548075, 37648059389, 43444303830, 49356071373, 43338264162, 43865054831, 43374780305, 45998298413, 47271023953, 46992019710, 44925260237, 40930547513, 35838025154, 41185185761, 45080496648, 42515259129, 50420050762, 45470195695, 44605450443, 35792392544, 35349164300, 42857674409, 42386715821, 34746706368, 39698054597, 40826885651, 36216930370, 39973102121, 46936995808, 42213940994, 38682762605, 53980357243, 74156772075, 36154506008, 33997889639, 45368026430, 38622642935, 37878801016, 51000731797, 54442976103, 42494390880, 40099664740, 46491916000, 48221910672, 44590107888, 35319797642, 34585598367, 34885225901, 28373690931, 37101651525, 32786468812, 40346426266, 47660646124, 38976504903, 33185988584, 29510409856, 46896904615, 44243482668, 37563249549, 34815139178, 43622840992, 31222085946, 35759567632, 38619308647, 34110434052, 32288311031, 46783242377, null, 32447188386, 31311210215, 37747113936, 32589741511, 33249153866, 43500782316, 34636526286, 32941541447, 33070154491, 36162144725, 33187959921, 60201052203, 66964629541, 44068389997, 40134388683, 47101785174, 45718796276, 43148462663, 49371886931, 61112700562, 51780748042, 46566121841, 63325279337, 57119858802, 42142717533, 45558144023, 56426907637, 48158802327, 36164766408, 40084250663, 41827139896, 39254288955, 36546239703, 39326160532, 29810773699, 27727866812, 32518803300, 31288157264, 29584186947, 32740536902, 34367073114, 32896642044, 32722975141, 27773290299, 35198901068, 39137252109, 25007459262, 25921805072, 23509628646, 20438419222, 25015250846, 21486346312, 23717842783, 25706567601, 30247143440, 22610564515, 17564322315, 18991732746, 26699704768, 21565537209, 20177709879, 17770083003, 19632223107, 17130541557, 15324301169, 21104009514, 17006433272, 18961716076, 18616048626, 18341465837, 17273093144, 14560870760, 16460547078, 15735797744, 15971550355, 16338916796, 13078970999, 12290528515, 12903406143, 17889263252, 13839652595, 19702359883, 18000702524, 16860035605, 13249910444, 14452361907, 17519821266, 18085038362, 15844731575, 15713967523, 13944570749, 12252601475, 12939002784, 13755604146, 18069581956, 16532254884, 18146399002, 16552768325, 16610070933, 20507998997, 35359749590, 28766551142, 24617249715, 22857247901, 23160469766, 26075670303, 27410067336, 20271713443, 21250197042, 24411254471, 23400740340, 23132312867, 17572057837, 17489608833, 26114112569, 27039782640, 25064548486, 27522199497, 24237958589, 23354924400, 20583375490, 28227687027, 26043227672, 24502851117, 20175242945, 23762425999, 20224191306, 18482062658, 20681511755, 26301509932, 22466660958, 23240415076, 19807127588, 17485597759, 19760127945, 22285928250, 27311555343, 28037405299, 31927261555, 29965130374, 44916565292, 37071460174, 33703098409, 33430927462, 24128292755, 54406443211, 45201121775, 36750077324, 36506852789, 35453581940, 32509451925, 30769986455, 38151810523, 26341903912, 22764204008, 24699523788, 28884999244, 23621787804, 22986733997, 23017536742, 21232549821, 18105012128, 18016880214, 22720365389, 20459870042, 20759622010, 27178227816, 23127839259, 17094010304, 17546792792, 19385191766, 22264958686, 17634388529, 21962121001, null, 22877978588, 19968627060, null, null, 24103426719, 24487233058, 25635480772, 19130430174, 18283314340, 23860769928, 30915821592, 43414712626, 34729759598, 28974975003, 24542317940, 24406920575, 29461458313, 33749878156, 35867318895, 56499499598, 30581485201, 30306464719, 24453857900, 30771455468, 29869951617, 35116364962, 40856321439, 39837841971, 35024953706, 26632075029, 34149115566, 25574938143, 29772374934, 34175758344, 31599492172, 27481710135, 23653867583, 31526766675, 39006849170, 49064800278, 36985055355, 36992873940, 39650210707, 41280434226, 42741112308, 51469565009, 43710357371, 61396835737, 38886494645, 32601040734, 31133957704, 47728480399, 49633658712, 37387697139, 31930317405, 33872388058, 27242455064, 25293775714, 26896357742, 31692288756, 34420373071, 25547132265, 27919640985, 21752580802, 25450468637, 22473997681, 26741982541, 44409011479, 71378606374, 40387896275, 38487546580, 37844228422, 45852713981, 44171632681, 51146161904, 41080759713, 42068395846, 48332647295, 66479895605, 49056742893, 45265946774, 51287442704, 46754964848, 40730301359, 67865420765, 78665235202, 81163475344, 67547324782, 75289433811, 84762141031, 88107519480, 61984162837, 79980747690, 123320567399, 74773277909, 69364315979, 63615990033, 67760757881, 57706187875, 52359854336, 49511702429, 57244195486, 66834573161, 75643067688, 77207272511, 48354737975, 48643830599, 59897054838, 60255421470, 62576762015, 78948162368, 117894572511, 65141828798, 52754542671, 61400400660, 63088585433, 61166818159, 68838074392, 58598066402, 71326033653, 65500641143, 101467222687, 91809846886, 87301089896, 81388911810, 76555041196, 70250456155, 71248675228, 77069903166, 77049582886, 80820545404, 52054723579, 63495496918, 68145460026, 51897585191, 92052420332, 106102492824, 63695521388, 54506565949, 350967941479, 45910946382, 53443887451, 53891300112, 47530897720, 53220811975, 52343816680, 48625928883, 34363564661, 43137459378, 48597428048, 50912227385, 57295577614, 56772343595, 55689944702, 60669829814, 43901225564, 66419369890, 59749798599, 60258313191, 55746041000, 49063873786, 50361731222, 51943414539, 56521454974, 56435023914, 70567223787, 67999812841, 56652197978, 47266542233, 47686580918, 57625587027, 54414116432, 65520826225, 61669163792, 58727860620, 59641344484, 50749662970, 60706272115, 66058027988, 75645303584, 53053855641, 46655208546, 58238470525, 46280252580, 51828688519, 69983454362, 77451779687, 60954381579, 84293007468, 66138759198, 97468872758, 65344865159, 67849323955, 54926612466, 74798630778, 86668667320, 49014494781, 46117114240, 58284039825, 49448222757, 48000572955, 46088929780, 52395931985, 42836427360, 38177405335, 51713139031, 68564706967, 69241316747, 69523285106, 68434023376, 65382980634, 65906690347, 71776546298, 61308396325, 75215403907, 96721152926, 55737497453, 59161047474, 64047871555, 74903638450, 56187365084, 126358098747, 88281943359, 82051616861, 57377273240, 78469274361, 67359584098, 56211915803, 51346735160, 43210968721, 55200191952, 45231013335, 31646080921, 39009847639, 34639423297, 33070867190, 35460750427, 41831090187, 35959473399, 28913440585, 33683936663, 49902050442, 53972919008, 52061741056 ], "yaxis": "y2" } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "BTC: Close, Volume" }, "xaxis": { "anchor": "y", "domain": [ 0, 0.94 ], "rangeselector": { "buttons": [ { "count": 1, "label": "1m", "step": "month", "stepmode": "backward" }, { "count": 6, "label": "6m", "step": "month", "stepmode": "backward" }, { "count": 1, "label": "YTD", "step": "year", "stepmode": "todate" }, { "count": 1, "label": "1y", "step": "year", "stepmode": "backward" }, { "step": "all" } ] }, "rangeslider": { "visible": true }, "title": { "text": "Date" } }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Close" } }, "yaxis2": { "anchor": "x", "overlaying": "y", "side": "right", "title": { "text": "Volume" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plotting Closing Price and Volume\n", "fig = make_subplots(specs=[[{\"secondary_y\": True}]])\n", "\n", "# Add traces\n", "fig.add_trace(go.Scatter(x=dataset['Close'].index, y=dataset['Close'].values, name='Close'), secondary_y=False)\n", "\n", "fig.add_trace(go.Scatter(x=dataset['Volume'].index, y=dataset['Volume'].values, name='Volume'), secondary_y=True)\n", "\n", "# Add figure title\n", "fig.update_layout(title_text=\"BTC: {}, {}\".format('Close', 'Volume'))\n", "\n", "# Set x-axis title\n", "fig.update_xaxes(title_text='Date')\n", "\n", "# Set y-axes titles\n", "fig.update_yaxes(title_text='Close', secondary_y=False)\n", "fig.update_yaxes(title_text='Volume', secondary_y=True)\n", "\n", "# Adding slider\n", "fig.update_xaxes(\n", " rangeslider_visible=True,\n", " rangeselector=dict(\n", " buttons=list([\n", " dict(count=1, label=\"1m\", step=\"month\", stepmode=\"backward\"),\n", " dict(count=6, label=\"6m\", step=\"month\", stepmode=\"backward\"),\n", " dict(count=1, label=\"YTD\", step=\"year\", stepmode=\"todate\"),\n", " dict(count=1, label=\"1y\", step=\"year\", stepmode=\"backward\"),\n", " dict(step=\"all\")\n", " ])\n", " )\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can observe a spike in volume around end of Feb2021. Let's take a look." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Date Open High Low Close Adj Close Volume
23302021-02-0233533.19921935896.88281333489.21875035510.28906335510.28906363088585433.000000
23312021-02-0335510.82031337480.18750035443.98437537472.08984437472.08984461166818159.000000
23322021-02-0437475.10546938592.17578136317.50000036926.06640636926.06640668838074392.000000
23332021-02-0536931.54687538225.90625036658.76171938144.30859438144.30859458598066402.000000
23342021-02-0638138.38671940846.54687538138.38671939266.01171939266.01171971326033653.000000
23352021-02-0739250.19140639621.83593837446.15234438903.44140638903.44140665500641143.000000
23362021-02-0838886.82812546203.92968838076.32421946196.46484446196.464844101467222687.000000
23372021-02-0946184.99218848003.72265645166.96093846481.10546946481.10546991809846886.000000
23382021-02-1046469.76171947145.56640643881.15234444918.18359444918.18359487301089896.000000
23392021-02-1144898.71093848463.46875044187.76171947909.33203147909.33203181388911810.000000
23402021-02-1247877.03515648745.73437546424.97656347504.85156347504.85156376555041196.000000
23412021-02-1347491.20312548047.74609446392.28125047105.51562547105.51562570250456155.000000
23422021-02-1447114.50781349487.64062547114.50781348717.28906348717.28906371248675228.000000
23432021-02-1548696.53515648875.57031346347.47656347945.05859447945.05859477069903166.000000
23442021-02-1647944.45703150341.10156347201.30468849199.87109449199.87109477049582886.000000
23452021-02-1749207.27734452533.91406349072.37890652149.00781352149.00781380820545404.000000
23462021-02-1852140.97265652474.10546951015.76562551679.79687551679.79687552054723579.000000
23472021-02-1951675.98046956113.65234450937.27734455888.13281355888.13281363495496918.000000
23482021-02-2055887.33593857505.22656354626.55859456099.51953156099.51953168145460026.000000
23492021-02-2156068.56640658330.57031355672.60937557539.94531357539.94531351897585191.000000
23502021-02-2257532.73828157533.39062548967.56640654207.32031354207.32031392052420332.000000
23512021-02-2354204.92968854204.92968845290.58984448824.42578148824.425781106102492824.000000
23522021-02-2448835.08593851290.13671947213.50000049705.33203149705.33203163695521388.000000
23532021-02-2549709.08203151948.96875047093.85156347093.85156347093.85156354506565949.000000
23542021-02-2647180.46484448370.78515644454.84375046339.76171946339.761719350967941479.000000
23552021-02-2746344.77343848253.26953145269.02734446188.45312546188.45312545910946382.000000
23562021-02-2846194.01562546716.42968843241.61718845137.76953145137.76953153443887451.000000
" ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# looking at Feb21 datapoints\n", "dataset[(dataset['Date']>'2021-02-01') & (dataset['Date']<'2021-03-01')].style.bar(subset=['Volume'], color='#d65f5f')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After checking from a different source, the Volume for 2021-02-26 seems to be correct (USD 350.967.941.479). Looks like that day was crazy.\n", "https://coinmarketcap.com/historical/20210226/" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABZoAAAHXCAIAAAC6e3gEAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAOh+SURBVHhe7P0JdFTVvi/6O97//8Yd7/2H743rfdez/e+z7x7Xcdkexjm45b83B9GtwoENHoMoICAqSKsbaaRTaUQEFUSkb0REQCS0Io0R6UIjoU1oE0BCm9AlIYG0JKEqyf+71m/VrFlrVVUqSVWSSr6fMUdGrX6tubo5f5lrrQcqiIiIiIiIiIiiCsMZRERERERERBRlGM4gIiIiIiIioijDcAYRERERERERRRmGM4iIiIiIiIgoyjCcQURERERERERRhuEMIiIiIiIiIooyDGcQERERERERUZRhOIOIiIiIiIiIogzDGUREREREREQUZRjOICIiIiIiIqIow3AGEREREREREUUZhjOIiIiIiIiIKMownEFERERERER1w+UuKyouzSssvptfxBQVCTsLuww7ztqFdYfhDCIiIiIiorqUfLH88+/c3ce6n+7verJv9CWsNlYem4ANsTYpNKgV26rKTFGUsPusHVlHajWckZySMmHCxM5dXmnbtv0//e73f/pTU/zu06f/2rXrcvPyrJGIiIiIiIgajc+/c9uiA1GdsDnWhlWm8F6JrXrMFHUJO9HanXWhlsIZa9eu+2uLJ//pd78Pkvr06Z+enm5NQERERERE1NC9O6NBxTIkYaOszQuM7TIaTKrDNhoRD2ckp6RIWwyV/qPt31/u3HX69BlDhw3HjyZ/+hd96IQJE60piYiIiIiIGq4G1i5DT8HbaLjcZbYqMVNUp7p6j0Zkwxlbf/nlT39qKnGKv/y15deLv/Hb/uLAgYNDhw1XEY0+ffrz2RMiIiIiImrAki+W20IADSwFeY8Gm2Y0sFRXDTQiGM7Y+ssvKkIxffqMSiMUBw4c/I+2f5fx27Ztb/UlIiIiIiJqcBpw0wxJQRpo8DsmDSxhh1q7tnZFKpyRnJIi7TKa/Olf1qxZa/WtTG5e3pt9+klEY9i7I6y+REREREREDUv3sQ08nIENtDbVwVYZZmoAydq1tStS4Qz1vozQYxmKaqNRjWmJqIbKyytK75cX3qvIKzQSfqATPSnacc8SEfFKSPVKlH6TNfSEDbQ21cFWE2ZqAMnatbUrIuGMNWvWSjxi+vQZVi9Nenp6ckqK1eFPbl6evB/0ry2etHoRUa1wuyvu5JVfSC8/dq78wKkyJPxAJ3piEEUv7lkiIl4Jqb6xVf4bZLI21cFWE2aq/XT1xu34A8lrfjqwatP+ShNGw8iYxDYTPVm7tnZFJJwh32Rt8qd/cb4vQ0U6tv7yi9XLQ39LqBot9AYaBw4cHPbuiM5dXkHq06f/2rXrrAGVmTBhIibB5FZ3UB9O+Ch4LAZzq8nnZjF59b7tgm2f/qWf4BEsXrwEGSI5g9FC3FJqhFCYu5VdgbJdwsnyhFNaOmmU/DCIpb0oxT1LRMQrIdVDtpp/g0zWpjrYasJMtZyu3rgdYiBDT5gkSETD2rW1K/zhDNT2A0UicvPy1IdO3uzTz+pr9peHU/BXRUD+8teWttECwSSorsts9aTPLQgZ+eXOXa3uoDDaX1s8GWi2w94dgVlVO16ACWVlqjoHNaEtkoJ9IaElW+J7ScipvNz4n5VRztMLeVrCIIzAFrlRh3uWiIhXQqqfbDX/BpmsTXWw1YSZajnFH0i2hSpCTJjQNiuVrF1bu8IfzvhwwkdSZ3Y2UtCDDnr4QL1oA0kFQdR8Kg1JqMn/8teWQ4cNnz59hnr7RihxAXn56NeLv7G6g8JqY2S/gRLMIfSF+lXzcIY+oXobKxIyBNmCLJUgUZM//Ys1EpFH6X2jwa36n9XI2WXPve1Gwg+rtHfSGAGjWRNQlOCeJSLilbC+OXHixFNPPYW/VndjZav5N8hkbaqDrSbMVMupkqYZx9Ovpt88fsDR32ygYZuVStaurV3hD2dIhR/1Z6vbQ1W5JalwBqrZen/1uo0Q6/Zq8qHDhlu9TJgq9AdVQidbh9S5yytWL5N6OgYp+AoHEeImO/mdEGsoPW3P9WBVq72G9UJJft7Vc2eu5ueVWD1IV3J+6zezV+y5bnWGrvCe2QTXU87T70OqtIcRMFqVFBYW3rlzV093c3PdVW/Ri/lUb8Ko49xS/EafvLz88vJy+W3L0nv3ip35LAn9I7Fny8rK9NWQdbOG1Qw2cO++hFlzvlr09bKsrGyrr4PKpeLikrXrNv64MU7PsVogGY6cl05sPjJB33Gyp5CQV9KnemQ+WJzVranzTAgEq4F9d+631BAPDLUhVncNYI/o+6W+kb2pThy/u7Wq6vkmByJZEcZLR6UidI+j6snMzPzss88eeOAB/MVvq2+jpB+KDTVZm+pgqwn7TVl38n89cjYuPgm1aPzFb/SxjcNUvaRHKJwp5U5ZRXnBOUd/SbZZqWTt2toV/nCGtJWwPSSCW5Z6oYY0EJBwRnp6ulS5VXsKFc5Qg4JHJWS2zuiJTXJKimobYntTBpb4pz81VX2w/h9O+Gj6l0ZPjIz5L168RAaBCmcgqUc2VDRBkpoVFqpiChgZW4S5YeYyFAvCUGydLAj91XzUHCZMmIhJpJ2LPjdMq4IUkuEqYW4YHyNLp8rPQLClkof4i3nK+sgSsRr4jT7yEA0SlqXnRm1zX9828c0nmjR/1EotW7699kI4S+/5FxKOHjxxParjJMdnt0TmtP/mstUdsrzCioOnraLec2/7fDYMndIfI2C0Kpk2fY5nf1mp2RN/O3Ey2RocMsynehNGHcmxjz6eev/+felz4eLlZ1q/0LvPIBT95been0gLvlrizGdJ48Z/kn33ftj3LKpPXV7ppS+o5VPtdu7cU9WaSWlpaWLSidPJZ1RV9seNP/2paQvM7e1BI4OEM9TxcPnK1dZtX3yhY/dr129Yw2rFsuWx2OrJn053u41oRUZGZsdOr6LPvn0HZITDR5KwIf94Z2SgKqtz2/2SPY79qI4HpUqZUFBQePhw4vnzF6zuyMABEPfzjqeffV4dGP8Z0+3M2d+swQGE8exet34TFoozwuquZ5znb5t2nZKTz1qDq6WGm5x+7XrCgcM5OXes7tqiX9asXhEWoXscVVVZWVlsbOxDDz30gAd+L1++3OUKWOmtuVurujzwQJfYa1ZnjRz6FOv86SGrq+b0QzHkVJaoqo1F5XPNnltuoqN8i89o9SXJmjrZasLOdCktc33cwY3bjhw9dTH5fDr+4jf6oL9tTC3lX/8teeu2A+vjDqzfenT70UvXc20j1DidPY6Zb066Ye8fbckWofBNlzNQ6CjI2GLvbyXbrFSydm3tCn84w28tWrWh+HrxNxIRkHCGqp+rmrw+obOPjaq0B39UBLV0GU1PKkoi0QS1FH0cldRQPZyBhHo+1kHmoJIEI9QWqSSjyYaDPgjpzT791CQyBxVEQKdzbkiy1fIVGD1hlVSGS2AiEJX/KslKygqomdiSisjUrtI9E42KetNXJ6346ejB+I1T+jxrFAf7b8yyRqi5U1Mww9ZLzlid0cldmncnv6TqUZ6IhjPmL/gGJWaVqlF0DmOFp56THENN+OetO6SPM5zR5ZVeO3fuUfmJOiqS/J76+SxM/uFHn0knast38txh37MSzsCabPnpFyxl6bLY5n99rho7SOajqjSo2H88eRrmc+DgERkhEP14KDRJ/1qDRWMF1JpLJ3IeKyYjSLzjq0VLA4V4bNseSCjhDPyuNBOCzCeMdu/5FYcuFvTNtyv2/Xrw8y9mN/23lujE0q0x/Anj2R0V4Qx1/n45Yz6yq/3zXdKvVb1BnUcNN1km3/rLTqu7tkhWMJzRCG3fvv3BBx804xhe6IP+1hgR0MDCGXPPYTozcrHfuL8UnPNpbVQPk7mhfthqwraUdSd/fdzBfYfP6M0x8Bt90D9QG43MM8fWoL4ddzhu37G4rUbFe82+SzmO0WqUko9htj8cvm7vH21JxSb8pGN3iisqCm4EfLmGbVYqWbu2dtVGOAM1aukpbShUOGON5wENqR7Lb31CZx8bW/3fr1zP+0dR7ccSkaQlCHpKVV/moJYinRh56y+/IKmRZaisPHpKfz0NHTZcfsjKSKMJWSj6qDiIM5yBRcsk+uagp/yWh2gk7iBzs60VtkK9tgM/ks0Pr6jJ8TsQFeXBKmGJmFZFRmR91Exsy0UKHiWJiOQlzzVp/miHmcfVmeK+vKJb80ebtJxhPHd5fdvs+TOW7j9zaO3Ed3oO2njlzE/zZ8yev/lsqYxbcnYrOuf/dLkk79QKjPnTuXRzzNffm7n2hFmWMvqP62r8u+zN4dqEWQlrZ0wc1bHPuCnf7E/XYwR55zZ/M3N4n56DJs635oB9sQMLXXHwlnTlH4/1dFoLPYW1wiQzDpXmJa01Vi/p3ObZ417vPP+g2SDEu6zYo1nWsmS7jl44v/UbDHpn6jfxWqnXnX0wdr5shepvzdmz/tp6rth81ltqzLu0f8UULNrsf94YOUINcaVy7iwrHzp0dNacr/buS8BvVGJ/3Bg3f8E3Fy9dQeft29lLln7fb8DQCROnHD9xWmqDUuHB+CtWrh349rsY+e7dXGNG5n+59+zdP+q9Ca/1emvxN8ulP6p2qGOvWv3DsWMnUUMeNHjUrvh9qtn/rVsZc+YuQkkaRXlZk/0JVtlELR1TpaSck6Xj7/nzF774cm63Hn3Rv9L/NteE5BhShxdeSUszCl96ub/SOoCzbhOJPStVcVUNQ/58u3Qllov8l05k3dTPZ2E9sacyMq2QY2LSCclq9Bz67vvIxpmzF7Z6uj0SRj51OmXNuh+x1ZjPex9MxL4rLi7BLjtw8AiOBOyRZctjCwqsqoaqAKsdjZHRv+jevdVrN2B343jQ93jYIf+xdaqiLsELJNk19+4VDx85DmsocZlr128sXPQtjk+sFY435A/yRN92OaL8bqzs8bHjJh88dFSOZJkDBgXKBOwdnCaYCUb+ZdsunF+XLl/56OOpGBnZi10QoZYsd3NzX+/1VvO/PqeiUVjP71asRrbMmLUAnX5PVVAbgt96JsSuWo8dip6Vns7IXoyPgx/jYHHq+HfmPHrajsOsrGwsZdPmnzFbzERlYyTYzl/sGuwXrPCOnbtxSGBVcSX8KW4bVuPw4cRA5xEE2uTtO3ZjTNm/9+/f/2HDZtXp9+jC+LicYnL8lQ2vq6zQ+T0GIMilfmXsut17fsVqb/hxi+xfHCpYf2zXjJnzJesidI+jKikuLn7nnXckhGHz9ttv3/Ps67ALGM64FosBwhuhUD0nf2qELib7VjG84Yxbsd0eeKBbbOxkc+QHPg1YFQlKPxRDTGZDjIor+509rdYZMgJcMX8krkZPs0FHUXmiNcjRjsOMjMg8zXCJz1RXPGVvs2eVkzWxg60mbEv7Dp/ZuO2IM2yBPuiPobb+kpJ2o7J9YPcFszP3SsK+Y9sTfrtoDMq/fvHsbnTuO74n5XqWNb7qeWz3satmO46M4wfRmXzk1Mnt+04dv1F0987144ePY4TtB1NOpeUaU0k4I+G3Q8aYx3afUnOLsqSHJ2wp/kYxLro3jtn7q2SblUrWrq1d4Q9nSI1XVdpBNQGQmraKCKgog7xW0zahCoIEaXmh6v+obFu9HFSlHT+kj5qzTCW/beEM1WmLC8jK4y+2RVX+kSRmIb/xw7ny2EYZX22gjKC/8kPNQUVG1FDpHPbuiIMHDyGtXbtO+kjcQV+0jB9KOOND82WrKv9BhUVkPmomzqwLslMi5MyijihydV3q+y++ovy8O/ISDbNhhZFatuzUpeOic3k/jTI6p52SEY9Pa4lBw7fmV9za2A/9/9yy6Z/bdezcxXx0xeyfFT9GOo3+PSfGo4BVenxaF8yk6TM9O3Zq19QYNG6btCq4vrHfnzHhs+0792z/78Zy5eGO49Pwu+N8q+Fw9tr+nk5ZqJGebd+p3Zit+Vk/DDU7mz/67106PjNpW561rCe6jZv4nvlATYclZ4yIhme7vGvbvN8PZgv8olNTOqAT29uz4zNmu5Ux8diRMmdji0DW88/t+k2c2s8Yx9zSioqSQzONWf37WxNnT33dWP+WE/eVRug1aVI5d4YzUIV49bX+Uh8+fuI0qkAopBYVFaWmXmz795eb/lvLji/1bPlUO0wrNWSZD0b7z5hu0l+a8aOA+/Gkz//UtAUKuEPf/QATdur8WkZGptS3ZZKOnV5Ff/xG0R+zunjpChaBSTCr59oYxxWSVAZk6Zjk/TETMVQ1kfh1/0HMoU27Tp98Nh1/0V8CMZEgW4rMwVI+GPsxNlAv9wepAwhnOCMSe9YWzgC1XNTB1v+wGSuP3YSdiHxDfmIXq3GQMAgbeOhw4hu935YRXur8+rbtu5G9+C27ZvT7H6G6gmoJxsdukt2hQjyqAqy3ccjMut3z9QEyuezZ8RM+RQaaKxhm2MzpX87DInBsS/ACR07X7m9i72AfybMn6Lx5MwMrie1Fwt7EimGSFSvXXr2arm97/O5fUbO1baw8PCJ7/F8fb9Xq6fbSH0kOv0CZgOVizuM+/OTNvu9ghp9O+fLY8VMyLVajW4++qCTLVoQX1gTr8/agkfn5BVYvs1KN1cOKlZSU+D1VMY7aEJUJPXr2k3GwCfKyiWqczn5zHv1tx2HqhYvDho/BHLBEJPwI8ohQDTnPXznfcRTJIPzG1v29Q2f0CXQeBdlklZP4rWJqesbajq6vFy+XOWCJOOMyM7PqMCtEoGOg0ks9BmErsEVq/6JTtg5nRE7OnQjd46hKsrOzO3ToILV/G/THUGu8cPMfzjDDFl1WGf+D0kYwgxQSmzAjF5WEM2QqbVZVZav5h5JUtEJvl+ENZ3ibbFjPpHgDE/J7dTmu0fY2HUHCGZ7fxn+cPM+2VCkZs/DHVhO2pZ/ik46eumjrKQn94+KTbD0lnd5vvN5yzY5Tp9Ju61GGi0cPG/XwrYnbdx00Rth7PhM9jzh7Xt9jtukwOuOOJlw4vz3O+P1DfOIPm/Hj8P40K5xhjPDTgTVGz/2bkm6pBUVRkq3wm87l4v5997ijv0q2Walk7draFalXgapKO+r5UgFWTyjICCqpSITU4f/0p6bJKSmoYKtXQgRvCCAxAj0oYOO3Yi99JGah/1adqgKvoiHSqW+dimjItHpMwRlfAFvOyAhquaCmUkkmR27Y+qskIzgXp1Y7SKDHtj5gm4/KOn0XSB99tWvHwSlG6cSqpfsh1f4uUw55RsiLH270mXkcv92npqBW33rSnjueyMKf3/zmvDEWKvZGo48/zzdGsz1sctZsD9JtyRnz3ExfawYgJu4vqcjfNgaF6Y7DfzIrckX7Jxqhjal7SioLZ/x56NqrMsgKOjR9e6PV4uP8ivZaZ9ZGIxbTNRbzl+16c36yUSUr2TfViKqYz9dc+MYIf3Sdf84I5lgNVd5ccVUPZ8h6dpmSZFbn3KdmtNbXU4U89n8Tu/VgcnZxZD5iJ4V1lCk7d+0lCVUL+cegtEuf+PFUFKBRrj1z5hxqPvI/5E2bf8aSUBVEOR4pIzNL5rPo62Uo7KITVTLU7s79llpUVLRte/z3K9fiByaRRy127NwtZVyMc+ToMbUsFO5RxEe5X80KU2Hp6ERPWTrqDPK/ZRR/UW7Wly5BmStX0mJXrUeFUP1zOLxkWVt++mXyp9Px46e4bXq5X36jKI8Vk/wc+Pa7yChrYn/hDOyysO9ZyV4VzsAKSBzh56070Af9sXrS1mbfrwexQ6VSJOs2cvR41chC5qOqNHoFDJ34i9/9BgzNzs7B+q1dtxGTy+sqVLVNn4PfPateZhF2OKgwf6yJBC+w5j9s2Iw+OE4Sk04gNySYkpp6ccnS70+eMrYIv59+9vk+/Qejwm/b9tPJZ3DsqY2VRg2ofssel/wMJRMOH0nCCPJQCTIB4+9POIQfMp+IPmyCE0ct2uqlwTr4PVUxSG2IZIJENjEOrgOSCbKBQU5nVIBtpzNGC5TztuNQP78wE5x6O3fuUS1HwktfFjpxBZP46fETp2UQOtETg4KcR0E2WeUkfutnU6CjC6NJbsjFrQ6zQgl0DKAzyKUekyCL0B9zkC2aMHEKxsTufnvQSHTivIjElZCqql6FM3x7HrQaYkjTDCuE4emps4czpFGGvzFDY6v5h5bMyIJFb5Fh/JZghzSjcAQmZGRz8pshhzM8IQytf9WSMZk/tpqwLaHOnHw+3dZTEvoHrFHnph/abcQmjLT5wKbdZ8/dQf9L27fsX/XzybNG+4ucI/EYejThRn5mRvqpU5euGD3PbzUmOXbcCmcc3HPZaBWSlnQU8/nhUHpOflHO2ZM/xB3YdCRdwhlrdhsBkZzzJ9djwt3nfdYhSpKVS35S+m1XhfuOkcmBkm1WKlm7tnaFP5wh//OXOjDq4bYmGKCaHiD5rUvrqdLXNKjFqZq8wOIWL16SnJKiKvaBmhjIb1s4Q81NrZV02kIAmL9qp6DGxA+1CBVNUFmhppUR/IYz1Ea19XwRVjqRdRhHT7YJVR+QV67+tcWTKucF1nn6lzPQU5aCtVIj1OfWGT41cD88kQjv8yCleyZiEjOaYD6o8tz4/cZ2SmTB+8aNc/ONSr4RCLCFMyQu8Nwiz78xZUJjqIQYxm3zyVdDJeGMYVvVFDLzQT9ZmyOdLftMnTHbeEZmxuShRiRlRHyebbu866DN3JcWzpD17Dn8S3Oes+cPN0IexiRZG4eajU3a9Zu4Ym3C5SxPa2K3u+JWttkc1/P/KyudNMp5GFSNLw+geI31ee+DiSh8S1q6LFb+3YfSNvpjKJJUQaVgqv/PX5Fi+rFjJ/HbVunFhBcuXNq+Y/eMmfPbtOuEuaFoLrN6vddbd3ONsrgqOmdm3pZpZVaweu0GTILKgEzS4sm2n075Ulb1lR59ZCnyfkqUmD+e9LlUDmXaSJAcwyZI1Aar/fPWHarcLxvS4YVXpn85T1Zy4aJvpSm1cIYzIOx7VvIKC9LTpE++QM7o1Wk1puxTWbef4rbJTECGqiqNbc/atkWv/6hqm5qD2rMyLfjNijCSCidqyDj2cHio0MPkT6ejFo1FYwVkTByEyBaMIP/xlk2wbXugtZV5SjsddOrZ68wEzEr9677/wGE4bnFsSP1M5hPRcIZt1zv5PVXRX22IZAKyVI5tCW5ihpmZWdjAKp3O0uk352Up6jhEDR9zRp8ePfstWx6L3RqhSCXImmNZKmGtFi/5zsiZwDsaneo8Sr1wKcgmq5zEb/1sCnIuyCDZEbWfFer4VwIdA8iHUC71ag5q/6orKn5H4h5HVXLu3LlmzZqh4u+E/hhqjRdufsMZB42HRNQTIj7hDE87ixDCGd1izVFrOZxhJNVGQwITvuEMK8YRIDARHeGM4K0zMNTW0yfduX0x9bc98WZcY3tKWtqpH/Bjs/l+0LgDa7agQn5g+9minOu/7Y4/+gP6WLX0Y0lWOAM/jPmYj67sx5g+M9ffnSFzbmDhjOS7uA/lpSXa+2vJNiuVrF1bu8IfzkBtWWq8qAyryIWqD4OKLzT507/o//YH1ZRDEia3VcWdMILU25EmTJionsVANR59JHYgbSjQ55dftmGord2H/K5eOENniymo11vIQtV3VUIJZ+CHyorO5hdh3+zTD7+x5shedGLNJVhjTuedcPqXM1SWqp5YB4wsOYMskqgKlqtGwLpJpskgJAzCHFQ4Q21FiE1mIuHCip4okXiDC6a880cPJhy9YDwA4hOJECUJRlsGTGI+qNJx4j6zzGSPLFxf2wtlSokLBA1nSHOPmoQzjPCERQs6eDu7vmfFHawUe8obzpDxqhHOaD10oj7P2fO3mS1EshKMV4e0NNqVID07Zoe1JijM3ckzGtyibHfgVBkSfqATPatXztOLkjaoZc1faPybUY2giuyBwhnOYjrK3yj4okrQqfNrn3w2/ZUefWRutrqis/4jswJV0JdJ9EiBpEuXr8iz3P94Z2Tzvz6HkZv+W8tftu2SycNOzzEsFEv818dbqZpYoDqAEqjeEt49K3kl731AFqH2fup0CiobGGSrhmE9sbZ6OEM/GGy7KXg4Q8IHMrI6HtQcnHsWC/KbFeEia4vd0X/gMGkrVFhY+NagEa3bvqhaD2G0jZt+xgHT8ql2gwaPkrqZbIJt2wPtONnjKj8rDWdgnPT0659O+VI9hvDxpM9RQ7bNJxLOnDnX4sm2ajVETs6dBPNttYFOVYyjNkQyQY9+Iv2wYbOEM9ScQzmd8TtQzjuPw9u3s+cv+OaFjt3RH2nAW8NU3Ti8ZM3VRUZCYBIyCLKj0YnVxsrr4Qy/mxzoOhno6AJbbtRyVtiOFpD1cR4DGRmZoVzq1RzUFulXVAjvlZCqauXKlaj1B4Kh1njhFsHWGXUXzjCT9wGQkFpnRFU4w3x3xlG/786Ii08K9O6MQ8aLMFLOWZ3pVmziRsomVMJ3JKfeyEjzpBt3ru7+GUMP7z57Iy3rqieK4RPOOLXPeHQl7pS5Drk51zFhVm6DD2ccuFVaUVGcfsDeX0+2Walk7draFf5wBkh8QdWNnZV/1NVRVfZbJUZPDJLKttWrMqjVq4iGnpqYL7DECCqAoifVbkJ/YARkqFq6qvNLZ+jhDNVpSyGGM9CpgkFfmy/4lN96Ul/DzfW8mEOSCh7ZwkMq/Ufbv0ucSDbHmWQFsG62/pIqbTITEVfXGu/pVG+vgKKjU8yGFd9cQoefcEZFyVHjMZBOowZ1xqCZx6UNgkQEmsw8KAWXO1sHGbOdZMYmzJk8Zc2kZJ/xhrZHx++32i7Iu0iNZh2XV2CGTXqay4XsPd/MnzF76xnbQxyy9NDCGdayPG/60L5OEiicIW1Pmo+JNx8kqSg9sxHrYLx2VJuzrOfQtZ5nOUvy8vPkOmO8c0QmrMjbYT7A0m2tOhvLy423LRTeM94Dj4Qf6Kx2+1tbUVKXknIOVb6XOr+OQq082yy1QdSIUC/CCCiOr4xd9823K1CeDlRMl/btqBugLo21lBbIzjKuKjqj/8eTp2EcFHnRH1PJMx0o6MvSMRpGxiDMDdNKQxL8xTqg1gHyr/jIPVKu5xhWD0V5dCLJtgSqAyhB6i1h3LOSvX4DT1KnHfj2u5I/aWnX2v795Vdf65+VlW2rZoDM57Veb+XmGieHLZwhT3OgNi6BkmPHTmIQRsBo6nhQO1rt2fjdv2JkFSyTHR0h6g2g8ng/+iDn9T5F9+4NffcD7DL5Qqo88iC7z7btto3F2YFdvz/hUJBarjMTMFv0R6eMjMzv+FJPCazIfNQ//yOhqKho0OBRODvUR3mwLTg3scLLv1uVcOAwfjhPVYymNkQ9vyOTYyuQhxhf30D0d57OP26MQ3+M+dmUGejEXgiS87bjEFNhKTio8BszxEUAQyP0jFKQ89e2owOdR7duZQbaZHTqV4+MzCxcXfWMdR5d+C25IW0Z6kNWBDoGQrzUg23/6nkiwnuPo9CdPXu2ZcuWqPUHgqEYxxo7rPyGMyp9d4bZsx6GM7whDD0w4W2Uob07wxgaYjjD+0INc0x9KivMoS+3asmYhT+2mrAtZd3JXxd38NcjZ/WIBn6jD/o7wxySzAdJ9q/f+9u5G+nHDx41ml38fPJc/q2E7eh/cOfZWzeyruzZtn9NXOKRDPMBk7jjp+/kXz9z3HhmxBHOyDl73JjDtpOn0m6cSjDaemxKymjo4YzkdOz0kjsH7P19km1WKlm7tnZFJJyh16KdTTAiAZVz1L1VUAMLHTpsuL7c5JQUVXXHaHprEVTOMb7qg6o+RlDT4geGqhiEPI6hT65IOxEVKQAsVNpoIMl3WDErFQvAGqJTAgcCE2J8fQ6ybrIymJu00VAzRB8ZDbBKGFMG6fPEtLIgGYSZI6PU/EEWgUH4i0HYd2qJKpyhxsEG1v5jJh7WyzLNRyTmz5gyrqv5DsuOU8xHSPyGM6w3gBpVi/azT1lRCSuc0bzpq/M3J2yd8aoxQvuJ1kxmmAGI4Sv2Gy0+Sk7NMN+12XX21oPxa8cYv7uM2WE82Gk9rNFh0or4o5tnv4nfTd/emoXcjn3TXMM3x8yeP1G+IxtaOMOzrC5jfjiXfunoN8MwbcuusahUBwpnVJScmN/eXNaMn47uiZ1k/O4w/3iJz5xlPbGlB69eP/PDzI7Yug5T99wpPTjZ3OppR7PuXD8+3xi//ZSj3mMirKQoiUK5/JMNSd60jxLzex9MbG6+qEJKn6h8okQpj3V07trrl2275CuGGE2vvmKe6FSVXnlJQc/XB1y+cnVX/D6UjzErZxlXLzqjQojlNjXflShN0DGJVAZk6f0HDkP1D79bPtXulR59UJGQCsOMmfNv3cr4evFy/EapWmodYWcrfKvm37LyQapDQjLTbzgjjCR7/YYzZM9iHVAx27lrLzITWfrt0pWohNiqGYCKSrcefbErv/l2RU7OHX3PYqhsOybHkYDjAUcFdlzcz0ZVWR0P+o6WPYv8wb5ban47FpNcvRrBGxBWAKuBjZoxa4FUFG19SkpKR703AZuwes0G5NWHH32GQbK2tm33u7HYIlstt9JwBiqfmImcEfiNaXv07IfjFp2t277Y6un2Gzf9rN5dEnbSnggrgP2O8wWLxtq+1uut69dvBjpVMZXaEMkEzGHtuo2oz787YiwmWbFyLfIn0Oks26vvdMwWx3+QnLcdhzjZkS1t//7yqdMpSFgQ5iYta8IuyPlr29FBzqNAm4ypvl+5Fr8x6PMvZsuLYPWMxVS2owuT/LgxDqNhlY4dO3nm7G+1nBVYnLTwkoQVCHQMHE08jh+VXuqh0nAG1YmSkpKhQ4ca0YGgMA7GtKYJHyswoTHjEfqXTbRgh+oZ2pdN6qB1hhl6sHjiC/ozJtJAA5xfNgkYzgg6VcDvoYSWZGInW03YmS6lZa6LO7hx29HEUxd/u3wDf+Pik9AH1elAr9W4m3nFesZEUtyxQ9fNwEfmhZ1GnMJMmw9uPX4jJz8/VV4Faox2cL3xBIo9nHEX4yQdNSMdRlq/+6zxoo2GHc7YmYEaQenty/b+vsk2K5WsXVu7IhLOAFWNR13a6kXRRoUzrO66V3rhh6ldza94GOnf3xz+jfqgqf9whtWkokmXGSc8/5CUiMCwJWbIAINadhyxVl72CelbJxl1fus1nMZrMqdYUQnzOyA/mO/dNJSeiR0nY2IOLd9eclDeXeC+vnmE+Q2UJs++Pm3FFPUYS6XhDNCX9eeenk0LGM6A9PiZ5ndJjPREt6lrze+t+s5ZX8/mT/SZKd9krSg6983bsp5Iz3Z9b+3xCAUzPEVJPUnx+uetO1A2RZm7tLRU3taG8uvxE6dRWF8Zu66l+e0SjPDOkNGoCMl8ZEL81iu9RUVFn075EmNifBRq5a14zjKuXosoLy9HpavfgKEo04/78BNZQ6kM6EtHQhVCvqCJEjbmLEtp+m8tx0/4VH9dRXg5C99SS5eVD1IdEnUezgBk19hxkyW7kJkLF30rbxtxhjOwL+J+3i4ZjhqLLZwBV66kYS9gKFKbdp0wB4kaqONB39GY246du+WheiRU5+Q1kJGDanbX7m9iTaRJiN8+qMbLKuHIQbbox6G+7RhT39inn30elVVsrK2WW2k4A5OoKi5Sj579sAJYFvqjMox1QM8I/b9dJCefRc6rk2XMuElyCgc6VTFIP7v1TEDmYJ2Li0uCnM7YrtVrNsj2YmPfH2OEAOT4D5TztuPQ3BE7kOHoifSfMd1Q4ZcHQMIuyPlr29EQ6DwKsskYAdc0TIJN/uSz6dgRfjNWHV2ylCHD3kfPji/1vJWRWctZIQtSSXaK32MgxEs9MJxRb2VkZOypDMaxxq4zWpDC5z0akWKr+YchaY+N6DGOaiU9CFL9ZG6oH7aasN+UdSd/3+EzP8UnoQqNv/iNPvIq0IARDSTzwZAbxktAfdOd22kZOTnB+/hJ+ZkZWZnGG0MbVFKxCZ/0W767ouz2b47+vsk2K5WsXVu7IhXOSNa+Y6oe66hUbl5enz79/2R+3MTqRXWn/oUzPEo8D01U6tLajigSWR89NemRhSL5yKtdiW3mWJzn0QybEuszseFjLEseMwmV9xGSwIz1dI7jfaSl3kEBWrV5DgXGRFkW1RKrOyiMhpFVnUFepCefgxWydOezJJgERWc1IQWHjJJW4lZ3YMjwonv3rA5/sH8xqxCrVbJ/I/QoUPXIEeX3yHFue5U2NhBZojMTsDtKSiL1sIkOC8JecG5FiKeqZEIoB4/AgvwuTvIhlHNWDptQ1q2WBTqPAm1ycIGOLhwVahH1JCv8HgMhHj9U/yUnJ3fq1Kl9+/b4i99W33rCbH9hsRpfRJCt5h+OZD0hIiSuUd1U9+GMQCn5fPq6uIO2nkxVSrYIhaTjt10V5QXnHP1tyTYrlaxdW7siFc6ArdobKyZMmKg/4OAXxlev20BF2upLdUd96MTqjjKXV7w3bninlo82adnvB+0fyI6GEtTYSMOQzubzLD9u/OmZ1i8gHT/ueXEJERERRdK9e/cmTJjw8MMP4y9+W30bJVvNv0Ema1MdbDVhplpOa34yXnTqm06eyyjKy7oeb+/vkzChbVYqWbu2dkUwnAHytgipEv/J/L6GeieFkpuXd/Dgoc5dXpHRkF7u3LXS2AfVAuyFN/v0Uy/7iDLXtw7v3LNj51ETY9UDKaas+DHoP1lelkGNkdvt/iluW6fOrz1qtkJ/a9CIQ4eO8t99REREVMtsNf8GmaxNdbDVhJlqOcUfSLbFKUJMmNA2K5WsXVu7IhvOAP11mJLatm3fucsrEyZMxF/5nKqe2C6DiIiIiIgaPFvNv0Ema1MdbDVhplpOV2/c9tdAo5KESTChbVYqWbu2dkU8nCHWrFmrPjsSKNm+RUJERERERNRQ2Wr+DTJZm+pgqwkz1X66euN2/IHkEIMaGA0jB4llIFm7tnbVUjhDJKekfDjho5c7d5X2Gk3MD6C+2affmjVrGcggIiIiIqLG4+n+9sp/A0vYQGtTHWw1YaYGkKxdW7tqNZxBRERERERE0H2s21b/b2AJG2htqoOtJszUAJK1a2sXwxlERERERES17fPvGng4AxtobapDXmGxrTLMFNUJO9TatbWL4QwiIiIiIqLalnyx3Fb/b2AJG2htqkNRcamtPswU1Qk71Nq1tYvhDCIiIiIiojrQgBtoBGmaAS53ma0+zBTVCTvU2rW1i+EMIiIiIiKiuvHujAYY0cBGWZsXGBtoNJhUV00zgOEMIiIiIiKiOtPA2mgEb5ehK7xXYqsYM0Vdwk60dmddYDiDiIiIiIioLiVfLP/8O3f3se4o/XorVhsrj00I8r4Mv9hGI6pTHbbLEAxnEBERERERUd1wuctQK+a3TqIoYWdhl9XV+zJ0DGcQERERERERUZRhOIOIiIiIiIiIogzDGUREREREREQUZRjOICIiIiIiIqIow3AGEREREREREUUZhjOIiIiIiIiIKMownEFEREREREREUYbhDCIiIiIiIiKKMgxnEBEREREREVGUYTiDiIiIiIiIiKIMwxlEREREREREFGUYziAiIiIiIiKiKMNwBhERERERERFFGYYziIiIiIiIiCjKMJxBRERERERERFGG4QwiIiIiIiIiijIMZxARERERERFRlHngbn4RExMTExMTExMTExMTExMTUxQlts4gIiIiIiIioijDcAYRERERERERRRmGM4iIiIiIiIgoyjCcQURERERERERRhuEMIiIiIiIiIooyDGcQERERERERUZRhOIOIiIiIiIiIogzDGUREREREREQUZRjOICIiIiIiIqIow3AGEREREREREUUZhjOIiIiIiIiIKMownEFEREREREREUYbhDCIiIiIiIiKKMgxnEBEREREREVGUYTiDiIiIiIiIiKIMwxlEREREREREFGUYziAiIiIiIiKiKMNwBhERERERERFFGYYziIiIiIiIiCjKMJxBRERERERERFGG4QwiIiIiIiIiijIMZxARERERERFRlGE4g4iIiIiIiIiiDMMZRERERERERBRlGM4gIiIiIiIioijDcAYRERERERERRRmGM4iIiIiIiIgoyjCcQURERERERERRhuEMIiIiIiIiIooyDGcQERERERERUZRhOIOIiIiIiIiIogzDGUREREREREQUZRjOICIiIiIiIqIow3AGEREREREREUUZhjOIiIiIiIiIKMownEFEREREREREUYbhDCIiIiIiIiKKMgxnEBEREREREVGUYTiDiIiIiIiIiKIMwxlEREREREREFGUYziAiIiIiIiKiKMNwBhERERERERFFGYYziIiIiIiIiCjKMJxBRERERERERFGG4QwiIiIiIiIiijIMZxARERERERFRlGE4g4iIiIiIiIiiDMMZRERERERERBRlGM4gIiIiIiIioijDcAYRERHVvZx//l9MTEyhJ+vMISJqxBjOICIiorpnq6oxMTEFT9aZQ0TUiDGcQURERHXPVlVjYmIKnqwzh4ioEWM4g4iIiOqerarGxMQUPFlnDhFRI8ZwBhEREdU9W1WNiYkpeLLOHCKiRozhDCIiIqp7rKoRBcdzhIjIhuEMIiIiqnusqhEFx3OEiMiG4QwiIiKqe6yqEQXHc4SIyIbhDCIiIqp7rKoRBcdzhIjIhuEMIiIiqnusqhEFx3OEiMiG4QwiIiKqe6yqEQXHc4SIyIbhDCIiIqp7rKoRBcdzhIjIhuEMIiIiqnusqhEFx3OEiMiG4QwiIiKqe6yqEQXHc4SIyIbhDCIiIqp7rKoRBcdzhIjIhuEMIiIiqnusqhEFx3OEiMiG4QwiIiKqe6yqEQXHc4SIyIbhDCIiIqp7rKoRBcdzhIjIhuEMIiIiqnusqhEFx3OEiMiG4QwiohrJPbJoRI/uXQdO3nChxOoVfUpSf5zcD1sxfFFijtUr2pTkFlq/KEpVuapWmFfdU66kJHpPVqqS6h8kFSXVvaSUVH+ZlajyOUJE1NAxnEFEjVnyUtThrbTstNXTrwBj5mwd8bvf/5OktouCzqEeS1nUTm3F8K25Vt9ao+XtR/GZVs8QuPJS41d9PLz73x73rPzvft8iZsCYBRsTbzaW2mrm9smew7L70pNWzygVUlWtJCvxxzkjurZupo7YVp36fbBs1+U8a4TAci/HL/2gl3a0tIoZOH5pQlZVjpWsXR95jtVK0uRdVTiUbfSlBL8ukT81OEgqMpM2zBwd00odJLikjJ71Y1KmyxoeUE7qriXj+8W0UhM2a919xMyNiZUfBnmJC0Z7j5wlyVZvf0I6R4iIGhOGM4ioMUua5Sl6/tPv5iRaPf0KMObJOd4S8+/G7wqhtBxMYV5unpVKKi09h0/mlsGeTaiToIyWtwM3hlgHLLmwaoRW5XCkJ7pOS6j1uEwdyPxxgNrqWUlWz8iK2FFaaVUt9+SyfgF3+hNdP9qaFnB98k5/3Us7VX1Ss95zQm6UlLVhoH3yAGnAhpvWNFWnLyX4dYnsanCQlKSuHt3CPokntRodG7j9XdrWyV21oKpvatVvSXKga1HuuY0fd33CZ/yZwU7jSs8RIqLGhuEMImrMahzOqEiLGy7/jnui65ykGjYJSJypFlFbVVNRmDTLKlK3GrElzepZe6oczihJmhOjJgmcmg3ZWPsbU8tqP5wRuaM0eFUtlJ0eYI+XJM7sZBvTnmLmJIb0ZAHDGfVaDQ6SirQfBwcKeFnp8cEb0q2RdZVP+Lvfx8x03B1cWfvn+AuxMZxBRFQVDGcQUWNW83CGoSQzKzMcD0vXWTjDUJKLraib109UMZxRkjSrrTejmnUdvfDH+NPpebl5WalJW5eO6q7VEJ4Ys72GDWbqu0YTzkheGONdbsz4VYnY44UluXlpiav1f4z72eO528drh0SrfjM37kpI2J+QsMtnwt83m5wQwjmsBxq6T91izCdASs6s/iWB4Yzqqf5BUpGySIuDPNH1I3PavLy0pFU+rSdiHI3XcuLHaHN+bU58Km4GWGhm6q4FA7S2Hp0WplhTQElK4CYkDGcQEVUFwxlE1JiFJ5wRLnUazqhDVQtnoHaqcsn4R6uj6XjuEe0/tK+tatgNNBpJOKMkYZoKSbSbZv9Ht8//5O2HUPJCb/Cr06wjvvXYnK1aXbRX7GWrd2B6oKEm7S+CYzijOmpwkOTFDfcMcrakKEyapUVJRmz1OYTSVvdSg/qtt19s9IYbzbQ4hXbaPtH1o42p26d5OhnOICKqGoYziKgxq3k4Iy9V/T/2pP93CpbkpCYmbI1dsGjhgkVLf4xPvOBsyGHNZOkotYjfj1huzfa037daukrSUhJ2/bgM81y4ZOOupNRcv8uGkqzTnjW0ZuXC4jYuNdZnVaKUzLVx9l9w/N/SUpKplrh66/6UtIBLVEryUpPiNywxNjzoSlYtnKFXp6cesXr60muD2gtNnFmBfjeTZaOwa06nV7ZJZrbHrTa3aMGquITktADtWXIvePJT/Zce2Z4kh8GquCD7SylMO53gyT0zw/2+qMJfOMPYU+ZKLtsQn5SaU+mSfA7R2K0JAfKh6kdpFQWpqp3+uoNnod39BR3SYnuotfI5kfUq7msr/YS29AwctCXL6htQzcIZ2hkR4FIg/IUzcPTGm6ctTqUAB4PP5cg6kXEwWHt2l5VvlVyytEM3ITXAK0VK0pP3b11lngVBDhjj5PLMynMW5KTut64hScbrJLwjBLzy5J7zjGAcZlZPv6p9kFRcXvWa1T/Ay4P0lyX7REjzdn3g6f+7yfud2VCS8LGaULu4WUddqwFLT5pbnTTHMxOGM4iIqobhDCJqzGoezghWFTde8/aa90X33tSq18db9ZqVPnN76vejrYqVl/qj39fOtXpt8sZUZ+365sZ+nnGMWaXHj/H+p9FTH9PG8VeYDrjEfgsS/L/wvzA1bqbe0FolvysZ9nCG7+sqrV6OrChMjR2lffvATC1em7PffxUuL3HJaH+Z8MTfBvn5uq22kkYm+2lb/njrEatT/b8gMDNh4SD7iskkgxzvFLSHM9Lj7W8WDP76QyxroJ9DtFnrwQttDRmqdpRWR5Cq2ukl6ksf0/y+cHf/FLUy+ulZsn+y6u+vtlll1Q1nuLL2+zx64EmtBsyKdwZZ7OGMtO2OE9B+DRHaPsKJXJi8sLf3YPBEuyo53YK3vsk9smyE/QAzkr8DRj84jbxK2z7e3j5Cv/L4b0ilN64ZHRf0ja3VPUh8TqKu/mJeRijkNTWtvt+1b9AMXJVq9dSlxfb2TOgTzhjtc/FkOIOIqLoYziCixkyvoYU5nFHZS+me0D7Ip8/cnnwriurNowFSzDR7bVyvw69P0ArlSKGEMypZYrOujnco+rbNdibHJJXUr2y0/8EGfKuffz7hjKS4IX5qZUby81bItA2BRpbUanSc7zsCfcIZRzYO8hMHMZKfFwSmBxxZUovx8XpEwyecEZ/wcYBpm33gM5XAIeovQKPSE4NWpmqrF/pRWk01qKpp/3j3+e968iy1gXoOFOZlXkgyWhhV+ZU31QpneF+16z85DgOfcMaugFeSJwb9aDv8tX00M37/ZJ+F1jycUdk7L+0vEvYJZ+zVWkAgWYuuLD8vr+qqJvF3DFdFoINEb2HRQX/DhU6/7FThjTx66wx9/W3hRYYziIiqi+EMImrM9BpaWMMZJQlTvRVF48Vy1tsHf5z2mre/elY/bZfZbHuMFmt47QOjj9GWO0kVnX0/0PB469c+mLZ09aql08a/pv/n3/ayOq0O3y6mk1UbadWpa4/uMa0qDWfYPgnRKmb4ZGOtJg/+m1YN9q0qo27grUTJezrNDZ+jN0+I+VqFcqCS+pWdz0v7sIjJsUmB2t770rPitV5G6/HHW3ftMXrEcGSFd4ZIr632qZWd/lrLhFYDPl691Wj6vtXn39S2eIFWJ+wQE2OM1qz14I+RddhZrfVK5hO+VSP9n8C/bzFwUZw0s8eyvBGiJz7e66386uGMmBhjPZu17t51+OgRPbrr+wirMctWZfaNm7SIGf3xglWxqxd97NMwRF+9EI/S6qt+VU17FqDdAu3Q0ve4ecg5G0yZx0/osZhqhDN8YmHGYWAcP/EbFuin7RO+z7noS+kUY+76Fq+Nn2qceqN9j1WfF0z6nEoxnazTxDjIu3dt/URNwxk+512rfpNXmQen78t3Hx+/SwunagendRYgtYjp3rVHpxaeReduHe0Zx09QLG1ldzVUP+yrI9BBooc5An9sO1d7ZU+AFhx+6Ftne+mGD4YziIiqi+EMImrM9CBFrzFmxSxAGq/9azGEcMYR76vdui73bYOcbq9iKcGbeftUJ2yfDCxMjdWqTD61Aj1UgRQzfsM5R6k6UDgjyBLz9CYY2jsU9TrDZN//phZqbQcen6PFXKoYzvD/3c1WMQPHT129NfD7COxZ4fsa0TyfefbQ2r3nbB2h+g9c5vukjB59GBynrbq+K43K6kr9uRLfZen/KNaOjX8aH++zIYVJU1Wrey10oocz7AvK8zkq9DcR2qJOMTPNFxl45O6d5t3vbeck+mZoJUepf9r7GpzJ8waHalbVfFoD+YYYtFpivx/T0raM9vcAFNITr32dHFpdWQ80dBg0xXaVUMnzVhqzGqxq+zFTEnzPCG3NH5+mPQujLwWp09R47Yx2+bYVGr5Vm6d+QcM8e81KcEZqqhfO0F+WOWDpBZ/cSlvpfR2mHpfxPTh/HzN+Y6qzRq+fX/b2F1o++ORP1QU5SHwyLXBQO+SIg5ceMXScRz4YziAiqi6GM4ioMfMt/YeaKg9n6OV4R8vkkszLacZrHRyl26AVxZL9U1QdxvYvfZNeV9dryD51+ADfbggQzkicGXSJWuTCJ4DiKjG/mZrkfE1m4jRrfN8aRSX1K3/yTi/x+24OM7XqNWZJgp/PZOqb6ftvZJP+lL5PbAKZb3yyMcXPmxHT1nt3tL7LfMIZfjZKj4Oof5v71GpsoS7ITU/NxGHjm6v6kebniRL9HYd9tQdz9P7Ob08aAaOATeurFc4IeqJ58qdaVTW9bu94+ELLz65DBlsxmladug4cPWKgrfWK88ENv2yBhkBJHd7a+JW9Y1JrfeCzlHbOJ5L0yGCgU8m3FY+mktMtyP4tweGXnrzfGQ/Vw3DaBcQnnBHwG0P6sx6+jSO0E7bZlFA+oxtI0IPEJ9PCF87wCaB0sreNsmE4g4iouhjOIKLGLGgtK2AKoXXGyTneBtgx4zekOCoA/gStKGpvAfD/j0qff596W1LodXhndVf4D2dUvkTHZxSCcqXFeitpNQxnmDKTNsz0eezFJ7XyfDVAqSQr9NdG2v5/G0je/mnean+gcIbfWqVe0/O2Xc/cOsjTU/61XmkVLmjgDPxX1TK3DFZT2Z6ssWjV7H+a5nMs1qdwRtqu8d52Ln5eRKLXEo3k23rFlbV/Tq9AD0oEUMVwhrZDAzyh4A2iNZujAlj6Uvx+pAN7wdtAQzvAtHz2Gz0xVHK6VWP/5iZM8x4tAcIZ/g5OS8neyWo0/WTRntTQQn5VllbJQRLgHLHTz4hKwxk+L2ENIVLGcAYRUXUxnEFEjZlekG0V08Pzjno/qZPWFiCEcAZqKd5/zZnp8dZdzachAn1xE4JVJPSq+JCtfuv8+nPm3k9++A9V+PI7TghLDKrE+Eeu+WnJqR8M8M1ApHCEMywluReS4lZPG9Pb+TUQ33+KVpYVWv77D2eUZHo+aDp5NI4KWyQlQDhDCy3p/NeOfJ4BMRMOy9EfB/7MrV5j9Ffl0yvG3uNWW70nZp20evrQX2GoN+uoVnXXqFJ6H8RwJPlmZ5Wraml6NdX/S2F9wxn+qrIl+vsyg1S5PfT8fOJvXW1XCZUm75LjWAtrGu80sY9mJO9R5D3L9KVM81vBztVe5aC1jQrlVKpknMr3b2FWapJ8CXjyCGyCz7tgfM6syg5OD+1NQ1orDK3VRsDQTKXSKj9IfO4CgcMZobfO8P2gjL+jzoHhDCKi6mI4g4gas9AKsoZAYwauG/h8EtWWzO+VOqpOwSoSIUQl9MqDt4YTlnBG8OK7jfFNysCNJqwUxnCGpiQvNX6RzydR9Scpqh/OMD5V6/O+VX9J32WBZ+Whr8xkrSG9b13INxkfhd3vm0E1DmcEWL3Ap0bl1d3qqkpVzeeDO82GrPLziWLwCWcE+Mxnlf7r7pOfgbJO4xtPqSR5D37/e82HNmftuaRQTqVKxgmyfwN+eVpPWh6GGs7Qn6R73LO9WkDN982doQvtIPF5yizw13y11yFp7WgcfL9iY39bSiAMZxARVRfDGUTUmAWsszkEGjNo3cCVlfjjnBFdna0GzBTs656O0n8IwQW98uB9IV8oUQm/4+g9fR83CMa3NC/J/NbG5IWr42PHq56RCWcIn6fWtS8vVpYVASr5/j5Va7x/YfzUJRvjFvivsFUeLwiWvXlp8cvGDLS1Z/Gkx7vrTU5qI5zh897WoEdpzYRcVQuxmur7Tgf99a4+kqaqcSo//KofzgjUOsObPor3LL1q4Yx+69WWhXIqVTJOoP3r70WqrWJ6DBgzbdmGLYv8nlkhhzOMzfFcJK0TVnsCJeDHU4MK+SCpyIobYo0W6NEe0N+S4/sZGk31YhnAcAYRUXUxnEFEjZlWso9EOENxlWReSNr147KPh/vWUX2+ShC0opgXP0ZN5dv4Xzn9tb/3OFQ7nBHCEp1Sl3ibdrcYuGiX73dGAtSiQ8tDkZPq/SJG4Bd26HUP7xME1Qpn5MZ7v0zh/ChsoAqbNqsAlbGQKjDmAztbV039oJdPaxet7X31whn6oeJ9Lkmn733fnRLsKK2ZkKpqvt/1CFpNBS1UEeiBBX1LA71cxquK4QztYRPnV0gD05fi/9Oh+n6vjYdNkEvqCHy8+8erfV/0G+DMqkI4Q2siYTY20dprBIxDBVa1g8TndAjwOVX9faUBzmifjz1VJZYBDGcQEVUXwxlE1JgFClI4BRqzKlVxkb7KW/T3XWjQiqLeItpvDSfAR0OrHc7wWaK/hvolyRvU6w/ipcaRtqGvZxJ/tccwfNlE/3+7bzBIp9dPvC8XrFY4Q1tnP5kQypdN/L5r8/QC7xoG/GevLi/B+6FWbfWqF87Q37zg/IQKlCRM8wZxfJvW12U4o4rVVN9aqP/P+uhb6jcrfFUxnKHFSnw/lBucvpQnpvr5pof+3l/97SehnEraOL7tbkz6orX9qz1q4afCH8KXTSo9VLxnhHHpSFLvIfb/qtogqnyQ+D5w5Dff9K/JqsdhdDWJZQDDGURE1cVwBhE1ZoGCFE6BxvRbfyhJ274MlXzjFZgDlzkqDFqd3/dR7eAVRb2K/prjKwklR7SPC+jfRKx+OMNniTHO74Z6vzugWkAErU2VJM3yVyGvZCo7bz0n4OcP0zcO8o6jtR6vTjjDfzjAI0Ddz3dX/lPbaYm2ClWO9r9urZqdm7TKiA0Z7xmd7PzKhhZY8W5U9cIZPk0SHp+8317fSwtSna6zcEZhaqxeTe296HSl1VRbXEZ/R4nFZ0tD2Bw9P0MIZ9i+N+QcvzBh1sDxU7HTV29NvKzCBD7HFU4K+9messj66CySz1eHQjmV0mJ7eMZxfMy1JGmOd87a/g1+mOlDqx3O0GIK3ZeuV78DfFs6kGodJL6hW+cHbksStQ8Y+XmRR07CVD2WMd4K7lYBwxlERNXFcAYRNWaBghROgcb0X3/QPqNofBtSLx3nHtEqDHrcwfdf/e2mJeTaPoCi18Z/12nM1jQ129xzq7QKvG9xvAbhDN8lYkOS1SrlJi16zbtE1WxBq4Y9Ptj3ix55+6d4n0OpQTij4vTX+nxa9Vuw9XS69UhLSV5a4o9zfF4FWpXIjr9wht7TFj0pSV05WFWVkfQKm084w6xWJXrCEyU346fqrxfRNlmv/tn/wavHaLQabDXDGaihzfTW0PTVq3Bl7dL3lO8hCpUcpTUQrKrmW01FLXfWds8zR46U6hMJ0lstoaq58bR3RyTM0t+66thSf6oazjACBCrO2KzrNOuLJyJP3yg9bOQbzjBW23u256asGqEd4e18PpwR0qmkf+TVenIkLy83M3X/6vF6LAPJe0Rp9W3bpzpKLugXnxqEM3ziLJ4UwgXBq/oHidFeyXsuP959arznG8klWbumddcGOb7m6xvL+Ke/jY91LMuTkjP1jNMxnEFEVF0MZxBRYxapcEbFza16Eb9FzOiPFyxauMD2MVHHvwH1Ns9W8nlOO+1Hn/qz8ULKHt27xvi8qNL+L+iahDOcSzQ/Zxvj+40PvalI2upe3kGPdx8xzXwUZdp487MgT7RopSob1Q9n+L7pM3jq5POUe7XCGfq/943oyWR5vmbyIPP7lC1aeTM/QDij+6AhnuhAq9aOD774rmFJsr5pzVr3GmNmoO2VK3qGVzec4cxG67Ojvmvo73/jlR2l1RakqqZvZqXJng8+rXXM9PgTvkc1+tiib4FUOZyBnZo4Uw/AGfncb/jofr6fLm7m8y1kn6UM8lTRm7VubX8Zp712HdqpdHnVa2o0exowa6a/I0r7lipSi4GTzbNg0ceDzAtaq1beFat+OMPnU9OSArzJwr8aHSTGC0H1UIjf9ITzuTBb4DJoCnzAMJxBRFRdDGcQUWMWsXBGRUVuwrSu9rqrnp547etkx//q8vZP1ms+RvItQJecXjLAXqXRkp92zjULZxhL/LqXve7nTU90nZPk04igJHlpgO+MNhuyMdH7j/0ahDMgL8jXTD3p8V4LT/rWhaoVzkA9Z9d4+06xUsycxHhvPUSvIPnM6kKg+EunMdvtu6vk8kb9f+/OZNvF1Q9nQHr8x47P0HgTMjDF73+TKz1KqylIVa1mNdWKkhS9MZEjtRqw1P+WOlUjnAFpAQ8hMzmeifDda85wjCQ/OyjUU8kRppT0xKAf09ICHFGZ8fa2G57UaVZSvHe5NQhnOOIsAb6tG0ANDxKjcYfzG0be1GrEap92doLhDCKiusVwBhE1ZhEMZxgyE5bavklhpFavfbBsl/c5eZu8xAWjfZo/TEmwhnjkXo5fKP8U1VKL18YvTfBXpaxpOMNQtSW60nbNtMVcWvVbkJDp0usbNQtnGMyvmfq0drGS0ahhSXyaM4OrGc6AvNOrR/sGp57o+tHGVCxCq4foFST7rApTN0zupedJi4Fz4s4FOAbyUuNm+h4DRnrib4PmbEiyZ3iNwhngykpcPdlsO6Olx1sPmrnV2LqAKj9KqyFIVa2mNVXIS9tlW2ekVgEOlYCqF84wZCYsG/OavbbcrPXgWVtTHa+NdOy1nCTfExAHw6L9fk6VKpxKmQmLpIWRpBavTY41w39Bjqjck6tG+Ma/mnWdvME4jLXl1iSc4ftkUAgfmvERhoME596PjtPBzBxzM/1gOIOIqG4xnEFEFHEl5qPpqel5uXk+Hy4NwpgEKch77FwluXlZqUnJxnPvIb3ursZkiSmpmVhipZuhrZ7+ZdPwMxaUZ3zQNCEJaxbJrDAWlJZiLqWyzfcfGSkx92nI+8s8BtJSL2RhksjmoSwrPTlRlmX1q1zlR2lV1E5VzVpnI4W+oeFjHAOek6iq+VboWfPwrbiVG1WZoXaohD8DT89prSr2jldy1p6SvLTT8sKLlLRaurqGpnbOESKiKMJwBhERUZgFbuhBAbGq1tjpHz/y+WILWXiOEBHZMJxBREQUZgxnVAOrao1Uidn4qMTnkzp+vodKPEeIiBwYziAiIgozhjOqgVW1xun0Au83g630+OA4njX+8BwhIrJhOIOIiCjMGM6oBlbVGqXkheoBEyt1mpXE50z84zlCRGTDcAYREVGYMZxRDayqNUbpG/t5vxnUKmb4nF3p1hBy4jlCRGTDcAYREVG4qY9QVOVDIY0cq2qNl/HBF54oleM5QkRkw3AGERER1T1W1YiC4zlCRGTDcAYRERHVPVbViILjOUJEZMNwBhEREdU9VtWIguM5QkRkw3AGERER1T1W1YiC4zlCRGTDcAYRERHVPVtVjYmJKXiyzhwiokaM4QwiIiKqe7aqGhMTU/BknTlERI0YwxlERERU92xVNSYmpuDJOnOIiBoxhjOIiIio7tmqakxMTMGTdeYQETViDGcQERFR3bNV1ZiYmIIn68whImrEGM4gIiIiIiIioijDcAYRERERERERRRmGM4iIiIiIiIgoyjCcQURERERERERRhuEMIiIiIiIiIooyDGcQERERERERUZRhOIOIiIiIiIiIogzDGUREREREREQUZRjOICIiIiIiIqIow3AGEREREREREUUZhjOIiIiIiIiIKMownEFEREREREREUYbhDCIiIiIiIiKKMgxnEBEREREREVGUYTiDiIiIiIiIiKIMwxlEREREREREFGUYziAiIiIiIiKiKMNwBhERERERERFFGYYziIiIiIiIiCjKMJxBRERERERERFGG4QwiIiIiIiIiijIMZxARERERERFRlGE4g4iIiIiIiIiiDMMZRERERERERBRlGM4gIiIiIiIioijDcAYR1SMul+vOnTv4a3UTEdUPV69ePXr06P37963u8Ll27drBgwfv3btndRMREVFowhnO+O233/785z/36dOnsLDQ6uWRkpLStGnTt99+u0p3a4yMSSZPnmx1h6C8vDzXhB9WL18lJSWrVq1q2bLlAw888OCDD7788su7d+8uKyuzBhNRuMmVAWccPPTQQ23atJk6dWpOTo412Nfy5csx2po1a6xuImqI7ty507lz57Fjx7rdbquXKSkp6ZFHHtmwYYPV7ZCdnd2hQ4eVK1da3bUFK9ytW7clS5ZI561bt0aNGoULGq5Xbdu2PXDggLPUkZiY+Mc//hFri3VGZ5Aijcx88eLFgYouRERE5Ff4wxkoiBw5csTqZcLtecaMGbjl10I4QyYJtCD0HDduHMofX3zxxbVr1y5cuDB69OiHH344NjaWZQiiCJErA0rqKNNnZGRs3ry5devWqMlkZWVZY2gwDioGubm5VjcRNVAzZ8586qmnrl69anV7Sgu4Pty4ccPq5VBX4YwNGza0bNny8uXL+J2Xl9e7d++YmJizZ8/imoZSSrNmzU6dOiVjChkHJZ9QwhmwZMmSdu3a3bx50+omIiKiEIQ/nIGb94QJE/T/t+D2jJu0LZwhTcpxjy8oKJA+gKHSzhxFGZQSioqK9Ht/WVkZhoI0pkC5B3UezEG1xUB/LKuv6fr1686IxqZNmx5++OHt27db3eZqfPLJJ6qMArIUfbZQWlqKnhgZa2sbRETByZVBr34cOXLkkUce2bFjh5zFOK1wiknFQJ1r1qjm2YeTDvDD6mVS1xDnmU5E9R/q/02aNNEbYuCM7ty5s16EkHsu+qtGlOhU4Qzb5UKuCeipX1j0yQPdwQNdZJSSkpJhw4aNGDFCRpAmJPv27ZOhWVlZKOTMnDlTOgHz//7771G0eP75553hDHXt0hd37ty5Zs2a4apodRMREVEIwh/OiImJ0aMDgMJK06ZNn3nmGRXOOHToUIsWLf74xz8+/fTTDz/88BdffCHFERRQMIeOHTtK7CMnJ0eFM1AWQeEARZ+9e/eiE6WHfv36Pfjgg3/5y1/wd/DgwXfv3kX5AD0xW0DZYtOmTRhTKS4ufuedd5zPwly9enX69OmnT5/G79TUVCz9oYcewtri77vvvisjJyQkoJwxZsyYP/zhD1giVm/o0KH5+fkYdOHCBRRWZs+ebWsxS0TCGc5QfaR8jxK/PP+FPjjXMAgjYDRUCX788cfHNL/88ovUQ9Q1BCcmTtUVK1bICXjw4MGnnnpq/fr1xmKIqB7D7RV35GHDhpWUlEgfnP4oEuCvDP3www/lLo9zvHPnztKOI1sLZ+iXC5ALC3rKhQWlEdzKcYnAtQWFBJQ0HjVhngsXLpQrhvMio//DQ8GicWFZtGiRdEr4QwUjnOEMlCWefPLJ2NjYSZMm2cIZPXr0eOGFF2SjsLa4ZMkkubm5r7zyyieffCKXOF7KiIiIQhH+cMby5ctRM1HPl6ryytixY3Ejx+0cN/6ePXsOGjQoPz8ft+2tW7eiTpKUlISRUUBBsWPKlClSuJF7/+TJkzEaigVNmjSJj4/HbwwdNWrUSy+9dP36dYyWnJyMJc6ePRuDZBJZkLF4jZSB9AKHTVFR0ciRI1FmktkeO3asadOmmzdvxm8Uj7Bifpd44sQJFIBQZGE4g8gvFbywuisqjh8/jtMZJ5ecsLgCyKmNQXr9JDExEaPhYuJyuXDW48ogodIrV648/fTTcqFQgU6MjEl+/vnnRx55BFchYzFEVL/hsqDOd1wBUJnHLfjOnTv4jTsszncpG9y6devVV1/t1q2bNGoIMZyB30ePHsWsUMx48MEHBwwYgFIHLhooVDzlechFLjK4huBKIhcZXFtwhZEZKrbmGDabNm1SlyCQIsrAgQNR/sGybOEMdbnLyMhAoUIVV0pLS0eMGKE6eSkjIiIKRfjDGbjfT5gwQUok6HnkyBHcvHft2oWburpP66SBpRRN8Pcvf/nLhQsXZJDc+ydNmqTHMtAfC8JomKeMBosWLYqJicESZRK/C7p06RLKRnqdKjj5f4u0DZFwhoQ2AKsxY8aM559//vbt29KHiAKRK4O8OwNOnDiB6wPgFJMT9p133ikuLpaRVf0EZ5mq28gg9R9RnMU4N9VD5qii9OrVC/UQ6SSiaHH58mV1X5bnUnFvxbmv/5YxpSxx6NAhXARCDGeoC4v0V3d/20VGb7N548aN1q1bO19FLGUA/LW6NfLvjS+++EL9S2P79u0o1cirNJzhjAEDBhQVFZkjGkUXNRT0kYmIiCgU4Q9n4H6vQhi4u6vQhh7OyMvLW7du3XvvvYfyCsZEKUHKGfir38vl3v/www8/+OCDmI/6OhoWgT7PPPNMe4/mzZtLHEQmUQvSSRlINRb1C1OhIDJ+/PiYmJjHHnsMK6bCGU2aNNFf9LVjxw69FEVEgciVAWeTeOihhwYOHJieno5BcsLKWSZwrsmZJYMmTpyo6jMKxsd1A1cPOf3lMqLHRIgoKkiTBAkooMzQtGlTuc/KRUNvDYH7O+7yKCTIrTyUcIa6sEh/ZzhDRsO9Xq4k0KZNG1ygnLFRTNKsWbNz585Z3R5nz55t2bIlLj4qIHL9+nXMRBpvohProEo1zsudrcyjj0xEREShiEg4Qz1gInd6efAE92ncyHE7v3r1auvWrXHPXr9+PUZISkpS5QzbrV3u/ZjDp59+qn9/BIt49NFHV6xYsUezf//+/Px8mUQWJDNRAg26ffs2Jr927dqdO3def/31Fi1aLF++/MSJE5cuXUI1SUoeWOIjjzwirV7F5s2bpTxkdRNRALa6hE7OSr18b6tpOL/jCBi/Y8eO27Ztk3Nf4Jx1jklE9dyuXbukLQNOdtVQQi4a+nsxIxfO6Nevn3UR8UDJRMZUMMkDjtYZ8rSIHsvAJWjKlCnYnHXr1smsBg4ciDLMli1bUPJxXu5sZR4Mknam0klERESVikg4A7/l9Z/Dhg3DjVxeC4r7NG7kuJ1jBL2lg+1hE2c4AxO6XK7PP//8j3/8o7wHVBa0detWGQ3kBeb4IZPIgmSQDmulZiLKy8sXL14sKymzVeUn58Mm6gXs0kKVD5sQhcJWl9A5y/c416SmIWeZ/rCJRB7xF7N65plnrl27Jv3Lyspyc3PlywVEFF3kuZLhw4c/9dRT6iqB0xx3WP1hk127duH2nZSUZAtn4NasGnFgnAcffBA9bRcW2yXIdpF5/fXXcQGRQShsyFu9pFNBiQXlFj28IrGMbt264YfVy3zj+Icffmi19DA99thjDz30UJs2bTZt2uS83GGVVJlH3lYeqPRCREREfkUqnCEFFJQz1BfXcAuX+zSKIyiUyJu3UFEZNGgQRpNyhn5rB/3eX1hYiDt9y5YtU1NT5T1bKCicOXMGxY5Lly7FxMTIzLGssWPHohOjOcsEMhMUL7D0rKwslEJmzpz5yCOPzJs3D/ORV5fL+wUx7WeffYYVk6VLmQlLR5kGi4iLi8MmSGtSLL1Xr17Lly93FoCICKoXzsBvnG5NmzadOHEizlzUMXDW46qCa4u8CnTMmDG4gOAyIuejzD8xMfGVV17hxw6JogVunZ988oncYdU30dBz8eLFOK9xduMcl7v8kCFDcMXQwxly1x44cCB+HDlyBKUCzCf0cAZ+y6tAcTfHJLj1L1myBAt1vvJT3qmhXiUuZYm2bdumpKRgfYTz+6+AdVClGuflTi/zSARHLYKXMiIiolBEKpyBm/qMGTMeeeQRlDBkKG7hEnFwuVwLFy586KGHUOx48MEHe/TogcKElDP0WzvY7v3yzxD5JApMmDBBzQSlmVu3bsloWA0UMtDf70dMME8UXFBewQjQrFmz1atXy2disc7ywTYZ1KVLF2yOLB0bhTG/+OILGSrP1mJWGHTixAnM7f3335fmIURkY6tL6Jzle72mgVPywIEDLVq0kFPymWeeOXTokIx27ty5zp07S3+cgLikoCqC/qj84IIwb948GY2I6j+UE1Ba0L/YCvg9f/58/S6flZWF/ighqHCGftfGPRrj42+VwhlykcG1xbyWGDPZsGGDs6mX/KdEyjDoxBxkfJ0aqsM6hBjOkOgt5iyDeCkjIiIKRTjDGVUiHylw3vurJMhMiouLUUyxOhwwKDc3t6CgwOrWuFyuO3fu2Aap0k9YVpuIQifNuPz+5xPnKQZJOJKIGp5Q7rm4MtTwNcBSJJDWXlYvB3nHR0pKitUdbjNnztSfrSMiIqJQ1Fk4I7ro/8whIiKiRuXevXtDhgzRX+cRRtevX2/Xrt2mTZusbiIiIgoNwxkhYTiDiIioMbt3717wFhzVFrk5ExERNWwMZxARERERERFRlGE4g4iIiIiIiIiiDMMZRERERERERBRlwhzOuH379pUrVy4RUZTACYvT1jqBI4ZXBqLowisDETnVzpWBiCh04Qxn4AJ369atnJycO0QUJXDC4rSNaOmEVwaiqMMrAxE51cKVgYioSsIZzrhy5UpBQUFpaWkZEUUJnLA4bXHyWqdxBPDKQBR1eGUgIqdauDIQEVVJOMMZly5dun//fiQ+yU5EEYITFqctTl6rOwJ4ZSCKOrwyEJFTLVwZiIiqJMzhjDJ+NZ0o2uC0jXSlhVcGoqjDKwMROUX6ykBEVCUMZxA1dqy0EJETrwxE5BTpKwMRUZUwnEHU2LHSQkROvDIQkVOkrwxERFXCcAZRY8dKCxE58cpARE6RvjIQEVUJwxlEjR0rLUTkxCsDETlF+spARFQlDGcQ1UdJSUnWr8hjpYUoWvDKQERODenKQERUJQxnENVHrLQQkROvDETkxHAGETVaDGcQ1UestBCRE68MROTEcAYRNVoMZxDVR6y0EJETrwxE5MRwBhE1WgxnENVHrLQQkROvDETkxHAGETVadRDOcLvdZ8+dTz5zzuV2W70qKi5cuoyeGCQ/rL5EjVUjrLTwykBUKV4ZBK8MRDqGM4io0aqDcEZW1u0B7wzv0XvApStXrV4VFfO+WvLRJ58XF5fID6svUWPVCCstvDIQVYpXBsErA5GO4QwiarTqIJyx/8DhHr0G9B7wzroNm61eLJoQ+QqxaJKdnX3x4sWioiKrW4OeGIQRrO7A6kmlhVcGokrxyiB4ZSDSNaQrAxFRldR2OKP0/v1PP5+x4Otv127Y9N74jws9l1QWTYh0IRZNzp8/jzFPnDhhK52gEz0xCCNYvQKrD5UWXhmIQsErg/TnlYFI15CuDEREVVLb4Yz06zf6vj301OmU1AuXevZ5Cz+kP4smRLoQiyaqCKKXTvz2DKI+VFp4ZSAKBa8M0p9XBiJdQ7oyEBFVSW2HM9Zt2Dx05JjcvDyUQlAE+Xb5yvLycvRn0YRIF2LRBGwFEVunNVJQ9aHSwisDUSh4ZeCVgcipIV0ZiIiqpFbDGUVF98ZMmPyPYaMWLVmONOL9D98eOurO3bsYxKIJkS70ognoxRH1I8RyCdR5pYVXBqIQ8crAKwORU0O6MhARVUmthjN+O3+hR+8B6zduOXw0CWnbjviefd46cOgoBrFoQqSrUtEEUBA5ffo0poIzZ86EXi6BOq+08MpAFCJeGXhlIHJqSFcGIqIqqdVwxrfLV+qv8pJXfH05Z4Hb7WbRhEhX1aIJ4DxCoQTww+oVmjqvtPDKQBQiXhl4ZSByakhXBiKiKqnVcMbQkWP0D63Bzt173+j3j/TrN1g0IdJVo2hSbXVeaeGVgShEvDLwykDk1JCuDEREVVLbrwIlolA0qkoLEYWIVwYicmI4g4gaLYYziOojVlqIyIlXBiJyYjiDiBothjOI6iNWWojIiVcGInJiOIOIGi2GM4jqI1ZaiMiJVwYicmI4g4gaLYYziOojVlqIyIlXBiJyYjiDiBothjOIGjtWWojIiVcGInKK9JWBiKhKGM4gauxYaSEiJ14ZiMgp0lcGIqIqYTiDqLFjpYWInHhlICKnSF8ZiIiqhOEMosaOlRYicuKVgYicIn1lICKqknCGM65cuXL//n2rg4iiBE5bnLxWRwTwykAUjXhlICKnSF8ZiIiqJJzhjNu3b2dmZrpcLqubiOo9nLA4bXHyWt0RwCsDUdThlYGInGrhykBEVCXhDGcALnBXrly5RERRAidsLZRLeGUgii68MhCRU+1cGYiIQhfmcAYRERERERERUaQxnEFEREREREREUYbhDCIiIiIiIiKKMgxnEBEREREREVGUYTiDiIiIiIiIiKIMwxlEREREREREFGUYziAiIiIiIiKiKMNwBhERERERERFFGYYziIiIiIiIiCjKMJxBRERERERERFGG4QwiIiIiIiIiijIMZxARERERERFRlGE4g4iIiIiIiIiiDMMZRERERERERBRlGM4gIiIiIiIioijDcAYRERERERERRRmGM4iIiIiIiIgoyjCcQURERERERERRhuEMIiIiIiIiIooyDGcQERERERERUZRhOIOIiIiIiIiIogzDGUREREREREQUZRjOICIiIiIiIqIow3AGEREREREREUUZhjOIiIiIiIiIKMownEFEREREREREUYbhDCIiIiIiIiKKMgxnEBEREREREVGUYTiDiIiIiIiIiKIMwxlEREREREREFGUYziAiIiIiIiKiKMNwBhERERERERFFGYYziIiIiIiIiCjKMJxBRERERERERFGG4QwiIiIiIiIiijIMZxARERERERFRlGE4g4iIiIiIiIiiDMMZRERERERERBRlGM4gIiIiIiIioijDcAYRERERERERRRmGM4iIiIiIiIgoyjCcQURERERERERRhuEMIiIiIiIiIooyDGcQERERERERUZRhOIOIiIiIiIiIogzDGUREREREREQUZRjOICIiIiIiIqIow3AGEREREREREUWZSIUzSkrv59zNv5mZk3Yjq54nrCRWFStsrToREREREUVGYVFxVk7eraw7tjI5E1PDS9dvZdv6NLCUkXUnKzsXJ7V1ete6iIQzcu7m38jIziu4V3rfVV5ebvWtl7B6WEmsKlYYq231JSIiIiKicEO1J+P2XZS9rW6qZ1BBtX5RODSG/MTpnJl9t64iGuEPZ2Rm52bfza/nUQwnrDBWGytvdRMRERERUVhlZecyllGfMZwRXo0kP/MKjCZXVkftCnM4I+dufnY0t3HAyrONBhERERFRJGRk3bV+Ub3EcEZ4NZ78vJV1x/pVu8IZzigpvX8jIzvq2mXosPLYBL5Hg4iIiIgo7Fhbrue4g8Kr8eRnXW1pOMMZOXfzG0DjMWwCG2gQEREREYUda8v1HHdQeDGcEWnhDGfczMwpve+yOqIWNgEbYnUQEREREVGYsLZcz3EHhRfDGZEWznAGtiGqnzQR2ASexkREREREYcdidj3HHRRejSc/62pLwxzOsH5FOZ7GRERERERhx2J2PccdFF6NJz/raksZzvCDpzERERERUdixmF3PcQeFV+PJz7raUoYz/OBpTEREREQUdixm13PcQeHVePKzrraU4Qw/eBoTEREREYUdi9n1HHdQeDWe/KyrLa2DcMbFS5diV62+f/++1V1Rgd/oc+ToUenMyMj89LOp/xg0WBLGl/4ymupvGxpGPI2JiIiIiMIugsXs++UFud5U6q1q1FD5jRPu5LTIfO6gqLygQJ9zeSlWvkjrY25U1bfFnE9JddY51B3kd8WkZ5nVFQZljqWU2BZRXlpgy8PQmPOxfkdSjfJTbd3tssTDZdlhzFjFnp++eW4/PoOpqxp0vQtnZGRkzp03H39lkIQ2ZJCMpscvZGjYIxp1tTOIiIiIiBqwCBazj7mf7OvSU+8v3TdqXgPMdX/W3/XsNHeB1R1O2Vuwnu4DJVZnxUV3b6z5OHe21V1RsNPYkD25VmfIyub2dY3cUp2ND3UHmbn97Ex3qdVtMntuuWl1VUX5jdPuxIuOFS4rm9vf1Xu16l9+YKaRIXOPqTp22bLBri7Lq7ylkvPJVlcEhZqfJe4v+7sGrPXdkFz3R32NnldWGFsdm2r1Dp/y898acx6zXVvuTfdII4eNn8kLfY7G4OqqBl3vwhn4axuq+shotuAFOufOm19YWGh1h0Nd7QwiIiIiogYsgsVssy4t1TDj39pX3CP7u16tekW3VpnxC1U5N+vYRvLEL8oT57me/MB9Q7qqoJbCGUgf7dSWUv1wRtmWca4nFzpX2IxfqBq1Gd3AIrzxi+vuIcjAw1VuZ1HvwhnY13NcT450X7E6DQXbjY2tVn6GxoyhPIssnaRF6xjOqFTwcAaGBnqExG84o7CwcMmSpao1R1jU1c4gIiIiImrAIljM9glnGIzK2GD3+YqKG7vdi35wnz/g/mic6zOpfueWHVhrdI6Z6d5+zqwMl5Rt/8a9/qiqUZdf2eleFIu6XNke9D/hqTDnlm1fYUz40TzPhGbP9d+496ia6BX3om/cyRKSKLIWNGSKe8sJZ3XdaFzgaX1QvmeK68mhrlf7ur7cL3PWmh7cL0ve4v5ykjGf9Qf0+ZRnH3PHznT1Hueau9adbVWw9HBGefZhY30OXA+pzh/qDjJz+9Whrif7u7ar+rZPOKO84Ip7/TzXkJGuL1e4z8uTHbeNjNpy2lqT7APuRfPcB24bOTxysOvJ91zefPMw26d4GrCkuLvIQj3Vfp/WK859Kvz19wlnFBn7dNmWskg0wKnCAX/M/Wxf17IUqws7cfskK9BQcMLYg56olp+MLThtjHDeauZj5OeiuDJpOFOaYh6N/rat9ICxxC1bjL/r06yeDGdULng4A/BDvRpDH9NvOMNvT/gp7mc1E5XQ0xocVF3tDCIiIiKiBqyqxezsY2Uh1qaChDOMH31dzw53r9/rTkat/o77s7dcr05ybz/s3v6tq50xFeqE3tqjwfzHtRlo0EID5oTtxnknHPOL2V+rARpUrb6sbNlQ17MfGOMfWGvGKQ5o1WyD2f5Caoxm04ORW9zrR3pCGKrtRllZ7HBjPlv2Yj7u3sZoVqji/Arjv+tzt7gT97o/wzgT5fkatc7l2fvdZnxExq9cqDtIcvtw2fr31EJ9whkFu838WeFOPOxeNs715FB3chF6m9s71H0e4xeZj1eYOXzlsHvuSNeTn2Lkshvq0Rsh7S/MBixGDKK/+8BeYylmCENru+F/nwbs7w1nFJWtn2hswhVj9UJwsyy5Ks0lqnDA42gZ7OryrWdP3XGPMRq/+K5toIw1j0ArCiaPLJlHPrLIOPh9G314mOEzHPDmged9zoXhjEpVGs5Qft76i4QhZFCVwhlgi2iEGMuAutoZREREREQNWJWK2ajFVeGJCVs447b7S1QOFxr/o5ZwxgGrvmq+L+A99xVrxlbnjYqK0v3e2rj849r8l7U3NGCMiVqiPmF/dzI6A4UzpL/1KET5jXNl2fprPk3e9gVm04P1FyvOL7fqn6phgvHQAarxnvq2dCai2m/WeD1NOTydRsTEWueCw1WLZUCoO0jl9nVjG63dpDbcrJmboQqTdEqF2RPFSP5G3wuBHjYB1UTFrH7PdJeab5Qwt9oYZIacAu3TQP09AYL7ZVuqFMswGKsqB0koqnTAG7vec4BJ7MbYy3o4I2DGmnElMwONkd8yQh44lrQscvCGS8xsscIfDGeEIPRwhsD48nYMv5GL4A+bqIhG6LEMqKudQURERETUgIVezDarcIGSv7cemHXpdkNdvUe6eg93PYvf49znzWqqUSvzvoGibMsHrpgvjX9uS9o+z5hhImp8ZosMiVwYLzKwKnIqnGFM+Ow3Ws3QE4AIGM4wW1Wgbjl3i/t8WoBPfljTll9Z7alSmg8dbLlpNj2Y4i7wtODY41nhxFgjE7Zcr6g4bCxo0W7vtqCCOuRHY1Wxzr0nGu1BxsT5XWpAoe4gFc6oKL+xxcjtLdfLvRtuNqn47AfvihmNL+a5ZdLS/e5n+xuTLEtRwZ0g4QyzfQH2BfaOVf02Rjaq7mYzBPPpjED7NOC+lqNr5ETVbMSPKh+B/lStXpnmHmAeDNgiIzwxx3rTqjecEThjPcePEfTpvdqNyY2D1ptFduaLOTxP8Zw2juRl8hAQwxmVysjIXLJkqf7yTvyeO2/+xUuX/MY1ML5868RvOEMFO6xuh5/ifq5SLAPqamcQERERETVgVSpmoxZn/ds/FGZd+su9xmcmjaR9YNK3Vla2qL8rZpzxQgE9ma9sMGvO77lvmHENz+cevOEM+z+6recgAocz4H7Z+e3uuVNcMf2NuMZ2Py+wKDOfLnGjFir/XTeiKqi3YyortlK2HbXu4cZ7JfS050pFdpxRtf5okU//RbuNSbDOT/Z3DfkgWHXdr1B3kDecgaUZbRyMRhBmeMXY8BNGRGbITN8V+8HzcgqzQQfq3oneFQsSzrBazew5YFS5JVel6r4HlXxpHRNwnwbc1xKqeHWcEfGpwjFmiGDrDMzcamRhxjWs+IIezgiSsRJcSzEOnmUpZhZNcZ/HhN72RDpjQcgBPVnPuTCcUSmJSvy89Rer23xZhgpJXHS8ChRjysjOcEYGP9RKRERERBQlqlrMrsm7MxTfWpnnmQWr05f8m3qFWX+23kmpwhnmhEZzCYtUs7dnWgGIkZ52EPpDKxX3PY0y7pfFjvSZXDGfLnH19j42Yizo2feMPubzAt7HT+xU8xA7Y52NZhpFZXOHau+2CEGoO8iW26gD9zdf0ikb7n0exMmIzmCVPhvq6jJP7YVg4QyZW2/knsoEc8MHoEJu7cdA+zTgvpYAQWKZ1bTEetFGKCL37gyTPEm0TJ7+8OSHN5wRNGONB08+cD0rIR4zi0ZKMxYnM1zy5c4yK/aXW568wvNsC8MZIVLvxUCK9X32RIIUaqhqrCHhDNUfCaNhZBkaRnW1M4iIiIiIGrAIFrNDDWeYDztgTHmlRUnZelT5UOE3B0mdEPNR7fwlNCD/wPeZMNdtRAqs8IT5v+6h7sQ75aXX3V+qWr352Mhcef0nxh8coG5pjoZJPAEUq+2A+eyA6aJR+RxpPEVihEUOzHM9+Q93MipPZeY/87HyRkWqvGC/UYNdZHyExbvOqNZWqQFCqDvIkdsFO424gLXh8pJOZIjx3Q3zo7lYBzPcI6Otv1heesJYMU8cwQxnTHMX+F9Nc6j+fVbPF1vlTZkQaJ8G6u8NEFSUGSGPKrZhCV2VD3jzlRY+G+uztgEzFp3GcY5pJXzjySLH22cNRoDM82IOiwQ4MDLDGQ1Ag9kQIiIiIqL6I4LF7JDDGaj4XdlifB/EqPv1dbUb6T5w21vlu7HWVgnUQgO+E/b+0vsKydLT7iFvmf3fci0za5VSqz+/wngp47PmJDEfWu/ysDMbd/isofnKAy32YXxs1Zo/+v/DtT7Vs3q3zc9bmP2f7O/6aK18ntNnna0GCNYbSSsR6g7yk9tmTVs1Sykq2/KlFeBAGrDQnY3VueP+qL/rVauibn3lROIIpcesjPX7ogfj0QljcWoTfJdlCLRP/ffXAgTGqlptWLz/Xg+bqh/wZouSvtqXUx1r6ydjhRkX84R4JIs8b8fQmS8QdUTWzJDcJHcBwxkNQIPZECIiIiKi+qM+FbPLS3PLCxyfGqlcmdk+vyTkCas6fkDlpQU+7wTxKjEWUWqrn1ZLmHfQfXPFIhAmCCDQPq3uvq6xSB3wtZ2xlaurU5vhDD8azIYQEREREdUfLGbXc9xB4dV48rOutpThDD94GhMRERERhR2L2fUcd1B4NZ78rKstZTjDD57GRERERERhx2J2PccdFF6NJz/rakvDHM4oL6+DR5LCC5vA05iIiIiIKOxYzK7nuIPCq/HkZ11taTjDGTczc0rvu6yOqIVNwIZYHUREREREFCasLddz3EHhxXBGpIUznJFzNz+v4J7VEbWwCdgQq4OIiIiIiMKEteV6jjsovBjOiLRwhjNKSu/fyMiO6udNsPLYBGyI1U1ERERERGHC2nI9xx0UXgxnRFo4wxmQczc/O5qbNmDl2TSDiIiIiCgSbmXdsX5RvcRwRng1nvzMqKNTO8zhDMjMzs2+mx91bTSwwlhtrLzVTUREREREYZWVk5dXUGx1UP3DcEZ4NZL8zCu4l1VH9ejwhzMg527+jYxsbFXpfVc9j2tg9bCSWFWsMNtlEBERERFFTmFRcWb23Qbwur2GiuGM8GoM+YnTGSc1Tm2ru3ZFJJwBJaX3c+7m38zMwS6s5wkriVXl+zKIiIiIiCIN1Z6s7NyMrDu2MjkTU8NL129l2/o0sHQr605WTl5dxTIgUuEMIiIiIiIiIqIIYTiDiIiIiIiIiKIMwxlEREREREREFGUYziAiIiIiIiKiKMNwBhERERERERFFGYYziIiIiIiIiCjKMJxBRERERERERFGG4QwiIiIiIiIiijIMZxARERERRVbOP/8vpgafrJ1NRLWF4QwiIiIiosiy1XuZGmSydjYR1ZZwhjMuERERERGRg63ey9Qgk7WziRolKyhQu9g6g4iIiIgosmz1XqYGmaydTUS1heEMIiIiIqLIstV7mRpksnY2EdUWhjOIiIiIiCKL9d4GibuVqG4xnEFEREREFFms9zZI3K1EdYvhDCIiIiKiyGK9t0HibiWqWwxnEBERERFFFuu9DRJ3K1HdYjiDiIiIiCiyWO9tkLhbieoWwxlERERERJHFem+DxN1KVLcYziAiIiIiiizWexsk7laiusVwBhERERFRZLHe2yBxtxLVLYYziIiIqFbl5ubGxcVlZ2db3VSZ+pNj5eXliYmJR44cKSsrs3pRaFjvrSqXy3XHFKGDraCgAOcU/lrd1RLG3VpaWlrz9alD2E0R3V8NA3Mp7CIbzli5cuUDHg899FCHDh3mzZuHW7I1uOru3bv39ttvY27fffed1StMZFWHDRtWUlJi9aqomDx5ciSWRURhl5WVNX78+D/+8Y9ytRk3bhz6WMNq7Lfffvvzn//crl27qs5TriETJ05EBcDq1YipO8LatWutXia32z1hwgQZtG/fPqtvaGTXNGvW7Ny5c1avEKjCBMrKVi9fhYWFs2fPbt68OVbpwQcf7N279+nTp61h5E9Vb/dTpkzBmCNGjEDx3erV6OEqcezYsZ49eyIDkTk4qr/66isUe2RoJHIsxAuUrUp54cKFv/zlL4888khSUpKMUHMRvYA7JSQkYEHVuKTXUBjrvVUi10ls8tatW61eJjlt27Rpc/36dauXQ13lFeCw/P7777F0HKgonKPz0KFDL7/8Mq7J6NmxY0d0Og/d1atXywjqwA6yCWfPnkXOxMTE3Lp1y+pVdeHardhNTz/9NFYV6x8bGysrj5vRO++8s2jRIr9VXwydOXMmThl1E6zD/YWVeffdd7F0wDqjEz2xFdgW3EPv3r0ro+lSU1P79u0rV7xnnnlmy5Ytzs3EOC1btsQIaqOqd9+vJ6qUS9nZ2biZysg650VbVZCrWohqGGovnKF06tQpMzPTGqOKIh3OgA0bNli9GM4gihIZGRkvvfQSzlYUAnCHM0/lB2pYQNExnBEW6jLbq1ev/Px8q29FxeXLl6WwArUTzpAiQqCp1OGkQ+UtPj7eGoMcqnq7Rwl18ODBfmsjjZMUZ6Uaphs4cKCUdyORYyFeoGwXQJfLhcrVtGnT9LO4JiJ9AXdqbOEMVXgeO3as2+229Rw3blygwC7UYfX4ypUrqN7j7oCDH51YEwl4PWnCD1yWbbcMmQSDIJRwhgqmz5gxo9pnVrh265QpU3DY4640adIk3KFwn5LLQqBYAK4GLVq0MLfViH7WeTgD64Md9IsJuwZrgp5nz55t3779sWPHZBydilM0b978mWeekasfbiXWYFNJScmoUaOMLWwo4Ywq5RLDGSGqjXDGgAEDioqKkO+nTp2SA1cPEEhDL/2/ZPr/AWzNrmzhDMwzNzcXI+BvtS9DQhXFcIbgPJGeznAGVgCLA/XvEbUO6CNrrq8t+jvbjMkm13ydiUjI+YtywLVr19B5/fp1KRxv2LBBXU/UFUauKuiDckyIJ69empdB+CuDFJmDzM3qxXCGL3WZffjhh3FHt/pWVCxZskT6g34nlkulvu/0vYmh2H0ozejFGrUX1A5y7hf0uXjxYtu2bZs2bYrVsF2KVekWZYujR49i5Ly8POxB9GnduvWNGzdkNGnfgdnqk6tDC0Nl5Z3HSUNlu90j6+R2j3MQnXKiITeQRWr3oY86xcC5pxSVsRjH6tXgpKSk4IBEgX769OlyCOHglDxctGgRRtBzTGWIXMRUNjrzUM986YMf6JTj1nmBkqGg5oAf2Js4xXD8nz9/HsuSpQB+qPljNDkpAD9kWiFrjjnrE1rDTEEu4MHXX+WD84zTJ1TLVSumqnyZmZm2+ctWoI/KgTAKV723GpCZssmqlitxZBxy27dvlz6SUbZt16vHeoZjkJ5XeibLPpKZ6EeIOT+L6q+OXie5NUi7aUw+YsQIdC5cuBDLgk8++UQNlfGl6ostkmCH33CGrJva3XDkyBHUKvXLe1WFa7fifJRLKM4IWVvUcnFeBGobiPEfe+yxL774AqenugkG39iIwqJlNaTIhLt5odm0ZPny5erU082cOROrOmbMGKwh9pS0xHn55Zf12M2mTZuwQ5s3b459pI5ePZwhx2SQo6i+qWou6VAa6d27N3Jp3bp1cmzL5uNUwkwYzogUvXyDTmS9FArlEpOTk/PBBx9INA6wUw8ePIjRVM0BewsnqgydM2cOLl444vVwxt69e/9oio+Pl/1abaqcDeqfIXo4A4uWBl0yDhYqN1q1SqtXr1b/0MM5+csvv2Ac/MYZiDHNhVRgk4cOHao2uVevXnJmElFNyE3x9ddfxzVd+kjRFn9v3779/PPPY6i6xKNugM4hQ4bgfAzx5FUXJdxvZBDOYtUWFH+3bduG+5M5A2PQvHnzcL3CIIYzdHKZffjhh5FF6p+EKP527tzZzDmD7Kbgdwdk9eeff44dgZvLyZMnpQ8KB8hz9Mf42JuoEdn2i7poy0ykJ6g7lLh69epTTz2FRasiPqCYi8IuRkZBBJ0nTpzo2LGjTA7qSq7Kkbhhyc1CLdScTUNmu91j52IXow8OfvSRE23ChAkvvPCC7Cz91IBAZxD+qpMO1JHQ8MhFDEVVFFitXp6LFXIPJQ09x+RIa9u27aRJk5Bd6IlysN88tJWaQN9T+jwDFXJkWQpGxu5TJ51eBOrWrZuM8+qrr8oZgRVA5VPm2bRp06VLl6oJZWVEkAt48PUPcsapCadOndqjRw/8AOepmpmZKbViyQQMOnXqVJMmTVDPlxYB4RWuem81qEZw6la4efNmdMqTJtj2QOegyitknf4bg7CP5F/HmKe6S65Zs0ZOWHTiUinHGGBBly5dMpdsXGa7d+8u/WHcuHFS6tbl5+djf2EobspYPVxSMLc9e/ZkZGTICFgohuoXcFy0seboM3/+fAxS+1RWG+eLOsIxmrqDY1uw2uipcqaqwrVbsXrYR0lJSSNGjMBtMT09HccwNj9QLXfHjh03b95Ut0U5rYJvbERhzVFqwqVg7dq1OAYOHz6MlR80aFCgZlxnz57FDlVHBdYfW6GOLsCRicMGW4cZytElg9Qm4yhV9UTc/eWIreeqmks6OcJffvllnHroPKQ1z8Hm9+vXDz+qfRhHtVoNZ+BGhdsV+uD2hpNz9uzZ+N2zZ0+ckJ9++in2kBypcpiiE0cqrnFyg8TdBfcY/caG0wCnPQ6FdevWVRrQqpSsKg6RTp064YdcPeUqLDdRCRC2b98eNwCUMLBcuXaoVXr00UdHjhypbuc4wnAllQu9bJdqMYXyCupLo0ePxgwxLeYg60BE1YP7t5SfcN7h8oJriLqr4USW0ur06dPRqU5YXDdULavSk1cuSjIIlwVc03Dy4qJ0/PhxzDMxMRFLR7kB5WYpr2NMXFIwSK8tGGvTuMll9q233sKV9i9/+cuFCxfQc9euXcjMN99885lnnsFQ3ImRV8HvDhiE3EZJ98svv1ThDNwRpK0+rtJSqpP9grIOrtgoYWPfoQyB+d+6dQt7CpUrdL7//vu42qt/7oEqC6pCs82dO3dwqGBBWDGsHlYS48sulmlBjpO+ffvit9y8rIkbLtvtHpWTPn36oM+MGTPUiQbI2LFjx2LX66eGOoOwO1A/l+Ip8hbzkTsv8hN7EPsRg7C7cRiYy2w41HVp2bJlga4Veo6pIw35NnDgwG+++ebo0aN+81AvNcl89D2lzzNQIQe1eswTJwtOGYyJoegpJ51eBML4mCcupFKDwhywLDm74d1330VxTtZKJpSVEUEu4MHXP8gZpybE0jEy8kQuHRJIlQnlqoLfGEf9T1jmP2TIEMxBlhhG4ar3VgOucsOGDcOmye5WjR2QMyhCB7mL2fJK/cYgZzgDOfnUU0+NHz8eewT9AVdLtetl0eoSimIwCsPy3+YpU6ZIgFtRkWUs1OqlkX9oY8LFixfLKYMLe0xMDI7SY8eOyU6UxWGQrDZgrdBT1hk1iMuXL2OoOlTmz59vzLrqwrVbcdORcgjOEdTzcRKFUsuVnFenVfCNjSictl988QV2GQ4k3J1xUcL1JDk52RocFKaV/0aoR5/wVwpvyAfc37GN6sBTJQEcV6qe+PDDD2OJ5szqtWrnkq1pxs2bN5Eh6MS167PPPpMdDQxnhJ9cULDD2rRpg70llzMcgjgusSdyc3NxXMo/InAS4lSUs1FdE+WfY+p/dxs2bFAXHZQjX3rpJYyDkmjNYxmgbpA4sLB0WUm508tNVP5XIPEwrLYcQzho1CpNmzYNa6L+FSzvW5Iwv2yX/FZBNQk8ox514sQJdBJRteF6Eh8fr8pPgJKZCnRKU9JXX30VVxspIcmtPfSTVy5KmMmBAwcwSE04ffp09V9omQmG4kqFTikc67UFDGrkVBFTmhCjjCIlbGQs6kiqWBzK3QH7SLJUleTmzp2LnY49K8UCtV/kxo8+qNqhExUzFCZwEcbiZJ4YpLOV150wOe5KmZmZEgTBDQLj65UrKU9jkCp8VLuUHEVk53bs2HHbtm2oxEq8Hnvk8OHD6nzBHlGRI3VqID9lT6Hkit8Y9MMPP6DAMGPGDBwGuEuq8w5wzDTI/FRZpCrtTvrFxHakqaPdmYeqBbLfcIA+z0CFHHTKWWarS8jpo9ZcKiGYDxaKTpzXmL+sldrvOG3R6TzvMFWgC7gzZ/T1D3LGOY86+cfmM888c+3aNf00l0KmFMZUJR+XcXNpYRauem/1SHOMTp06YS+rYMHevXuD38X0vNJ/YzTMR123bXdJjKlyG51y5spek0uxChhJ2zc1pqIfZlYvDxxpUvV95ZVXcnJy0AebgCoi+sycOROboO41cvFXx4lElrEgFT03ZlfjfzyEd7finMUGJiYmIltQE7H6BmbLqEo3NtJwEmHP4rTq0aNHiK1CMI78N+Lpp5+W/3MANgTXAdnFfi9BGF/qieqf5UGun/VNNXLJ1jRDziPUr9PS0tBZ+zu6XqntV4Ei35OSkmS34YzF7apPnz7YAdhDGCpno+3M1G9m6rfo1q2bXMhqTt0gsVbfm49v9evXb/jw4fghpwduhzh03nnnHWyC/PMBcNDoq4fRVKccT/q2oI85kV3jPPKIwg6FGBTRVqxYoR4EwDmL/lJaldNQr9OGfvLKb/0/9lI4+/DDD1EHwHUDvyUIAhgfU0nEhOEMnSpiJicno7CFUjVK0viBGgjyShWLMWaIdweQPhhBzJo1S4rjKDTLfrGR8rSUwvX5KFIWDNI6A1B6wIJQqpBPn6jZyrSqyAWN5wBw3u5xo0QpzW+NFFTOYF/bziAF2YjMNOblq+Hlp8qib7/91urloB9LtiNNHe3OPHRmvirtYCp9noEKOZhEzjJbXUJOnyDzx1lmG+Q8f3V+L+DB1z/IGYehQZauT4htlxAMxgxUtQ6X8NZ7q0pCGPLqIrkVStXIefwgi5BRchfT88qW4c5whtq5tmNG32vIZ/y2cR4V0ibf2R+HxMcff4xJ5KFC6YkVU1VfdMri1IUiyGobE9ezcAaoWu7BgwclzDfO3/M4wpbzlW5sLUA2zp49GxeTK1euyBMQ7du3D/T0FgpjS5YswY1e/TcCsPIotklAHJ22w8m2yc6rRFSoUi6pWK36D41+TqFTZUJt7uj6ozbCGX379sUVZ/PmzThYVQNj5PuQIUMwFPetuXPn4sKK4qMcmkEOU/Ub99o//OEP+IGbUPWuPjb6YYFLhrRhE1iuivviJjdt2rSdO3fKE304aGxnke140rdFLjG4eWzfvn2PJkihmYgqhdNTHqm9ffu29MHd8f3338fpJqUTkNLq2rVr5X9QUmgL/eSV33oVVx72/vDDD3G5kKnUf/MwPqZiOMNJFTGLi4uHDRuGUvVzzz2HPosXL8a+U0Uu7IgQ7w4gfTAy7gi4L6D4e+TIEfRXe3PhwoVypRUoIuPwkBKePh9FPkJpe1kpxkdpA0UNTC4vY8eyMH8UN1evXo2lVFq5avAHgOxcdYNDVqBELoNsJ5pwVjud/w+X3dSkSRPMXHafQJG34eWnfId18ODBODusXp5GFrjOoKd+LNmONJXDzjx0Zr5e2lHzxEkRqJCDSeQs81uXCDJ/7D7bILk22s674BdwdXj4Xf8gZ5xzQn21bRNKCz5clLZs2YL+Eu+WqcIr7PXeKlFtT6ZOnao3x3AeP7KnIhTOkN8DBw6U01n8+uuvub7fdbbNUOCGi4o9Ju/WrZuKZeDskEL7Y489hvMFJNCMyjCu27gQBVltmUMNL9Th3a1S48CewgaiSo+7obw5Qh3JNraMqnRjawHWAXsB90oUvdq0aYPjCtcT2fvWGB440ebNm4fq4dNPP52SkmL1rahYs2YN1hn3WUyOWck/NgA/cBe2bbLfW0z9F3ouga1pBujnFDrxF79reUfXH7X37gx1tOGqgXNViowqBK4fmkEOU/UbR398fDwuVbgDhWXP2Q6Ls+aLOdAHsFxcDWNiYlCokkflVaN0LNp2FqlOWSvndqlNxjmMcxIXcXULJ6JqUEW0jz76SBoVo8SDohL6fPLJJ1I6kf/z9OjRo3Xr1rhtSDGoqicvBkkcRIXJ5TVA8ninlICxOGnehREwWg0LSQ2MXGYlN+ShenTiSovbuV7kCv3uoIbi4nzw4EFpfiwfB8UiZL9gH0nmZ2Rk4HqLihNuQLK4pk2b6uUngUNIXnKEEVTwffbs2VhbOXKkmKUqPPq9Q8qRDz/8MLYOg7AUFD7QB4dEgz8AbPdQne1EE+rUcJ5BixcvRuekSZNUrFD90/jSpUvYiaE0wI468vICbOzXX3+NgxD5cObMGRR20UfeDqBfTGw1FvQJlIc42jEJfo8ePRqzVddG2VNqnjk5OYEKOeiUs0zFc/XT0Llz1ZGAZclaoUqZn5+PHS2N2vTzF4JfwDFVkPUPcsZhqKyYLB15sm7dOnTivMb1wZaBqEi/8sorTz311Ouvv44zXVqwR0J4673VII0yHn30UWQa7onyYIjz+NHvYnpeYcdh9+E4weGKCVEOx0wwFMeJ7eIsnSqHbddJZLJ68ysOIVy99+/fb3tJhNwI9CeycZTK3tdjGaAOQidZAdvu1m836FTRkGr/fzS8u3Xv3r04GdPS0iQPd+/ejUxD1sm5b42kseV88I2tBbhKdO7cGRdtuYB/+OGHOItxfVCrpGDHSUMbWywD5IDxy3mw+b3F1HOh5xKgEirvB1FNM0DOI9VKALdF5Inkj4zQqNTqq0Dlbi33S/UKE9xNN2/eLG0L5dAMcpjqv3HNlcIrTvuaf5zcWRRbvXq1lLaxLBxt8lazIUOGqBcXAQ4a21mkOuV40rcFKyxBZVSoPvvsMywL83/ppZfU/3uJqHpwWZeaAP7iwiKv6cFvaaYI8qoa9AR5xhs9Qz955TfKbeiUJyAwGurhUq1S0c++ffvKm/Bwam8w367PcIZOLrOSG7g9416OTtkdepEr9LsD6H1wLZUv1KBojnmeOnWqqfnly3fffRezatGiBX7LQ6pSe8GYOFS++eYbmZWCwgFKVxiqw+Ek+1QCMZjzqlWrUD2Tg03uHVKOtB0n+sPADZjzHqrYTjShnxqqHIa6KMbEGYTcRpkeo8m/pNA5duxYHCrIbTWogXG73ahNYWORDzpcuKR0q+eYrcYCQfIQx60xI/Nob27Cb9lTap4FBQWBCjmYgzykgE5Mu23bNv2kc+5c/UhQa4WVwUUSk8vZoc5fEfwCHmT9g5xxasUwPvpjKPIEnfJuBWcGSqgFVLw7EsJb760G9ZEm0P/TG+QupueVum5j6JNPPolsr0Y4Q/0/ACuAYrzU09555x2UtM11sairNFYDnaWlpe+bbXYA+7S9B+aJtZJJFP1eg07b7rbV8OUfluhUYdOqCuNuVbVcrLmcd/Pmzbt27RoOy0DRFlvOB9/YSJOqmbywRiKVPXr0uH37Nq7e2C7bnsKmYcUAp7a1O9u37969u/rWiWI7nGyb7PcWU59VKZdA3tOsn7CA0eTcQe4NHDgQJ4VcOWtnR9c3tRrOwG6T/3oNGzasuLgYt0zJevxdsGBBlR42kUPWVng1FlldzqKYWltZ1rFjx6SAi6v8tGnTVDtM2yqpTjmebNuCOtXUqVPlngo9e/YM9JQUEYUO93gU3NUT14BbQmJiIoqt1hie0ipuCaouFPrJq26luKnIg6z4++uvv6r5n9C+3IlBqITLFUmvgciYjZmtiIk9gqKw/HtQL3JhaIh3B7D1wc5FLQizla93Hzp0SGYrs1qyZAku7DIhdh+mQn/sdOx66amgzISChbpW64cTRsYdR6qd2OlyXOmVKxwn69atk5njYMAGNoa977yHKrYTTdhODf0MQtahNC+5jb9btmyRkw7wA536ed2QYLt27twpdXLAkYy6N+p+MjR4OAMC5aE6YnE8T5gwQb5hKXtKn2egQg7mgKHyTUH0wST6SefcubYj4fTp0/iNWgoWjZPOdv4KzD/IBTzI+gc549SKocqE+jkmB5zU0gTAmYHy7mf0lC99SM+wC2O9t3rcbjfyEJsJtupxoLuYLa/UcYIDFTdE9MdvHCe2S7G6acpUtqPi1q1bw4cPxx5BT/zFb+d/JbFuWEOMgFofVlvtUBt9Jyq2e41tE2w1fNn1Lc0na4yJqy5cu1VquTjF5D6FrZZHwED9+8TJlvPBNzbScCK/8sor6tUzWBm5bmAvO194KdcfG+f1AWyHk22TnVeheq5KuSRhCwyS8KLV14QqpJyzKN4sX74c5xd+186Orm8iG86oFO4Zubm5NYxE1BocRljb0tJSq7u6sL04OgsKCqxuIgoT3NVw88Zfq1uDwj0u9LivZ2ZmWr2qRa5afsu7OKlxakeuKNyohPHuIPvFOStc0lG3CbK/5Jrv93DCjQCDbGULvRyJ2WLmthEouEBnkOyIxnNy4eiq9sYGykNUjcDqCEDyOVAhpxqHtJR25AOoIPVG/SVENkEu4H7XP8gZh5noNRx0Bi+8oWqB+jnqDCreHQnhqvdGToh3sZqXhAEzCbS7hbSwa9269Y0bN6xeESAh6XGeZpvVELndih1x9erVo0eP4sS0ekUbHE6HDh3CHqz0oGrMapJLlV7cGoM6DmcQEUXa2bNnX3rpJQl+o+DCeypFiO3fYkSNnLSR/vOf/7x69eq4uDhpGj1ixIggNdgqCXLG2cIZQRQWFo4aNUqeYenVq5cKvkRC5Oq9DZLL5frEfKlH5P7rfv369TZt2gRp+xAK7laiusVwBhE1cMuXL0d56KGHHvr0009tT+cShRHDGUQ6VEcXLVokoWR48MEHP/jggzCeHWEJZ6AeKw+q+H1oP7xY762q3NzcX3/99dChQ+o5wfC6ePHinj17Tp06VZP/c3C3EtUthjOIiIiIKCLkkZPgjxU0Eqz3NkjcrUR1i+EMIiIiIqLIYr23QeJuJapbDGcQEREREUUW670NEncrUd1iOIOIiIiIKLJY722QuFuJ6hbDGUREREREkcV6b4PE3UpUtxjOICIiIiKKLNZ7GyTuVqK6xXAGEREREVFksd7bIHG3EtWtcIYz0m5kMTExMTExMTExMTHZkq3eaxvKFKWJu5WJSSUrKFC72DqDiIiIiCiybPVeqy9FOe5WorrFcAYRERERUWSx3tsgcbcS1S2GM4iIiIiIIov13gaJu5WobjGcQUREREQUWaz3NkjcrUR1i+EMIiIiIqLIYr23QeJuJapbDGcQEREREUUW670NEncrUd1iOIOIiIiIKLJY722QuFuJ6hbDGUREREREkcV6b4PE3UpUtxjOICIiIiKKLNZ7GyTuVqK6xXAGEREREVFksd7bIHG3EtUthjOIiIiIiCKL9d4GibuVqG4xnEFEREREFFms9zZI3K1EdYvhDCIiIiKiyGK9t0HibiWqWwxnEBERERFFFuu9DRJ3K1HdYjiDiIiIiCiyWO9tkLhbieoWwxn+lJeXZZ0u2/e+e+WTJQv+R/H8P5StfBKd5beTMcgah4iIqN4oLy/Pzc0tLS21uomonqlSvRflzbv5FSU8oeu9Ku1WIgo7hjPsyu8Xlf36/v1Ffyie9/t7c3+Pv+oHemJQheueNWpV5ObmJSenFBcXW901VlZWdvHixWvXrqEIa/UiIqq6goLC4ydOsxoc7e7du/f2228nJCRY3URUz1Sp3lt4r+KtKe7dSSzj1XdV2q1EFHa1Ec5wuVyrVq167LHHUNJCecvqWy+Vu+65N3UpXWjEMorn/X+tNPd3RjJ+/x6DMILfiMb27TueeuoZSe3adRg0aPDcufMzMjIxCPWEL7+cgf4YB51utzs/vwCprKzMnLQ6kpNTsJThw0fl5uZZvYgasd9+++3Pf/7zA6aHHnqoTZs2U6dOzcrKwqDs7OwOHTrIIJuVK1fK5FeuXBk4cCAmRE9crNS0DR6uQidOJvd8fUBq6kVcmqy+JnTevJlx5sy5wsJCq5eHDLp46cq9ez4h2vLy8ry8fEyCoba5AZZ1Nzf3zp27esL4mEomdPaXCYOsiYKZ376dnZx8FouQCZ3zRMJQufBiVn776zAH9D/3W6qap7h//74+LRL6WMOMsEJxWto15KctcyIHN9nVq1e3bNkSR++DDz748ssvHzp0SF9hkZiY+Mc//hHnAs4Iq1dFxa1bt3DkYypM27lz5xMnTlgDNLhxz549G9PK2bFo0aKSkhJrGIryOTnjxo2TcwfrsGHDBpWTGA13/2bNmmEQJsdMbGUACcFgqI06MUNZPRLIzJkzZ2JHTJ482epVUZGent63b1/JwI4dO/o9MCBIPtdk/4pTp041adIE4yiqNHjjxo3WrVtbfU368YnVwMqgJ5aOdcCaSH+d7RB68sknBwwYcPLkSWxmoKMLVBbV8pU/xHrvfVfF8p/KOgx1PdnX9VQ/V7cx7n3Hvfvt9t2K9+e6n+pvDMU4sdu8l66kc+XPvW30V+mtKe5Cc59g8q0Hyl941+j5zEDXtO/KivxdnzCruIQyGQ2LwIKwOKW4tGLWqjJMjqFt33FhJbGq8O3mMlmcntSixa1s72pj/lgZ55GI+b87w40RMEOrV0UF1vPz5WWY8MOv7PcUnW1aCQbJmuhJhmLkpVvKsAnoEyQ3QhTiblXy75e8dWD9/2vZez32fG/10hS57r97eNN/+e6DB5aO+r++H//ZqV2lZdaGY8J/HPxBBv3T6o9XXEwqr7Ay8ezdjD/98Dn6/37N5ENZV6Xn0dvp/8+qj2af+VU6a1NZUVHGl1+e/4//uDlpktVLV1Z2Z+3aCy+8cL5169S//z1j5kyMbw3CjXv79oudOzsHlZeU3Pzkk/Nt2qB/TmyscUybC7o2fPj1997DUBmtTpRevXp14ECsc8G+fejEX/y2pUvdu7tu35bxwciimTOxLRiE7cVWyxZBucuVs3Klyp9bU6e686y6HhZ05Y03jLm98krxmTPSs/jcuYsvvXTnhx+ksxGKeDgDt9LevXvjTvav//qv9T6cUe7e917Jgn9WgYx7cx4u3fza/cNf3N81snhRE+mJEVz73sPI1kQeEs549dXXRowYhdSnT390Dho0ODPTuDX+9tv5NWvWosSA32lpyJO+77474u5d7S5RRcXFxT/9FLd/f4JejCZqtCScsXjxYhSFUR7dtWtX+/btu3XrdufOHZT18Bf9ASOg8H306FHplCsSOjEtyvr79u3DtHFxcS1atHjppZcyMjJk5g3VpctXevTs92iT5n9q2uJfH2/VqfNrp06n6INaPtWu40s9mz3xt7nzvlbhiQsXLnV44ZXn2nT8e4fOzf/63E9x26RYWlRU9OmULzEyJsGEr/d6K/3adZlEoNrf5ZVeWJyeho8ch2p/YWHhW4NGOPtjKqxJ5669sLj/jOmGmX+7dKUzUJKdnYPJ1dpiNbAymBwz0eeJhBXAamAOH0+e5uxvzc6kNgfLbfpvLSd98gX6yKDde37Vp0U6fCQJ/ZEPcT9vx2ogZ5DwY1f8Pj9l9rDC/HFUozI5b968nj17rl27dvTo0ei0NdPIy8vDvRh1Nr26iPMC5wimwuljFsYGor6ampoqQ4XL5UJNEifIL7/8ggk3b96MmWOJsl0yW5xrR44cwbmD/g8//PB2FMvMFZMgyPfff49BmBwz+eKLL/Tdh3Fyc3PNc9GyZ8+eRx99FEvB0FBWjwRq/riCIYeR4aqujmzv3LmzZCCuZhMnTmzatGlKinWOK0HyuYb7V+BQRCEQf619nJ2NnS7Hj1y3N27caA3IzpYrNgZhBbAaWBmsEpaOdRgyZIizDCkxi759+16/fh2TJycnjxgxAmuVmJioH11YPRz8cgxDQUEBpq39K38o9V5kzLy1Rsjgy+/LXp/g/u7nsuEz3eiMTzRy7G5BxZsfu18a5dp/ojwj2xjz6f6uLb9alf/dSUY4A3+z7lRIuptvzBAwOWYyboH7elb5pr1l7d5xffptmcu+ryrW7DBm+OnSMoyGRWBB70zzBkRQ7ceEmFwtevlPVuxALREpNa28xzj3sC/d6kmZ7NyKV8dZq405Y/5YT9kiHTbkqX7eoAMcPVPe9X03FoqVDx7OsE2LtcW262u17VD5s2+51u4skw3BDL/ZZGxIkNwIUSi7Vdl5I/XR9VP+75Xj/8t3HzjDGeUV5f84+AOGLj5/OK3w7uijP/2/l7/32aldGHS/zN13/xpMNefM/kv52f32r/0/vhuz/sopmfCNfatab12YXVL0wo4lL+78FiPn3S9Gn5d2LVXRkFpTlJR0uWfPCzExqIr7DWeg4p2KO9GyZa7MzLsbNhg19mnTUIfHoPy9e42pJk68f/Nm7k8/YSZqUEFCwsWXXy7+7bfcLVsude1aeu0aeqLaf6lbt9L0dGO+dcEIPaxYgc3Bup33hDPKS0pct2+rhG25Nnz4ld693Z56H6bCdmFLsfkYmoHfHTpg22UoNkrlT8Gvv17s1OnGhAmSCbc++wyzcuflXf/gg+vjxqGnBHRujB8vI9QcrpxX0428Fdk5d5CsjooKDJKrd70S8XAGbqsoWuFuhPtNPQ9nlGUlyzMmEra4v3O48QaN22ddiXPL868Vz5cHT4w2GhitPOu0NZmHhDOWLFkquxml808++Qx99uwxjk5seG5uXklJyf37rrNnz73xxpuDBw9NT0/X/8cl4zhbbaBwgJ4yudXLt4kH+stQ1dNZniBq2KRYrP6pCyihPvLII0lJRj1TwQgYDSNb3Z6iPIrsKLhbvSoqzp49i9FmzJhRD6/a4YLK+aDBo0aOHn/8xOl+A4Zeu35j3PhP3uz7zt3c3Pv37+P3W4NGSOOvAwePtHiy7b59B/AbQzHOjFkLSktLcfFZtfqHtn9/OS3NuPN9v3Itfp/7zagFYUJM/tmUGUGuRVlZ2a++1v+rRcY1UyId69ZvsoZ5YCkfjP141HsTsLYYbe++hFZ/63A62fqPhED/+QuX9Hx9QGaW8X+PM2d/a932xe07dstQRaIb4yd8innK72nT51jD/Pkpblurp9tLfCc19SI2DRsog7CezvAHYNuffvb5tes2Imdg6bLYlzq/nmFGtCMHB3BMTAxqqrjp4CaLSiP6DBo0aO7cudYYZhahzonK4fPPP6+HMzZs2ICely9flk7cqV999dXVq1dLp0At8Y033vjB828f7NCxY8cOGDBAgjuoPXbq1Onw4cMyND8/v1evXlgZLPHmzZvt2rWbMmWKOgawONvZZyOhE9TAsQnoDGX1CFB4+Mc//jF9+vS0tDTsXxXOOHTo0IMPPogroXRKU4jvvvtOOpUg+RyW/Yur7l/+8pcLFy5Y3RocrlhDrKfV7YH54/Lbpk0bHH7SZ9euXQ8//LAtSAcSztCLl1lZWVixmTNnSqfAhA888IA+eZ1c+UOp997OrejynnvcAneB52GT7NyKf0x1T//eKBke/6286wfuX09Yq5dXWNF7ojGyrC9q8n8f4jp3xb7yxaUVQ75wv/mx+64RxjEsWG/U4VMu+YxZUFTRd5Jbb1Wx/4QRBJG4Q2pauTQGkUGY57iF7pGzjPW02fKrESzAtFZ3RcXPCcZ8dhy2+sj62JpvXM8sx4Z3H+t+7m1vC4u3p7g/XVp26Xr5S6ODhTOc09rcdxltQzACsvdaZnmnka6PF7tV/AIb5cyN0IWyW0Xe/eK//Ty/3/61KXdv/Y+1nzjDGSdybvy32AlfJlvV2iLX/W67V7ywY0luabEMGn30J2mRcbf03l+3zH46bh7miU7MSuaGv+iJ8Sef2PHPayf/llvb7UxRu04fOhT189IrVy517+4MZ7iys6+88UbG9OlGzAnKy7MWLEh7++37GRnlJSXXRoy4OnCgOzfXHLfi9tdfX4iJKT57Fr8L9u2TBg74IT3vpaRcfOml3J9/lpHrBFYDa5W3dWv+nj0qnGFTdPz4heefv7PWKkJAyYULFzt1yvrqK8mEsoIC5ED6kCHIvbJ799KHDUt7550yT3NU5M+lbt1cmUZ7f+SnZCn+GuMXFmZ/9114Azor1/447+tlx04m43d2zh38RpKIBnriN0YwR6xHIh7OQIkHpTrn/aYecu8Z7fuMySPuU8sqyt3u9P3l94vcl7cXf/0vnqG/L9v7njWZhy2cgRv8okVfo8+hQ0Y5YNmy5fi9desvp0+fxg+V0AdD8/LyFy78ql27DtJzxIhR18ygI2aVlHSsf/+B0h8jrF//gzTH0Jt4yKIxB0woY37wwVi/zTKJGipnOGPHjh2hhDNQkkYpGWVlq9uE83f9+vXLly+vz5esGkI1u+NLPVEzv3Dxcr8BQ1E5z8y6ffhwYkFB4d3c3G49+qravh5r2L3n146dXpXH6AAjY5KbN41/Zp4/f+F08hlVt8HkqoWFX5hhhxdekVAI1uGZ1i9IGwcdquhLl8UmJllN3/1GPXBJ/GHDZhW/CBSqOHDwSKu/dTh+wohEB4qeKBLr+XjyNNkcXIrnL1zSu88gXKvRGWjTcnLuSAZKJzYHG4VNk84Iyc3NfeWVV95//33UynCTddb3IDU19cknn4yNjZ00aZIKZ5SWlo4YMWLs2LHYRvyW/1dXqqSkZNiwYe+8847fV0Ghiti5c2dUcfFbTsmtW7fKIJA+0vLCr1OnTjVt2hS1Yvyu3uo1Tjg+Jd6HPauHM3D1wzVQhTMuX77csmXLNWvWSKeoUj5Xb//OnDkTa3X79u38/HyX7/8PMbJckLFcLN3q64mbyFpJH79BCnAWLyVqU2k4o06u/KHUe+/kVfQYZ4QJ7hZU/u4MVM5RRUfNXDo/X16Gan9GTkVugVGBV9IzyjsOd81Z463nJ18sb/uO0VTB6jZl3anA5DNivT2lD2aL3xgZM8GsysqMhg++/3fzkvYjQ75wF2uvY/p2s/EAy9Wb3m1Bn+eHuS5es/q43BWfflv2ygfu7YfK273jbWFRcM/4K6sRKJzhd1qbxLPlbf5hxWJSLhmjbdzjHU362HIjdKHsVlFeUZ5bWoy/14ty/YYz5pzZ/8iaSal5t93lZVnFBfhrDUCOpR75P74bs/umNyw44fi2/75q4uk7N/H7rQPrm2+eeS43s1Xc3C7xy/feuvg782kUGbNWlZcb9fDyctft237DGSg0XIiJQQ0f47jz8vQ2BaXXrl3q2hW1d6u7oqI4JeXCCy/cNW8KmPDiiy/ib/ayZajAF//2G6r9Nz/5JFytEqrHaB9hXi7kARNnOAMj3Bg//sobb7i0xzxzt25N7dDByASP7KVLL778csmlS0ZMZ/RobzijvDxj+vTLPXvK5Blffnl14MDStLS0wYNvTJhw7+TJS126GA+qhA/DGQE57zf1kOv7fzdf+WmFM+7N/n/K0n8tu3vp3sz/WrL67xXlZa6T3xbPedgYNPf3GNmazEPFFHJz827evLlx46YuXV6ZOXO2/AtLhTNQ9MSY3bv3HDjw7f37E3DfRVl83rwFGDpnzryzZ899/31su3Ydxo37EHf3c+d+w0x69+6LMVEenThxEkbD5JihM5zx/PMvrFu3HmNKUCM2dpW5XkSNgpSkF5sPm8CJEydiYmKGDx9uu+Y4wxno89RTT129aj1r2nhIjR1V9J279ko4wxpgluk/mzIDPbOzc1BH2vfrQVTLJRCw4KslqMmfOp2CH/PmL0aNXdU3dDdvZnTr0VdaXli9fOlNM9B54mTy088+j3nOmvMV/p4/f8HvhMeOnWz5VDuMbHX7k5Z2re3fX976y06r26Q3zUBn+rXr7Z/vMmPmfGwC0tHE42W+ZfOMjMyOnV79cWOc1W1GQ1q3ffHylavSdOXtQSO/+XYF1nbT5p+L/N3XsKAvvpwrrV2sXpGBjIqNjUXFrH///qg0OsMZJSUlo0aNGjhwYGFhISq6KpyBqinOkY8++giD5KUJzzzzjPP/5ApuSRkZGfPnz2/SpMleT5tYgXXAre3atWvjx49Hhfms+Z80nFM4sxYuXKh2Jaq+WIoec9TZmmZUdfUIsGf1cAaufrgGtm/fft++fRcuXOjXr5/zSYpQ8rkm+xfXh7Fjxz700EN/+MMfMBSL+OCDD9S/WxYtWoQ+jz76KAZB7969083/McqGYKiMBlKMHDFihB71AOmvHjaRlXz66adtjUGc4Yw6ufKHUu9Fdn67xXiOo/8nbtTh/YYzMM7d/IorN8vfn+fuMNR1+oIxDmr1o+cYL6d4xny3xVP9XKNmWW++kOr6T55nUkCPUygqkqJCIYdTjKdXJI7w8WL3q+Pck74xnnzB/PF39mrr3Rk6Z9MMWLvTeLoEc5NOTIWlYJVUg4gDp4xww9YD5bKqtpBE8HBG8GkBi1NNM+DitfLnh7lmrTKeOhEb9xjv/vAbBwlFKLvVJlA44419q5r++EWvfavkBRn4O+LIZnlaZNKJHRLpkDHhhyun/vfl72+9dg6/0wrvPrd14X9d+eGzWxeczLnRKm5u719X1/5jJrpA4YyclSsvdu6cMXOmvBvCeL/GxIllZiC1+OzZCzExqOrLmCAzQR0ev8tdrqwFC1Dnv9yjR8Gvv2YvW3b59dfv3zSiOfVBoHCGs2kGGE0qPM/LCEyY2q5dodkUDr8v/Od/3poypeTSpTurVxsPnnz3nXHaI0MyM9Pffffiiy+mDxtWcvFi2uDBGC28AR1c0vmwiX9yvwFb1aJeKV7wBxXLMNKC/1Feml+el35//yTX6eUV5WX394wtnvuIZ+gfrMk8JKagp3HjPjx58pSUklU4A79t786QziFDhmWZL6BCWXnbtu1r1qxFp0y1efMWOXTOnz/fvXvPMWPG5efnO8MZCxYslHrFiRMn0Tl16rQwfkiFqJ6TcIaUicWrr76anJxsu+w6wxnTpk1TFbzG5vr1m6iWP9qkeaun2y9e8p00shCook+ZOrP5X5/r8MIrLZ5su217PHISpn4+65nWL7Rp12nBV0uQWj7VDlV6PaLx89YdL3V+XfoXFwd8NZfeNAMOH078/7VoPfTdD37cGPfeBxP/9fFW63/YbNt3mVm3e74+QIUk/CoqKhr13gRnEEFvmgEXLl7+e4fOGG3Nuh8//2J2039radsKZ2sR1dQCOYM1RA4sXPTt9yvX4od6zkVcvZrep987z7Xp2G/AUNvbQyIEGXXy5EnU6FBpBPyQVyHK0O3btzdr1uzUKeMRaz2cITVGnCkTJ05EnfbmzZuo0KKyGujlFJgWIz/88MOzZ88u9H0nq9ziMfSPf/zjunXr5LlI5OeECRNwuv3666/4fezYMdSrMU6gcIbeNAOqunoEkmkqnIFj4Pjx45KN0Lx5882bN9vaR4SSzzXZvxgUFxc3c+ZMFGBwesorNkaNGiUzSUhImD59emJiIgYdPXoUc+hmvvDowoULf/nLX/RZBSpGqnVTsJmbNm2S+SvOcEadXPlDrPfi3E08U953shGbQMIPdOqXw0LPey6fGeha8XOZtINwuSs27C77fHnZmcvlBfesV0K8O8NoJbHvePlT/XwiI4ECBAvWG8GI73424hQX0stfn2AsRUbDX/zu8p47+aIxf/3dGYrfphkgz3f0nui+erMcg5ZsMpaiwhky1ftzjTBKVcMZlU4LetMMQEaNmW8EU3YeKXeXVRxONl4Rgk2rD+EM9Hlg6aj/uf6zQ1lXc0uL9XdnvLFvFSbBhDIm/HDlFEbGX6vbVF5Rjqn+1w9TL+XXxrGNarYRkvAkPXgRKJwhk1zs1Kng11/L7t27++OP6t0ZBQkJ59u00SMCgWZSdPw45pDv27oq0mRl1Maqp2CE33CG36YZcOuzzzArzNDq9p28rLDQeLNG27ayoGsjR5ampcloXuXlWV99Va8COnWI4Qwvn3DG/H8uWdMBB8v9Q9NcR2aUF98py71cvPB/ekcIEM5YtGhxbm4eEooCo0e/jz7y7owg4Qx5/MQZfcDN+IsvvsSgEydOSh/MdvjwUZgWc3CGM9RzLoFmSNSASThDFX9RIEbpXF4IJ32EM5yBPq1bt75x44bV3fikpJx7oWP3Hj37NXvib6jeo/oBc+d9jQr5ps0/Hz9+6sOPPmv1tw6oz0sbh+Z/fU7FBXbv+RWdenMJVOATDhxetjwWkyxe8h1mZQ3QZGRmvdT59UBtNzDJ9C/n2d46IXEKW+DABhPOmvNV27+/nJp60eplknYogeIgWIe16za2erq9vPVDBAlnWN0e589fQH/1Wg2QB3B+2bYLWfrWoBHZ2bX03J/cZ2fNmtW7d28c+dKA4vr1623atJk9e7ZktTOcoVpDwLVr15555hlne36lrKwM505MTEz//v31Nw4I1JMPHjyImvBHH30kdeb8/Pxx48bJ//yxSlOnTn3qqads1V2B+x2quFKVlT7VWD2STFPhDFz9mjRpIh8cwb6Li4tDp+3lI6Hnc032r27JkiW2i7CiXpAha6W/5kMOb+dTTrbiJc7xzebbatUxL5zhjDq58lep3isxi8+/K0N1HZV/9eIJBRX4vceM91mMne9tT6FTL8iQer4+BwkQqKdUlOLSihmxxmdEUL3H31GzjRYZKpzxtwHeZhdY4shZ7h7j3He0K8GaHUYrjAOn7KsKyReNl3pitkgvjnRN+sZqnYG9NG9t2X++60pNN6aqUjgjlGmxRe/OMLYiWwtx5xaYn1kxXx2KvMXKPD+svoQz/vfl729Jt94PVVrmfmHHkn/ZMC2zuGCS+S6MtEJvO8ofrpz635aN3pTm83Lf+JsX/lvshLWXT666dPzfNk5Hwgjyuo1IKCsqQp1cJXe+8TymQGeQcIa3tQKq5fPmyXMW0jojPz7eGuSZCSr/VrfJnZt7deBAVPhLLl68Nnr05Z49by9eXBtfNikrc+XkqI11ZWfrzSL8hjNQGkjt0MH5zRGjdYbndRjCmLxNm4KEBGzI9ffew1bfO30amXM/IyNt8GAjIKKNDFZAZ8+e/F27rvbti4RpjVOiUWI4w8v7sMncfyrd0NWdEltRXlbyzb8Vz/7v93cOMw6pXSMklhHkYRMVUwBpJfHFF1+ioMZwBlFE2cIZgNK5esxbwQi2kjQKuFKAtrpNqBifOHHi6NGj8qqahg1V9H4Dhubk3EGtXmrsUpnfuXOPjIAagryPs6SkdNr0OeoVEoC6+kudX/f7Eoqf4rbJ0xlWtwaVf71phtPhI0ktnmx75ozRhhawAjNmLejctdely1ekjxNqa1j/59p0PJrofRhV7Nt3AHNTIRgn2d7de7xfs3NuF4b63RwJ8ai3bOjksRf9iZWIkvssjuTCwsI+ffqg4ocfOP6bNWu2bt26PSb5x/uWLVuuXr0qL9348MMP1YM2GL9v376qMhyI37fSKIsWLbK14S8oKEDtFDvx3LlzzZs39/vAiFS8N23yZni1V68xs4Uz8EOPU+AQHTt2LHIVeSt9oKr5XL39q3NGFhR1GZe1kneOyiB5d4bteg7O4iUmmTFjRkxMjNpwcC4Uv2v/yl+leq+EM3YnlcsbOv8x1X3PX31tzhqfl1DoMC2q6/grj1cs/tFbXZd3Z3wX578Cj0Vn3TH+ZmRXdBppjfb58rIXR7pu3PYuaOF641UdGFPI50ukPYhfOMQwDhJ+YGW6vGc8/SExiKHTjTdfIH272QiIjFtgfJtWzSdQOCOUaQ+cMp6XWbPDz5bmFxpzLik1cqPdYBemsgZUUZV2qwgUznjrwPrfr5l8Od8bBB+T9LM0yphzZv//9f34g5neU2/C8W3/deWHSdneO+mte/lNf/yi7/41ibfT//uqiXPP7p96Kv5hz/s1almgcMbdDRsuPP/8PbPBoMjbsUNaOpRcunTx5Zezly61BlRY787I0YOk5eUZM2eiel969eq1ESOujx1bdOzYxc6d5f0adcgZzpDAxJU333Q53mZoZMILL2DrrG6cPkuXXnzxxeLz5yWmoz+cUnT8eGqHDvoGYoaY7a1p04p/+w05hkE5sbESErLGaGQYzvAq2/ue9SrQOf/kOjq77O7FijJ3Wfqv7pSV5XnpRmhjTXv1cZNKXwUKe/bsRZ9Kwxm3bmW89dYgJPxAZ3Fx8bx5Cz788KMbN26sWbMWU61fv0HmeebM2RdffPnjjyej9MBwBpHOGc6Ql8nZCuXOcIZEPaTuZ/Xy/E+7YX/Z5NLlK7PmfIW/Es64c+fuiZPJzf/6XGLSCSRbmwsVxUDlXH8VqAoEFN27992K1fr3ROR7KCokofhtmrE/4dDSZbFqF+ixg0BtLnSY1fofNmNxWKjVy8Nv04wzZ39buOhb1foDK9nq6fbqhaMgERwkmQrr8NmUGW8NGoE1vJub+823K9TI6IP+M2YZry7buWuvvhUSE1m2PFY6I0S+PREXF6fCGfIDhzTuDqimttc89thjDz30EI7tTZs2IdM++eQTvborr4q0/Vs+KSkJE6pvW8COHTse9HyNAvNBtVN/TwGqu/IZC9Q/+/Tpg07Z0fi7ePFi1EhvOlrGOptmQIirRzo9nIEMnDhxoh68kHCGrZ4fPJ9rvn+xdByNs2bNktFAXYSx37GG48aNUyVDFWKQtdLnduTIkT/+8Y+2N3eC3+Il1gr5gNywuv2FM7C9tX/lD6XeK98u2bC7TIUz5IeEM1At7zHOrX+7ZM4a62smd/Ks1hxq3VG9lxYQMoe+k9wF1semjW95tPmH68R5n80suGc0uBi30BuP2PJrWdt3rNHkU6+qdQbGGfKFT+uMIE0zMG2X99yHk61B8oTImPnGt0UOnjae9VDphXeNt360G+wa8Km3PUWgcEal02IlnU0zbmUb4SHkm2QU/s5bW9ZppOtapp81D0Uou9UmUDhj/ZVT/+W7D1TrjCLX/f/45StpnXE4K+3/Xjn+g0QrPi6D/rpl9t1S68iXL7k2/fGLW/fyf7hyCiNjEqT/uvJDWwuO2hEonGGvrpuvupSquPFVlCFD0t5+W16lARjNFvvI37sXkxcePizzz/7uO5nK1oKj9jnDGYGaZoBkwu2vv5ZO+aSLbLj+9lMh4QwV0yk3P/IqURIsTiJBSBdffNFooNEoMZzhVZZ12vuh1jn/VLr5Dfe5dWXXDrhTNyHd3zbo3tzfSSwDo5Vl2d9FJzGFESNGrVix8vvvYydP/vT5519o164D+uO+qIczbt++PXjw0JiYTvPmLUhOTkEJY+XKVTLt3r375s9fiKk+//yL4uLia9euDRz49osvvowRdu2K799/IAbt2bMXM2Q4g0gn4Qz1KlCcO59//jlKxrbirzOcAXv37kVBuXfv3uiPaVFu7tixY+vWrWv5LXG1TMIKw4aPOXToaL8BQ8+eO4/fr/d6C5VweU/n+AmfouqOq8rx46fa/v1lCUDcvJnR8aWeUz+fVXTvHoaOHD0eM8GscB1DlR6jYWSMhj6Ym7zDorS0FJX/8+etGpHfphnHT5xu8WTbFSvXYuRr12+od2RIm4u/d+isPwki5JmO9GvXsTh5WSn+yjVQ57dpBpaOddC3wrmqu/f8igm379iNTdu7LwG/f95qvIYZ42DduvXoe+VKGgatXrtBzf/AwSPN//qcbEVxccl3K1Y7Fx12eXl5OHTbt2+/Z8+evn37bt68ef78+Tjy/X7QFBVdvZonn6VElRIzsb00AQf//v378/PzMzMzO3XqhDowzg6Xy4W/+K1CD3LeYULUA+/fvy8PI8ibEZA5U6ZMQeehQ4eQIVu2bGnSpElsbCz2EUoCqKwOHz5cnlhxNs0QQVaP/MKe1VtnyLMb06dPRwZiF+hPYWAHYb/ISz2D5HP19i8mVMcPRvviiy8wk+3bt2M0jKzmgNFwlGKq77//HocElqgfWvIuFVmrS5cu6YN0UrzEkY81xOZnZWVhTbC4CRMmYNHWSAGahNT+lT+Ueq9U9VE5337IeH3Gup1lM2K9b6mQ9giorqfdKi+9bz1sIg0i5AMfGLrl17IS830ZahCgJ2aCenvhvYqEkz6DLl4rjz9anmvWH7/dbLzVYv0u7xwmfWM9yVJQVIHldnnPffaKER+xvTsj29E0Az8wh1OpxvFw87YRo8Hk1zLLsYHjFnjfYGrj94ERPZyBzTySUo6EHzbOaf02zcCEHy82VgCrh83ExmKcb7d4w0BVFcputdHDGcezrzffPPPDY7+UV5TfLb3XKm7u/1z/WeLt9Lz7Pu/OKC1zv7Rr6X+LnbApLSX/fsn7iXEYNPuMt1Hh+iunMDTe/PTJbvORE/zdfv3871Z/fDjL8eaFyNPDGWVFRTc/+eTaqFFuFCpcLvw23p1hPlihvzsDY+b+/HNq27ZZX32FSQoPHsRo1997D6OZszRehHnljTfk+6bu/PyrAwdmLVjgvnv3av/+2Y5PUNcyWzjD2TTDlgk3xo+XTED/24sWYasl8CEfbUXWoYhT7naXpqenDR5shHsuWv/Ryd+7FxMWmV9FkUdO8LcoMfFSly7F2rs8GhWGM3Tlrn3vlSz4ZyNmMfeRkvUvlqz9z7JbScXz//ne7P9ePM96CShGcO97DyNbE3lITEGldu06jBgxev/+BLmh6uEM3Oz37t336quvoQ/6ow/u6+vWre/S5RWZ8PPPv8j0/NsQN/j33vtA5vnGG2/u2bNXZshwBpFOit0osIoHH3zw+eef37lzp2pBLfyGM+DEiROdO3dW06JwLC/Yb9iSk8++3uutR5s0l4Tf6mmO1NSLalDTf2u54Ksl6r2emKpHz34yCD9Uo4mCgsLPpszAyOj/p6Yt3hky+vp14z+r0kgB1X78lmgI6vlysVLQGffzjqeffV6mHTZ8DKZCf2n9IctSST7CiuVi/AMHj8hXV23jyIdU8/ML3h40cvKn0/WKjUhMOvGfMd1kZLXh+qpiktVrNjT/63MYAX+XLotVM8FoWEOsJwZhHbDmsjk42H6K2yZbgYT5+42whB2OVRyx8goDaNasGWqJ8nYDG1s4A+t24MCBFi1ayIQYdPToURmEmmq7du1QOcRvzB9VPhkHS0Hl9tatWzIa4NxBJVCGPvTQQ6hGohIrg2zvVli0aJGsFSqoPXr0eO6559LS0nD7czbNEEFWj/yyhTOQgfHx8SoDJZYhxTB516a8nCJ4Pldj/4J+/BQWFk6cOBHTOueA8TEVpsUg26FlW3kcgX6vyVK8lHFE8+bNsZl6mwvwG86AWr7yh1jvvXzDfA+o+WYHpLbvGFED9XaMo2e8L6F4qr9rzHy3RCKgoMiIFKg3X+iDMPnSLWWt3zYHaR89AdTtO410ZZhXhWLfd2dgbqpBB1zPLO832Vo0ZrVwvXetnE0zzl0p//sQ7xMu+rszXng34JMdlYYzbudWdHnPjRVzXllt02JbnE0zhO3dGX4/0RK6EHerTg9n7Lhx/r9898ELO5bccxuPOF3Mz/73n+Y8sHQU0v+5YsyYpJ/VB0puFOXF7Fzyvy0bLYM+OblTDbqUn/2/fpg6+uhP8pqMItf9nntX/n9WjEXqu39NnXziRA9noAJ/pU8f1LdLrxi3WndeHirz59u0Qf3//H/8x60pU1RzDNTzc1asSO3QwRjUps31MWPUSzSNVglTplwdOBBzkz65cXEXXnjh4osvXnnzzTp/I6YtnOFsmmHLBGwXtk4ywWh8sWKFBHRsg5CuvPFGkefpTmzm5ddfl4AOOstLSm5+8smF559HUiGhRqiWwhlRw3XPvalL6UKzjcbcR4xkfpnVk36PQRih/H4YgjIo+BYUFOh1LZSVUfj2G/FBTwyyVcyIKLxKS0tRp/JbD2zAUlLOvdH7bXnYzeb+/ft3c3P9XnlQW7BVGARGxiT6k+epqRfb/v3l4F9XFc5pgzhw8Ej757vU5NMhqC/l5eXfu+cN+zpXFauEcfzmACbEIMzE6tYEypyIys3NRWVsx44dftc2CGwCpgW1LTgRRpjwQ/oAfqO2rPfR4SYV6NyR06qqa6U4V4+qCoUN2y5ISkp67LHH9BegBM/nKu1f9HEeP5g20BwwLQb5PbRkrfyWi8JINqEWrvxVqvfeza/oO9n906/+T53Ce0bF3m8lHD1Rgfc7CLPCoBItp/F72JduJL1nkDlAkEXrDp4ub/22C3+tblN+oZFqQt4DsnZnNa8nOmwyNrO6VyavKu3WEOXdL75ZlOc3DHHPff/WvXx3eeXrfaf0HpLVUf+gKu66fVu1vPBhvnTT/yBfxkxycsKwF+tIkPUvxyUpO7usSAsoBoDao/4S1kaI4QwH172yX9+Xp07MN4MaSX4Yz5jsex8jWGMSEUU/t9sdqMYeFgcOHuna/c0c7bvlYbF67QZpgmF1h0OEVrV2YD+eOHHitvbht2pDBfKVV17R30RDDczmzZuff/75sBwtTjx+AqlSvVeeqsiI8JeR7uRV9BjntrWGCIu1O8teHu0K+/ofPF3+/FDrC6/1RJV2KxGFHcMZ/pSXl99OLtv3vnvlk8Xz/1Cy4H/gBzrRE4OscYiIKATp166f+y017P9aP3/+wtWrYW4WHqFVjTqZmZnz589v2O+OaeR++eWX9evXq+enwovHTyCqxivJ6lunbt4unxFb5vfDKDW0cW/Zyl/KnG+4qKEDp8oXrjfeAFJ/1MPdStSoMJxBRERERBRZrPc2SNytRHWL4QwiIiIioshivbdB4m4lqlsMZxARERERRRbrvQ0SdytR3WI4g4iIiIgosljvbZC4W4nqFsMZRERERESRxXpvg8TdSlS3GM4gIiIiIoos1nsbJO5WorrFcAYRERERUWSx3tsgcbcS1S2GM4iIiIiIIov13gaJu5WobjGcQUREREQUWaz3NkjcrUR1i+EMIiIiIqLIYr23QeJuJapbDGcQEREREUWWrd7L1CCTtbOJqLYwnEFEREREFFm2ei9Tg0zWziai2sJwBhERERFRZNnqvUwNMlk7m4hqSzjDGWk3spiYmJiYmJiYmJiYbMlW72VqkMm205mYGlWyggK1i60ziIiIiIgiy1bv/f+3dyZAVVzrvk/VffVO1XnlS93kPOsm752XqrybeLw5Jsdz4nGKiQYMRpxAHHAMBoKiogjGKQYVRZxwVkIUQUElDnFAjCiiKAqKODApg4wybmCzYcOGPfD+vb+maXtviMlxAP1+1dXVa169uvfq/v57rdW8vZSbeLEZhnlesJzBMAzDMAzDMAzDMEwXg+UMhmEYhmEYhmEYhmG6GCxnMAzDMAzDMAzDMAzTxWA5g2EYhmEYhmEYhmGYLgbLGQzDMAzDMAzDMAzDdDFYzmAYhmEYhmEYhmEYpovBcgbDMAzDMAzDMAzDMF0MljMYhmEYhmEYhmEYhulisJzBMAzDMAzDMAzDMEwXg+UMhmEYhmEYhmEYhmG6GCxnMAzDMAzDMAzDMAzTxWA5g2EYhmEYhmEYhmGYLgbLGQzDMAzDMAzDMAzDdDFYzmAYhmEYhmEYhmEYpovBcoZ1DAaDrllf36irVteq1LU4gNNgNIrBDMMwDNOl0Ov1arXayA8yhnlZ0DW11GhaTCbRyTAM8wrCcoYSo8nUpNdrtFpVjbqyugbbtaQbOMamqdc26/X82GAY5mWiqakp5fa9urp60c28pNy/f3/ixIkqlUp0MwzTxbmYbPrG31DfIDoZhmFeQZ6HnFFaWurt7f3GG2+89tprNjY2CQkJps4qCaBiWp2uRlNH+gW2i5cujxg5qqSsvLK6Bk4EIYLV+p87FzNgwCDFtnbtusbGRqPRqNHUYTMYDPLI0dFnyckwzL8ITLWPPvoInYycVatWNTQ0uLu7i+7HQSgSXr16FcfYUz4E5RYeHi66X17QmxUWFjtPdk1MSm5ubhZ9W6mvr695/P98HFdWqjLvZyFI9GoF/VtJSVlObl5DQ6Po9TgoC7khLfbyXhTlVlfXyDeqCeLU1mrk/nBa7X4JlIs4itKR5M7dVFRM6n4JOpHU1AxFZSQQH0Hy0i3Pi2quaIoOmuhFUVVVtWzZsnfeeQe3OvY+Pj54LothLS2FhYXTpk2z/BUoyMvLGzhwIH4X+HWIXq2gAbds2SL9piQyMzMdHBzg361bNxcXFxQkBshA3ZYuXUpvCIh8+/ZtMcCcbWxs7KBBgxCECDNnzpRXmyGsXr4Orml7F4tQtDle3uRtLr9Yffv2PXbsmNQ53L1797333oO/BDpedL8USsAZGBiI5FLR+JUtWbJETNCKVOegoCDRqxXLPtlqD29nZ6dSqRBZdD8OhVrt5OGPUKst09l4+Mjkutow4Gt9Pxf9YHe93x6juk4MQn8WnWAaPk8IQgR3f0NxeVsXp21sCQg1wv+73Y91iQoam1rmbTIgh70n2/p/pF0XZhzkJha65ZAR0YjCMtOI+YK/tI320VdUi6ESiB9yymjjIURAPsgNeUpkF5pcVhkGzBBCxy8x3EgXqo1MkJWUrbRdTJY9RPQtoafbsl21x9Bea+CkfkdrPF00zbpvEo78276FE+IOiF4yHmlrR18IQehrId5vRizfmHrJYBIvgVbfvDj5zP88sAxBf9y/2CvpJHwoKKOm7P2jAfD/34dXXa/IJ88blYV/Ovj9lvR4cj4/jMaa48dzHBweDB6cNXRoia+vobZWDJKDR/y5c1K0ssBAo1YrBiEPrbZs48YHn39esnIl+Zh0uhI/vwdDhiByVUSEcGnN0Yrmzy9euBChFO350JiZme/mhspgy5s+vTEtTQwARmN1ZGT28OFWz0ui+dEjVBsniGi5Tk518fF0RkA498BApBVysLOr2LlTOrum/Py8KVMoSWN6OnmiMjmjR1cfPUrOV5BnLmfU1tbimWpvb5+RkVFWVoaHRK9evfDYE4M7Gbqm5upaDQkZldU1BcWP/NcGDB7y+XJfX8kfB7qm1v5bBikUEydO8vLylragoGCdTqdW186f7z1lyvT8/AJ5ZJYzGOZpQe+mwcHBeB+VqKurw9u5Wq0m59mzZ/Euiz05EYqEeHWGp+Kl/xWRM1Sqqjme3777Xu/3e/b54MP+Az8dFnsxHi2GoMZG3c7de3r+ta+j01RY7BS/vKJyuotH3wG2X9qPQ/zgPWGSRpCdnWs33OmzISOG2jn0/viz01G/UD4SWq12tf/GXn/7BGmR7Uq/9fChoItx8aiDfEtMSoZ/fX39N7O85P7zFyxtTyuB/8JFvojz05ET5IO67Q0JR1moEuo8wXlG7sM8CqITRz1HOUzCfvHSlVJlJNLTM/v0s5GXLuVMIP9t23+A/7oNW0WvDpvoRUFP4S+++OLHH390dHSMjo7GsYODQ0VFhV6vP3jwYI8ePQYMGGD5K5CDmLBjEceqnIFnes+ePREqtwNJ/vDx8cnPz8cLAF4DqFAx2Axs0Tlz5sAwTkhIQDRExnFWVhaFnjt3rnv37hs2bMDLA+WAE8HpUChj9fL96jW1erEkEP+9996Tt/lXX31Fwpx0IyUlJeE6orPF1cE1kifEnnpXgI5X3gncvn17xIgRuH/eeecdqWgSI7y9vZGhmEylamp9xUI0Z2fngoICMUClUugjgHJwcXEpLi4WI6lU1dXVRqMRQeTMzs62sbHBDUxOCu3SckZBqWmEl37ycsPWw0bY/4fOGW099B7rxGEap+KNA7/Wrw4xFleY7maZHBcapq8w1JjN+xvpprHfGhAZNn/HBjwyIVlBkjOa9S3fbhPSnrhkrKhuiTwv6BrbI410kdNyTQg6HCME0aZSw6wzp2wFMUkN+fGEsUzVgnyQZPVeo95ckaxC05fzhJNCVjlFpvmBBru5+oyHJmSCrKRssYWeNn7iqr92r+3ugs9n7mK2cckmJFy8w0DZxt40IUjeGi4rDXXm/v7JW+Mpcv5R1rtH/F8PX/aHsEWWckZlY/3fTwb+OdLvVGF6QX2Nz43T/y104Z4HSQgytZjgRKqt6VeKtertGVf/uH8xfOCP0CmXDw6O3qXSaYfH7Bl5fm+z0VDb3Aif0RdCmozP+xmkPnMmy8amYvdufXk5rPScMWMeLVtm0uvF4FY0ly6R2NFcUqI+fTrb3r503TqKpk1OfujsDB8hQqucUXf1KrJqvH9ffepU7tixTUVF8KwKD88dN67Jmlb+7EBxqEDB7Nm63FxshZ6eQn1a61B99GiWnZ1q3z6cfs2xYzgF6bwkDGp1vpsbzrEhNRWnj3PMHj5cm5KCIMREc+Hc0Sb6ykrKAY1JYkfpmjVF8+cbamuLFy0qXroUkUnQsdrCvw/02/mFQtsSqqpqbKKjpQVBire7zsAzlzOSk5Pfeuuty5cvkxNPLFtb28DAQHJ2KvQGg6ZemGNCW5W6NjRs/+o1/oOHfP7hRx/dSL5VgStqDkI0yzdUUij27AlRXGbExFPW03P+pElTUlPT6GEsyRkIVQzcIJAJbC21ulb+8CZlBPvmZj0OsCd/csozwaNanq2UGyVBnnRMGUpFkD88yckwXYgnESDwqm35fm/V81WQM9A5rPHf5DzZNS0tc4br3PSM+7uDQuyGOxUUFJWWlk2Z5g77H6GSnAEbY9ny1Qt8ltXV1aNLuXT5Koz2W7fuIKhGrYYNv2nzTsRB53Pw0FGboWOQj7kckdNRv/Qf+MXde8I/GFlZOYhwIDySgn46ckIumkjAB/4KEaE9zkTH9PrbJ+/37CPFv3w5oU8/m8vx18wdYD1qPmu2N8kWO3fvGTHauaj4EY4VlZFITEoeNHh4ds5D0W1Byu17yP+DD/tLckYHTfQCuX79erdu3fAUxl1Nk01u3boFMxVPZ/jAOo2JiYmPj7dq+krExsZ+8MEH48ePt5QzYOu6ubmRpSrZgTj9TZs2OTg4wHQkHypUUQQMYxi3kkmMlzq8Ifj5+SF5c3PzmjVrYIJKTyjUs1evXpmZmeRkrF6+jq+p1Yslx9/fH5dAUp3kbZ6amjpq1KjExEQK0mg0U6dO9fX1xcWCE73lP/7xj+zsbApVgIs4c+bMDRs2FBQUyPUCkg9QKDnlIIm7u7uHh0djo3UFk6BoQLpPLLEqUqChLDv5riJnhEUJIxFSc0zSZJNjF43OywwPCkx4y/P9wbBwa9sMlNPxYmT4uPsbYNjnFptG+3RkwBeXC2b/+CWGz9zb5IyCUtNUX0P4WdGpN7T4bDW4rjbUmQtCTQbM0F9O6cjOKSo3jVqgXxEsCg0g4hdB0UjLFVLtPNJ2DCrVLajA8iCDwnSqqWuZvsIwZ71BGhjSoGuZubatJmDrYSMKKjPPq0Nx0jH4Ha3xFKltbvzkzI4ZVyLTakr/b6SfpZxxqTTn/x3xP1kg/tVfpdP2PhnodDHM1GIqb6z7y7F1dIwg7HEMH/jDiawoN+wHRm1XNzWuuh3zfyJX3Vc/piA/B0w6XZGPT4GHh7F1fKIqJCRnzBiY/eQkhGheXjDpYdiTT+UPP8CGb8zIgH1eOHdu2bp1TXl5uePHt8kZly/DCQsfBxSzIS0tZ/Ro9ZkzFOG5UXPsWPbw4dKIDBzACU8c61WqvClTyjZsIPUB+4qdOwvc3ZvLygRnK/WJiVm2tprYWHLqy8tzx40r27gRx02FhfmurtWHD1OQSa8vXrpUak+0BjUI9oVz5sBTFRb2dAWd8Mjj23/Yd+tOKo5VVdU4xkaKBjxxjAjmiJ2IZy5n4PUOjwdJa+/MckZDo07SMiqra27dvrNi5arVa/yHfP7533r3dhg7tkpdS1NOsDVY2PztyRkFBYXTprkgiDaKQJFDQ8MWLVpC/l5e3o8eCe/WoKys3M9vDflj27hxU22tBv6Uatu2HW5u7ji4ffsODJKYmPMTJ06imDjAqwbyVz8+HkSn061fv5GSwLlvXyiOg4P3UEJbW7uzZ38JDz+IAzgdHZ1SUtqG+zJMl8Dqu6kCvNmznCEBw2amxwKY4tXVNTNc58JuRz9z/fqNqqrq/PzCEyfPoN9GqCQ0pKdnwuzHnpIj9Gby7ZxcYbzDxbj4EaMmouOiIBjziYk3S0raHt5arXbWbO8Vq9ZJAuuOXXumfTWLejaUYnXYBao0aPBwGqnRMShrtMPk3UEhkvyBItYGbJ47b5G21chBzZHb7TupOl2T98LlUonY41g+woJoT2QhNJo691kL/NcGzvH8VkrbQRO9QOhPhejoaNzVirUz9Ho92YpWfwUSeHA7ODgEBASEhobid4F8xAAzhw4d6tevH4xnuR2oVqudnJyCgoJwDDuzPVMTEQYPHiw9+3DVYB4jIZKTj5xjx451YDC/gli9fB1fU6sXSw5ez+RyRgdtXl1djbtCUiKQEHlWVlZqNBrUgTwlcGXRCWCv0Avy8/MHDBiAnhY/FhouJ0G3EGIiN+SJtGLA4+DWegXljMjzwmCExLQ2OaMDIn4xDp2jz8wTmhAGP/YV5ukb7RnwekPL6r1Gp0WGc9eFARfyySZyGpta5qw3zFxraDC/DqNKJEZo6oUFSq1CIzh+jmvLkHyQFseoz6TvxFEkBHwmLDVUPz4e61S8ML7jyu22+wHFeW5skzNwgv77jI4LDZXmXiQgtE3aAL+1NZ4uphaTuqkR+2Kt2qqcoaBEW/v+0YAplw/i2GAyljZoqpvEi62QM75JONL7ZGCmurx/1DbH2NBLpTn/cWjF/pxff3o+fUwmQ00NNqFxzViVM5qKinLHjoWpL7pxR0migMkkmO4mk76yUi5n4MUiZ+RI7FX79sGAb7x/v9DTs8TP72mNSnhyjFqtXqWSypXLGahetr29MM4C7VBb217dTDodzk6aQiKXMxSQ7oMzNZq7OMTJd3NrKigomD370fLlDXfu5Do61rb+JfBUYDnj1zlx4sR777138+ZN0d2Z0GgbSK3AvlxVtTFw88pVfq7ffNPjL3/54IMPen34YUhYmCR2ILKYrBXSGnbt2q1W10qbTqfDI/z69UQ3N/fx450RJzf3ITpRijxs2PD9+8MTExOXLFkGJykdsDH8/NY4OjpFRZ0pL6+IiBBUhqCgH2AGUCo4d+zYhVR4BUxMTILT13dlTk5OenqGl5c3SsHxk8gZ06a5nD9/ITQ0jFQMZII8t27djmNa8sN8WgzTNWA547eCLmWN/6YRo50vxF7+aoaH1WEIcjkj+ux5HMNW3xNyYPPW3Rfj4hsbxSfxzt175i9YevdeGg627whOTEom2UKirKx8xKiJx3+OEt0tLQnXkgbbjHyYl9/c3Lx0mZ/7rAU/7t2PbE+cPCMJELfvpA78dBjyhD/2Dx5kWzVpUNaGjds95y8uKn4kyRnwXLFqnVwlQc379LOhOhwIj/zSfhxKx3Hm/ayhdg5nomPMsdpAiROcZwT/GIrSIw4ekesaqEbkTz+Pm+CSl1cgl0I6aKIXCJ4pHh4ePXr08PT0dHR0lMsZElZ/BQROdsuWLfb29qWlpfhFKOQMmlFy4MAB2LFyOxAGMMxgmLiweJEzwIE0i0QC8adOnQpjVXSb/+SHfQsrV3S3/ikSGxvbt2/fgIAAS1OZsXr5LD3bu1hycOEQx8vLCwdW2xz3g1qtLioqWrZsGUIzMjLgiZ/bkiVL3njjjT//+c8otFu3bosWLaqqqqIkchR6Aa248e677yIJEvbp0weF0s8cbziDBw9GhrRUB27ggwcPWl79V1POKK4wOS0yfDFHP3eDoT05A0Y+DPXoBGHmxcofDa3DeQU6NuAT7pqGzNQjIWkNlnKGpl6owKYIQVKJSRT75K2Hhckpn34jLmwxfYXh4SNld51TZBrmqd98UJyfAn6OMyIyFREQahw+T59fIobVaFqmfm9APVFbCcuhGcTFZKHOOE0UEX5WqNjeU2IpmXnCHBbPjQYc/I7WeEZ0LGeYWkwVjXUZNWVjLux7M2J5QrkVTfxO1aPuB31nXjuKyHAW1Nd8Fr3r38O/+zR6J4L6R22bFn/o+U8zsURfVZU3fbrl2haNGRnCfIroaNGNmGbxQm7SK+QMk15fsXNnzpgxDydMqIuPV+3b93Dy5OaSEgp9YZhMZYGBgl6TkwNXVXh4joMDfLLNa2cIa3/4+hof12otofkp9a1j3wiDRoOzK9+2DUGaCxfIU19eXjhvXs7IkYWeniixYPbsUn//pyvooAfmySYdkZqaioff+vXrFW+6nQSSKrBVqWsjjxydNHly/wED/vHxx2+//fabb76J/YcffZT9MI8kD8QRk7VCWoNio9UxFOKCFHnnzl3UFOnpGSNHjiER4d69e7a2dlKQVqtdtWq1m5t7SUkJpdqxYxetk0cixfjxzg8ePBAyFQbu3kCEiIiDTyJnnDkTjTuS8pcyobEk8+Z51dRY/0+SYTon9G6Kt145v/p+D8jTKi+3nAFqatS+K9a+37NPr799snHTjuwcQWwVw8zI5YxDkcf6f2KHLWD9lgPhkUNsR3kvXE7/uK4N2Dxo8HD47Ny9B1vfAbYw5uX9vOU4C2kqh7ahYeEiX6TdFbSXsnWe7FpeUSnESbz59z6D585bdPznKMT54MP+R46etHyOJlxLshk6Ji0tE/WU5AxwOuoXFJGeIdjeMInXb9wmrX+Buu0Ljej98Wdf2o/DHseKp5LRaAzcsotOFoUiWxSRlSW8rAAcDLVzuBgXrxjZ0V4TUegLBI+Ao0eP2tjY4K6GWbh27Vrp73fC6k+DgMHZq1cvmg+ikDNgWy5dupTWs1DYgfR7hI0aHBys0WiysrLsLdbOwPPOw8NDYYhaKibSL9TFxQUGuejLyLB6+RSeHVwsObhVcAlo1VgwceLE9NbV5giSDxCEOD/99BPiwxM/n6ioqMDAQLxI4IY/e/YsLqK3tzeFylEU/ejRI6Q6ceIEXjmKi4t9fHyQLf3jBZ8ffvghLCwMSaqqqjZs2NC9e3fEpIQSUn3kKE7N6vlafWQQVlums1HX0LL5oBHGeT8XPfY4lqZaELDwSVlwWWXILnys2+zAgCe94NttgsHfnpyBhMh24NfCQp5SoShudYgx4a4JPlfvmEZ76ycuNageH2WlN7Qs3iGsVXE+yWQwtiSmCtGQFRVx+4EgSXhvEVIhE+Q2YIZyPVHLoRmEEH+vsGIInfKcDQZJFmlsakH+SEVBk74z3Ml60tZ4dnQsZ9Q2Nw6M2v5aiPcfwhYF3LsorfcpodJpB53Z8f7RgIJ65bu6ybzExn8eXZursaJcP3VUYWGC0d66SdIDYdLpStesyRk1qtFikmDd1asPhgypa12LACjEC2DpI6FNSUG2kpH/7KA6SCdIk1zEMGBezTTLzq6q9XWRGgR1q4uPNzY01Bw/bnXtDDkNd+8ivmUcnDiyyrKxERYTtVxZ3GSq2L27Uwg6nYDnJ2dkZGT07dsX7y71lpekc1ClrpUUjeMnTg753OYfH3/c55//fPvtt//0pz+9/vrrk6dMzcp9KM03EZO1QlpDQMD6lJTb0oZHNYLakzOkmSkkIpCcQUHSkqLz5nk5OjpNmjQlN/ehIhVla2trN2vWbIr8zTczESE4eA9e639VziCphYKkmCxnMF0UejdVLAUKI1YMNtPBS7+0Pihx48YNmHAvvZxBlJaWOU34avLUb0jUkDeaXM7A8fs9+0ijGNLSMvsP/CL67Hky6Xt//FnK7XsUBDsfztvmkYpEB3KG6G7lwYNs+FuuZAF7acPG7aMdJpeVP2aHw9JBzXcHCb2iQs6AWbV46UrUZMnSVROcZ9Aapcd/jkLM4z+f7jvANmRfxL3U9MAtuz76+6CfT3Q0+RaFjpvgssZ/E6qB8124yHfZ8tVoKIWc0V4TkfOFg9+Ivb09fiN9+vQZPXp0mWwqr9WfBqDVHyW7VKE1nDt3ThpuiV+NpZzh6ekpGbQpKSmIfPLkSXISiO/q6ipXfFCE1dkN1dXVvr6+yLPTLiX+AumgZ5M8O7hYEvhpbNmyBY0cjxdxI96f69HmeHOzHFaj1+uvXbuGoO+//95yxATYs2eP/FaRaK9oQr54iujVCirz1VdfWY7CIDlDsRSoYt4KfNqTMxSPDNx4NjY27VWvE3Ix2TRusWH9fuNgd/3MteIKl3Iq1S1LdwoKQnJmW5O2Z8Cj1bdHGr+cp88yyx/tyRnAaGxJzRHW1/ja77HpIRJnrpoGfq2Pvam8juo6YT1RWmR0kJswUGKYp1gESo9LNn0xR9QdnJcJK4DI5QyVumXiUsO8TcqhGXDCc7S3/k6WcOOUqlpcVwsLf5SphDzXhQmzYM4nCUuK1jUIrWFnXmFUTNwp5QyiyWg4np/6ZsTysRfD5OMsapoaPo3e2d6ojdiSbARFPrxzMDflrz9vwHaiII1GcDwLhGkXlZXSZpANtYNxXurvD2PequhAozOkxSMACQela9aI7vblDFpHE/a/LienyMfnobNzZXCwYvTHU8No1FdVSScon2MCcGqCWiEbH0FyRnVk6zuMyVSxfbvlXBsJYfmPUaOEuSRWR3AYjY3p6TjBglmzpEVGCFHQiYtDHfJdXLDVobe36DlfEZ6TnIHXJrw8dWYtA0iTTbBdT7px81bKxsDNff75z+7du/fv3//M2bObt2wpfFSCOB1MNrFcOwP8DjkjKChYLotgq6qqsipnfP21W3z8FXnM+/cfVFVVs5zBvFLQu2nHAsSTvPQTT5LbS0N169oZl+OvweCXiw5yOeOnIye+GOZYWFRMQdqGhrnzFpElj720EAZQqapGO0yWZAVg6XMxLp4mm4juVkggkFbZkIOK9elnI61MAdAT7g4KcRg7NSsrB5VEbqMcJoXtP4SaUCcJkwzndTUhMS0tE6F2w51uJqMvrR47fvrekHCKg/2OXXvGTXCpsbZegwTO8ZtZXniEnYmOGfjpMOSDEktKyjzm+Kz0W4+0KKuDJuoM4K6mtTPS0tJ69ux5uHWlMWD1VwDwE8ATEKZpnBkYtzCJ4ZmRkVFeXj5q1ChnZ+cLFy4g6NSpUzBu3dzcrly5otFoaE2EvXv3ihmZXwNgKCp+U4qVGnAtUIS9vb20gKicR+bZB0giuplWrF4+uWfHF4viA9wbMPs3bdpEPw3QcZsHBQUpZgZJWK0SoCLa0wtIm7DULAikQlrkILrNdJyEsFqo1U6+4+p1QqS1M0g+sLoSJ31CNSC0TZVoz4An/WLuBmHVDGx7TwqzNmD/I1uFgkCcjld+YUSiAykEaOqFOuiaBE3EdvZj1W7WCxJMjUZQTFC0tDYHOBwj1CfhrrI4Kivil7aykjOFr5lEnhc+s4Iz9d/XNr3lyVvjmfKEa2eABUmn/tdB33vV4j/wTUbDtPhD7WkZpQ2ansfXu1w5fLOyEKm2ZVxZeze2uyz588NkgmEvnyWhAOY9jHxVSIjobhFXoJCGOQDrcoZ5ckfelClN+flFXl7FS5Zob93KcXCgpSueJ6REKOZ6CKuEDhvWIJPda2NilGM6WmkuKXk4eXK7WkYr6ujoLFtb+VQUmsJTum5d4/37aEYUWhUR0YFo8tLzPOQM0jLGjRsn/y+oE9KgE5cCrayuqVLXBv0QvP9AeFLyrfCDhw5EHPxn374X4i5Jekejxbdan5ackZqaZmuL94lA+o8U7/RZWVnl5RU4UKRChI0bN9nbj0ISIdMW4ZvwiIyHOpXo5DTh/n1hCgleFufM8WQ5g3mJYTnjt1JWXrEraC+Z5SRnwA6HNS5f4UIuZyBm/4FfSGoCiQL7QiNwjCTypUBpLMbFuLZv3aOzWrRkBTapW1vjv4nUgRq1+se9+5E5xYQP/DdtFpYHu3L1esi+CEkEt1RASPuQPqQqbfBE0LmYi+ERP+GAIp8/H0eVRA7IRz5oQiFDgMZG3cFDR5EDOVHhFavWeS9crtMJy6MqisNGrdRBE71A9u3bN3HiRNickpxBt/eTyBnbtm37Qkbv3r27des2aNAg+Ofm4j1zvBjwxRdDhgx54403evToAU8EkZEpH52RlJT01ltvKUZnoMTu3bvDxiYnrS65fPlyNDiOXV1dN2/erDCtrX4F4xXH6uWTe3Z8sSg+wKuCYrF2eZufOHHCyclJPnAmKCiIhtKo1WpcbvnFQueJewx3GjklFHpBVFSUPM/Kysphw4bR6IyUlBQcSx9SaU+2aM9fzksmZ9C3S2Dnq9RtckbsTVHOgKfrakNAmNKAXxHcZq63Z8BfuyfM/pC24fP0A2bobWfrkSGypdB42USP0+aPuaLQBp0gPcg/p0L1UYzOKFW1uKwUPi5LdcN+e6SwTmdRueAOPW2c9J2w+IUQhtdR88dodx4RdYf2hmaA1ByTTet6ogTJGWFRwndbkb9cvHjy1nimtCdnbEmP/8uxdcmqtpULFiSd+vfw78iHtIw/7l986KGVBfubjQaXK4d7Hl9f2qA5mnf39fBliRUF2JD8ROunUp4TpGXY2grahHQjPo7w+ZI5cwrc3SVLvjoyUiEEWJUzNJcuZdvbw7anUBREWcmHdTwHSMsoWrBAoUTQqBP56IyyDRusCg2kZeRNn66YLYJTw3nVJSSIbrOcIUzMae3hhWEv69Yhob6qSvrIC7ackSOlOK8az1zOwJuoh4eHjY1NWloanhMEnnzSM6/zgPcn6UOtldU1RSWlawPWrV7jP278+P/64AP/gHXVtRoKRTS9xT+HpDV4eXnv3x9+4EAEbTEx55ub9Vrz+hQIXb9+Y0LCNSmyVTkDL3+BgZsRGhQUfPNmMi3V6ee3Bi1pqZjcu3fP0dHJ3d3j4sW4K1euonRETkxMwrkEB+9BZGSLAy8vH3v7UXCynMG8rNC7qWLksKKr+dWXfgmrb7ovGeiXZs32HjfB5datOzNc56ak3F0bsNlm6Bj5lzjkcgZ9y8Nz/uLKShU6qk2BO2C6Z94XRqGXlJSNGO2M5NqGhhq1eoHPMpoV0mT+tMeDB4KtcjEuvk8/m3MxF9E7Xbp8Fcc0KQNxli1fTctqIuhQ5DEE0bwV+hLq/vBIxCkqfuQ82ZWmeNCXU+TqA4F6yiebJFxL6v3xZ5E//WwwGO8/yHYYO5XmpJAIglOmb6+gXJSuyBnREBmtgWZBcnmF5VBW0viLDproBXL37t2ePXv6+PhcuHDB0dExKSlpxowZihkE8l8BHgrXr1+nJR4VtGejAvzcFHZgbGzsO++8g58k7Ez52hmwn6dOnRoaGopGpsksCEKEuro6X19faekE3AywouE8efIkLg1NNpFCGTlWOzGrnoTiYlVWVsbFxWGPNl++fDku8blz5/R6vaLNqVd0c3MrLi5ubm6mySY0EQkJ169fTwlxsXD/yINum8EBMlEUjeuOmLg5S0pKcDPIi8OtghvG2dmZ1DHcSB2snaGYbIKay6fAwOdlkjPAqXhhnYjVIcafzhtdVhniksXvqsJ61xuET5MOchPMe12TONkETvmgBrkBj/hJaSZs0sdTJRQjLEoqTWMXGVBQao7wOViabCItkBF6Whg68eMJY31DS0beY0E5RabYGyZ1nVg3u7mCAoK6Hbnw2JqdVBxqW1MnfNLVdbXBaZGhuEKstuXQjLKqlnPXTdjXaQWVZLS3EGowCjoI0tKUGWm1DrQYjfvouDWeG3I5I0VV3Ptk4He3zppaTIkVBa+HL+sfte2+uqLRoKfJJnbngrX6ZoSuuh3z30O/3ZR2CclpK9HWSvNQjuTdReTYEvMD1zzlBPtzxQ/+49AKZEtxng80BaN861Z9RYU4R8P8FQ/Y4RVBQQXu7k3mIV3qM2eybGwqdu82arX1167ljBqlWDHUUs7Ql5fnTZmCJC0mk0GjyXdzq9iJO6Ym/+uvVWFhYqRnDykR+a6uuocPpROkiTY4xxI/P5xL3dWrOBf52hl4vcibNo1WPzXW1RV6euY6OTXcvduWAywvk6m5tPThpEkPnZ0b09ORiiabkHhhLlwQdJC/8PGU1ikn2Gtv3sx1dLQ6BuRV4JnLGfRAVdCxjv4C0eGdqVWzqKyuSU657bd6zec2No5jx5IP9oiga1KuygNIa1BspFAgNDU17euv3eCzfv1GPOA7kDPgrK3V7Nq129b8wRHsAwLWl5uni1vKGThITr5FOWObMmV6XNwlemlAku+++x6ew4YNP3r0eFDQDzhmOYN5WaF3U7GLaUXR1Tz5S/+rIGeA4uISjzk+7/fsQ0MMvrQfJ42SIORyBkB8mOsUeYjtqKQbt6S+KDU1Y4LzDArCAa2aSXNMDkUKQ0DRLx06fKz3x58hAvYh+9pW30Q0z/mLqRoDPx0WdSaGssUex/CBP0IRBzHhj8zhmXAtyZy6DYWcgfyPHjvZd4Atkvf8a99Nm3dK3xkpK6+QSsTed8XaGvNySPKctVrt2oDNSGhZYQmFnAE6aKIXBSoQGxs7aNAg829CAFYizEsx2Iz8V5Bt/ihJmLVXw98kZxiNxiNHjvTo0YMKJbsU/igaJuu3334LuxfOwkI8dKZRHPmHLQB+vIGBgfRhC4BTSEhIeOHt2Qmx2olZ9SQUF+vw4cO9evXKNK/VZ9nm8iuCazdixAgKQpzly5dLc1XqzQttUEJ5UHV1tb29PYIoE8v75Pr169LNqbjEWVlZuFcpCDU8duwYbioKkiA5g+JIKO7Sl0/OgGUeetpo4yEuMzFghrDep/QlEW2j8JWQAa3rYg6fp49Lfux3IzfgYeE7LjTAyLf8YVlOGEER01cI64BSoa6rDcXmgRUAVdpySFxxUxG0ItggfSpVsXYGkiAhgQrI184Yv8SQkSfmYHVoRliU0AKpOUKcypoW781itpT2RrqY1rI1oh/vRV64nBHz6MEfwhYNj9nTYBCMi/OPst494v9aiDe2f9u30DE2VKUT1kShJOQvbTQEA6G5GtV/Hl3rc+M0LZOh1Tc7Xwr/H/uXYHO5cli+9MazhsZK0MKZ8q3u8mWY98WLFsG8h+2NmLDVq/bvz7KzEyIMGVK8eLH+8alksPDlcgbil/r757u5SatIqKOisocPzxk50nKMwzOFFshQbFI9DbW1j5YtwxkJ/p9/jjrTCI6aEyfgWb5lC47RGvK0tKHd0HoIbcrPx2mK/kOGFMye3dz6OXNSUkjQgRNNWuLnlz1sGDbLxURfHZ7fUqBdAvRwWp2uRlNHikaVuvbnk6dshw7NzMoiLQNBiPBYR/jECJlrtZYvxO3R3KxXmz/1KrrbBznX1dVpNHWWT3q9Xv/kJTIM8wpSWlo2ZZp7Wppy4fH2gA0vLU6hACYNEB1mdcBm6Bj5mqDoo5DWsqcC7WWLyDVqNX3OiUi4lqSYG9IBVKLVbhCeyFkeZJkzyqV1MUT3k9FBE71A7ty54+joWFDwK3/TJScn9+jRA3vR/a+BpoNBq1ia0RIYpe0N23zCHJjfTWBgoJOTE9pfdP9am+NiKYY/SNCYDnkQraKimGRkCcrqoLjOOaT3hYMmOXPV5LLKUNl26dpAp6VSC6tUdAx9PFU+U+NXoU/AYm8JFSoPwrHnRgM2hSeiWe1WcVI1mharn55VEBBqnLDUUC37zCCNv7Ca9glbo/NQ29woH3nx+6huasAmOjot5rU25YMyfhNIKAxb+I3P6OeAUDHzmBTR/dt58hwMGo18EdZXEJYzlKAnbdbra+vraThGRVX1pfgr9NETjVbbpNfzE5VhmJeJDgz+f5GEa0ljx0+vkn2x/KlwKPIYrY4hup8ezy7nzoBGo7l58+avSuSwPIcNG1ZZKXwrl3npaWpq8vLysvoxkadCcnJyv379rI7oYf51yqqEqSKW80SenGv3TMPm6tNyn9W7bXVty4SlhvbWBP3dkEqyPMjKoBKGYV41WM6wjsFo1DU31zfoVDW11bWa+kYdnPAUgxmGYZhfo7CoOPO++dN5T5UHD7Lz8wtFx1Pl2eXchTh79uyRI0d4WN8rQn19fXBw8J07wkTUZ8HNmzf37t3b0CnnFzMg4a5p1xFhwYtnREmlaVOEUVrg82lR1yAsI3qzdUYJwzCvMixnMAzDMAzDMAzDMAzTxWA5g2EYhmEYhmEYhmGYLgbLGQzDMAzDMAzDMAzDdDFYzmAYhmEYhmEYhmEYpovBcgbDMAzDMAzDMAzDMF0MljMYhmEYhmEYhmEYhulisJzBMAzDMAzDMAzDMEwXg+UMhmEYhmEYhmEYhmG6GCxnMAzDMAzDMAzDMAzTxWA5g2EYhmEYhmEYhmGYLgbLGQzDMAzDMAzDMAzDdDFYzmAYhmEYhmEYhmEYpovBcgbDMAzDMAzDMAzDMF2Klpb/D5wWpV+Lfdz3AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image('img/coinmarketcap-20210226.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Preprocessing the data" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# droppping firsts observations becuase they may not be representative of BTC behaviour now due to beginnings of crypto market\n", "df = df.tail(n_past_total)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training_set.shape:\t (1200, 2)\n" ] } ], "source": [ "# train test split\n", "training_set = df.values\n", "print('training_set.shape:\\t', training_set.shape)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training_set_scaled.shape: (1200, 2)\n" ] }, { "data": { "text/plain": [ "array([[0.12426163, 0.01161493],\n", " [0.11882415, 0.01152876],\n", " [0.12800168, 0.01262371],\n", " ...,\n", " [0.50170116, 0.13497817],\n", " [0.56595702, 0.14667458],\n", " [0.55401855, 0.14118339]])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# scale\n", "sc = MinMaxScaler(feature_range=(0,1))\n", "training_set_scaled = sc.fit_transform(training_set)\n", "print('training_set_scaled.shape: ', training_set_scaled.shape)\n", "training_set_scaled" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((1161, 30, 2), (1161, 10))" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# creating a data structure with 60 timesteps and 1 output\n", "X_train = []\n", "y_train = []\n", "\n", "for i in range(n_past, len(training_set_scaled) - n_future + 1):\n", " X_train.append(training_set_scaled[i-n_past:i, :])\n", " y_train.append(training_set_scaled[i:i+n_future, 0])\n", "\n", "X_train, y_train = np.array(X_train), np.array(y_train)\n", "X_train.shape, y_train.shape" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1161, 30, 2)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# reshaping (needed to fit RNN)\n", "X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], n_features))\n", "X_train.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# RNN - LSTM with early stopping and dropout regularization \n", "Build and fit" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "lstm (LSTM) (None, 30, 30) 3960 \n", "_________________________________________________________________\n", "dropout (Dropout) (None, 30, 30) 0 \n", "_________________________________________________________________\n", "lstm_1 (LSTM) (None, 30, 20) 4080 \n", "_________________________________________________________________\n", "dropout_1 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_2 (LSTM) (None, 30, 20) 3280 \n", "_________________________________________________________________\n", "dropout_2 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_3 (LSTM) (None, 30, 20) 3280 \n", "_________________________________________________________________\n", "dropout_3 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_4 (LSTM) (None, 30, 20) 3280 \n", "_________________________________________________________________\n", "dropout_4 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_5 (LSTM) (None, 30, 20) 3280 \n", "_________________________________________________________________\n", "dropout_5 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_6 (LSTM) (None, 30, 20) 3280 \n", "_________________________________________________________________\n", "dropout_6 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_7 (LSTM) (None, 30, 20) 3280 \n", "_________________________________________________________________\n", "dropout_7 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_8 (LSTM) (None, 30, 20) 3280 \n", "_________________________________________________________________\n", "dropout_8 (Dropout) (None, 30, 20) 0 \n", "_________________________________________________________________\n", "lstm_9 (LSTM) (None, 20) 3280 \n", "_________________________________________________________________\n", "dense (Dense) (None, 10) 210 \n", "=================================================================\n", "Total params: 34,490\n", "Trainable params: 34,490\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "# Building the RNN\n", "\n", "# Initialising the RNN\n", "regressor = Sequential()\n", "\n", "# Input layer\n", "regressor.add(LSTM(units=n_past, return_sequences=True, activation=activation, input_shape=(X_train.shape[1], n_features))) \n", "#regressor.add(LSTM(units=neurons, return_sequences=True, activation=activation, input_shape=(X_train.shape[1], 1))) \n", "\n", "# Hidden layers\n", "for _ in range(n_layers):\n", " regressor.add(Dropout(dropout))\n", " regressor.add(LSTM(units=n_neurons, return_sequences=True, activation=activation))\n", "\n", "# Last hidden layer (changing the return_sequences)\n", "regressor.add(Dropout(dropout))\n", "regressor.add(LSTM(units=n_neurons, return_sequences=False, activation=activation))\n", "\n", "# Adding the output layer\n", "regressor.add(Dense(units=n_future))\n", "\n", "# Compiling the RNN\n", "regressor.compile(optimizer=optimizer, loss='mse')\n", "\n", "# Model summary\n", "regressor.summary()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# Adding early stopping\n", "early_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=patience)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/750\n", "33/33 [==============================] - 27s 136ms/step - loss: 0.0203 - val_loss: 0.5045\n", "Epoch 2/750\n", "33/33 [==============================] - 2s 49ms/step - loss: 0.0105 - val_loss: 0.4923\n", "Epoch 3/750\n", "33/33 [==============================] - 2s 48ms/step - loss: 0.0102 - val_loss: 0.3013\n", "Epoch 4/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0039 - val_loss: 0.0947\n", "Epoch 5/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0020 - val_loss: 0.1120\n", "Epoch 6/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0018 - val_loss: 0.0773\n", "Epoch 7/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0016 - val_loss: 0.0814\n", "Epoch 8/750\n", "33/33 [==============================] - 2s 48ms/step - loss: 0.0014 - val_loss: 0.0671\n", "Epoch 9/750\n", "33/33 [==============================] - 2s 48ms/step - loss: 0.0015 - val_loss: 0.0722\n", "Epoch 10/750\n", "33/33 [==============================] - 2s 48ms/step - loss: 0.0014 - val_loss: 0.0704\n", "Epoch 11/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0018 - val_loss: 0.0765\n", "Epoch 12/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0014 - val_loss: 0.0589\n", "Epoch 13/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0013 - val_loss: 0.0635\n", "Epoch 14/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0014 - val_loss: 0.0863\n", "Epoch 15/750\n", "33/33 [==============================] - 2s 47ms/step - loss: 0.0015 - val_loss: 0.0706\n", "Epoch 16/750\n", "33/33 [==============================] - 2s 50ms/step - loss: 0.0012 - val_loss: 0.0548\n", "Epoch 17/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 0.0012 - val_loss: 0.0611\n", "Epoch 18/750\n", "33/33 [==============================] - 2s 50ms/step - loss: 0.0014 - val_loss: 0.0853\n", "Epoch 19/750\n", "33/33 [==============================] - 2s 48ms/step - loss: 0.0012 - val_loss: 0.0754\n", "Epoch 20/750\n", "33/33 [==============================] - 2s 54ms/step - loss: 0.0012 - val_loss: 0.0626\n", "Epoch 21/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 0.0013 - val_loss: 0.0632\n", "Epoch 22/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 0.0012 - val_loss: 0.0693\n", "Epoch 23/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 0.0012 - val_loss: 0.0714\n", "Epoch 24/750\n", "33/33 [==============================] - 2s 54ms/step - loss: 0.0012 - val_loss: 0.0697\n", "Epoch 25/750\n", "33/33 [==============================] - 2s 55ms/step - loss: 0.0014 - val_loss: 0.0749\n", "Epoch 26/750\n", "33/33 [==============================] - 2s 54ms/step - loss: 0.0011 - val_loss: 0.0548\n", "Epoch 27/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 0.0012 - val_loss: 0.0798\n", "Epoch 28/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 0.0011 - val_loss: 0.0559\n", "Epoch 29/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 0.0015 - val_loss: 0.0588\n", "Epoch 30/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 0.0013 - val_loss: 0.0637\n", "Epoch 31/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 0.0011 - val_loss: 0.0669\n", "Epoch 32/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 0.0010 - val_loss: 0.0534\n", "Epoch 33/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 9.4748e-04 - val_loss: 0.0678\n", "Epoch 34/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 0.0010 - val_loss: 0.0644\n", "Epoch 35/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 9.5336e-04 - val_loss: 0.0671\n", "Epoch 36/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 0.0011 - val_loss: 0.0841\n", "Epoch 37/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 8.4692e-04 - val_loss: 0.0615\n", "Epoch 38/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 0.0011 - val_loss: 0.0603\n", "Epoch 39/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 8.4627e-04 - val_loss: 0.0672\n", "Epoch 40/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 8.6851e-04 - val_loss: 0.0506\n", "Epoch 41/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 8.3417e-04 - val_loss: 0.0739\n", "Epoch 42/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 8.0763e-04 - val_loss: 0.0537\n", "Epoch 43/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 9.2846e-04 - val_loss: 0.0691\n", "Epoch 44/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 8.5094e-04 - val_loss: 0.0640\n", "Epoch 45/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 8.7225e-04 - val_loss: 0.0672\n", "Epoch 46/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 9.2768e-04 - val_loss: 0.0432\n", "Epoch 47/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 8.1308e-04 - val_loss: 0.0423 ETA: 0s - loss: 8.1836e\n", "Epoch 48/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 7.4661e-04 - val_loss: 0.0610\n", "Epoch 49/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 7.8371e-04 - val_loss: 0.0697\n", "Epoch 50/750\n", "33/33 [==============================] - 2s 51ms/step - loss: 8.3649e-04 - val_loss: 0.0728\n", "Epoch 51/750\n", "33/33 [==============================] - 2s 56ms/step - loss: 7.5589e-04 - val_loss: 0.0828\n", "Epoch 52/750\n", "33/33 [==============================] - 2s 54ms/step - loss: 0.0010 - val_loss: 0.0556\n", "Epoch 53/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 8.5908e-04 - val_loss: 0.0762\n", "Epoch 54/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 6.7105e-04 - val_loss: 0.0785\n", "Epoch 55/750\n", "33/33 [==============================] - 2s 51ms/step - loss: 7.6480e-04 - val_loss: 0.0552\n", "Epoch 56/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 6.6989e-04 - val_loss: 0.0720\n", "Epoch 57/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 6.2902e-04 - val_loss: 0.0566\n", "Epoch 58/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 7.1327e-04 - val_loss: 0.0776\n", "Epoch 59/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 6.8479e-04 - val_loss: 0.0653\n", "Epoch 60/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 7.2756e-04 - val_loss: 0.0629\n", "Epoch 61/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 7.0480e-04 - val_loss: 0.0673\n", "Epoch 62/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 6.8987e-04 - val_loss: 0.0710\n", "Epoch 63/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 6.9047e-04 - val_loss: 0.0691\n", "Epoch 64/750\n", "33/33 [==============================] - 2s 51ms/step - loss: 6.4233e-04 - val_loss: 0.0674\n", "Epoch 65/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 6.9760e-04 - val_loss: 0.0812\n", "Epoch 66/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 5.8079e-04 - val_loss: 0.0574\n", "Epoch 67/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 6.2155e-04 - val_loss: 0.0606\n", "Epoch 68/750\n", "33/33 [==============================] - 2s 51ms/step - loss: 6.2063e-04 - val_loss: 0.0437\n", "Epoch 69/750\n", "33/33 [==============================] - 2s 51ms/step - loss: 9.1900e-04 - val_loss: 0.0795\n", "Epoch 70/750\n", "33/33 [==============================] - 2s 52ms/step - loss: 6.5857e-04 - val_loss: 0.0666\n", "Epoch 71/750\n", "33/33 [==============================] - 2s 53ms/step - loss: 6.1912e-04 - val_loss: 0.0721\n", "Epoch 72/750\n", "33/33 [==============================] - 2s 54ms/step - loss: 6.0794e-04 - val_loss: 0.0628\n", "Epoch 00072: early stopping\n" ] } ], "source": [ "# Fitting the RNN to the Training set\n", "res = regressor.fit(X_train, y_train\n", " , batch_size=32\n", " , epochs=750\n", " , validation_split=0.1\n", " , callbacks=[early_stop]\n", " )" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# Exporting the regressor\n", "last_date = dataset.Date.values[-1]\n", "params = ['reg', last_date, n_past_total, n_past, n_future, activation, n_layers, n_neurons, n_features, patience, optimizer]\n", "modelname = 'output/'\n", "for i in params:\n", " modelname += str(i)\n", " if i!= params[-1]:\n", " modelname += '_'\n", "if not os.path.exists(modelname):\n", " os.makedirs(modelname)\n", "regressor.save('{}/regressor.h5'.format(modelname))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['loss', 'val_loss']" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(res.history)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Validation" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAEWCAYAAABPDqCoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABDjUlEQVR4nO3deXxU1f3/8dcn+0YSspCEHWQTATdEcUGr39alWtcquFv3Wq2tWrWLtVXbb+uv67cqWvcd3LVabWtVXAAJyL7JFggQsu/7zPn9MZMwhAQSyGQy4f18POYx9965ufO5J3dmPvfcc88x5xwiIiIiItI5EaEOQEREREQknCiBFhERERHpAiXQIiIiIiJdoARaRERERKQLlECLiIiIiHSBEmgRERERkS5QAi0iIiIi0gVKoEVEwpCZbTKz/wl1HCIiByIl0CIiIiIiXaAEWkSkjzCzWDP7s5lt8z/+bGax/tcyzOwfZlZuZqVm9qmZRfhfu9PMtppZlZmtMbNTQrsnIiK9W1SoAxARkW7zM+AY4DDAAW8BPwd+AdwG5AOZ/nWPAZyZjQV+ABzlnNtmZsOByJ4NW0QkvKgGWkSk77gE+LVzrtA5VwT8CrjM/1oTkAMMc841Oec+dc45wAPEAuPNLNo5t8k5tz4k0YuIhAkl0CIifcdAIC9gPs+/DOBBYB3wLzPbYGZ3ATjn1gG3AvcChWb2spkNREREOqQEWkSk79gGDAuYH+pfhnOuyjl3m3NuJHAW8OOWts7OuRedc8f7/9YBv+vZsEVEwosSaBGR8BVtZnEtD+Al4OdmlmlmGcA9wPMAZnammY0yMwMq8TXd8JjZWDM72X+zYT1Q539NREQ6oARaRCR8vYcv4W15xAG5wFJgGbAIuN+/7mjgP0A1MBd42Dn3Mb72z/8LFAMFwADgpz22ByIiYch895CIiIiIiEhnqAZaRERERKQLlECLiIiIiHSBEmgRERERkS5QAi0iIiIi0gVhN5R3RkaGGz58eKjDEBEREZE+buHChcXOucy2y8MugR4+fDi5ubmhDkNERERE+jgzy2tvuZpwiIiIiIh0gRJoEREREZEuUAItIiIiItIFYdcGWkREREQ6p6mpifz8fOrr60MdSq8WFxfH4MGDiY6O7tT6SqBFRERE+qj8/Hz69evH8OHDMbNQh9MrOecoKSkhPz+fESNGdOpv1IRDREREpI+qr68nPT1dyfMemBnp6eldqqVXAi0iIiLShyl53ruullFQE2gzO83M1pjZOjO7q53XTzKzCjNb7H/cE8x49pXX67jvHytZV1gd6lBEREREJMSC1gbazCKBh4BvAvnAAjN72zm3ss2qnzrnzgxWHN1hXVE1sxZs4ekvNnHJ0UP54SmjSU+KDXVYIiIiIhICwayBngKsc85tcM41Ai8DZwfx/YJmTFY/Pr7jJC6eMpQX5m/mpAc/5pGP11Pf5Al1aCIiIiJ9RlJSUoevbdq0iQkTJvRgNB0LZgI9CNgSMJ/vX9bWVDNbYmb/NLND2tuQmV1nZrlmlltUVBSMWPcqIymW+86ZwAe3nsCUEWn87v3VnPKHT3hr8VaccyGJSURERER6XjC7sWuvNXbbTHMRMMw5V21mZwBvAqN3+yPnHgMeA5g8eXJIs9VRA/rxxJVH8fm6Yh54dxU/fHkxT36+iV98+2AmD08LZWgiIiIiHfrVOytYua2yW7c5fmAyvzyr3fpPAO68806GDRvG97//fQDuvfdezIw5c+ZQVlZGU1MT999/P2ef3bVGCvX19dx4443k5uYSFRXFH//4R77xjW+wYsUKrrrqKhobG/F6vbz22msMHDiQCy+8kPz8fDweD7/4xS+46KKL9mu/g1kDnQ8MCZgfDGwLXME5V+mcq/ZPvwdEm1lGEGPqNseNyuCdm4/nwQsmUVBRxwUz5/LzN5eFOiwRERGRXmP69OnMmjWrdX727NlcddVVvPHGGyxatIiPPvqI2267rctX8x966CEAli1bxksvvcQVV1xBfX09M2fO5Ic//CGLFy8mNzeXwYMH8/777zNw4ECWLFnC8uXLOe200/Z7v4JZA70AGG1mI4CtwHTg4sAVzCwb2OGcc2Y2BV9CXxLEmLpVZITx3clD+PakHO54dSnPz9vML84cT2xUZKhDExEREdnFnmqKg+Xwww+nsLCQbdu2UVRURP/+/cnJyeFHP/oRc+bMISIigq1bt7Jjxw6ys7M7vd3PPvuMm2++GYBx48YxbNgw1q5dy9SpU3nggQfIz8/nvPPOY/To0UycOJHbb7+dO++8kzPPPJMTTjhhv/craDXQzrlm4AfAB8AqYLZzboWZ3WBmN/hXuwBYbmZLgL8C010YNihOiInixDGZAOyoaAhxNCIiIiK9xwUXXMCrr77KrFmzmD59Oi+88AJFRUUsXLiQxYsXk5WV1eWhxjtKFy+++GLefvtt4uPjOfXUU/nvf//LmDFjWLhwIRMnTuTuu+/m17/+9X7vU1CH8vY3y3ivzbKZAdN/A/4WzBh6ysCUeAC2ltcxND0hxNGIiIiI9A7Tp0/n2muvpbi4mE8++YTZs2czYMAAoqOj+eijj8jLy+vyNqdNm8YLL7zAySefzNq1a9m8eTNjx45lw4YNjBw5kltuuYUNGzawdOlSxo0bR1paGpdeeilJSUk8/fTT+71PQU2gDyQ5qXEAbK+oC3EkIiIiIr3HIYccQlVVFYMGDSInJ4dLLrmEs846i8mTJ3PYYYcxbty4Lm/z+9//PjfccAMTJ04kKiqKp59+mtjYWGbNmsXzzz9PdHQ02dnZ3HPPPSxYsIA77riDiIgIoqOjeeSRR/Z7nyzcWkxMnjzZ5ebmhjqM3dQ1ejj4nve549Sx3PSNUaEOR0RERIRVq1Zx8MEHhzqMsNBeWZnZQufc5LbrBnUo7wNJfEwk/ROi2VquGmgRERGRvkxNOLpRTko825VAi4iIiOyzZcuWcdlll+2yLDY2lvnz54coot0pge5GA1PjyC9TAi0iIiKyryZOnMjixYtDHcYeqQlHNxqYGs821UCLiIiI9GlKoLtRTko8lfXNVDc0hzoUEREREQkSJdDdaGBLV3aqhRYRERHps5RAd6OBqb7BVLZVdG00HREREZG+KikpKdQhdDsl0N0oJ8VXA6120CIiIiJ9lxLobpSVHIeZmnCIiIiItOWc44477mDChAlMnDiRWbNmAbB9+3amTZvGYYcdxoQJE/j000/xeDxceeWVrev+6U9/CnH0u1I3dt0oOjKCAf1i1YRDREREep9/3gUFy7p3m9kT4fT/7dSqr7/+OosXL2bJkiUUFxdz1FFHMW3aNF588UVOPfVUfvazn+HxeKitrWXx4sVs3bqV5cuXA1BeXt69ce8n1UB3s4Gp8WyvUA20iIiISKDPPvuMGTNmEBkZSVZWFieeeCILFizgqKOO4qmnnuLee+9l2bJl9OvXj5EjR7JhwwZuvvlm3n//fZKTk0Md/i5UA93NBqbEs3J7ZajDEBEREdlVJ2uKg8U51+7yadOmMWfOHN59910uu+wy7rjjDi6//HKWLFnCBx98wEMPPcTs2bN58sknezjijqkGupvlpMSxrbyuw4NERERE5EA0bdo0Zs2ahcfjoaioiDlz5jBlyhTy8vIYMGAA1157LVdffTWLFi2iuLgYr9fL+eefz3333ceiRYtCHf4uVAPdzQamxtPQ7KWstom0xJhQhyMiIiLSK5x77rnMnTuXQw89FDPj97//PdnZ2TzzzDM8+OCDREdHk5SUxLPPPsvWrVu56qqr8Hq9APz2t78NcfS7UgLdzVoGU9lWXqcEWkRERA541dXVAJgZDz74IA8++OAur19xxRVcccUVu/1db6t1DqQmHN0sJ8U/mIq6shMRERHpk5RAd7OcluG81ZWdiIiISJ+kBLqbZSTGEhMZwTZ1ZSciIiK9gDo22LuulpES6G4WEWFkp8SxrVw10CIiIhJacXFxlJSUKIneA+ccJSUlxMXFdfpvdBNhEOSkxGk4bxEREQm5wYMHk5+fT1FRUahD6dXi4uIYPHhwp9dXAh0Eg1Ljmb+xNNRhiIiIyAEuOjqaESNGhDqMPkdNOIIgJzWOgsp6PF5dLhERERHpa5RAB0FOSjwer6OwSu2gRURERPoaJdBBMCi1pS9oJdAiIiIifY0S6CDY2Re0biQUERER6WuUQAeBRiMUERER6buUQAdBclwUiTGRasIhIiIi0gcpgQ4CM2NgaryacIiIiIj0QUFNoM3sNDNbY2brzOyuPax3lJl5zOyCYMbTk3JS49leoRpoERERkb4maAm0mUUCDwGnA+OBGWY2voP1fgd8EKxYQmFgSpzaQIuIiIj0QcGsgZ4CrHPObXDONQIvA2e3s97NwGtAYRBj6XEDU+Mprm6kodkT6lBEREREpBsFM4EeBGwJmM/3L2tlZoOAc4GZe9qQmV1nZrlmlhsuY7nnpPi6sitQMw4RERGRPiWYCbS1s6zt2NZ/Bu50zu2xmtY595hzbrJzbnJmZmZ3xRdUAzWYioiIiEifFBXEbecDQwLmBwPb2qwzGXjZzAAygDPMrNk592YQ4+oRLTXQagctIiIi0rcEM4FeAIw2sxHAVmA6cHHgCs65ES3TZvY08I++kDzDzhpodWUnIiIi0rcELYF2zjWb2Q/w9a4RCTzpnFthZjf4X99ju+dwFxcdSVpiDNvUBlpERESkTwlmDTTOufeA99osazdxds5dGcxYQiFHXdmJiIiI9DkaiTCIBqbGs103EYqIiIj0KUqgg2hgShzb1AZaREREpE9RAh1EOanxVNU3U1XfFOpQRERERKSbKIEOop09cagZh4iIiEhfoQQ6iAaqL2gRERGRPkcJdBDlqAZaREREpM9RAh1EWf1iiTDYrhpoERERkT5DCXQQRUVGkJUcx1Z1ZSciIiLSZyiBDrKclDgN5y0iIiLShyiBDrKc1Hi1gRYRERHpQ5RAB9mg1Hi2ldfhnAt1KCIiIiLSDZRAB1lOShwNzV5KaxpDHYqIiIiIdAMl0EGWk6Ku7ERERET6EiXQQTbI3xe0BlMRERER6RuUQAdZTqpGIxQRERHpS5RAB1l6YgwxURFqwiEiIiLSRyiBDjIzIycljm1KoEVERET6BCXQPWBgSryacIiIiIj0EUqge0BOahzblUCLiIiI9AlKoHvAwJR4dlQ14PFqMBURERGRcKcEugcMTI3H43UUVqkdtIiIiEi4UwLdA9SVnYiIiEjfoQS6BwxMaRlMRTXQIiIiIuFOCXQPaKmB3l6hGmgRERGRcKcEugckx0XTLzZKNdAiIiIifYAS6B6SkxqnNtAiIiIifYAS6B6SkxKv4bxFRERE+gAl0D1kYGq82kCLiIiI9AFKoHvIwJQ4iqsbqW/yhDoUEREREdkPSqB7SE6qryu7AjXjEBEREQlrQU2gzew0M1tjZuvM7K52Xj/bzJaa2WIzyzWz44MZTygNbBlMRc04RERERMJaVLA2bGaRwEPAN4F8YIGZve2cWxmw2ofA2845Z2aTgNnAuGDFFEotg6lsV1d2IiIiImEtmDXQU4B1zrkNzrlG4GXg7MAVnHPVzjnnn00EHH1UdoqG8xYRERHpC4KZQA8CtgTM5/uX7cLMzjWz1cC7wPfa25CZXedv4pFbVFQUlGCDLS46krTEGLZXqgZaREREJJwFM4G2dpbtVsPsnHvDOTcOOAe4r70NOecec85Nds5NzszM7N4oe1BWchw7dBOhiIiISFgLZgKdDwwJmB8MbOtoZefcHOAgM8sIYkwhlZMSR4FqoEVERETCWjAT6AXAaDMbYWYxwHTg7cAVzGyUmZl/+gggBigJYkwhlZUcxw4l0CIiIiJhLWi9cDjnms3sB8AHQCTwpHNuhZnd4H99JnA+cLmZNQF1wEUBNxX2OdnJvsFUGpu9xESpC24RERGRcBS0BBrAOfce8F6bZTMDpn8H/C6YMfQm2SmxABRW1TO4f0KIoxERERGRfaFq0B6Ulezryk7NOERERETClxLoHtTSF3RBRUOIIxERERGRfaUEugdl+2ug1ROHiIiISPhSAt2DUuKjiY2KoKBCoxGKiIiIhCsl0D3IzMhOiaOgUk04RERERMJVpxJoM0s0swj/9Bgz+46ZRQc3tL5JoxGKiIiIhLfO1kDPAeLMbBDwIXAV8HSwgurLspM1GqGIiIhIOOtsAm3OuVrgPOD/nHPnAuODF1bf1TKcdx8eL0ZERESkT+t0Am1mU4FLgHf9y4I6CEtflZUcR2Ozl/LaplCHIiIiIiL7oLMJ9K3A3cAb/uG4RwIfBS2qPqy1L2g14xAREREJS52qRXbOfQJ8AuC/mbDYOXdLMAPrq7IC+oI+OCc5xNGIiIiISFd1theOF80s2cwSgZXAGjO7I7ih9U0tNdDqiUNEREQkPHW2Ccd451wlcA7wHjAUuCxYQfVlA/rFYqYmHCIiIiLhqrMJdLS/3+dzgLecc02AupHYB9GREaQnxlKgGmgRERGRsNTZBPpRYBOQCMwxs2FAZbCC6uuyU2JVAy0iIiISpjqVQDvn/uqcG+ScO8P55AHfCHJsfVZ2cpxqoEVERETCVGdvIkwxsz+aWa7/8Qd8tdGyD7KS49ihGmgRERGRsNTZJhxPAlXAhf5HJfBUsILq67KT4yirbaK+yRPqUERERESkizo7muBBzrnzA+Z/ZWaLgxDPAaGlK7vCygaGpieEOBoRERER6YrO1kDXmdnxLTNmdhxQF5yQ+j6NRigiIiISvjpbA30D8KyZpfjny4ArghNS35edrARaREREJFx1dijvJcChZpbsn680s1uBpUGMrc/K0miEIiIiImGrs004AF/i7B+REODHQYjngNAvNoqEmEjVQIuIiIiEoS4l0G1Yt0VxgDEzX1/QSqBFREREws7+JNAayns/ZGkwFREREZGwtMc20GZWRfuJsgHxQYnoAJGdEseXG0tDHYaIiIiIdNEeE2jnXL+eCuRAk5UcR2FVPV6vIyJCrWFEREREwsX+NOGQ/ZCdHEuTx1Fa2xjqUERERESkC5RAh0jrYCpqBy0iIiISVpRAh0h2iq8J+Q71xCEiIiISVpRAh4hGIxQREREJT0FNoM3sNDNbY2brzOyudl6/xMyW+h9fmNmhwYynN8lIiiHCNBqhiIiISLgJWgJtZpHAQ8DpwHhghpmNb7PaRuBE59wk4D7gsWDF09tERUaQ2S9WNdAiIiIiYSaYNdBTgHXOuQ3OuUbgZeDswBWcc18458r8s/OAwUGMp9fxjUbYEOowRERERKQLgplADwK2BMzn+5d15Grgn+29YGbXmVmumeUWFRV1Y4ih5RuNsC7UYYiIiIhIFwQzgW5vdJB2h/82s2/gS6DvbO9159xjzrnJzrnJmZmZ3RhiaGWnaDhvERERkXATzAQ6HxgSMD8Y2NZ2JTObBDwOnO2cKwliPL1OVnIclfXN1DV6Qh2KiIiIiHRSMBPoBcBoMxthZjHAdODtwBXMbCjwOnCZc25tEGPpldSVnYiIiEj4iQrWhp1zzWb2A+ADIBJ40jm3wsxu8L8+E7gHSAceNjOAZufc5GDF1NsEjkY4IiMxxNGIiIiISGcELYEGcM69B7zXZtnMgOlrgGuCGUNvluWvgdZohCIiIiLhQyMRhlBrDbQSaBEREZGwoQQ6hJJio+gXG6WeOERERETCiBLoEMtKiVMTDhEREZEwogQ6xHyjESqBFhEREQkXSqBDzDcaoRJoERERkXChBDrEslNiKaxqwONtd5BGEREREelllECHWHZyHB6vo6S6IdShiIiIiEgnKIEOsSyNRigiIiISVpRAh1jgaIQiIiIi0vspgQ6xbI1GKCIiIhJWlECHWHpSLJERpiYcIiIiImFCCXSIRUYYWf1iKajQTYQiIiIi4UAJdC+g0QhFREREwocS6F5AoxGKiIiIhA8l0L2ARiMUERERCR9KoHuB7JQ4qhuaqW5oDnUoIiIiIrIXSqB7gZau7FQLLSIiItL7KYHuBbLUF7SIiIhI2FAC3QtoNEIRERGR8KEEuhdobcKhGmgRERGRXk8JdC8QHxNJclyUmnCIiIiIhAEl0L1ETkq8mnCIiIiIhAEl0L2ERiMUERERCQ9KoHuJ7ORYtYEWERERCQNKoHuJ7OQ4iqoaaPZ4Qx2KiIiIiOyBEuheIislDq+DouqGUIciIiIiInugBLqX0GiEIiIiIuFBCXQv0ZnRCJ1z/HPZdhZtLuupsERERESkjahQByA+exuNsL7Jwy/fWsGs3C2kJcbwnx+fSFpiTE+GKCIiIiKoBrrXSEuIITrSKKjcvQ301vI6Lnx0LrNytzBjylAq65p44N1VIYhSRERERIKaQJvZaWa2xszWmdld7bw+zszmmlmDmd0ezFh6u4gIY0C/3fuC/mJ9MWf932dsKKrh0cuO5LfnTeS6aSN5bVE+X6wrDlG0IiIiIgeuoCXQZhYJPAScDowHZpjZ+DarlQK3AP8vWHGEk+yUuNYmHM45/j5nA5c+Pp+0xBje+sFxnHpINgC3nDKaYekJ/PSNZdQ3eUIZsoiIiMgBJ5g10FOAdc65Dc65RuBl4OzAFZxzhc65BUBTEOMIG9n+0QhrGpr5wUtf8cB7qzj1kGzevOk4DspMal0vLjqS35w7kU0ltfztv+tCGLGIiIjIgSeYCfQgYEvAfL5/WZeZ2XVmlmtmuUVFRd0SXG+UnRzH1vI6znv4C/65bDt3nT6Ohy85gqTY3e/1PG5UBucdMYiZn6xnTUFVCKIVEREROTAFM4G2dpa5fdmQc+4x59xk59zkzMzM/Qyr98pOjqOh2UthVT3Pfu9objjxIMzaK0afn397PP3iovjpG8vwevepaEVERESki4KZQOcDQwLmBwPbgvh+Ye+0CdlcNHkI79x8PMePztjr+mmJMfz82+NZmFfGi19u7oEIRURERCSYCfQCYLSZjTCzGGA68HYQ3y/sDUlL4HcXTGJw/4RO/815RwziuFHp/O6fq/c4CIuIiIiIdI+gJdDOuWbgB8AHwCpgtnNuhZndYGY3AJhZtpnlAz8Gfm5m+WaWHKyY+iIz44FzJtLo8fKrd1aEOpxeae2OKj77und0+dfk8YY6BBEREdlPQe0H2jn3nnNujHPuIOfcA/5lM51zM/3TBc65wc65ZOdcqn+6Mpgx9UXDMxK55ZTRvLesgP+s3BHqcHqVZfkVnP/wF1z6xHx+8uoSahqaQxbLY3PWc/Av3ueHL3/F8q0VIYtD+ra6Rg//9+HXrC7QV+mBrFkn6yJBpZEI+4hrTxjJ2Kx+3PPW8g6TxIraJuauL+GJzzby1uKtff7Gw9UFlVz25HyS46O55vgRvLIwnzP/7zOW5pf3eCyvLcznN++t5pCByfxn5Q7O/L/PuOTxeXy8phDn+vb/QXrOxuIazn34c/7w77XMeGyeeug5wHi8jveXF3Dew59z+H3/ZtV2nUT1RVvL63jzq77/G97bWbj9eE+ePNnl5uaGOoxeaWFeGRfM/IIrjx3OVceOYOX2ClZur2LltkpWba9ka3ndLusfMzKN350/iWHpiSGKOHg2FFVz4aPziIyAV64/lqHpCcxdX8KPZy+mqKqB2741luunjSQiouNeTrrLR2sKueaZXKaOTOfJK4+irsnDS19u5qnPN7KjsoGxWf24dtpIvnPoQGKidE4baPnWCn725nLu+NbYTt1YeyD714oCbpu9hMhI46enH8wf/r0Gj9cx6/qpu/QjL31PfZOHVxfm88RnG9lYXMOQtHjqm7zERUfw9k3H0z8xptveq9HfU9SOynoKKhoYk5XE6Kx+3bb9feWc22OvVX2Bx+t45otN/L9/raG20cOVxw7nl2eND9l+V9Y3cfvsJZwwOoOLjx5GZA/8noaCmS10zk3ebbkS6L7lF28u57l5ea3zEQYjM5MYn5PMwTnJjB+YzMHZ/fhwdSG/eXcVTV4vt39rLFcdN6JHD/4tpbV8sraIgop6rjlhBKkJ3fcFv6W0lgsfnUtjs5dZ109l1ICdyUN5bSM/fWMZ7y0r4NiD0vnjhYeRnRLXbe/d1uIt5cx4bB4jMxN5+bpj6BcX3fpaY7OXt5ds4+9zNrBmRxVZybFcddwILj56KMkB6x2o8stqOffhLyiqaiAhJpIXrz2Gw4akhjqsXqfZ4+UP/17LIx+vZ9LgFB6+5AgG909gXWE10x+bS1REBLOvn8rQ9M7fnCzhobSmkWfnbuLZuXmU1jRy6OAUrpt2EKdNyGZpfjkXPTqPKSPSePqqo4iK7NrJeVV9Ey/M38zm0lp2VNRTUOlLmourG3dZLy46gueuPpqjhqd15651mnOO//evNTw7N49rjh/JtdNGkBCz+9gJ4W7ltkruen0pS/MrOGlsJjkp8bz05WZu++YYbj5ldEhiuvftFTz9xSYADs5J5tdnHxKy4yCYlEAfIKobmnlszgZyUuIYn5PMmKx+xMdEtrvu9oo6fvbGcv67upDDh6by+/MnBa0mob7Jw/yNpXy8ppBP1haxoaim9bVh6Qk8dtlkxmbv/3tvr6jjwkfnUlnXzMvXHcPBObvfk+qc45XcfO59ZwUxURH873mTOG1C9n6/d1sbiqq5YOZckmKjeO3GY8nsF9vues45PllbxN8/3cDn60pIS4zhjlPHcuHkIWF3Rl9a00juplJy88pYsKmU0ppGfnveRI49qGu1xxV1TVzwyBcUVNYz89Ijuev1pVTXN/PKDcfuckJ0oCuubuCWl77ii/UlzJgyhF+edQhx0Ts/76sLKpn+2DwSY6KYfcNUBqXGhzDa3VU3NPPEpxs574hBDElTgt8ZzR4vG4preG5uHq8s3EJ9k5dTxg3g2mkjOXpE2i61kbNzt/CTV5dy7Qkj+Nm3x3f6PUprGrn8yfks31pJWmIMWclxZCfHkp0S55+OIysljpT4aG6fvYSiqgZeuu4YJgxKCcYud8jrdfz6Hyt5+otNjM3qx5odVWQnx3H7qWM57/BBPXKFMdjqGj385cOv+funG+ifEM0vzzqEMyfl4Bzc9soS3vhqK/efM4FLjxnWo3Et31rBd/72GZceM4xjRqZz/z9Wsq2innMOG8jdZxxMVnLwKqZ6mhJoaZdzjreXbOPet1dQ0+Dh5pNHccNJBxHdTm1FSXUDC/PKyM0rI3dTKVvL6+ifEEN6UgxpibGkJ8aQnhhDWlIM6YmxpCZEs3JbJZ+sLWLehhIamr3ERkVwzMh0ThyTyUljMymrbeLG5xdS3dDMHy88lNMm5OzzvhRVNXDRY3MprGzghWuO5tC91FZuLK7hhy9/xdL8CmZMGcIvzhzfbTUXhZX1nPfIF9Q1enjtxmMZntG5ZjJL88u5/x+r+HJTKRMGJXPvWYcwOYhn9M45KuubKaqqp7CygcKqBoqqGiisqqem0UNqfDRpiTGkJsSQlhhN/4QY3yMxhn6xUWwpq2XBJt/xsGBTKev9J0YxkRFMGpxCaU0j+WV1/HXGYZ3+3zY0e7jiyS9ZmFfGM9+bwrEHZbCpuIYLZs4lJtJ49cZjGdjLEsFQ+GpzGd9/YRElNY3cf84ELpw8pN31luVXcPHj80hPjGHW9VN7zQ9bfZOHq55awNwNJWQlx/Lc1Uczphc0BegNGpo95JfVkVdSw6biWt9zie85v6yOZq8jJjKCcw4fyLUnjNxjxccv31rOM3Pz+PNFh3HO4XsfDLigop5Ln5jPltJaZl56JN8YN2CP628rr+O7M+dS1+RhdpsrfnvT7PHy5/98zZL8cn71nUMY2YWmRh6v42dvLOPlBVu4+vgR/PzbB7NgUxkPvLuSJfkVTBiUzM/OGM/Ug9I7vc195ZyjqKqBtTuq2VhSQ3x0pO/3MCmG9CTfb2PgiW1nffp1ET97YzmbS2u5aPIQ7j5j3C5Xa5s8Xq5/biEfrSnkbzOO4NuT9v33sys8Xsd5D3/O1vJ6PrztRFLio6ltbOaRj9fz6JwNREcYt5wymquOG9Fhs8Ti6gbmbyhl7oZiFuaVM3pAElccO5wjhqb2uqY4SqBlj4qrG7j37RX8Y+l2xuck8/sLJhEfE8nCTWXk5pWSu6mMDcW7JkcjMhIpr2uitKaRkuoGSmoaqarf/QbGkZmJnDgmkxPHZHLMyPTdvkh2VNZz/XMLWbylnFtOHsWt/zOmyzUHZTWNzPj7PPJKann26imdvozU2OzlT/9Zy8xP1jMyI5G/zjicQwbuXy1KZX0TFz06j7ySGl6+7hgmDU7t0t8753hn6XZ+8+4qCip9Z/R3nX7wfjc18Xody7ZWMGdtEV+sL2FLWS1FVQ00NO9+t35sVARJsVGU1zXh6eBGFTNo+fpIjoti8vA0Jg/vz1HD05g4KIW46EjKaxu5+plcvtpcxgPnTmTGlKF73fcfzVrMm4u37faDv3xrBTMem0dWShyvXD+1W9t19pSahmYq6prISYnb5x8J5xzPz8vj1/9YSVZyHDMvPXKvNX8L88q47In5DEyN5+XrjiEjqf2rIT2lyePlxucX8eHqHdz2zTE8OzePRo+Xp648isOH9u/StoqrG/jbf9cRGx3BUcPSOHJY/7A8NhqaPby/vICXvtzMlxtLCfzY9YuNYlhGAsPSExme7ns+aUwmAzpxMtTk8XLp4/NZvKWc1248do/HSl5JDZc8Pp/y2iYev2Iyx4zsXPLpu+dkLtGREbxyw9ROjWVQWFXPLS99xbwNpcT7fxPuOWs8048astfPRrPHy22vLOGtxdu4+eRR/PibY1r/xuv1VQr9/v3VbKuo55vjs7j79HFdSs474pyjuLqRr3dUsXZHFWsLq/3T1VTUNe3xbxNjIlsrl9ITY0gLePT3Vz61PEdFRvCHD9bw+ldbGZGRyG/OndjhiUBdo4fLnpjPkvxynrpySo/cK/LC/Dx+9sbydk/K8kpquO8fK/nPqkJGZiZy71mHMG1MJiXVDczfWMq8DSXM21DC2h3VreVy6JBUluVXUNXQzMRBKVxx7HDOnJSzTycdwaAEWjrlgxUF/OLN5RRWNbQu658QzZHDfMnR5GH9meBPjtrT0OyhrKaJkpoGSmsaGZaW2Km2l/VNHn7x5nJeWZjP/xw8gD9ddNgu7YX3pLK+iUsfn8/qgiqeuvIojhvV9S+QL9YV86PZiymraeLO08fxveOG71OC09Dsq1X7cmMpT155FNPG7PvQ84Fn9FERxk3fGMU1J4wgNqrzXyqFlfXM+bqYOWuL+GxdMaU1vvaLEwYlMyoziQHJcWQmxTIgOZbMfrEM6BdHZr9YkuOiMDOcc1Q1NFNW00hZbZP/uZHSmkbKa5vITonjqOFpjB6Q1OFJT12jhxtfWMjHa4q449SxfP+kjoeof/CD1Tz00XruOHUsN31j1G6vz9tQwuVPfsn4nGReuOZoEmO7v62jc47SmkY2Fte0PjaV1JBXUstRw9P40TfHkBLftTbqgVd6ymqbSIiJZERGIgdlJnFQZhIjM33TIzISiY+JxOt1FFU3kF9WS35Znf9Ry5bSOjaX1rK5tJaTxmby54sO6/T9A/M2lHDlU18yPN3XHn9f7zsorm7gPyt38MGKAtYX1XDHqWM569CBnf57r9fx49m+k6T7zpnAZccMY3NJLZc+MZ/i6gYevexIThjduc/Nh6t2cOdrS6msa8bhaPL4fs9GDUhi8rD+vpO6Yf0Zlp7QeszVNjazqbjW/7+tZoP/f7y5pJYzJubwq+8c0qOX/jcUVfPSl5t5dWE+ZbVNDE1L4MxJOYwakNSaMKclxuxXrVxJdQPf+dvnvuPw5uPbPYFaU1DFZU/Mp9Hj5dnvTenyif+q7ZVc9Ohc0hJjeOWGjpusASzYVMpNLyyisr6JB86ZyHGjMrj9lSV8tq6Yb47P4n/Pm0h6Byd5jc1ebnnpK95fUdDh9wT4flOe+GwjD3+0joZmL5ceM4zpU4YwMDW+0/eYFFbWszS/gqVbK1i+tYKl+RUUV+/8bUyOi2JMVj9GZ/VjTFYSY7L6MTIzkcZmLyU1jZRU76xcKqlupLTGN11c3UhZje97tLGD7gajIowbTzqIm74xaq+JZEVtExc9NpfNpbW8dO0xe736uj+Kqxs45Q+fcHBOP1669pgOj8uPVhfyq3dWsKmkliFp8Wwp9XVikBATyeThaUwdmc4xI32VLVGREdQ0NPP6onyemZvHusJq0hJjmDFlCJceM4yclNBecVQCLZ1WUdvE8/PzSE+MYfLwNA7KTOyRSyrOOZ6d66tZG56ewN8vn7zHWoMdlfUs2VLOzE/Ws2xrBY9ediQnj8va5/cvrWnkJ68u5T+rdnDS2Ez+33cP7VJNndfruPnlr3h36Xb+dNGhnHv44H2OJdDmklruf3cl/1q5g2HpCdx12jiGpifQ2Oz1PTzeXaYbmrysL65mztri1m6sMpJimTY6gxPHZnL8qIwOf5yCpcnj5Y5XlvDm4m187zjf5da2ScqL8zfz0zeWMWPKEH5z7sQOj7kPVhRw4/MLOX50Jo9fPnm/ei5paPawYlsli/LKWL61go3FNWwortnlSkpUhDE0LYGs5DjmbywhLTGWX5x5MN85dGCnPhcFFfX8/M1l/GdVIYcNSeXcwwexqaSGDUU1rC+qZmt5XWtNvhlkJsVSXtu02w9rRlIMg/onMLh/PEcN68/lU4d3OdGbs7aIa57JZVxOP56/5uhOJxJbSmv5YEUB/1qxg9w8X+3o4P7x9IuLZtX2Si6fOoyfffvgvZ7cOee4560VPDcvb7fkp7Cynsuf/JL1RdX8ZfrhnDGx48vRdY0e7n93JS/M38zBOcn8ZfphDE1LYGl+BQs2lfqamm0qpdL/f8xIimVERgL5ZXVsr9h1xNaclDjfiUt0JB+uLuxye+F90dDs4YMVO3hxfh7zNpQSFWF8c3wWFx89lOMOyghKAr98awXnP/IFhw5J5YVrjt6lmd6SLeVc8dSXxERG8Pw1+96UZmFeGZc+Pp9h6QnMum4qKQm7Hl/OOZ74bCO//edqhqYl8MilRzAu23efitfrePLzjfz+/TWkJETz4AWTOGnsrs1H6ps83Pj8Qj5aU8Q9Z47ne8eP2GtMRVUN/Ok/a3n5y82ttfpJsVFkp8SRkxLHwJR4slPiGJjqa9O9pqCaZVvLWZpf0VqRFGG+k7KJg1IZPzC5NVke0C92v34bnXPUNHooq2mkpKax9bm8tpFpYzK79H8orKzn/JlfBP1ekdtfWcKbX23l/VtPYNSAPcfX0Ozhyc82sTCvlMOH9mfqQelMHJTSbhPRFs45Pl9XwtNfbOLD1TuIMOO0Q7K54tjhHDW8f0iadyiBlrAxd30JN724iKZmL3+dcTjfGDeAyvomluVXsCS/nCVbylmypYIC/9DlsVER/Omiw/b4g9tZLZfH73t3Fclx0fzhwkM5cS+1yC1NI575YhOvf7WVn54xjuumHbTfsbQ1Z20Rv3pnRWs74z2JijCOHNafE8dmMm10JuNzkkN+Q43X67jv3ZU89fkmzj18EL+/YFLrF+lHqwu55tlcjh+VwRNXTN5rjwGzFmzmzteW8Z1DB/Lniw7r9L4VVTWwaHMZi/LKWJhXxtKtFTT6m7AMSo1nZGYiIzISGZ6eyIjMREakJzK4f3xrPMu3VvDTN5axNL+C40dlcN85ExjRQft25xyzc7dw/7uraPJ03NtNXaPHn7hXs76whi1ltaQnxTDYnywP6R/PoNSEDm8G7qr/rNzBDc8vZFh6AuMHppAUG0W/uCiSYv2PuCj6xUYRHxPJki0VfLCigJX+E7Fx2f341iHZnHpIFuNzkmn2Oh78YA2PzdnApMEpPHTxEXu8GbDlCsP1J47krtPG7fZjWFHbxPeeWcBXm8v4zbkTmd5Ok5+l+eXcOmsxG4truPaEkdz2rTHtJu5er+PrwurWJmhbSmsZmp7AyIxERmT4avuHZyS03vfgnOPet1fwzNw87j59HNef2P2f4ZYbwmbnbqG0ppHB/eOZMWUo3508mAH9gt82/c2vtnLrrMVcMXUYvzp7AuD7vr3mmQWkJcXwwtXH7HdvLZ9+XcTVT+cyYVAyz1298ypRVX0TP3l1Kf9cXsBph2Tz++9OavcEbtX2Sm59eTFrdlRxxdRh3H3GwcRFR1LT0My1z+Yyd0MJv+lEc7C2NhXXsHRrBdvLfSdR2yvqKKioZ1tFPcXVDbucxB6UmcSkQSlMGJTCpMEpjB+YHBY9e3TmXpGWK2ybSmqprGvi+NEZe0xoA325sZQLH53LjScdxJ2njevu8HezuaSW5+ZtYtaCLVTWN/OvH00LyX0SSqAlrOSX1XL9cwtZub2S4emJbCzemTQOT0/g0CGpHDo4lUOHpHLIwORubyu1uqCSW176irU7qrnm+BHccdrYXX6kS6ob+PTrYj5eU8icr31NI8zghhMP4ienjg3aWXKTx8unXxfR5HHEREUQGxlBTFTAwz+flhjTK7/wnXM8/PF6HvxgDd8Ym8nDlxzJen/7yREZicy6fipJnWyW8cjH6/nd+6u5Yuow7v3OIa1l7vE6Cirr2VxSy5ayWvJLa9lUUsuS/HLySmoBXzv+iYNTOHJYf44Y2p8jhqV2OoHxeB0vzs/j9++vocHj5fsnHcSNJx20y/GxpbSWu19fxmfrijl6hK+/9c7eSNoT/rWigIc+WkdlfTNV9c1UNzRR37T7pWQzOGJof049JItvjc/ucB/+taKA215ZggF/uPAwvjl+9ytBj36ynt/+czUzpgzlN+dO6PAzUtvYzI3PL+KTtUXcdfo4bvAnsh6vY+Yn6/nTv9eS2S+WP3z3UI7dh+Zae+L1On44azHvLNnGgxdM4rsd3Ji5Lwqr6rn22YUszS/nW+OzuPjoYZwwKji1zXvywLsr+funG/n9+ZPI6BfDjc8vYmhaAs9dfXS3den5/vICvv/CQo49KIMnrpzMxuIabnx+EZtLa7nrtHFcc8KIPX5H1jd5+P37a3jy842MGpDEA+dM4MEP1rBocxl/uLD7ru61aGz2sqOynvLaJkZkJnb6O6g3WrGtgumP+u4Vuf+cCWwrr2NTcQ0b/Tehbmxzhe2o4f3528VH7PXm4iaPlzP/+hnVDc38+8fTevT3pbaxmTlri/ark4H9oQRawk5do4ffvb+a/LLa1mR50uCUbu0zek/qm3yXiZ+ft5kJg5L58TfHsHhLBZ+sKWTp1gqcg/TEGKb5exQJRdOIcPXi/M38/M1lHDoklfyyOmIiI3j9+8d2qYcI5xwPvLuKxz/byCnjBtDo8bKltJat5XWtbWHBd/k1JyWeCYOSmTwsjSOG9WfCoOQutSVvT2FlPfe9u4p3lmxjZEYi950zgakj03luXh6/e381Btx9xsFcPGVoyGv/O6PJ46WmoSWh9j2GpSV06kY18NUW3fTiIpZtreD6aSO5/dSxrTVbL325mbtfX8aZk3L4y/TD99o9Y2Oz7yaxd5Zs4/oTR3Lp0cP40azF5OaVceakHB44Z+JuzQO6S2Ozl6ufWcAX60t49NIj+Z92Tga6ak1BFd97egGlNY38efphnHpI93eb2VnNHi9X+u/T8DrHwTnJPPO9KaR1842Xry7M5/ZXlnDksP6s2FZBv7ho/jbjcI7u5I2J4LvqdvsrSyisaiAqwvjrjD037RGflntFWq6uRRgM7p/AsPSE1itswzMSKK5q5JdvryAxNoq/XXz4Hm8a/fucDTzw3ioeu+xIvhXC4zcUlECL7KMPVhRw52tLKa9tIsLgsCGpnDR2ACeOyWTioJSwSI56o38u284PX15MbHQEr9147D5dmvN6Hfe+s4L3lm1nUGo8Q9ISGJKWwNC0BIb09z3npMZ1+hLlvpiztohfvLWcvJJahqYlsLm0lmljMvnteRN7Xb/LwVbf5OGBd1fx3Lw8jhren/+bcQQLNpVyy8tfcdKYTB69rPNt1j1exy/fXs7z8zYTFWHER0dy3zkTOPuwzrU93x/VDc1c8vd5rC6o4vlr9m+QkDlri7jphUXExUTy5BVHMXFwz/aV3J6ymkbOn/kFWf3ieOzyIzt9w3ZXPf35Ru59ZyVTRqTxt4sP36dmKmU1jfzlw685edyA/bop+0CzrrCKvJJahmckMqR/Qoefu693VHHD8wvZVFLLHaf6Ruht+/naXlHHKX/4hKkj03n8ism9rpu5YFMCLbIfCivrWba1giOGhmcXWb3Vqu2VREdGhP3gKPVNHh7+eD1vfrWVm08exQVHDj7gfmQCvbV4K3e/vozYqAiq6ps5Ylh/nrlqSpfbcTvneOijdSzeUsEvzxrfo4OtlFQ38N2ZcymubmD2DVNbb3brihfm53HPWysYPSCJJ688qlf1X97s8RIZYUE/TtcXVTMsLaHLIyFKz6luaObO15by7tLtfGt8Fv/vwkN3aZ/+/RcW8uGqQv7z4xMPyAGPlECLiEiPWVdYzQ9eXERcdCTPXT0laLWcwZRfVsv5j3wBwGs3Htup/o3BV3v+v/9cxd8/3chJYzP528VHhHW7Wun7nHM89fkmfvPeKgb3j+fhS45k/MBkPl5TyJVPLeD2b43hByeHZsjwUFMCLSIiPco5h3OEdTOnNQVVfHfmF2QkxfLKDVP3ep9DbWMzt768mH+t3MHlU4dxz5njVfsqYSN3Uyk3vbiI8tom7v3OIcz8ZD2RZvzz1hP2+76RcKUEWkREZB/kbirlksfnMyIjkZPHDSAhJpKEmCgSYiKJj4kk0T8dFRnBff9YyfJtFdxz5niuOm7v/RSL9DZFVQ3c8tJXzN1QAsDzVx/dIyMc9lZKoEVERPbRf1fv4M7XllFW00hzB8Pbg2+ktb9OP7xbeu8QCZVmj5dHPl6Pxzlu/Z8xoQ4npJRAi4iIdIPGZi+1jc3UNnr8j+bW59ED+h2QN1qJ9FUdJdC6q0FERKQLfAMXxZCqPFnkgKU7G0REREREukAJtIiIiIhIFyiBFhERERHpAiXQIiIiIiJdoARaRERERKQLlECLiIiIiHSBEmgRERERkS5QAt0ZXi/k50JNCYTZwDMiIiIi0r00kEpnVG2Dx0/xTccmQ//hkDYC+o/wPaeN9E0nD4SIyJCGKiIiIiLBpQS6M+L7w4yXoXQjlG30PRcsh9Xvgbdp53oR0ZA6BFKHBjyG7ZxOyoYIVfqLiIiIhDMl0J0RkwhjT999udcDFfk7k+qyjVC+Bco3w5r3oaZw1/UjYyB7Igw/HoZPg6HHQGxSz+yDiIiIiHQLc0Fs02tmpwF/ASKBx51z/9vmdfO/fgZQC1zpnFu0p21OnjzZ5ebmBinibtZU50uwy/N8SXXpRtjyJWxd6Ku5joiCgUfAiBNg+Akw5GiISQh11CIiIiICmNlC59zktsuDVgNtZpHAQ8A3gXxggZm97ZxbGbDa6cBo/+No4BH/c98QHQ8Zo32PQI01sHkebPoUNn4Kn/0ZPv2DrwlI9kSIS4HoBF8yHR0P0Yn+Z/+yyBhfW+uIKN/DInedj4j0L4sAi9j5eutzBJgB5n/GNw07l7fyn2DtcqIVMG0B79E6HbHzvZ3XV1Pv9YC3GZz/2ev1z3sDYonYGdtuy9o8IiL96wW8j/P6ttsy7TwB066DbRm7lEdgGQSWTbvl1N58B2W1Lyeq7cXUMu2cb9vO+favZbr1mZ371hJ/63Sb/d3l/dpojbvtfriOj4m2+9pueQc8dtme2/n/at2/tmXXTlk6//HU+vDsPm8REBnt/4xEQ2RUwHR0F46DPS1rKet2yjIYXNv/e8vx0BJb289UZ7YX8BnC2nxniIgIBLcJxxRgnXNuA4CZvQycDQQm0GcDzzpfNfg8M0s1sxzn3PYgxhV6MYkw6hTfA6ChypdQb5wDBUuhsRpqinyJdlOd/1HjSwREJMx0lJB3wh5PUrp4UrbbiYvtmiy3nIh1vIF2TsQjd/5NYEwdxhew77uUQ2dP5gJPqFw779PmBNEi/Ju2Niee7L6Ndk8O20xD++VobU5W9qTDk9KAZZ3SibJs+/9trWjw7Ky8aFvJYgH/53b3p53969LJVSfitnaW7dypdifbPcnfZb6jcPYQ+57+drcTZ3bO73L8tDy3d6y2Pem2Xcu8vc/UbhUU7ZzABz53WgeVIK2VE56ACrA2lWK7fDe0rbgL/JwE7Htr7IFl0eb1XfYRuPJd6JfdhX0KrmAm0IOALQHz+exeu9zeOoOAXRJoM7sOuA5g6NCh3R5oyMX2g9Hf9D32xNPkS6o9TW1qcz2717gFfkk6z86DP7CWdo+1io52D/IWgT9G3sCa3jZf0oE/uC215NZSWx5QA9lS67hLjWpA7XFHPwQtjz3WVLe8R3vbCdiHXcqgo6SAPc93VFZtl+3VXn7Qd/uybad2tN0a3YBybvt+u4UQ8D677Efgfu3txzDgf9pu+Xt2rt9hjXkna8tba5cDrsQEXqVp+by0fH5ap5sCfgw6SM7a1vLusqzN+ntMxDqRIO1yHAWWZZv9bls+1mY68PPkOviMtr1yFHgFCdsZd+uPZ9vvEU9ADLSZbhNvR8lIV4/F3bbfNjlu878IvELTXnKxp+22nW6Jr93jOWB+rwnlXr5b96ZTV3/crv/ftlftWr4XW/+3AZ/JwN+ODt+3nfffa9wdzOz1ql3A7xF04vNhbV7qqEzd7rO7rdpBEt/u577NcdYaU5tEu72/DTxOdzmG2vt8tfl+7fB5bzpRrmbtXN0OnI/wbccb8D3T2Xyjdb6jY4FdX4uM6cQ+9ZxgJtB7OXXs9Do45x4DHgNfG+j9Dy1MRUZDfGqooxARERE5oAWzT7V8YEjA/GBg2z6sIyIiIiLSawQzgV4AjDazEWYWA0wH3m6zztvA5eZzDFDR59s/i4iIiEhYC1oTDudcs5n9APgAXzd2TzrnVpjZDf7XZwLv4evCbh2+buyuClY8IiIiIiLdIagDqTjn3sOXJAcumxkw7YCbghmDiIiIiEh30rjSIiIiIiJdoARaRERERKQLlECLiIiIiHSBEmgRERERkS4w16nRanoPMysC8kL09hlAcYjeu69SmQaHyjU4VK7BoXLtfirT4FC5BkdvLtdhzrnMtgvDLoEOJTPLdc5NDnUcfYnKNDhUrsGhcg0OlWv3U5kGh8o1OMKxXNWEQ0RERESkC5RAi4iIiIh0gRLornks1AH0QSrT4FC5BofKNThUrt1PZRocKtfgCLtyVRtoEREREZEuUA20iIiIiEgXKIEWEREREekCJdCdYGanmdkaM1tnZneFOp5wZWZPmlmhmS0PWJZmZv82s6/9z/1DGWO4MbMhZvaRma0ysxVm9kP/cpXrfjCzODP70syW+Mv1V/7lKtduYGaRZvaVmf3DP69y3U9mtsnMlpnZYjPL9S9Tue4HM0s1s1fNbLX/O3aqynT/mNlY/zHa8qg0s1vDsVyVQO+FmUUCDwGnA+OBGWY2PrRRha2ngdPaLLsL+NA5Nxr40D8vndcM3OacOxg4BrjJf3yqXPdPA3Cyc+5Q4DDgNDM7BpVrd/khsCpgXuXaPb7hnDssoD9dlev++QvwvnNuHHAovmNWZbofnHNr/MfoYcCRQC3wBmFYrkqg924KsM45t8E51wi8DJwd4pjCknNuDlDaZvHZwDP+6WeAc3oypnDnnNvunFvkn67C9wU/CJXrfnE+1f7ZaP/DoXLdb2Y2GPg28HjAYpVrcKhc95GZJQPTgCcAnHONzrlyVKbd6RRgvXMujzAsVyXQezcI2BIwn+9fJt0jyzm3HXzJIDAgxPGELTMbDhwOzEflut/8zQwWA4XAv51zKtfu8WfgJ4A3YJnKdf854F9mttDMrvMvU7nuu5FAEfCUv7nR42aWiMq0O00HXvJPh125KoHeO2tnmfr+k17FzJKA14BbnXOVoY6nL3DOefyXGQcDU8xsQohDCntmdiZQ6JxbGOpY+qDjnHNH4GtueJOZTQt1QGEuCjgCeMQ5dzhQQxg0KwgXZhYDfAd4JdSx7Csl0HuXDwwJmB8MbAtRLH3RDjPLAfA/F4Y4nrBjZtH4kucXnHOv+xerXLuJ/7Ltx/ja76tc989xwHfMbBO+5nAnm9nzqFz3m3Num/+5EF+b0imoXPdHPpDvv/IE8Cq+hFpl2j1OBxY553b458OuXJVA790CYLSZjfCfMU0H3g5xTH3J28AV/ukrgLdCGEvYMTPD10ZvlXPujwEvqVz3g5llmlmqfzoe+B9gNSrX/eKcu9s5N9g5Nxzfd+l/nXOXonLdL2aWaGb9WqaBbwHLUbnuM+dcAbDFzMb6F50CrERl2l1msLP5BoRhuWokwk4wszPwtduLBJ50zj0Q2ojCk5m9BJwEZAA7gF8CbwKzgaHAZuC7zrm2NxpKB8zseOBTYBk725T+FF87aJXrPjKzSfhuZInEV9Ew2zn3azNLR+XaLczsJOB259yZKtf9Y2Yj8dU6g6/pwYvOuQdUrvvHzA7Dd7NrDLABuAr/9wEq031mZgn47i0b6Zyr8C8Lu2NVCbSIiIiISBeoCYeIiIiISBcogRYRERER6QIl0CIiIiIiXaAEWkRERESkC5RAi4iIiIh0gRJoEZFezsw8ZrY44NFtI6KZ2XAzW95d2xMRORBEhToAERHZqzr/sOIiItILqAZaRCRMmdkmM/udmX3pf4zyLx9mZh+a2VL/81D/8iwze8PMlvgfx/o3FWlmfzezFWb2L//oi5jZLWa20r+dl0O0myIivY4SaBGR3i++TROOiwJeq3TOTQH+hm/EVPzTzzrnJgEvAH/1L/8r8Ilz7lDgCGCFf/lo4CHn3CFAOXC+f/ldwOH+7dwQnF0TEQk/GolQRKSXM7Nq51xSO8s3ASc75zaYWTRQ4JxLN7NiIMc51+Rfvt05l2FmRcBg51xDwDaGA/92zo32z98JRDvn7jez94Fq4E3gTedcdZB3VUQkLKgGWkQkvLkOpjtapz0NAdMedt4f823gIeBIYKGZ6b4ZERGUQIuIhLuLAp7n+qe/AKb7py8BPvNPfwjcCGBmkWaW3NFGzSwCGOKc+wj4CZAK7FYLLiJyIFJtgohI7xdvZosD5t93zrV0ZRdrZvPxVYjM8C+7BXjSzO4AioCr/Mt/CDxmZlfjq2m+EdjewXtGAs+bWQpgwJ+cc+XdtD8iImFNbaBFRMKUvw30ZOdccahjERE5kKgJh4iIiIhIF6gGWkRERESkC1QDLSIiIiLSBUqgRURERES6QAm0iIiIiEgXKIEWEREREekCJdAiIiIiIl3w/wEOxStb60pZlwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plotting Loss/MSE\n", "\n", "results = res\n", "\n", "history = results.history\n", "plt.figure(figsize=(12,4))\n", "plt.plot(history['val_loss'])\n", "plt.plot(history['loss'])\n", "plt.legend(['val_loss', 'loss'])\n", "plt.title('Loss')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Loss')\n", "plt.savefig('{}/Loss.png'.format(modelname))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "def dummy_invscaler(y, n_features):\n", " '''\n", " Since the scaler was trained into 2 features, it needs two features to perform the inverse scaleer.\n", " For that purpose, this function will create a dummy array and concatenate it to the y_pred/y_true.\n", " That dummy of ones will be drop after performing the inverse_transform.\n", " INPUTS: array 'y', shape (X,)\n", " '''\n", " y = np.array(y).reshape(-1,1)\n", " if n_features>1:\n", " dummy = np.ones((len(y), n_features-1))\n", " y = np.concatenate((y, dummy), axis=1)\n", " y = sc.inverse_transform(y)\n", " y = y[:,0]\n", " else:\n", " y = sc.inverse_transform(y)\n", " return y" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y_pred:\n", " [37148.42007106434, 37375.90173512726, 37340.001538518474, 37676.947550316, 38732.70573365663, 39165.05632037239, 39478.00301122301, 39727.33587560325, 40236.67395618728, 40719.41198114914]\n", "y_true:\n", " [[36684.925781], [37575.179688], [39208.765625], [36894.40625], [35551.957031], [35862.378906], [33560.707031], [33472.632813], [37345.121094], [36625.628906]]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAE/CAYAAAB7Mf/bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABjMklEQVR4nO3dd3hVVdbH8e9KQu+BUEPvRaQEVJCOgoDYULE79l5m7OM76sw4jl2xo469oNgRVMBG19AE6QhShdB7SbLfP/ZBAgRIucnJTX6f57lPbk5d555wuevuvdc25xwiIiIiIiIi0SIm7ABEREREREREskOJrIiIiIiIiEQVJbIiIiIiIiISVZTIioiIiIiISFRRIisiIiIiIiJRRYmsiIiIiIiIRBUlsiIiUqSZWR0z22ZmsWHHklVm9r2ZXRE8v8DMvsmHc9YzM2dmcXl9LhERkaNRIisiInnOzJaa2c4gYdxoZl+aWe1g3ahg+TYz22tmezL8/qJ5N5nZbDPbbmYrzOxDMzsmErE555Y558o659Iicbx9gqRve3AdK83sibxIlp1z7zjnTs5CPPeb2duRPn+kBPd6333fE/wt7Pt9VNjxiYhIwaJEVkRE8supzrmyQA1gDfAMgHPulCCRLAu8Azyy73fn3DXA08DNwE1APNAE+BTon9uA8qF18djgunoB5wNXhhBDVHDOXZPh7+A/wLAMfwen7NtOr5eIiIASWRERyWfOuV3AcKDF0bY1s8bA9cB5zrlvnXO7nXM7glbI/x5mn+/N7CEz+8nMNpvZZ2YWH6zb1z32cjNbBnx7cJdZM4s3s9fMbFXQevxphmMPMLMZZrbJzCaaWessXvM8YBzQKrMYgmNfZmZzg3N+bWZ1M5z3JDObF1zPs4BlWHepmY3P8HtLMxttZhvMbI2Z3WNmfYF7gHODFs6ZwbYVzOxVM1sdtBr/e1+rsZnFmtljZrbOzH7jCF8cmNldZjb8oGVPm9mQDDH+ZmZbzWyJmV2Qldctw7GWmtmdZvYLsN3M4oLXsFGGbV43s39n+D1H90pERKKDElkREclXZlYaOBeYnIXNewErnHM/ZfM0FwOXATWBVGDIQeu7Ac2BPpns+xZQGmgJVAWeDOJuB/wPuBqoDLwEfG5mJY4WjJm1ALoA0zOLwcxOxyeaZwIJ+KT3vWDfKsBHwL1AFWAx0Pkw5ykHjAG+Cq69ETDWOfcVB7ZyHhvs8gb+9WkEtAVOBq4I1l0JDAiWJwGDjnCJ7wH9zKx8EEcscA7wrpmVwb/+pzjnygGdgBlHONbhnIdPpis651KPtGFu7pWIiEQHJbIiIpJfPjWzTcAW4CTg0SzsUxlYnYNzveWcm+2c2w78H3DOQeNT73fObXfO7cy4k5nVAE4BrnHObXTO7XXO/RCsvhJ4yTk3xTmX5px7A9gNHH+EOKaZ2UbgC+AV4LXDxHA18JBzbm6QpP0HaBO0yvYD5jjnhjvn9gJPAX8c5nwDgD+cc48753Y557Y656ZktqGZVQuu9ZYgjrX4pH1wsMk5wFPOueXOuQ3AQ4e7SOfc78A04PRgUU9gh3Nu35cV6fjW6FLOudXOuV8Pd6wjGBLEsvPom+boXomISBRRIisiIvnldOdcRaAEcAPwg5lVP8o+6/FjarNreYbnvwPF8K2Zma3PqDawwTm3MZN1dYG/BV1VNwVJeW18y+fhtHPOVXLONXTO3eucSz9MDHWBpzMcdwO++3Ct4Ph/buucc0eJf/ER4jn4eooBqzOc9yV8KzQHnxf/Oh7Ju/hWU/Djgd8N4t2Ob4G/JjjXl2bWLIsxZnS4a85MTu6ViIhEESWyIiKSr4IWso+BNODEo2w+Fkg0s6RsnqZ2hud1gL3AuoxhHGa/5UC8mVU8zLoHnXMVMzxKO+fey2ZsmcWwHLj6oGOXcs5NxLdI/3k9ZmYceH0Hx9gwC+fbt+1uoEqGc5Z3zrUM1h9wXvzreCQfAt3NLBE4gyCRBXDOfe2cOwn/pcQ84OWjHCsr8e/AdwHfJ+OXIpG+VyIiUsAokRURkXxl3mlAJWDukbZ1zi0EngfeM7PuZlbczEqa2WAzu+sIu15oZi2C8bj/BIZnZXod59xqYBTwvJlVMrNiZtY1WP0ycI2ZHRdcQxkz6x+MS82tF4G7zawl/FmE6exg3ZdASzM703xBqps4MGnLaARQ3cxuMbMSZlbOzI4L1q0B6plZTIZr/QZ43MzKm1mMmTU0s27B9h8AN5lZoplVAo70euOcSwG+x3efXuKcmxtcSzUzGxiMld0NbMN/iZFbM4Dzg6JUffFjjvfJy3slIiIFgBJZERHJL1+Y2Tb8GNkHgUuyOFbyJuBZ4DlgE77r7Bn4caeH8xbwOn4sacngGFl1Eb4Fdx6wFrgFwDmXjB97+SywEVgEXJqN4x6Wc+4T4GHgfTPbAszGj1/FObcOOBv4L76rdWNgwmGOsxU//vhU/LUvBHoEqz8Mfq43s2nB84uB4sCc4JqGs78r98vA18BM/PjXj7NwKe8CvcnQGov/rPE3YBW+y3Q34LosHOtobsZf5ybgAvyUTEDe3isRESkYzA+1ERERKRzM7HvgbefcK2HHIiIiInlDLbIiIiIiIiISVZTIioiIiIiISFRR12IRERERERGJKmqRFRERERERkaiiRFZERERERESiSlzYAeRUlSpVXL169cIOQ0RERERERPLA1KlT1znnEjJbF7WJbL169UhOTg47DBEREREREckDZvb74dapa7GIiIiIiIhEFSWyIiIiIiIiElWUyIqIiIiIiEhUidoxsiIiIiIiImHau3cvK1asYNeuXWGHEtVKlixJYmIixYoVy/I+SmRFRERERERyYMWKFZQrV4569ephZmGHE5Wcc6xfv54VK1ZQv379LO+Xpa7FZrbUzGaZ2QwzSw6WxZvZaDNbGPyslGH7u81skZnNN7M+GZa3D46zyMyGWHC3zayEmQ0Llk8xs3pZvgIREREREZEQ7Nq1i8qVKyuJzQUzo3Llytlu1c7OGNkezrk2zrmk4Pe7gLHOucbA2OB3zKwFMBhoCfQFnjez2GCfF4CrgMbBo2+w/HJgo3OuEfAk8HC2rkJERERERCQESmJzLyevYW6KPZ0GvBE8fwM4PcPy951zu51zS4BFQEczqwGUd85Ncs454M2D9tl3rOFAL9NfhIiIiIiIyBHFxsbSpk0bWrVqxdlnn82OHTtyfKxLL72U4cOHA3DFFVcwZ86cw277/fffM3HixGyfo169eqxbty7HMe6T1UTWAd+Y2VQzuypYVs05txog+Fk1WF4LWJ5h3xXBslrB84OXH7CPcy4V2AxUzt6liIiIiIiIFC2lSpVixowZzJ49m+LFi/Piiy8esD4tLS1Hx33llVdo0aLFYdfnNJGNlKwmsp2dc+2AU4DrzazrEbbNrCXVHWH5kfY58MBmV5lZspklp6SkHC1miaS9O2HTMlgxFeaPgpnDYPe2sKMSEREREZFAly5dWLRoEd9//z09evTg/PPP55hjjiEtLY3bb7+dDh060Lp1a1566SXAF1q64YYbaNGiBf3792ft2rV/Hqt79+4kJycD8NVXX9GuXTuOPfZYevXqxdKlS3nxxRd58sknadOmDePGjSMlJYWzzjqLDh060KFDByZMmADA+vXrOfnkk2nbti1XX301vnNu7mWparFzblXwc62ZfQJ0BNaYWQ3n3Oqg2/C+q14B1M6weyKwKliemMnyjPusMLM4oAKwIZM4hgJDAZKSkiLzChRVzsGuzbA9xT+2rT3C83WwZ+uhx0i6DAY8mf+xi4iIiIjIAVJTUxk1ahR9+/oyRD/99BOzZ8+mfv36DB06lAoVKvDzzz+ze/duOnfuzMknn8z06dOZP38+s2bNYs2aNbRo0YLLLrvsgOOmpKRw5ZVX8uOPP1K/fn02bNhAfHw811xzDWXLluW2224D4Pzzz+fWW2/lxBNPZNmyZfTp04e5c+fywAMPcOKJJ/KPf/yDL7/8kqFDh0bkeo+ayJpZGSDGObc1eH4y8E/gc+AS4L/Bz8+CXT4H3jWzJ4Ca+KJOPznn0sxsq5kdD0wBLgaeybDPJcAkYBDwrYtUql6UpKfBjvVB8hkkoIdLULenQNqeTA5iULoylEmAsglQq/3+52USoExV/3zaW5D8GrS7GGq2zfdLFREREREpSB744lfmrNoS0WO2qFme+05tecRtdu7cSZs2bQDfInv55ZczceJEOnbs+Od0Nt988w2//PLLn+NfN2/ezMKFC/nxxx8577zziI2NpWbNmvTs2fOQ40+ePJmuXbv+eaz4+PhM4xgzZswBY2q3bNnC1q1b+fHHH/n4448B6N+/P5UqVcp0/+zKSotsNeCToPZSHPCuc+4rM/sZ+MDMLgeWAWcDOOd+NbMPgDlAKnC9c25fx+xrgdeBUsCo4AHwKvCWmS3Ct8QOjsC1FX57dsBv38OCUbBoLGxZRSY9siGmGJStCmWq+ES0Wsv9zzMuL5Pgk9jYLPxZxDeEeSNg5O1w2TcQk5u6YSIiIiIikhP7xsgerEyZMn8+d87xzDPP0KdPnwO2GTly5FErBjvnslRVOD09nUmTJlGqVKlD1uVFHd+jZizOud+AYzNZvh7odZh9HgQezGR5MtAqk+W7CBJhOYqta2DBV36c6m/fQeouKFEeGvaEKk2CxDRoPd2XpJasCJH+4ylVEXo/AJ9dBzPfhbYXRvb4IiIiIiJR5Ggtp2Hq06cPL7zwAj179qRYsWIsWLCAWrVq0bVrV1566SUuvvhi1q5dy3fffcf5559/wL4nnHAC119/PUuWLDmga3G5cuXYsmV/C/TJJ5/Ms88+y+233w7AjBkzaNOmDV27duWdd97h3nvvZdSoUWzcuDEi15SlMbISIudg7VyYP9Inryv9gGsq1IF2l0DTU6BuZ4grnv+xHXseTH0dRt8HzQb45FZERERERAqUK664gqVLl9KuXTuccyQkJPDpp59yxhln8O2333LMMcfQpEkTunXrdsi+CQkJDB06lDPPPJP09HSqVq3K6NGjOfXUUxk0aBCfffYZzzzzDEOGDOH666+ndevWpKam0rVrV1588UXuu+8+zjvvPNq1a0e3bt2oU6dORK7JonUoalJSkttXRavQSdsLv0/wiev8UbDpd7+8VnufuDY5xXcPLghT7a6aAUO7Q8eroN8jYUcjIiIiIpJv5s6dS/PmzcMOo1DI7LU0s6nOuaTMtleLbEGxcxMsGuNbXheOgd2bIa4kNOgOXf4KTfpCuephR3momm189eKfX/aFn6of0nNcREREREQkopTIhmnDkmC860j4fSKkp0LpKtDiVGjazyexxcsc9TCh63kv/PoJjLwN/jKqYLQUi4iIiIhIoaVENj+lp8PKqT5xXfAVrA3KUyc0g043+uS1VnuIiQ03zuwqHQ+974MvboZZH0Lrc8KOSERERERECjElsnlt3xQ580fCgq/9/K4WC3U7QZ+HoGlfiG8QdpS51/YiX/jpm3t9N+iS5cOOSERERERECiklsnlh1xbf1fbgKXIa9fatro17Q6nITARcYMTEQr/H4ZVe8MPD0OeQ2ZdEREREREQiQolsXti7E764qWBMkZOfEttDu4tgyou+hbZqs7AjEhERERGRQkiJbF4oVw1umAqVGxa9wke97oM5n8Go2+Hiz4ve9YuIiIiI5JP169fTq1cvAP744w9iY2NJSEgA4KeffqJ48cLbkKZENq9UaRR2BOEoUwV6/p+vYDznU2h5RtgRiYiIiIgUSpUrV2bGjBkA3H///ZQtW5bbbrvtz/WpqanExRXOlK9wXpWEK+kymPYGfP13aHQSlCgbdkQiIiIiIkXCpZdeSnx8PNOnT6ddu3aUK1fugAS3VatWjBgxgnr16vH2228zZMgQ9uzZw3HHHcfzzz9PbGx0zKASE3YAUgjFxEK/x2DLShj3eNjRiIiIiIgUKQsWLGDMmDE8/vjhP4vPnTuXYcOGMWHCBGbMmEFsbCzvvPNOPkaZO2qRlbxR53g49jyY+Ay0uaDodrUWERERkaJh1F3wx6zIHrP6MXDKf7O929lnn33UltWxY8cydepUOnToAMDOnTupWrVqjsIMgxJZyTu9H4B5X8KoO+DCj1T4SUREREQkH5QpU+bP53FxcaSnp//5+65duwBwznHJJZfw0EMP5Xt8kaBEVvJOuWrQ/W74+m6f0DYfEHZEIiIiIiJ5Iwctp/mhXr16jBgxAoBp06axZMkSAHr16sVpp53GrbfeStWqVdmwYQNbt26lbt26YYabZRojK3mr41VQtQV8dbefX1dERERERPLNWWedxYYNG2jTpg0vvPACTZo0AaBFixb8+9//5uSTT6Z169acdNJJrF69OuRos86cc2HHkCNJSUkuOTk57DAkK5aOh9f7Q7c7occ9YUcjIiIiIhIRc+fOpXnz5mGHUShk9lqa2VTnXFJm26tFVvJevROh1SAY/xRsWBJ2NCIiIiIiEuWUyEr+OPlfEFvMdzEWERERERHJBSWykj/K14Rud8CCUbDg67CjERERERGRKKZEVvLPcddClSYw6k7YuyvsaEREREREci1aaw4VJDl5DZXISv6JKw6nPAwbl8CkZ8KORkREREQkV0qWLMn69euVzOaCc47169dTsmTJbO2neWQlfzXsCc0Hwo+PQ+tzoWKdsCMSEREREcmRxMREVqxYQUpKStihRLWSJUuSmJiYrX2UyEr+6/MfWDgavv47nPtW2NGIiIiIiORIsWLFqF+/fthhFEnqWiz5r2Jt6Po3mPs5LP427GhERERERCTKKJGVcHS6CeIbwMg7IHVP2NGIiIiIiEgUUSIr4YgrAX0fhvULYfLzYUcjIiIiIiJRRImshKfJydC0H/zwCGxZFXY0IiIiIiISJbKcyJpZrJlNN7MRwe/DzGxG8FhqZjOC5fXMbGeGdS9mOEZ7M5tlZovMbIiZWbC8RHC8RWY2xczqRfYypcDq8x9IT4Vv7g07EhERERERiRLZaZG9GZi77xfn3LnOuTbOuTbAR8DHGbZdvG+dc+6aDMtfAK4CGgePvsHyy4GNzrlGwJPAw9m+EolO8fXhxFth9kewZFzY0YiIiIiISBTIUiJrZolAf+CVTNYZcA7w3lGOUQMo75yb5PyMwW8CpwerTwPeCJ4PB3rta62VIuDEW/x8siNvh7S9YUcjIiIiIiIFXFZbZJ8C7gDSM1nXBVjjnFuYYVn9oBvyD2bWJVhWC1iRYZsVwbJ965YDOOdSgc1A5SzGJtGuWCno+19ImQs/vRx2NCIiIiIiUsAdNZE1swHAWufc1MNsch4HtsauBuo459oCfwXeNbPyQGYtrG7faY6wLmMsV5lZspklp6SkHC10iSZN+0Gj3vD9Q7B1TdjRiIiIiIhIAZaVFtnOwEAzWwq8D/Q0s7cBzCwOOBMYtm9j59xu59z64PlUYDHQBN8Cm5jhuInAvlK1K4DaGY5ZAdhwcCDOuaHOuSTnXFJCQkI2LlMKPDM45RFI3QVj7gs7GhERERERKcCOmsg65+52ziU65+oBg4FvnXMXBqt7A/Occ392GTazBDOLDZ43wBd1+s05txrYambHB+NfLwY+C3b7HLgkeD4oOMchLbJSyFVuCCfcADPfg2WTw45GREREREQKqNzOIzuYQ4s8dQV+MbOZ+MJN1zjn9rWuXosvGLUI31I7Klj+KlDZzBbhuyPflcu4JFp1vQ3K14KRt0F6WtjRiIiIiIhIAWTR2vCZlJTkkpOTww5D8sKvn8CHl0K/x6DjlWFHIyIiIiIiITCzqc65pMzW5bZFViTyWpwO9bvBt/+C7evCjkZERERERAoYJbJS8JhBv0dhz3YY+0DY0YiIiIiISAGjRFYKpoSmcPy1MO0tWHG4mZ9ERERERKQoUiIrBVe3O6FsNRj5N0hPDzsaEREREREpIJTISsFVohyc/G9YNR2mvxl2NCIiIiIiUkAokZWC7ZhBULczjHkAFo6BzSshSitti4iIiIhIZMSFHYDIEe0r/PTKSfDOWX5Z8XJ+DO2fj2b+Z4U6EKPvZkRERERECjslslLwVWsJt86GtXMgZR6kzPc/F42BGe/s3y6uFCQ02Z/YJjSDKk2hUj2I1Z+6iIiIiEhhoU/3Eh1Kx0O9E/0jox0bYN2CDAnufFg6AX4Ztn+b2OJQufGBrbcJzSC+AcQVz9/rEBERERGRXFMiK9GtdDzUOd4/Mtq1BdYtDBLcIMldNQ1+/QQIxtjGxEF8w0O7KFduDMVK5vuliIiIiIhI1iiRlcKpZHlIbO8fGe3ZAesX7u+enDLfd1meNwJcMMWPxfhk9owXoFb7Q48tIiIiIiKhUiIrRUvx0lDjWP/IKHU3rF+8P7md9iZ8ci1cMw7iSoQTq4iIiIiIZEqJrAj4ZLVaC/8ASOzgqySPfxK63xVubCIiIiIicgDNVSKSmca94ZizYdzjvoVWREREREQKDCWyIofT5yEoXgY+vwnS08OORkREREREAkpkRQ6nbAL0+Q8snwxTXws7GhERERERCSiRFTmSY8+DBt1hzP2wZVXY0YiIiIiICEpkRY7MDAY8CWl7YeTtYUcjIiIiIiIokRU5uvgGvnLxvBEw94uwoxERERERKfKUyIpkxQk3QPVj4MvbYOemsKMRERERESnSlMiKZEVsHAx8Brav9eNlRUREREQkNEpkRbKqZls4/jpfwfj3iWFHIyIiIiJSZCmRFcmOHvdAxTrwxc2QujvsaEREREREiiQlsiLZUbyMr2K8bgGMezzsaEREREREiiQlsiLZ1ag3HHMOjHsC1s4NOxoRERERkSJHiaxITvR9CEqU812M09PDjkZEREREpEhRIiuSE2WqQJ//wPIpkPxq2NGIiIiIiBQpSmRFcurYwdCgB4x5ADavDDsaEREREZEiQ4msSE6Z+cJP6akw8nZwLuyIRERERESKhCwnsmYWa2bTzWxE8Pv9ZrbSzGYEj34Ztr3bzBaZ2Xwz65NheXszmxWsG2JmFiwvYWbDguVTzKxeBK9RJO/E14ced8P8L2Hu52FHIyIiIiJSJGSnRfZm4OASrU8659oEj5EAZtYCGAy0BPoCz5tZbLD9C8BVQOPg0TdYfjmw0TnXCHgSeDgnFyMSiuOvh+qtfavszk1hRyMiIiIiUuhlKZE1s0SgP/BKFjY/DXjfObfbObcEWAR0NLMaQHnn3CTnnAPeBE7PsM8bwfPhQK99rbUiBV5sHAwcAttTYMx9YUcjIiIiIlLoZbVF9ingDuDgeUZuMLNfzOx/ZlYpWFYLWJ5hmxXBslrB84OXH7CPcy4V2AxUzmJsIuGr2RaOvw6mvg5LJ4QdjYiIiIhIoXbURNbMBgBrnXNTD1r1AtAQaAOsBh7ft0smh3FHWH6kfQ6O5SozSzaz5JSUlKOFLpK/etwDFev4uWX37go7GhERERGRQisrLbKdgYFmthR4H+hpZm8759Y459Kcc+nAy0DHYPsVQO0M+ycCq4LliZksP2AfM4sDKgAbDg7EOTfUOZfknEtKSEjI4iWK5JPiZWDAU7B+IYx7/Kibi4iIiIhIzhw1kXXO3e2cS3TO1cMXcfrWOXdhMOZ1nzOA2cHzz4HBQSXi+viiTj8551YDW83s+GD868XAZxn2uSR4Pig4h+YykejTqBe0PhfGPwlrD66NJiIiIiIikZCbeWQfCabS+QXoAdwK4Jz7FfgAmAN8BVzvnEsL9rkWXzBqEbAYGBUsfxWobGaLgL8Cd+UiLpFw9fkPlCgHn98E6QcPKxcRERERkdyyaG34TEpKcsnJyWGHIZK5me/DJ1dDv8eg45VhRyMiIiIiEnXMbKpzLimzdblpkRWRw2l9LjToAWMegM0rw45GRERERKRQUSIrkhfMYMCTkJ4KI2+DKO35ICIiIiJSECmRFckr8fX9lDzzR8Kcz46+vYiIiIiIZIkSWZG8dPx1UONYGHUH7NwYdjQiIiIiIoWCElmRvBQbB6cOge3rYPR9YUcjIiIiIlIoKJEVyWs128AJ18G0N2Dp+LCjERERERGJekpkRfJD93ugYl344mbYuyvsaEREREREopoSWZH8ULw0nPoUrF8E4x4LOxoRERERkaimRFYkvzTsCa0Hw/gnYc2csKMREREREYlaSmRF8lOf/0DJCvD5jZCeFnY0IiIiIiJRSYmsSH4qUxn6PAQrk+HnV8KORkREREQkKimRFclvrc+Bhr1g7D9h84qwoxERERERiTpKZEXymxkMeAJcOnz5N3Au7IhERERERKKKElmRMFSqBz3ugQVfwa+fhB2NiIiIiEhUUSIrEpbjroUabWDUnbBzY9jRiIiIiIhEDSWyImGJjYOBQ2DHevjm/8KORkREREQkasSFHYBIkVbjWDjhepg4xI+VbXUm1O8KscXCjkxEREREpMBSIisStu53w65NMPsTmPE2lIqHFgOh5RlQ90TfcisiIiIiIn8yF6UVU5OSklxycnLYYYhEzt5dsHgszP4Y5o+CvduhTAI0H+hbauucADGxYUcpIiIiIpIvzGyqcy4ps3Vq6hEpKIqVhGb9/WPvTlj4jU9qZ7wLya9C2erQ4jSf1CZ2hBgNcRcRERGRokktsiIF3Z7t+6fpWTgaUndB+VrQ4nTf/Tgxyc9NKyIiIiJSiBypRVaJrEg02b0V5n8Fv34Mi8ZA2h6oUBtang4tz4SabZXUioiIiEihoERWpDDatRnmjfQttYu/hfS9UKmeb6VteQZUb62kVkRERESilhJZkcJu50aY96UfU/vb9+DSIL6hT2hbnQlVWyipFREREZGookRWpCjZvh7mfeFbapf8CC4dqjTdn9QmNA07QhERERGRo1IiK1JUbUuBuZ/7pHbpeMD51tljBkGnmyC2WNgRioiIiIhkStPviBRVZROgw+X+sXUNzPnMF4oa+08oUR46Xhl2hCIiIiIi2aaJKEWKinLV4Lir4LKvoEoTmPtF2BGJiIiIiOSIElmRoqhZf9/VeOfGsCMREREREcm2LCeyZhZrZtPNbETw+6NmNs/MfjGzT8ysYrC8npntNLMZwePFDMdob2azzGyRmQ0x82VUzayEmQ0Llk8xs3qRvUwROUCzU31l4wVfhx2JiIiIiEi2ZadF9mZgbobfRwOtnHOtgQXA3RnWLXbOtQke12RY/gJwFdA4ePQNll8ObHTONQKeBB7O3mWISLbUbAvlasC8EWFHIiIiIiKSbVlKZM0sEegPvLJvmXPuG+dcavDrZCDxKMeoAZR3zk1yvlTym8DpwerTgDeC58OBXvtaa0UkD8TE+O7Fi8bC3p1hRyMiIiIiki1ZbZF9CrgDSD/M+suAURl+rx90Q/7BzLoEy2oBKzJssyJYtm/dcoAgOd4MVD74JGZ2lZklm1lySkpKFkMXkUw1GwB7d8Dib8OOREREREQkW46ayJrZAGCtc27qYdb/HUgF3gkWrQbqOOfaAn8F3jWz8kBmLaz7JrE90rr9C5wb6pxLcs4lJSQkHC10ETmSeidCyQow78uwIxERERERyZastMh2Bgaa2VLgfaCnmb0NYGaXAAOAC4Luwjjndjvn1gfPpwKLgSb4FtiM3Y8TgVXB8xVA7eCYcUAFYEOurkxEjiy2GDTpC/NHQVrq0bcXERERESkgjprIOufuds4lOufqAYOBb51zF5pZX+BOYKBzbse+7c0swcxig+cN8EWdfnPOrQa2mtnxwfjXi4HPgt0+By4Jng8KznFIi6yIRFiz/rBzAyybFHYkIiIiIiJZlpt5ZJ8FygGjD5pmpyvwi5nNxBduusY5t6919Vp8wahF+JbafeNqXwUqm9kifHfku3IRl4hkVaPeEFdS1YtFREREJKpYtDZ8JiUlueTk5LDDEIl+7w6GNbPhllmgYuEiIiIiUkCY2VTnXFJm63LTIisihUHzAbB5OayeGXYkIiIiIiJZokRWpKhr0hcsRtWLRURERCRqKJEVKerKVIE6nTROVkRERESihhJZEfHVi9fOgfWLw45EREREROSolMiKiE9kQd2LRURERCQqKJEVEahUF6q3VvdiEREREYkKSmRFxGs2AJb/BFvXhB2JiIiIiMgRKZEVEa/5AMDB/JFhRyIiIiIickRKZEXEq9oCKtXTOFkRERERKfCUyIqIZ+a7Fy/5AXZtCTsaEREREZHDUiIrIvs1GwBpe2DR6LAjERERERE5LCWyIrJf7Y5QJgHmqnqxiIiIiBRcSmRFZL+YWGh6CiwcDam7w45GRERERCRTSmRF5EDNToU9W2HJj2FHIiIiIiKSKSWyInKg+l2heFmYp+7FIiIiIlIwKZEVkQMVKwmNT4J5IyE9LexoREREREQOoURWRA7VbABsXwsrfg47EhERERGRQyiRFZFDNT4JYoqpe7GIiIiIFEhKZEXkUCUrQINufhoe58KORkRERETkAEpkRSRzzfrDxiWwdm7YkWSPc7Dga0jbG3YkIiIiIpJHlMiKSOaa9gcs+roXz/4I3j0HJjwVdiQiIiIiBc6uvWlMXLSOl35YHHYouRIXdgAiUkCVqwaJHXwi2+2OsKPJmvR0+OER/3zCEEi6HErHhxuTiIiISIhS09L5ZeVmJi5ax8TF60n+fSN7UtOJjTHObJdIQrkSYYeYI0pkReTwmg+A0f+ATcugYp2wozm6uZ/BuvnQ7U748VEY9zj0eTDsqERERETyTXq6Y/6arUxYtI5Ji9czZckGtu1OBaB5jfJcdHxdOjeqTId68ZQrWSzkaHNOiayIHF6zIJGdNxKOvybsaI4sPR1+eBSqNPGJ7OaV8NNQOO4aqFg77OhERERE8oRzjt/X72DCYt/iOnnxetZv3wNA/SplGNimJp0bVuH4BvFULhudra+ZUSIrIodXuSEkNPfdiwt6Ijv/S1j7K5z5MsTEQve7YNaH8P1/4fTnwo5OREREJGL+2LyLiUHiOmnxelZu2glAtfIl6NYkgU6NqtCpYWVqViwVcqR5R4msiBxZ8wG+i+6ODQV3vKlz8MPDEN8AWp7pl1WsDR2vhMnPQ6cboWqzcGMUERERyaFNO/YwafF6Ji5ez4TF6/gtZTsAFUsX44QGlbmme0M6NaxMgyplMLOQo80fSmRF5Mia9ffjTeePgrYXhB1N5hZ8BX/MgtOeh9gMb2td/gbT3oSx/4Tz3g0vPhEREZFs2L47lZ+WbmDS4vVMWLSOOau34ByULh5Lx/rxnNehDic0rEyLGuWJiSkaievBlMiKyJHVaAPlE3334oKYyO5rja1YF1qfc+C60vHQ+Sb49t+wbArUOS6cGEVERESOYE9qOtOWbWTi4vVMXLSOGcs3kZruKB4bQ9s6Fbm1dxM6NazMsbUrUixWM6hCNhJZM4sFkoGVzrkBZhYPDAPqAUuBc5xzG4Nt7wYuB9KAm5xzXwfL2wOvA6WAkcDNzjlnZiWAN4H2wHrgXOfc0ghcn4jklplvlZ32BuzZDsXLhB3RgRaNhVXT4dQhEJtJ5b3jr4MpQ2HM/fCXkf56RERERELknOO3ddsZtyCFHxeuY/Jv69mxJ40Yg2NqVeDKrg3o1LAySXXjKVU8NuxwC6TstMjeDMwFyge/3wWMdc7918zuCn6/08xaAIOBlkBNYIyZNXHOpQEvAFcBk/GJbF9gFD7p3eica2Rmg4GHgXNzfXUiEhnNB8BPL/mkscXAsKPZzzn44b9QoTYce17m2xQv4+fBHXkbLBwNTU7O3xhFRERE8ONcJyxaz7iFKYxbuO7PAk31KpfmrHaJnNi4Csc3qEyFUtE7JU5+ylIia2aJQH/gQeCvweLTgO7B8zeA74E7g+XvO+d2A0vMbBHQ0cyWAuWdc5OCY74JnI5PZE8D7g+ONRx41szMOedyfmkiEjF1OkGpSjDvy4KVyP72Paz4Gfo/AXHFD79d+0th0nMw9gFo1Bti1CVHRERE8tbetHRmLN/0Z6vrLys2ke6gXMk4OjeswnU9GtKlUQJ1KpcOO9SolNUW2aeAO4ByGZZVc86tBnDOrTazqsHyWvgW131WBMv2Bs8PXr5vn+XBsVLNbDNQGViX5SsRkbwTGwdNTvFT3KTtzbwLb37bNza2XE1oe+GRt40tBj3vhY8u91PyHKsOHyIiIhJ5v6/fzo9B4jpp8Xq27U4lxqBN7Yrc2LMxXZskcGxiBeI0zjXXjprImtkAYK1zbqqZdc/CMTMbgOaOsPxI+xwcy1X4rsnUqVMnC6GISMQ06w8z34XfJ0CD7mFHA0vHw7JJcMojEJeFyb1bngkTnobv/g0tT8/aPiIiIiJHsGXXXiZm6C68bMMOABIrlWJgm5p0bVyFExpWUXfhPJCVFtnOwEAz6weUBMqb2dvAGjOrEbTG1gDWBtuvAGpn2D8RWBUsT8xkecZ9VphZHFAB2HBwIM65ocBQgKSkJHU7FslPDXtCXCmYO6JgJLI/PAxlq0G7i7O2fUwM9L4f3j4Tpr4Ox12dl9GJiIhIIZSals4vKzczbsE6xi1MYfryTaSlO8oUj+WEhlW4okt9ujROoF7l0kVmPtewHDWRdc7dDdwNELTI3uacu9DMHgUuAf4b/Pws2OVz4F0zewJf7Kkx8JNzLs3MtprZ8cAU4GLgmQz7XAJMAgYB32p8rEgBU7w0NOrlx8n2ezTc6r+/T4Kl46DPf6BYqazv17An1OsCPzwCbc6HEuWOvo+IiIgUaSs27mDcwnX8uCCFCYvWsWVXKmbQOrEi13VvSJfGCbSto2lx8ltu5pH9L/CBmV0OLAPOBnDO/WpmHwBzgFTg+qBiMcC17J9+Z1TwAHgVeCsoDLUBX/VYRAqaZgP8fLKrpkGt9uHF8eMjUCYB2v8le/uZQe8H4JWevvhT97vyJj4RERGJOqlp6azevIvlG3bw+4YdzF29hfEL1/Hbuu0A1KhQklNa1aBLkyp0bliFSmWOUGhS8ly2Elnn3Pf46sQ459YDvQ6z3YP4CscHL08GWmWyfBdBIiwiBViTPmCxvlU2rER2+c+w+Fs46Z++lTi7EttD84Ew8RlIuhzKJkQ+RhERESmQtu7ay7INO3yyun4Hyzbsf6zcuJPU9P2dQksVi+X4BvFcdEJdujROoGFCGXUXLkBy0yIrIkVN6Xio19mPk+31j3Bi+PERKBXvk9Cc6vUPn4yPewxOeThysYmIiEio0tIda7bs4vf1PlldFrSu7kteN2zfc8D2lUoXo058aY6pVYEBrWtQJ740deLLUKdyaaqXL0lsjBLXgkqJrIhkT7NTYdTtsG4hVGmcv+deOQ0WfuMT0RJlc36cKo39lD0/vwrHXweV6kYuRhEREclT23ensnzjjgOT1eD5io072ZOW/ue2sTFGrYqlqFu5NH1bVadOfGnqxpemdnxp6lQuTfmSqiYcrZTIikj2NOvnE9l5I+DEW/P33D8+CiUrQocrc3+s7nfBL8Pgu//AmS/l/ngiIiISMc45Vm/exYI1W1m4ZhsL1mxlcco2lm3YwbptB7aqlisZR93KpWlWoxwnt6wetKqWpm7l0tSoUFJzthZSSmRFJHsqJELNtr57cX4msqtnwvyR0P0eKFk+98crX9NPwTNhCHS6EaofMnxfRERE8phzjrVbd7NgzVYWrNnGwjVb/0xet+5O/XO7KmVL0KhqGXo3r+ZbU4NEtU58aSqWVtGlokiJrIhkX7P+8O2/YctqKF8jf87546NQonxk53898VY/p+zYf8IFH0TuuCIiInIA5xwp23b/2bqaMWndsmt/whpfpjiNq5bl9La1aFKtLI2rlaNJtXLEq0KwHESJrIhkX7NTfSI7/0vocEXen2/NHJj7BXS9A0pVjNxxS1XyyeyY++H3iVC3U+SOLXKwjb/DhKdhwVfQtB+ccD3E1w87KhGRiFu/bbdPVNduPSBp3bhj75/bVChVjCbVyjLg2Jo0rVaOxtXK0qRaOaqULRFi5BJNzDl39K0KoKSkJJecnBx2GCJFk3PwTHtfJOmiT/L+fB/+xRd5umWWr5wcSXt2wDPtoGIduOxrP9esSCSlLIDxT8AvH0BMLNQ7EZaMA5cGLU6Hzjf57voikrdWToOZ70PPeyMzREXYtGMPC4IW1oVrtjI/6BK8PkNl4HIl42hSrZxvXa1a7s/nCeVKaCobOSozm+qcS8psnVpkRST7zKD5AJj0HOzcFNlW0oOlzIdfP/Etp5FOYsHPRdvtThhxC8wf5YtZiUTC6pkw7nGY8znElfTd4jvd6Mdnb1kNU16A5Nfg14+hfjfofDM07KkvU0TywvyvYPhfYO8O2LwCzn0bYlQAKDuccyxO2Uby0o38vHQjU3/fwNL1O/5cX6Z4LI2rlaNX86o0qVYu6BJclurlSyphlTyhFlkRyZnlP8GrJ8GZr0Drs/PuPB9d6ed8vWUWlKmcN+dIS4Xnj4OYYnDtBN9qJpJTyybDj4/BotF+XHfHK/00T2WqHLrtrs1+nPbkF2Draqh2jE9oW54BsfquWSQifn4VRt4GNY6Fxn3gh/9C97t99Xo5rN2pacxeuZmfl24kOUhc93UNji9TnPZ1K9GuTiWa1fCtrDUrKGGVyFOLrIhEXq0kKFsd5n2Rd4nsukUweziccEPeJbHgE4ae/wcfXuK7nbW9IO/OJYWTc/Dbd/Dj4/D7eChd2f9NdbwSSlY4/H4lK/jE9bhrYNaHvor2x1f4AmQnXA/tLoLiZfLvOkQKk/R0+PafMP5Jn8Ce/RoUKw2blsH3D0H11uqFk8GmHXuY+vtGkn/fSPLSDcxcsZk9qX4+1gZVfLXgDvXiaV+vEg2qlFHSKqFTi6yI5NyIW2HmMLjjNyhWMvLH/+Ra3634ll+gbNXIHz8j5+DlHrB9HdyQnDfXI4VPejosGOVbYFdNg3I1oNNN0P6SnCWg6emw8GtfFGrZJF+QrMOV0PEqKJsQ+fhFCqvU3fDZ9f4LovZ/gX6P7e/lsHcXvNbXf1l65beQ0CTcWEPgnGP5hp38vHTDn4nrwrXbAIiLMVrVqkCHepVIqhdP+7qVVIBJQnOkFlklsiKSc4vGwNtnwXnDoGnfyB57wxJfUOq4q6HvQ5E99uH89j28eRr0+Y9vDRM5nLRU/yXL+Cdg7RyoVA863wJtzoe4CH3gWzYFJg6BeSP8GNs2F0CnGyC+QWSOL1JY7dwEwy6EpeOg1z/gxL8eOvZ88woY2t33irjy2yP3nCgEUtPSmbN6C8lLN5L8+waSl25k7dbdgC/G1L5uJd/aWrcSxyZWpFRxDbGRgkFdi0Ukb9Tr6scAzvsi8ons+CcgJs63buWXBt2hQQ/futb2wkL/wUZyIHUPzHzPd1XcuAQSmsEZQ6HVWZEf01rnOKjzjq96POkZmP4WTH0NWpzm/13UahfZ84kUBpuWwztnw/pFcObL0PqczLerkAjnvAlvnOprMZz3fqEq/rRtdyrTl+0vyjR92SZ27EkDoFbFUnRqWJmkevEk1atEk6rliIlRN2GJPmqRFZHcGX65Hxt428LIFUnatAyGtIWky6Dfo5E5ZlatmgFDu0HX2/0UDZL/dm7yX5AUpA+Ve3bAtDd9C+mWlVCjDXS9DZr2z784t6yGKS9C8v9g9xao3zWodNxLlY5FAFb/4pPYvTt8VeIG3Y6+z08v+0JQheA9f+GarbwzZRk/L93A3NVbSHcQY9C8Rvk/W1uT6lWiRoVSYYcqkmVqkRWRvNN8gC/ItGwy1OscmWOOfxIsxnfVzG8120DLM/3UQh2vyvuxuXKgpePh9QG+K21CE9/iWSX4mdDMd+HNz2q+u7bAz6/4v4cd66BOJxg4JJzksXwNOOkB6PK3oNLx875rf7VWGSodF8vfmEQKikVj4YOLfU+ay76Gai2ytl+HK/xUWT8+6os/tRiYt3HmgQ3b9/DUmAW8M2UZxWKN9nUrcWPPxiTVq0TbOpUoW0If96VwUousiOTO7q3wSEP/YaDvf3J/vM0r4Ok2vlrrgCdzf7ycWL8YnuvoC4T0fyycGIqqNwZCyjxoNcj/TJkPW1bsXx9bHCo3hoSmGR7NIL4hxBWPXBzb1/t5XqcMhd2bfeLa9Tao2yly58it1D2+kM3EIf61qlDbj+1uexGUKBt2dCL5Z/o78MVN/r3ggg/9XM3ZkbobXusHa+fClWOhavO8iTPC9qSm8+akpQwZu5Dte9K44Lg63NK7CfFlIvheKBIyFXsSkbz1zjmQMhdu/iX3rVQjb/ddJ2+aDhXrRCa+nBhxq+9KesPPKq6TX1ZOhZd7wkn/gs4Zxkbv2gLrFsK6+fuT25R5sPF3IPg/zGKhckOf2FYJktuEplClMRTLRje6Lath0rOQ/Brs3Q7NT/WFYgryeNT0dFj4TVDpeCKUrOin/el4tSodS+HmHPzwsJ9Kp0EPP+a1ZPmcHWvLKl/8qXgZX/ypVKWIhhpJzjlGz1nDQ6PmsWTddro1SeDe/s1pXK1c2KGJRJwSWRHJW1Pf8N+GXzMeqh+T8+Ns/QOeau2Lc5z2bOTiy2ksQ9pC034w6NVwYykq3r/Ady2+dTaUyMIHsj07YP1CXwwpZd7+JHfDb+DSgo3Md0dOaLa/q/K+ZDdjq+XGpT4RnP42pKfBMYN8Alu1WR5caB5a/pO/jnlf+urJbS7wrbSVG4YdmUhkpe2FL26BGW/Dsef7Lv+57Vq/bAq83t+PrT3/g8jVfYiguau38K8Rc5i4eD2Nqpbl7/2b06OphsBI4aUxsiKSt5r2gy9uhrkjcpfIThgC6anQ5a+Riy2nylWH46+FcY/71sEax4YdUeGWMt9PM9P1jqwlsQDFS/v7cvC9Sd3tu4enzIN1C/YnuIvGQPre/dtVqO2T2mKlYN5I/6G1zfl+bHZ8/YhdWr6q3REGv+NbsCcO8ZWOp70BF33ii0OJFAa7t8IHl8DisdDtTuh+d2TGrNc5zhcYHHELfPtv6H1f7o8ZISlbd/PE6PkM+3k55UsV44GBLTn/uDoUiy1ARfFE8plaZEUkMv7XF3Zvg2vH52z/bWt9a2zLM+CMFyIbW07t2gxPHwu12sOFH4UdTeH2ybUw51O4ZTaUqZw350hL9VPm/Nk9OeiivPUP3wLb6cbsj60r6Lb+4cf+pe2FayfkvNulSEGxZTW8ezasmQOnPgXtLo78Ob64xU91Neg1aHVm5I+fDbv2pvHahKU8990idu1N45JO9bipZ2MqlFZhNyka1CIrInmv2QD45u++i2aletnff+IzkLbbV2QtKEpW8PF8cy8sGQf1u4QdUeG0aTnM+gA6XJl3SSz4asdVGvtH81Pz7jwFSbnqcPoL8Fpf/+9z4DNhRySSc2vnwtuDYNcm3/W3ce+8Oc8pj8DaOfDZ9b5qevVWeXOeI3DOMWr2H/xn5FxWbNxJ7+bVuKdfMxokqJCbyD7qjyAikdGsv/8578vs77t9nZ/ipNUgqNIosnHlVocroXwtGHOfLywikTfpWcCg0w1hR1I41TkOOt3ki5ctHB12NCI5s2QcvNrHDw/4y8i8S2LBV0A/503/Zeb758OODXl3rkzMWrGZc1+azHXvTKNsiTjeueI4XrkkSUmsyEGUyIpIZMTX9/NZzh2R/X0nPQd7d/rpTQqaYiX9+KuVU2HuF2FHU/hsX+eLhbU+Fyokhh1N4dXjHkhoDp/dkO8fykVybdZwePtM38PgijH5U7OgXHU4923YuhqGX+aHJuSxNVt28bcPZnLqs+NZnLKN/5xxDF/e1IXOjark+blFopESWRGJnGYDYNkk2JaS9X12bICfhvqxsQlN8y623Dj2PF/lduw/8+XDTJEy5UVI3QWdbw47ksItroQfe75jHYy6M+xoRLLGORj/JHx0OSR2hMu/zt9p2RKToP8T8Nt3MPaBPDvNzj1pDBm7kO6Pfs8XM1dxdbcGfHd7d84/rg6xMREoYiVSSCmRFZHIadYfcLBgVNb3mfwC7NlWMFtj94mNg17/8FO9zHw37GgKj11b/JcYzQf4qXEkb9VsC11v9+OR53wedjQiR5aWCl/+DcbcD63Ogos+Dmdu13YXQYcrfBXwWcMjeuj0dMen01fS8/HveWL0Ano0S2DMX7tx9ynNKV9SxZxEjkaJrIhETvVj/LflWe1evHMTTHnJF96p1jJPQ8u1Zv0hsQN895DvBi25N/U1Xxn6xAIw3VJR0eVvvlvmiFuz13NCJD/t2Q7DLoTkV/10WGe+4nsVhKXPQ1Cnk++av/qXiBxy2rKNnPnCRG4ZNoPKZYsz7Krjef6C9tSpXDoixxcpCpTIikjkmPnuxb997+f5O5qfhsLuzX7u0ILODHrfD1tX+bgld/bu8mOjG3SHWu3CjqboiC0GZ7wEu7fAl7eqgJkUPNtS4PUBsPBr6PcYnPQAxIT8cTWuOJzzBpSOh/cvgO3rc3yolZt2ctN70znz+Yms2rSTRwe15vPrT+S4BnlYsV2kkFIiKyKR1WyAn0Zn0Zgjb7dri09kmvaDGq3zJ7bcqnciNDoJxj3hW5Ml52a+C9vWqDU2DFWbQ4+/++Jlsz4MOxqR/dYtgld7+2l2zn0HOl4ZdkT7la3qiz9tWwPDL812vYTtu1N5/Jv59Hzse77+9Q9u6tmI727rztlJtYnROFiRHFEiKyKRVed4KF356NPw/Pyynwuw6+35ElbE9L7Pd4ed8HTYkUSvtFT/+tVqD/W7hh1N0dTpRl88Z+RtsGV12NGIwLIp8OpJsHsbXDoCmvULO6JD1WoHpz4NS36E0f/I0i7p6Y4Pk5fT47HveebbRfRtVZ1vb+vOX09uSpkScXkcsEjhdtRE1sxKmtlPZjbTzH41sweC5cPMbEbwWGpmM4Ll9cxsZ4Z1L2Y4Vnszm2Vmi8xsiJlZsLxEcLxFZjbFzOrlzeWKSJ6LiYWmp8CCbyB1T+bb7N4GE5+FxidHX7fS6sfAMWf7IlVKAHJmzqewcalvjTW1RIQiJhbOeNH/G/38RnUxlnDN+RzeHOiLOV0x2lcLLqjanAfHXQOTn4OZ7x+y2jnHqk07+XbeGp77bhEDnxvP7cN/oWbFUnx8XSeeHtyWWhVLhRC4SOGTla+CdgM9nXPbzKwYMN7MRjnnzt23gZk9DmzOsM9i51ybTI71AnAVMBkYCfQFRgGXAxudc43MbDDwMHBuJvuLSDRoNgCmvw1Lx0GjXoeuT34Vdm6IjrGxmelxD/z6CfzwMJz6VNjRRJd902kkNPPdyiU8lRv68Yej7oBpb0L7S8KOSIqiyS/AV3f7YnrnvQ9lomCs6Mn/hjW/4r64mYXptZieWpe5q7cyd/UW5v2xlc079/65aYOEMjw9uA0Dj62J6Ys7kYg6aiLrnHPAtuDXYsHjz69ug1bVc4CeRzqOmdUAyjvnJgW/vwmcjk9kTwPuDzYdDjxrZhacW0SiTYMeUKwMzBtxaCK7ZwdMfMZvU7tDOPHlVnx9SPoL/PwqnHADVGmUt+dL3QNbVsCmZf6xcyMkXQ4lyubtefPCwtGwZjac/mL4BVwEOlzpx8p+fY8vvFWpbtgRSVHgnC8KOO5x/4VnswFw1itQrGC2VDrnWLlpJ/NWb2XeH1uYu3orq1Ku5Nm9cynz6SU8svvf7CweT9Pq5ejfugbNq5ejWY3yNK1eTtPoiOShLHXON7NYYCrQCHjOOTclw+ouwBrn3MIMy+qb2XRgC3Cvc24cUAtYkWGbFcEygp/LAZxzqWa2GagMrMv+JYlI6IqVhMa9Yd5I6Pf4gQnL1Ndhewp0uzO08CKi6+0w/R349l++mmVuHJyoHvzYsooM3x966xfDwCG5O28Yxj8BFWrDMYPCjkTA/9s87Tl4oRN8dj1c/Lm+YJC8k57u5xkf9zisnAplq/upbY672nd3LwB27Ell/h9bmffHVuat9knr3D+2sHXX/uJOdeJL06x6Lb5v9CSDZ13BhAZvUPwvXxBTrHiIkYsUPVlKZJ1zaUAbM6sIfGJmrZxzs4PV5wHvZdh8NVDHObfezNoDn5pZSyCz/hT7Ppkdad2fzOwqfNdk6tSpk5XQRSQszQbAnM/8h5V9La97d8KEp6BeF6h7Qqjh5VrZqtDpBt+9eOW0I4/1zW6iajFQPtHPyVu/q/+Z8fHzqzBxCLQYCI165/mlRszvk2DZJDjlET8NjBQMlepCn//AFzf5ImzHXR12RFLYpKX64Rjjn4C1c6BiXRjwJOmtz2fT3hhidqURF+uIizGKxcYQmw9VfJ1zrNi488/uwPtaWpeu3/7nkPEyxWNpVqM8A4+tSbMa5WlRoxxNqpWjXMZW1obPEvvxlTD6Xuj3SJ7HLSL7ZatcmnNuk5l9jx/bOtvM4oAzgfYZttmNH1eLc26qmS0GmuBbYBMzHC4RWBU8XwHUBlYEx6wAbMjk/EOBoQBJSUnqdixSkDU+GWLiYN4X+xPZaW/5qQvOejXc2CLlhBvg51dgzP0w4MnDJ6pbV3P4RLXboYlq+ZpHTvR6/B0WfgOf3QjXTYJSFfP4QiNk/BNQugq0vSjsSORg7S72XYxH3+e/HKncMOyIBHyF9EVjoXZHqJB49O0LmL17drF18luU/vkZSm79nfWl6/NNrXv50nVi+Xd7WPXJt+xNO/TjnBkUi4khLtb+TG798xiKxRpxsTEHLC8W45PfuNhgWab7+Od70tJZuGYr81ZvZevu/a2sdSuXpnn18pzWpibNqpenRY3yJFYqdfSpcVqfA6tnwqRnocax0PaCSL+MUlSsWwTT3oDmA33BM42pPio72jBUM0sA9gZJbCngG+Bh59wIM+sL3O2c63bQ9hucc2lm1gAYBxzjnNtgZj8DNwJT8MWennHOjTSz64NtrgmKPZ3pnDvnSHElJSW55OTknF+5iOS9N0/3idyNUyFtDzzdBirVg7+MLDxv0JOeh6/vPnCZxUKFWr7VIWOCWqF21hLVrFg5FV45CY49D05/LnfHyg9/zIIXT4Se90bflEtFxZbV8PxxUKUpXPZVgenqWWRtWQVvD4K1v/rf63TyXfJbnF5gCiLt2pvGqk07WblpJys27mTlRv987YYNdFj3BeekfkpN28Av6fV5LvV0Rrv2JJQrRa2KpUisVJpalUpRtVwJnIPU9HT2pjlS01yG5+mkpjv2pqWTmubYm55+lPXBsozbpqUfsDwmxmhctSzNapSjeY3yNKtenmbVy+VuKpy0VHj7TFg2Gf4yChLbH30fkYO9c7b/khogoTm0uwhaDy4w/97DYmZTnXOZljLPSiLbGngDiMVP1/OBc+6fwbrXgcnOuYxT7JwF/BNIBdKA+5xzXwTrkoDXgVL4Ik83OuecmZUE3gLa4ltiBzvnfjtSXEpkRaLAz6/Al3+D66bA7xPgy7/CRZ9Cwx5hRxY5aXsh+TVfeGlfwlquJsTmw/yAY/8F4x6D8z+AJn3y/ny5MfwyPyXTrbOjpwW5KPrlA/j4Suj9AJx4S9jRFF1r5/okdtcmGPCUn65q1oewbr7v6dKgh09qm/WHEuXyLIztu1ODJHUHKzfuZMVBCWvK1t0HbF8hZifXlf6W89JHUD59MyvKt2Vxs2uIa9yLWpVKU6NiSUrEFdIvSHZsgKHdfFJ71fdQrlrYEUk0WT0TXurqp6WrVNf3YFuZDDHF/JzKbS/2n52K4BeMuUpkCyolsiJRYMsqeKI5dLsLZrwD5WrA5d8UntbYsKXuhqE9YMd6uH6yn4OxIFq/GJ5Ngk43wkn/DDsaORLn4IOLYMHXcPWPULV52BEVPb9PhPcGQ1xJuOBD310V/L1ZMxtmDYfZH8PmZX6bJn19UtvoJF9oLxd+WrKBV8f/9mcL66Ydew9YXzw2hpoVS/rW1IqlqFWpFImVSlG35E4aL3mLcr+8hu3e4mPp8rfor4WQXX/M8j1lahwLl3wBcSr+JFn0wcWw+Du4Zdb+L3vXzPFTGc58z09ZWD4R2pwPbS8sUhXmlciKSHhe7gV//OK7Fl8wHBqfFHZEhcuqGfBKL2g1CM58KexoMvfFzTDjPf8ftFopCr5tKfD88b57/BVjVZgrP/36KXx8le/ZceFHh/+wmp4OK372rbS/fgI71kGJ8tD8VJ/U1uuao14h389fy4NfzqVWpQO7/9aqWIralUpRpWyJA8eMblnlp1Ob+rov5tdioG9RqtkmJ1dfOMwaDh9d7qdIG/BE2NFINEiZD88dB13+Cr3+cej61N0wf6RvpV38rV/WoJuvN9FsQK6/wCrolMiKSHjGPQFjH4CabeHK79Qamxe+ewh++C8Mftd3NSxItqyGp1v7b5AHPBl2NJJVcz73LbPd74bud4UdTdEw5SUYdSckdoDzh0Hp+Kztl5YKS36A2R/5gl27t0CZBGh5Bhxztj9epN93N/wG45+CGe+CS/cFj068FRKaRvY80Wr0P2DC03DqEGh/SdjRSEH3yTX+S6xbZ0OZKkfedtNy/+9u+tu+V0bJitD6XD+etvox+RFtvlMiKyLh2bDEjxsa9Bo06hV2NIVT6h54pSdsXQPXT8n6B+D88M3/+WqeN06D+PphRyPZ8dGV8OvHvlW2KLew5bX0dBh7v098mvaHs16B4qVzdqy9u3yxmNnDfffw1F2+dbfVWb7XRrWWuUtq18yB8U/648cU819Qdb7JF/GT/dLT4J1BsHQ8XPqlrzotkpmNS2FIO+h4FZzy36zvl57uv8Ca/pb/AittD9Ro4xPaVoMKVS0KJbIiIoXdH7P8eNkWp8GgAjK90c6N8GQraHqK/3Au0WXnRnj+BP+N/9U/QFyJsCMqfFL3wGfXw6wPfFfUfo9GrpjLri2+O+KsD/3YO5cGCc181+NWg7L3xdLKqb53zbwRUKwMdLjMTz9WrnpkYi2MdmyAl3v4LteD3/XTqYgcbMStvsvwzTP9cI6c2LHBF+qb/pYfRx9X0lc3b3cR1O0c9T3hlMiKiBQFPzwK3/0bznnTJ7Rh2xfPNROgequwo5GcWDjatyx1vgVOeiDsaAqXXVtg2IW+VaXn//niSHn1gXP7OpjzKcz6CJZN9Mtqtfddj1uekXlC6pyvNv/jY/Dbd/4LjeOugeOuLli9PgqytXP9lCpbV0OPe/y/oyJYdVYOY+sf8NQxfhq9gUNyfzznYNV0n9DOGu6HGcQ38D0njj0fytfI/TlCoERWRKQoSNsLr/SGzcv9lEdlE8KLZc8OeKoV1EqCCz4ILw7Jvc9v9OOxLvtaXSQjZctqn+CkzPXjKNtekH/n3rTcdxmfNdwX4rMYqHeib6VtMdAnrAtHw7jHYflkKFMVTrgeOlyep1P9FFo7N8GIW3xRrnpd4Myhfi5xka//DpOfhxun+oQzkvbsgLmf+9be38f7+e0bn+QLRDXpE1VF/JTIiogUFWvm+DHJTfr6ltmwuhRNfhG+utMnP3WODycGiYxdW+CFzv6DzzXjcz5+U7yUBfD2WX7arHPehMa9w41l9ke++/GGxX7ca4VE2LgEKtSGzjf71pxipcKLsTBwzn8ZNOoO30X/tOcKXmE+yV87NvihN836w1kv5+251i/2f38z3oVtf/gvp44dDO0uhiqN8/bcEaBEVkSkKNlXKXrQ/3yRl/yWugeGtPVFZi4blf/nl8hb8iO8carvWnrKw2FHE72WTfZzxMbE+Tlia7YNOyLPOVg9Y38rbevBvhJxFLXaRIV1C/3UPKtnQocr4OR/60uCourbB+HHR+C6yfk3X3daKiwa7VtpF3zlx83XOQHOfqNAT413pEQ2+5OMiYhIwdbpJl+U5cu/Qd0T8/8/qFkfwpYVcOpT+XteyTv1u0LHq2HKi74FoX7XsCOKPnNH+CSmfC0/R2xBquJt5pPqgpJYF1ZVGsPlo2HsP30196UT/BeO1VqEHZnkp11b4KeX/Byw+ZXEgp9buukp/rF1Dcx8z89Le7QpfwqwmLADEBGRCIuNg9Nf8GNkRtzqW1vyS3o6THjKz2fXKMQukxJ5ve+H+Ibw6fWwe2vY0USXn1728/JWawWXf1OwkljJX3EloM+D/suMHethaHf/9xGlPSQlB35+BXZt9gXewlKuGpx4C1zyeVQXIFMiKyJSGCU0hZ73wvwvfQtpfpk3AtYtgBNvjfqS/3KQ4qX9FyRbVvgiJXJ0zsGYB2DkbdD4ZLjki6hu/ZAIatQbrp3gezeMvA3ePx+2rw87Kslre3bApOegYU+o1S7saKKeElkRkcLqhOshsSOMvN1XSc1rzsH4J3z1xRan5/35JP/VOQ463QjT3vCVbeXw0vbCp9f6fxPtLoFz31GhLDlQ2apw/gfQ5yFYNAZe7Ay//RB2VJKXpr0JO9ZBl9vCjqRQUCIrIlJYxcT6FrTUXX76h7zuurbkBz+HXeebo7qrkhxF93sgobmflmfnxrCjKZh2b4V3z/Fj0Hr8HU592nf5FzlYTAyccB1cMQaKl4U3T4Mx9/svQqRwSd0DE4f4Akv1OocdTaGgRFZEpDCr0gh63ecrFM58L2/PNe4JKFvdT+4uhVexknDGC7A9BUbdGXY0Bc/WNfB6f9+yNvAZ6HaHutnL0dU4Fq7+AdpdBOOfhP/1gQ2/hR2VRNIv78OWlWqNjSAlsiIihd1x10CdTjDqLti8Mm/OsXKqb5E94XpfzEQKt5pt/YexX4bB3C/CjqbgWLcIXu3tp1k5730/T6NIVhUv47/8OPsNWL8IXuwKM4eFHZVEQlqq/4KiRhto1CvsaAoNJbIiIoVdTAyc9iyk74UvbsqbLsbjnoCSFSHpL5E/thRMXW+D6q3hi1tg+7qwownf8p/h1ZN8MZdLR0CTk8OOSKJVy9PhmglQvRV8chV8dKWfskWi15xPfQt7l7+ph0YEKZEVESkKKjeE3g/4giLT34rssVPm+2rFHa+CEuUie2wpuGKLwRkvwe4t+TMGuyCbNxLeOBVKVvDT69RqH3ZEEu0q1oZLRkD3u2H2cHipC6xIDjsqyYn0dBj3OFRp6ueOlYhRIisiUlR0uALqdYGv7oFNyyN33PFPQbHSvguzFC3VWkCPe3z34lnDw44mHMmvwbALoGozuHy0/9JIJBJi46D7XXDpSEhP8+Nmxz3un0v0WDAK1s6BLn/1PaQkYvRqiogUFfu6GLt0+PyGyLSgbVoOsz7w04uUqZz740n06XQTJHbwc2HmxzRPBYVz8O2DvjW6UW/felY2IeyopDCqewJcM8635o39p69svGVVuDGl7YW18/xDDs85+PExqFgXWg0KO5pCR4msiEhRUqkenPwv+O17mPpa7o838RnAoNMNuT+WRKeYWDj9RUjdnXdjsAuatL3+y6AfH4G2F8Lg96BE2bCjksKsVCU4+3UY+KwvrvdCZ5j3Zd6fd1/C+usn8P1/4YNL4Lnj4MHq8Pxx/lFUe2NkxW/fw6ppcOItmoIrD+gVFREpapIug7mfw9f3QsOePrnNie3r/OTurc+FCokRDVGiTJVG0Pt++OpOPwa7MFfr3b0NPrwUFo2Gbnf6MYwq3iL5wcxPz1PneBj+F3j/fD9k5OR/Q7FSuTt22l5fjGjtXEiZF/yc76snp++b09b8/xdVm0PTfpDQzH8h+tkNUKUJ1Gid2yssfMY9DuVqQJsLwo6kUFIiKyJS1Jj5KR6e7+Q/gFz8ec7G7Ux5EVJ3+W+aRTpe5Yt+fXWPL3rUfGDhS/A2LvVJ7OqZcOrT0P7SkAOSIqlKY7hirO9mPOlZ+H0inPWqH7N+NAckrPMhZa5vcc0sYU1oBk37QkJzPwa8cmMoXvrA4zXsAUO7w/sXwFXfQZkqEb7YKLZsCiwdB33+o2np8oi5KO0ClJSU5JKTVb1NRCTHpr7hu4L2eww6Xpm9fXdtgadaQf1ucG6EqyBL9Nq0HN49F9b+6guLnfIwVGsZdlS5t2sLjH8CJj0HMcVg0KvQ9JSwoxKBhWPg02v832ifB30LrVmQsC7Zn6imBInruoUHJax19yeqCcGjSpNDE9YjWTkNXjvFj5W/6BNf0VzgnbN9pelbZ/s5giVHzGyqcy4p03VKZEVEiijn4O2zYNkkuHYCxDfI+r4TnobR/4Arv4Na7fIuRok+aam+u+F3D8KuzZB0ua9sXDo+7MiyLz0NZrwDY/8F29fCsedDr39A+RphRyay37a18Om1fnq1Wu1h787DJKxBolq1ec4S1iOZOczPedvxauj3SGSOGc1Wz4SXukKPe6Hb7WFHE9WUyIqISOY2r4TnT/CtZpd+mbUuxnt3wdOt/Yehiz/L+xglOu3YAN/9B5Jf9V2Ne/wd2v8legqeLB0PX90Ff8yC2sdB34c0P6wUXOnpMOUFmP42VKwDCU33t7RWaZI/LYJf/913dT7tOV8ErSj74GJY/B3cMgtKVQw7mqimRFZERA5v+jvw2XXQ979w/LVH3z75fzDiVj+2tkG3vI9PotuaX2HUnX6sWNWWvrtx/S5hR3V4G5bA6P/zc+NWqA0nPQAtzyx8431FIi0tFd45y4/Z/csoSMw09yj8Uub7ys4n3gq97ws7mqh3pERW0++IiBR1bc6Hxn1gzAOwbtGRt01L9d2Ka7WH+l3zJz6JbtVawiVfwDlvwu6t8MYA31qxaVnYkR1o1xYYfR881xEWjfVdAm/4GVqdpSRWJCti42DQa75K77ALYesfYUcUjvFPQlxJOOH6sCMp9JTIiogUdWa+Amtccd8ym552+G3nfOort574V324l6wzgxanwQ0/+S7GC76BZzvAtw/Cnh3hxpae5qeReqY9THgKWg2CG6f5cW25ndJEpKgpHQ/nvefHxw+7yM8vXZRs/B1++cBXNFcF5zynRFZERHzxmlMeheVTYPLzmW/jnP+mOaGZn0NQJLuKlYJud8CNydCsP/z4iE9oZ3/k/77y29LxMLQbfH4jxNeHK7+FM15QMSeR3KjWEk5/AVb8BCNvC+ffdlgmPA0WA51uDDuSIuGoiayZlTSzn8xsppn9amYPBMvvN7OVZjYjePTLsM/dZrbIzOabWZ8My9ub2axg3RAz/3W+mZUws2HB8ilmVi8PrlVERI6k9TnQtL+v0Jqy4ND1C7+BNbOh8y05m3dWZJ8KiTDof34cXelKMPwyeL0/rP4lf86/YYnv+vh6f9i5ycdy2dcq5iQSKS1Phy63+d4OP78SdjT5Y+sfvthWm/OhQq2woykSsvJJZDfQ0zl3LNAG6GtmxwfrnnTOtQkeIwHMrAUwGGgJ9AWeN7PYYPsXgKuAxsGjb7D8cmCjc64R8CTwcK6vTEREsscMBjzpp2P49Bo/HjajcU9AhTpwzKBw4pPCp24nuOoHGPAUpMzzraNf3ALb1+fN+TQOViT/9Pg7NOnrq38vnRB2NHlv4jN+yqPON4cdSZFx1ETWeduCX4sFjyP1ETgNeN85t9s5twRYBHQ0sxpAeefcJOdLJb8JnJ5hnzeC58OBXvtaa0VEJB+Vqwb9HoOVU2HikP3Lf58Eyyf77lKa7F4iKSYWkv4CN071c1BOexOeaQuTX4S0vUffPysOGQd7lj+fxsGK5J2YGDhzKFSqHxR4Wx52RHlnxwZIfs2/t1RuGHY0RUaW+oaZWayZzQDWAqOdc1OCVTeY2S9m9j8zqxQsqwVk/EtdESyrFTw/ePkB+zjnUoHNQOVM4rjKzJLNLDklJSUroYuISHa1OguaD4TvH4I1c/yy8U9A6SqaG1DyTqlKcMp/4dqJULMdfHUnvHiin4sxNzIdB/silK8ZmbhF5PBKVvDFn9L2wLALwi/ullcmvwB7t/tCiJJvspTIOufSnHNtgER862orfDfhhvjuxquBx4PNM2tJdUdYfqR9Do5jqHMuyTmXlJCQkJXQRUQku8yg/xNQohx8ei2smu7Hxx5/je92LJKXqjaDiz6Bwe9C6i5463R473w/rjU7Mo6D3bERznpV42BFwlClMZz1ih8D/8VNha/4064t8NNL0GwAVGsRdjRFSraqdTjnNgHfA32dc2uCBDcdeBnoGGy2AqidYbdEYFWwPDGT5QfsY2ZxQAVgQ3ZiExGRCCqbAP0fh9Uz4O2zoHg56HBl2FFJUWHmqxpfNwV6/QN++96Pax3zAOzeduR9MxsHe2OyH9utUUsi4WjSB3reC7M+9GNJC5PkV/10Q13+FnYkRU5WqhYnmFnF4HkpoDcwLxjzus8ZwOzg+efA4KAScX18UaefnHOrga1mdnww/vVi4LMM+1wSPB8EfBuMoxURkbC0PANangk71kOHy6BUxbAjkqKmWEn/4fDGZP/3OP4JeDYJZg47tFVH42BFCrYuf/PzSY+5z3/JVBjs3QmTnoOGPaFWu7CjKXLisrBNDeCNoPJwDPCBc26Emb1lZm3wXYCXAlcDOOd+NbMPgDlAKnC9cy4tONa1wOtAKWBU8AB4FXjLzBbhW2IH5/7SREQk1/o/DpUbwfHXhh2JFGXla/qiMR2ugFF3wCdX+Sk9TnnYf3hcOt5XRv1jFtQ+Ds5/X12IRQoaMzjteVi3yE+5ddV3EN8g7KhyZ9qbsD3FTzUk+c6iteEzKSnJJScnhx2GiIiI5Kf0dJjxDox9ALavg5ptYdU0KJ8IJz2gqXRECroNS+DlHlC2Olwx2tdjiEape2BIG6hQGy77Su87ecTMpjrnkjJbpxntRUREJHrExEC7i3y34ROu913fe/xd42BFokV8fRj0GqybD59c47+cika/vA9bVkLX2/S+ExK1yIqIiIiISP6a9Bx8fY//IqrbHWFHkz1pqfBcB9+afNUPSmTzkFpkRURERESk4Dj+Omg9GL57EOaNDDua7JnzKWz4zRewUhIbGiWyIiIiIiKSv8zg1Kf8OPePr4KU+WFHlDXp6TDucajSFJqdGnY0RZoSWRERERERyX/FSsG5b/uptt47D3ZuCjuio1vwFaydA13+6sfsS2j06ouIiIiISDgqJMI5b8GmZfDRFX5O6ILKORj3GFSsA60GhR1NkadEVkREREREwlP3BOj3CCwaDd/+K+xoDu+372HlVOh8C8TGhR1Nkac7ICIiIiIi4Uq6DFbPhPFPQvXW0OrMsCM61LjH/fy3bS4IOxJBLbIiIiIiIlIQnPIo1D4ePrse/pgVdjQHWjYFlo6DTjf6Mb0SOiWyIiIiIiISvrjicM6bULIivHc+bF8fdkT7jXsMSsVD0l/CjkQCSmRFRERERKRgKFcNBr8N29bAh5dA2t6wI/Jdnhd+4+e+LV4m7GgkoERWREREREQKjlrt4dSnfVfeb/4v7Ghg3BNQojx0vDLsSCQDJbIiIiIiIlKwtDnPt4BOeQFmvBteHCkLYM5n0OEKKFUxvDjkEEpkRURERESk4DnpX1C/K3xxC6yYGk4M45+EuJI+qZYCRYmsiIiIiIgUPLFxMOh1P2522AWw9Y/8Pf/G3+GXYdD+EiibkL/nlqPSPLIiIiIiIlIwlakMg9+DV0+Ct86Aup19waXiZf3PEmUP/D2z5zGxOTv3hKfBYqDTTZG9JokIJbIiIiIiIlJwVW8FZ70CX/8dZn8Ee7ZD2u6s7x9X6jBJbvB7ZslwbHGY/rYfq1uhVt5dm+SYElkRERERESnYmvX3j33S9sKebT6p3bP9wOe7tx1+3Z5t+x/b1uxft3vboclxTDHofEu+XqZknRJZERERERGJLrHFoFQl/4iUtL0ZEt7tUKwUVKwdueNLRCmRFRERERERiS3mp9jRNDtRQVWLRUREREREJKookRUREREREZGookRWREREREREoooSWREREREREYkqSmRFREREREQkqiiRFRERERERkaiiRFZERERERESiihJZERERERERiSpKZEVERERERCSqKJEVERERERGRqGLOubBjyBEzSwF+DzuOAqYKsC7sICTHdP+im+5f9NK9i266f5Gl1zO66f5FN92/Q9V1ziVktiJqE1k5lJklO+eSwo5Dckb3L7rp/kUv3bvopvsXWXo9o5vuX3TT/csedS0WERERERGRqKJEVkRERERERKKKEtnCZWjYAUiu6P5FN92/6KV7F910/yJLr2d00/2Lbrp/2aAxsiIiIiIiIhJV1CIrIiIiIiIiUUWJbB4xs9pm9p2ZzTWzX83s5mB5vJmNNrOFwc9KwfKTzGyqmc0KfvbMcKwHzWy5mW07yjnbB/svMrMhZmbB8kvNLMXMZgSPKw6zf1czm2ZmqWY2KMPyukFMM4JruSYSr1FBVsjuX48M+84ws11mdnoEXqYCK0rv31/NbI6Z/WJmY82sboZ1X5nZJjMbEYnXp6ArhPcvLcP+n0fiNSrICuH9e9jMZgePcyPxGmVHQXo9g3XnBK/Vr2b27mH2L2Fmw4L9p5hZvQzr9H5GVN8/vZ8R1fcv1PeziHPO6ZEHD6AG0C54Xg5YALQAHgHuCpbfBTwcPG8L1AyetwJWZjjW8cHxth3lnD8BJwAGjAJOCZZfCjybhZjrAa2BN4FBGZYXB0oEz8sCS/fFWlgfhen+HbRNPLABKB32a6z7d8j+PfbdF+BaYFiGdb2AU4ERYb+2un85un9HPHdhexSm+wf0B0YDcUAZIBkoX4Rfz8bAdKBS8HvVw+x/HfBi8Hwwej8rTPdP72dRev8oAO9nEb8/YQdQVB7AZ8BJwHygRrCsBjA/k20NWE+QPGZYftg//OBY8zL8fh7wUvD8UrLwH3mGfV/n8IlQZWAZhTyRLcT37yrgnbBfT92/o8bbFphw0LLuFJEPfoXt/h3p3EXhEc33D7gduDfDuleBc4rw6/kIcEUWYvwaOCF4HgesI6jLEizT+1mU3j+9n0Xv/SuI72e5fahrcT4ImvTbAlOAas651QDBz6qZ7HIWMN05tzsbp6kFrMjw+4pg2Z/HDLpMDTez2tmJH/7sWvELsBz/rdOq7B4jWhWG+5fBYOC9XOwfdaL0/l2O/xa2yCsk96+kmSWb2WQr5N36D1YI7t9M4BQzK21mVfAtt7l5D86VAvB6NgGamNmE4O+57xGOsTyILRXYjP8ivEgrJPdP72fRe/8K1PtZJMSFHUBhZ2ZlgY+AW5xzWzJ0cz/c9i2Bh4GTs3uqTJa54OcXwHvOud3mx7e+AfTMZPvDcs4tB1qbWU3gUzMb7pxbk80Yo05huX9BbDWAY/Df1BUJ0Xj/zOxCIAnols0YCp1CdP/qOOdWmVkD4Fszm+WcW5zNGKNOYbh/zrlvzKwDMBFIASYBqdmMLyIKyOsZh+/e2B1IBMaZWSvn3KZsHKNIKkT3T+9nUXr/CtL7WaSoRTYPmVkx/B/9O865j4PFa4KEYl9isTbD9onAJ8DFR3tTMLNY2z/Y/p/4b2wSM2ySCKwCcM6tz/Bt0MtA++AYD+47RlavKWiJ/RXoktV9olUhvH/nAJ845/ZmcfuoFo33z8x6A38HBmbzG9xCpzDdv309WJxzvwHf47/RL9QK2f170DnXxjl3Ev4D4sJsvhy5VlBez2DdZ865vc65JfjulY0zeT1XELT0mFkcUAFfn6FIKkz3T+9nUX//Qn8/i6hI9lPWY/8D/8fxJvDUQcsf5cDB4Y8Ezyvim/zPOsIxjzY4/Gf8QPJ9g8P7BctrZNjmDGDyUY7zOgcWe0oESgXPK+EHuh8T9mus+5e1+5dh+WSgR9ivre5f5vcP/2FgMdD4MOu7U0TGlBWm+xe8Z+4rllcF/6GhRdivse5flu9fLFA5eN4amA3EFeHXsy/wRvC8Cr77YuVM9r+eA4vNfHDQer2fReH90/tZ1N+/0N/PIn5/wg6gsD6AE/FdAX4BZgSPfvg+6mODf/xjgfhg+3uB7Rm2nUFQjQw/uHsFkB78vP8w50wK/igXA8+yf2D+Q/hW1JnAd0Czw+zfITj+dvzg9F+D5ScF1zEz+HlV2K+v7l/W71+wrh6wEogJ+7XV/Tvs/RsDrMlw/s8zrBuH7wa0M4ihT9ivse5f1u4f0AmYFew/C7g87NdX9y9b968kMCd4TAbaFPHX04AngtdjFjD4MPuXBD4EFuErsDbIsE7vZ1F6/9D7WbTfv9DfzyL92PfCiIiIiIiIiEQFjZEVERERERGRqKJEVkRERERERKKKElkRERERERGJKkpkRUREREREJKookRUREREREZGookRWREREREREoooSWREREREREYkqSmRFREREREQkqvw/ziRzrir8JwUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Validation\n", "\n", "# getting the predictions\n", "y_pred = regressor.predict(X_train[-1].reshape(1, n_past, n_features)).tolist()[0]\n", "y_pred = dummy_invscaler(y_pred, n_features)\n", "\n", "# creating a DF of the predicted prices\n", "y_pred_df = pd.DataFrame(y_pred, \n", " index=df[['Close']].tail(n_future).index, \n", " columns=df[['Close']].columns)\n", "\n", "# getting the true values\n", "y_true_df = df[['Close']].tail(n_past)\n", "y_true = y_true_df.tail(n_future).values\n", "\n", "print('y_pred:\\n', y_pred.tolist())\n", "print('y_true:\\n', y_true.tolist())\n", "\n", "# plotting the results\n", "plt.figure(figsize=(16,5))\n", "plt.plot(y_pred_df, label='Predicted')\n", "plt.plot(y_true_df, label='True')\n", "\n", "plt.title('BTC price Predicted vs True')\n", "plt.legend()\n", "plt.savefig('{}/Validation.png'.format(modelname))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3530.4372124427737" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Root Mean Square Error (RMSE)\n", "rmse = math.sqrt(mean_squared_error(y_true, y_pred))\n", "rmse" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2895.4838726926305" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Mean Square Error (MSE)\n", "mse = mean_absolute_error(y_true, y_pred)\n", "mse" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-1.2490513116772766" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Explained variance regression score function.\n", "explained_variance_score(y_true, y_pred)\n", "# Best possible score is 1.0, lower values are worse." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Predictions" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y_pred:\n", " [37012.387997282254, 37245.56685084102, 37207.198830030684, 37543.77484780673, 38584.722493763125, 39018.28723561734, 39340.4047491558, 39586.88901878811, 40092.390656508614, 40572.0106736001]\n", "y_true:\n", " [[36684.925781], [37575.179688], [39208.765625], [36894.40625], [35551.957031], [35862.378906], [33560.707031], [33472.632813], [37345.121094], [36625.628906]]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAE/CAYAAAB7Mf/bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABc3klEQVR4nO3dd3xUVfrH8c+ThE4ogVAkhKCASC8BQSkKCtixl7Wt2HVtq7v6W3fX/e266u5v1bXXXXsDGxbsYkF6DU2KtNB7Lynn98e5kYABUmbmZpLv+/W6r5nc+tzJBOaZc85zzDmHiIiIiIiISLxICDsAERERERERkZJQIisiIiIiIiJxRYmsiIiIiIiIxBUlsiIiIiIiIhJXlMiKiIiIiIhIXFEiKyIiIiIiInFFiayIiFRqZpZuZtvMLDHsWIrLzEab2ZXB81+Z2WcxuGaGmTkzS4r2tURERA5FiayIiESdmS02s51BwrjRzD4ys+bBtlHB+m1mlmNmewr9/JR5N5nZTDPbbmbZZjbczDpGIjbn3FLnXG3nXF4kzlcgSPq2B/ex3MwejEay7Jx71Tk3qBjx3GNmr0T6+pES/K4Lfu97gvdCwc+jwo5PRETKFyWyIiISK6c552oDTYHVwKMAzrmTgkSyNvAq8I+Cn51z1wL/Bm4GbgJSgDbAe8ApZQ0oBq2LnYP7GghcBFwVQgxxwTl3baH3wd+BNwu9D04q2E+vl4iIgBJZERGJMefcLmAE0O5Q+5pZa+AG4ELn3FfOud3OuR1BK+T9BzhmtJndZ2YTzGyzmb1vZinBtoLuscPMbCnw1f5dZs0sxcz+a2Yrgtbj9wqd+1Qzm2Zmm8zsBzPrVMx7ngt8B3QoKobg3FeY2Zzgmp+aWYtC1z3RzOYG9/MYYIW2XW5m3xf6ub2ZfW5mG8xstZn9j5kNAf4HOD9o4Zwe7FvXzJ43s5VBq/HfClqNzSzRzP7PzNaZ2U8c5IsDM7vTzEbst+7fZvZIoRh/MrOtZrbIzH5VnNet0LkWm9nvzWwGsN3MkoLXsFWhfV4ws78V+rlUvysREYkPSmRFRCSmzKwmcD4wrhi7DwSynXMTSniZS4ErgMOAXOCR/bb3B44CBhdx7MtATaA90Ah4KIi7G/Af4BqgAfA0MNLMqh0qGDNrB/QFphYVg5kNxSeaZwGp+KT39eDYhsDbwN1AQ2AhcOwBrpMMfAF8Etx7K+BL59wn7NvK2Tk45EX869MK6AoMAq4Mtl0FnBqszwTOOcgtvg6cbGZ1gjgSgfOA18ysFv71P8k5lwwcA0w7yLkO5EJ8Ml3POZd7sB3L8rsSEZH4oERWRERi5T0z2wRsAU4E/lmMYxoAK0txrZedczOdc9uBPwLn7Tc+9R7n3Hbn3M7CB5lZU+Ak4Frn3EbnXI5z7ptg81XA08658c65POfci8BuoNdB4phiZhuBD4DngP8eIIZrgPucc3OCJO3vQJegVfZkYLZzboRzLgd4GFh1gOudCqxyzv3LObfLObfVOTe+qB3NrHFwr7cEcazBJ+0XBLucBzzsnFvmnNsA3Hegm3TOLQGmAEODVQOAHc65gi8r8vGt0TWccyudc7MOdK6DeCSIZeehdy3V70pEROKIElkREYmVoc65ekA14EbgGzNrcohj1uPH1JbUskLPlwBV8K2ZRW0vrDmwwTm3sYhtLYDfBl1VNwVJeXN8y+eBdHPO1XfOHeGcu9s5l3+AGFoA/y503g347sPNgvP/vK9zzh0i/oUHiWf/+6kCrCx03afxrdDsf13863gwr+FbTcGPB34tiHc7vgX+2uBaH5lZ22LGWNiB7rkopfldiYhIHFEiKyIiMRW0kL0D5AF9DrH7l0CamWWW8DLNCz1PB3KAdYXDOMBxy4AUM6t3gG33OufqFVpqOudeL2FsRcWwDLhmv3PXcM79gG+R/vl+zMzY9/72j/GIYlyvYN/dQMNC16zjnGsfbN/nuvjX8WCGA8eZWRpwJkEiC+Cc+9Q5dyL+S4m5wLOHOFdx4t+B7wJeoPCXIpH+XYmISDmjRFZERGLKvDOA+sCcg+3rnJsPPAG8bmbHmVlVM6tuZheY2Z0HOfRiM2sXjMf9X2BEcabXcc6tBEYBT5hZfTOrYmb9gs3PAtea2dHBPdQys1OCcall9RRwl5m1h5+LMJ0bbPsIaG9mZ5kvSHUT+yZthX0INDGzW8ysmpklm9nRwbbVQIaZJRS618+Af5lZHTNLMLMjzKx/sP9bwE1mlmZm9YGDvd4459YCo/Hdpxc55+YE99LYzE4PxsruBrbhv8Qoq2nARUFRqiH4MccFovm7EhGRckCJrIiIxMoHZrYNP0b2XuCyYo6VvAl4DHgc2ITvOnsmftzpgbwMvIAfS1o9OEdxXYJvwZ0LrAFuAXDOTcKPvXwM2AgsAC4vwXkPyDn3LvAA8IaZbQFm4sev4pxbB5wL3I/vat0aGHOA82zFjz8+DX/v84Hjg83Dg8f1ZjYleH4pUBWYHdzTCPZ25X4W+BSYjh//+k4xbuU14AQKtcbiP2v8FliB7zLdH7i+GOc6lJvx97kJ+BV+SiYgur8rEREpH8wPtREREakYzGw08Ipz7rmwYxEREZHoUIusiIiIiIiIxBUlsiIiIiIiIhJX1LVYRERERERE4opaZEVERERERCSuKJEVERERERGRuJIUdgCl1bBhQ5eRkRF2GCIiIiIiIhIFkydPXuecSy1qW9wmshkZGUyaNCnsMERERERERCQKzGzJgbapa7GIiIiIiIjEFSWyIiIiIiIiEleUyIqIiIiIiEhcidsxsiIiIiIiImHKyckhOzubXbt2hR1KXKtevTppaWlUqVKl2McokRURERERESmF7OxskpOTycjIwMzCDicuOedYv3492dnZtGzZstjHFatrsZktNrMsM5tmZpOCdSlm9rmZzQ8e6xfa/y4zW2BmP5rZ4ELruwfnWWBmj1jw2zazamb2ZrB+vJllFPsOREREREREQrBr1y4aNGigJLYMzIwGDRqUuFW7JGNkj3fOdXHOZQY/3wl86ZxrDXwZ/IyZtQMuANoDQ4AnzCwxOOZJ4GqgdbAMCdYPAzY651oBDwEPlOguREREREREQqAktuxK8xqWpdjTGcCLwfMXgaGF1r/hnNvtnFsELAB6mllToI5zbqxzzgEv7XdMwblGAANN7wgREREREZGDSkxMpEuXLnTo0IFzzz2XHTt2lPpcl19+OSNGjADgyiuvZPbs2Qfcd/To0fzwww8lvkZGRgbr1q0rdYwFipvIOuAzM5tsZlcH6xo751YCBI+NgvXNgGWFjs0O1jULnu+/fp9jnHO5wGagQcluRUREREREpHKpUaMG06ZNY+bMmVStWpWnnnpqn+15eXmlOu9zzz1Hu3btDri9tIlspBQ3kT3WOdcNOAm4wcz6HWTfolpS3UHWH+yYfU9sdrWZTTKzSWvXrj1UzFIU52DHBlg5HeZ8CAu+DDsiERERERGJgL59+7JgwQJGjx7N8ccfz0UXXUTHjh3Jy8vjjjvuoEePHnTq1Imnn34a8IWWbrzxRtq1a8cpp5zCmjVrfj7Xcccdx6RJkwD45JNP6NatG507d2bgwIEsXryYp556ioceeoguXbrw3XffsXbtWs4++2x69OhBjx49GDNmDADr169n0KBBdO3alWuuuQbfObfsilW12Dm3InhcY2bvAj2B1WbW1Dm3Mug2XHDX2UDzQoenASuC9WlFrC98TLaZJQF1gQ1FxPEM8AxAZmZmZF6BiiYvF7augE3LYHM2bF4WLNl71+Vs3/eY68dBo6PCiVdERERERMosNzeXUaNGMWSIL0M0YcIEZs6cScuWLXnmmWeoW7cuEydOZPfu3Rx77LEMGjSIqVOn8uOPP5KVlcXq1atp164dV1xxxT7nXbt2LVdddRXffvstLVu2ZMOGDaSkpHDttddSu3Ztbr/9dgAuuugibr31Vvr06cPSpUsZPHgwc+bM4S9/+Qt9+vThT3/6Ex999BHPPPNMRO73kImsmdUCEpxzW4Png4D/BUYClwH3B4/vB4eMBF4zsweBw/BFnSY45/LMbKuZ9QLGA5cCjxY65jJgLHAO8JWLVKpe0ezeWigpLSJJ3boCXP6+x9RsCHXTILUNtBoIdZv7n2s2gFfOgnFPwOmPFn09ERERERE5pL98MIvZK7ZE9JztDqvDn09rf9B9du7cSZcuXQDfIjts2DB++OEHevbs+fN0Np999hkzZsz4efzr5s2bmT9/Pt9++y0XXnghiYmJHHbYYQwYMOAX5x83bhz9+vX7+VwpKSlFxvHFF1/sM6Z2y5YtbN26lW+//ZZ33nkHgFNOOYX69esXeXxJFadFtjHwblB7KQl4zTn3iZlNBN4ys2HAUuBcAOfcLDN7C5gN5AI3OOcKOmZfB7wA1ABGBQvA88DLZrYA3xJ7QQTureJYPQsmPg+z34Md6/fdlpAEdZpBvXRo2XdvklqvuX9epxlUrXngc3e+EKa9BgP/DLUaRvU2REREREQksgrGyO6vVq1aPz93zvHoo48yePDgffb5+OOPD1kx2DlXrKrC+fn5jB07lho1avxiWzTq+B4ykXXO/QR0LmL9emDgAY65F7i3iPWTgA5FrN9FkAhLIGcXzH4fJj0Py8ZDUnU46jRo3CFIVNP9Y+3GkJB46PMdSK/rYfJ/faJ83O8jF7+IiIiISCVyqJbTMA0ePJgnn3ySAQMGUKVKFebNm0ezZs3o168fTz/9NJdeeilr1qzh66+/5qKLLtrn2N69e3PDDTewaNGifboWJycns2XL3hboQYMG8dhjj3HHHXcAMG3aNLp06UK/fv149dVXufvuuxk1ahQbN26MyD0Va4ysxND6hT6xnPoq7NwAKUfAoHuhy0VQs+hm/DJJbQOtToSJz8KxN0OV6pG/hoiIiIiIhObKK69k8eLFdOvWDeccqampvPfee5x55pl89dVXdOzYkTZt2tC/f/9fHJuamsozzzzDWWedRX5+Po0aNeLzzz/ntNNO45xzzuH999/n0Ucf5ZFHHuGGG26gU6dO5Obm0q9fP5566in+/Oc/c+GFF9KtWzf69+9Penp6RO7J4nUoamZmpiuoohX38nJh3ie+9XXhV2CJ0PYU6DEMWvaHaE+pu/BreHkonPE4dL04utcSEREREakg5syZw1FHqWhqJBT1WprZZOdcZlH7q0U2TFtWwJSXYPKLvkhTnWZw/B+g6yVQp2ns4jj8OGjUHsY+AV1+Ff3EWUREREREpAyUyMZafj4sGg2T/gNzPwaXB0cMhFP+D1oPhsQQfiVm0Pt6eP8GWPSNT2xFRERERETKKSWysbJjA0x7FSb9FzYs9FPfHHMjdL8cUg4POzrocA58cQ+MfVyJrIiIiIiIlGtKZKPJOcie6FtfZ74DebshvTccdye0OwOSqoUd4V5VqkOPK2H0fbB2ni8CJSIiIiIiUg4pkY2GPdthxpsw8T+wOguqJkO3SyDzCmhcfstykzkMvnsQxj8Jpz4UdjQiIiIiIiJFUiIbDTs3wUe3Q+N2cOrD0PEcqJYcdlSHVjsVOp0H016HAX+MznQ/IiIiIiIiZaRENhrqNoMbJkCDI+KvAnDvG2Dqy747dL/bw45GREREREQOYP369QwcOBCAVatWkZiYSGpqKgATJkygatWqYYYXVUpko6Vhq7AjKJ1GR8ERA2DCs3DMTZBUcd/8IiIiIiLxrEGDBkybNg2Ae+65h9q1a3P77Xsbo3Jzc0lKqpgpX8W8KymbXjfAq2fDrHeg8wVhRyMiIiIiIsV0+eWXk5KSwtSpU+nWrRvJycn7JLgdOnTgww8/JCMjg1deeYVHHnmEPXv2cPTRR/PEE0+QmJgY8h0UT0LYAUg51GogpLb1U/E4F3Y0IiIiIiJSAvPmzeOLL77gX//61wH3mTNnDm+++SZjxoxh2rRpJCYm8uqrr8YwyrJRi6z8khn0ug4+uBkWfw8t+4YdkYiIiIhI+TbqTliVFdlzNukIJ91f4sPOPffcQ7asfvnll0yePJkePXoAsHPnTho1alSqMMOgRFaK1ul8+PJ/YdwTSmRFREREROJIrVq1fn6elJREfn7+zz/v2rULAOccl112Gffdd1/M44sEJbJStCo1/Lyy3/4T1i/0FZhFRERERKRopWg5jYWMjAw+/PBDAKZMmcKiRYsAGDhwIGeccQa33norjRo1YsOGDWzdupUWLVqEGW6xaYysHFiPKyGxCox7MuxIRERERESkFM4++2w2bNhAly5dePLJJ2nTpg0A7dq1429/+xuDBg2iU6dOnHjiiaxcuTLkaIvPXJwW88nMzHSTJk0KO4yK773rYda7cNtsqFE/7GhERERERMqNOXPmcNRRR4UdRoVQ1GtpZpOdc5lF7a8WWTm4XtdBzg6Y/GLYkYiIiIiIiABKZOVQmnSElv1h/NOQlxN2NCIiIiIiIkpkpRh63wBbV8Ds98OORERERERERImsFEOrE6FBaxj7GMTpmGoRERERkWiI15pD5UlpXkMlsnJoCQl+rOyKqbB0XNjRiIiIiIiUC9WrV2f9+vVKZsvAOcf69eupXr16iY7TPLJSPJ0vhK/+CuMehxa9w45GRERERCR0aWlpZGdns3bt2rBDiWvVq1cnLS2tRMcokZXiqVoTMq+A7x6EDYsgpWXYEYmIiIiIhKpKlSq0bKnPxWFQ12Ipvh5XQUKSr2AsIiIiIiISEiWyUnx1mkKHs2Dqy7Brc9jRiIiIiIhIJaVEVkqm1/WwZxtMeSnsSEREREREpJJSIislc1gXaNHHdy/Oyw07GhERERERqYSKnciaWaKZTTWzD4Of3zSzacGy2MymBeszzGxnoW1PFTpHdzPLMrMFZvaImVmwvlpwvgVmNt7MMiJ7mxJRva+HzctgzsiwIxERERERkUqoJC2yNwNzCn5wzp3vnOvinOsCvA28U2jfhQXbnHPXFlr/JHA10DpYhgTrhwEbnXOtgIeAB0p8JxI7bYZAyuEw7omwIxERERERkUqoWImsmaUBpwDPFbHNgPOA1w9xjqZAHefcWOdnDH4JGBpsPgN4MXg+AhhY0For5VBCIhx9HWRPhGUTwo5GREREREQqmeK2yD4M/A7IL2JbX2C1c25+oXUtg27I35hZ32BdMyC70D7ZwbqCbcsAnHO5wGagQTFjkzB0uQiq14Wxj4cdiYiIiIiIVDKHTGTN7FRgjXNu8gF2uZB9W2NXAunOua7AbcBrZlYHKKqF1RVc5iDbCsdytZlNMrNJa9euPVToEk3VakP3y/042U1Lw45GREREREQqkeK0yB4LnG5mi4E3gAFm9gqAmSUBZwFvFuzsnNvtnFsfPJ8MLATa4Ftg0wqdNw1YETzPBpoXOmddYMP+gTjnnnHOZTrnMlNTU0twmxIVPa8GzFcwFhERERERiZFDJrLOubucc2nOuQzgAuAr59zFweYTgLnOuZ+7DJtZqpklBs8Pxxd1+sk5txLYama9gvGvlwLvB4eNBC4Lnp8TXOMXLbJSztRNg/Zn+jlld28NOxoREREREakkyjqP7AX8sshTP2CGmU3HF2661jlX0Lp6Hb5g1AJ8S+2oYP3zQAMzW4DvjnxnGeOSWOl9PezeAlNfCTsSERERERGpJCxeGz4zMzPdpEmTwg5DAP4zBLasgJum+orGIiIiIiIiZWRmk51zmUVtK2uLrAj0uh42LYG5H4UdiYiIiIiIVAJKZKXs2p4C9VrAuCfCjkRERERERCoBJbJSdgmJ0Os6WDoWlh9oliYREREREZHIUCIrkdH1YqhWB8aqVVZERERERKJLiaxERrVk6HYpzH4PNmcfcncREREREZHSUiIrkXP0NeDy4ev7fDIbpxWxRURERESkfEsKOwCpQOqlQ5eL/Jyy016B5KaQ1mPvclgXqFIj7ChFRERERCTOKZGVyDrtEcgcBtmTIHsCZE+EOSP9toQkaNJx3+S2fgaYhRqyiIiIiIjEF3Nx2v0zMzPTTZo0KewwpDi2rfUJbcGyfArkbPfbajb0CW3zglbbblCtdrjxioiIiIhI6MxssnMus6htapGV6KudCm1P9gtAXi6snRMktpNg2QSYN8pvswRo1B7SMve22jZoBQkazi0iIiIiIp5aZKV82LHBt9QWdEfOngy7N/tt1evBCfdA5q/DjFBERERERGJILbJS/tVMgdYn+AUgPx/WzfNJ7eQX4PM/QfszoUa9MKMUEREREZFyQP01pXxKSIBGbaHbJXDqQ7B7C0x8LuyoRERERESkHFAiK+Vf007Q6kQY9yTs2RF2NCIiIiIiEjIlshIf+t4GO9b5OWpFRERERKRSUyIr8aHFMdC8F/zwCOTlhB2NiIiIiIiESImsxI++v4XNyyBrRNiRiIiIiIhIiJTISvxofSI07gjfP+SrGouIiIiISKWkRFbihxn0uQXW/Qg/fhR2NCIiIiIiEhIlshJf2g2F+i3huwfBubCjERERERGRECiRlfiSmORbZVdMgUXfhB2NiIiIiIiEQImsxJ/OF0JyU/juX2FHIiIiIiIiIVAiK/EnqRr0vgEWfQvZk8OORkREREREYkyJrMSn7pdD9Xrw/YNhRyIiIiIiIjGmRFbiU7VkOPoamPshrJkbdjQiIiIiIhJDSmQlfh19LVSp5eeVFRERERGRSkOJrMSvmim+i3HWcNi4JOxoREREREQkRpTISnzrfQNYAvzwaNiRiIiIiIhIjCiRlfhWtxl0vgCmvgzb1oQdjYiIiIiIxECxE1kzSzSzqWb2YfDzPWa23MymBcvJhfa9y8wWmNmPZja40PruZpYVbHvEzCxYX83M3gzWjzezjAjeo1R0x94Cubth3JNhRyIiIiIiIjFQkhbZm4E5+617yDnXJVg+BjCzdsAFQHtgCPCEmSUG+z8JXA20DpYhwfphwEbnXCvgIeCB0tyMVFINW0H7oTDxOdi1OexoREREREQkyoqVyJpZGnAK8Fwxdj8DeMM5t9s5twhYAPQ0s6ZAHefcWOecA14ChhY65sXg+QhgYEFrrUix9LkVdm/xyayIiIiIiFRoxW2RfRj4HZC/3/obzWyGmf3HzOoH65oBywrtkx2saxY833/9Psc453KBzUCDYsYmAk07Q6sTfPfinJ1hRyMiIiIiIlF0yETWzE4F1jjnJu+36UngCKALsBL4V8EhRZzGHWT9wY7ZP5arzWySmU1au3btoUKXyqbPbbB9LUx9JexIREREREQkiorTInsscLqZLQbeAAaY2SvOudXOuTznXD7wLNAz2D8baF7o+DRgRbA+rYj1+xxjZklAXWDD/oE4555xzmU65zJTU1OLeYtSabQ4Bpr3gjH/hrycsKMREREREZEoOWQi65y7yzmX5pzLwBdx+so5d3Ew5rXAmcDM4PlI4IKgEnFLfFGnCc65lcBWM+sVjH+9FHi/0DGXBc/PCa7xixZZkYMyg763weZlkDUi7GhERERERCRKkspw7D/MrAu+C/Bi4BoA59wsM3sLmA3kAjc45/KCY64DXgBqAKOCBeB54GUzW4Bvib2gDHFJZdZ6EDTuAN8/BJ3OhwRNlSwiIiIiUtFYvDZ8ZmZmukmTJoUdhpRHWSPg7WFw/qtw1KlhRyMiIiIiIqVgZpOdc5lFbVNzlVQ87YZC/Qz4/kGI0y9qRERERETkwJTISsWTmATH3gLLJ8Oib8KORkREREREIkyJrFRMXS6C2k3guwfDjkRERERERCJMiaxUTEnVoPcNvkV2+f5TIIuIiIiISDxTIisVV+avoXo9tcqKiIiIiFQwSmSl4qqWDD2vhrkfwpq5YUcjIiIiIiIRokRWKrajr4UqNWHMw2FHIiIiIiIiEaJEViq2Wg2g++WQNRw2LQ07GhERERERiQAlslLx9b4RMPjh0bAjERERERGRCFAiKxVf3WbQ+XyY8hJsWxN2NCIiIiIiUkZKZKVyOPZWyN0N454MOxIRERERESkjJbJSOTRsBe3OgInPwa7NYUcjIiIiIiJloERWKo++t8HuLTDx+bAjERERERGRMlAiK5VH085wxEAY9wTk7Aw7GhERERERKSUlslK59L0Ntq+Fqa+EHYmIiIiIiJSSElmpXFocC82PhjGPQF5O2NGIiIiIiEgpKJGVysUM+twGm5fC+zfA+oVhRyQiIiIiIiWkRFYqnzaDodf1MOs9eLQ7vPErWDo+7KhERERERKSYlMhK5WMGQ+6DW2dCv9thyRj4zyB47kSY8wHk54UdoYiIiIiIHIQSWam8ajeCAXfDrbPg5P+D7WvgzYvhsUw/3+yeHWFHKCIiIiIiRVAiK1K1FvS8Cn4zBc59EWrUh49+Cw93gK/vg+3rwo5QREREREQKUSIrUiAhEdoPhSu/hF+P8tWNv7kfHmoPH9wC6xaEHaGIiIiIiABJYQcgUu6YQYtj/LJ2Hox9DKa9BpNfgLanwDE3QfrRYUcpIiIiIlJpqUVW5GBS28DpjxRdGGr2SBWGEhEREREJgRJZkeIoqjDUW5eoMJSIiIiISAiUyIqUxIEKQz3UHkY/oBZaEREREZEYUCIrUhr7FIb6BNJ6wOi/+3loRUREREQkqpTIipSFGbToDRe8ClVqwtKxYUckIiIiIlLhKZEViYTEKtCsOywdF3YkIiIiIiIVXrETWTNLNLOpZvZh8PM/zWyumc0ws3fNrF6wPsPMdprZtGB5qtA5uptZlpktMLNHzMyC9dXM7M1g/Xgzy4jsbYrEQHpvWDUDdm8NOxIRERERkQqtJC2yNwNzCv38OdDBOdcJmAfcVWjbQudcl2C5ttD6J4GrgdbBMiRYPwzY6JxrBTwEPFCy2xApB9J7gcuH7ElhRyIiIiIiUqEVK5E1szTgFOC5gnXOuc+cc7nBj+OAtEOcoylQxzk31jnngJeAocHmM4AXg+cjgIEFrbUicSOtB1iCuheLiIiIiERZcVtkHwZ+B+QfYPsVwKhCP7cMuiF/Y2Z9g3XNgOxC+2QH6wq2LQMIkuPNQIP9L2JmV5vZJDObtHbt2mKGLhIj1etA4w4q+CQiIiIiEmWHTGTN7FRgjXNu8gG2/wHIBV4NVq0E0p1zXYHbgNfMrA5QVAurKzjNQbbtXeHcM865TOdcZmpq6qFCF4m99N6+a3FeTtiRiIiIiIhUWMVpkT0WON3MFgNvAAPM7BUAM7sMOBX4VdBdGOfcbufc+uD5ZGAh0AbfAlu4+3EasCJ4ng00D86ZBNQFNpTpzkTCkN4LcrbDqqywIxERERERqbAOmcg65+5yzqU55zKAC4CvnHMXm9kQ4PfA6c65HQX7m1mqmSUGzw/HF3X6yTm3EthqZr2C8a+XAu8Hh40ELguenxNc4xctsiLlXnov/6hxsiIiIiIiUVOWeWQfA5KBz/ebZqcfMMPMpuMLN13rnCtoXb0OXzBqAb6ltmBc7fNAAzNbgO+OfGcZ4hIJT53DoF4LjZMVEREREYmipJLs7JwbDYwOnrc6wD5vA28fYNskoEMR63cB55YkFpFyK70X/DQanAMV3xYRERERibiytMiKSFHSe8G21bBxUdiRiIiIiIhUSEpkRSItvbd/1DhZEREREZGoUCIrEmkNj4Tq9TROVkREREQkSpTIikRaQoLvXqwWWRERERGRqFAiKxIN6b1g3TzYvi7sSEREREREKhwlsiLRUDBOdtn4cOMQEREREamAlMiKRMNhXSGxmsbJioiIiIhEgRJZkWhIqgbNummcrIiIiIhIFCiRFYmW5kfDimmQszPsSEREREREKhQlsiLRkt4b8nNg+ZSwIxERERERqVCUyIpES/Oe/lHjZEVEREREIkqJrEi01EyB1KM0TlZEREREJMKUyIpEU3ovWDYB8vPCjkREREREpMJQIisSTem9YfdmWDMn7EhERERERCoMJbIi0ZTeyz9qnKyIiIiISMQokRWJpnrpkHyYxsmKiIiIiESQElmRaDLzrbJKZEVEREREIkaJrEi0pfeCLdmwaVnYkYiIiIiIVAhKZEWirWCc7LLx4cYhIiIiIlJBKJEVibZG7aFqcvko+LRlJayYGnYUIiIiIiJlokRWJNoSk6B5j/IxTvaDm+G/p8CuLWFHIiIiIiJSakpkRWIhvTesngU7N4UXw7Y1sOALyNkOWcPDi0NEREREpIyUyIrEQnovwEH2xPBiyBoBLg+Sm8LkF8KLQ0RERERCtXNPHj8sXBd2GGWiRFYkFpp1h4SkcMfJTn8dmnaBvr+FVTM0VlZERESkEtmTm8+Xc1Zz8xtT6f63z7n4ufGs3bo77LBKLSnsAEQqhaq1oGnn8MbJrp7tk9chD0Cn8+CzP/pW2cO6hhOPiIiIiERdXr5j/KL1fDB9BaNmrmLTjhzq1qjCGV0O47TOh5FSq2rYIZaaElmRWEnvDROfg9zdkFQtttee8QZYInQ4G6rXhQ5n+a7Gg+6FarVjG4uIiIiIRI1zjmnLNvHB9JV8OGMFa7bupmbVRE5s15jTOx9G39apVE2K/465SmRFYqX50TD2MVg5HZr3jN118/NgxlvQ+kSonerXdb8cpr0KM9+G7pfFLhYRERERiYofV21l5PTlfDB9JUs37KBqYgLHHZnK6V0OY2DbxtSomhh2iBGlRFYkVtJ7+cel42KbyC76FrauhCH37V2X1gMatfPdi5XIioiIiMSlpet38MGMFYyctoIfV28lweDYVg25cUArBrdvQt0aVcIOMWqKnciaWSIwCVjunDvVzFKAN4EMYDFwnnNuY7DvXcAwIA+4yTn3abC+O/ACUAP4GLjZOefMrBrwEtAdWA+c75xbHIH7Eyk/ajeClCN8InvsTbG77vQ3oFpdaHPS3nVm0O0y+OT3voW4aefYxSMiIiIipbZmyy4+mLGSD6avYNqyTQB0b1Gfv5zenpM7NiU1OcZD2EJSkhbZm4E5QJ3g5zuBL51z95vZncHPvzezdsAFQHvgMOALM2vjnMsDngSuBsbhE9khwCh80rvROdfKzC4AHgDOL/PdiZQ36b3hx4/BOZ9MRtvubTDnA+h4DlSpvu+2TufBF3+GyS/CqQ9GPxYRERERKZVNO/YwauYqRk5bwbhF63EO2jWtw50nteXUTk1Jq18z7BBjrliJrJmlAacA9wK3BavPAI4Lnr8IjAZ+H6x/wzm3G1hkZguAnma2GKjjnBsbnPMlYCg+kT0DuCc41wjgMTMz55wr/a2JlEPpvWDaK7BuPqS2if715n4IOduh8wW/3FYzBdoNhazhMOivvrKyiIiIiJQLu3Pz+HruGt6Zspyvf1xDTp6jZcNa/GZAa07v3JRWjZLDDjFUxW2RfRj4HVD41WrsnFsJ4JxbaWaNgvXN8C2uBbKDdTnB8/3XFxyzLDhXrpltBhoA8T1Lr8j+0nv7x6VjY5PITn8D6rWA5r2K3t79Ml/ReNa70PXi6McjIiIiIgfknGPK0k28MyWbD2esZPPOHFKTq3FZ7wzO6NKMDs3qYLHo1RcHDpnImtmpwBrn3GQzO64Y5yzqlXUHWX+wY/aP5Wp812TS09OLEYpIOdPgCKjZ0I+TjXaRpS0r4KfR0O8OSDhAifX03tCwjS/6pERWREREJBRL1+/g3anLeXdqNovX76B6lQQGt2/CmV2b0adVQ5IS43+6nEgrTovsscDpZnYyUB2oY2avAKvNrGnQGtsUWBPsnw00L3R8GrAiWJ9WxPrCx2SbWRJQF9iwfyDOuWeAZwAyMzPV7Vjij5nvXrx0bPSvNeMtwBXdrbhwPN0vh0//B1bPgsbtox+XiIiIiLB5Zw4fZ63knSnZTFy8EYDehzfg+uNbcVKHJiRXr7gVhyPhkKm9c+4u51yacy4DX8TpK+fcxcBIoKBJ6TLg/eD5SOACM6tmZi2B1sCEoBvyVjPrZb49/NL9jik41znBNZSoSsWU3hs2LoKtq6J3Ded8t+K0nr4V+GA6XwiJVX3RJxERERGJmpy8fL6cs5obXp1Cj3u/4K53stiwfQ93DD6SMXcO4PWre3FeZnMlscVQlnlk7wfeMrNhwFLgXADn3CwzewuYDeQCNwQViwGuY+/0O6OCBeB54OWgMNQGfMIsUjEVnk+2/dDoXGPVDFg7B07516H3rZkCR53ux8qe+BeoUiM6MYmIiIhUQs45Zi7fwttTsvlg+grWb99DSq2qXNQznTO7NqNTWl2Ney2FEiWyzrnR+OrEOOfWAwMPsN+9+ArH+6+fBHQoYv0ugkRYpMJr0gmSasCy8dFLZKe/CQlVoP1Zxdu/++UwcwTMfv/gXZFFREREpFhWbNrJe9OW886U5SxYs42qiQmc0K4RZ3ZNo3+bVKomadxrWZSlRVZESiOpKqRlRm+cbF4uZL0FbQb71tbiyOgDKUf4ok9KZEVERERKbHduHgvWbGNG9mY+mL6CsT/5+V4zW9Tn72d25JSOTalbU12GI0WJrEgY0nvBdw/C7m1QrXZkz73wK9i+1o99LS4zX0X58z/BmrnQqG1kYxIRERGpIJxzrNi8i7krtzB31Va/rNzCT+u2k5fvy/ykp9Tk5oGtObNrM1o0qBVyxBWTElmRMKT3ApcHyyfB4cdF9twz3oAa9aH1oJId1/ki+PKvMOVFGHJfZGMSERERiUNbd+Uwb3VBsrqVuat88rp1V+7P+zSrV4OjmiYzqH1j2japw1FNkzkitbbGvUaZElmRMKT1BEvwBZ8imcju2gxzP/JzwiZVLdmxtVPhqFNh+usw8M9QpXrk4hIREREpx/LyHYvXb98nWZ27agvLNuz8eZ/a1ZJo2ySZ0zsfRtumdTiqSTJtmiRTRxWGQ6FEViQM1ev4OVsjPU529kjI3VWybsWFdb8cZr0Lcz6ATqq/JiIiIhWPc44l63cwcfEGJi/ZyKwVW5i3eiu7c/MBSDA4PLU2ndPqcX5mc9o2qUPbpsk0q1dDrazliBJZkbCk94apr/riTIkR+lOc/oYv2tSse+mOz+gH9TN80SclsvFvzRz48FbIz4WT/wmHdQ07IhERkZjLyctn1ootTFq8gUmLNzJpyUbWbdsNQN0aVejYrC6X9GpB26Z1aNskmVaNalO9SmLIUcuhKJEVCUt6L5jwDKzOikyCsWkpLPkejr/bF28qjYQE6HYZfPkXWLcAGrYqe1wSe7l74PsH4dv/g2rJkJAEzw6AnlfD8X/wPQJEwrR5OfzwKPT9rR/WICISQVt35TBl6aafE9dpyzaxMycPgOYpNejXuiGZGSlkZtSnVWptEhLUyhqPlMiKhKV5L/+4dFxkEtkZb/rHTueV7TxdfgVf3wtTXoBBfytzWBJjyybCyN/A2jnQ8VwYcr9PZL/6K4x/2s8VfNIDcNTppf/CQ6Qsdm+D18+HVVmwcwOc9UzYEYlInFuxaSeTlmxk0uINTFy8kR9XbSHf+S7C7Q+ry/k9mtMjSFwb11ENkIpCiaxIWOo2g7rpPpHtdV3ZzuWc71bc4lio36Js50puDEeeBNNegwF/hKRqZTufxMbubfDV32D8U1CnGVwUzCVc4JR/+bHTH94Cb10KrQf77sZlfb+IlER+HrxzFaye5Surz3jTj81vcUzYkYlInMjLd8xbvdW3ti7ZyKTFG1m+yRdkqlk1kW7p9blpYGsyW6TQJb0etasp3amo9JsVCVN6L1j0rU9Ey9I6tnwKrF8Ax94cmbi6X+4LPs39CDqcFZlzSvQs+NInqJuWQo+r4IQ/+y7F+0vLhKtG+2T367/D40fDcb+H3jdCoiouSgx8/if48WM46Z++uvrjPeGj2+GabyNXK0BEKpyN2/fw5dw1fDZrFWN/Wv/z1DeNkqvRIyOFK/u2pEdGCm2bJJOUmBBytBIr+l9DJEzpvSDrLdi4GFJalv4801+HpOrQ7ozIxHX4AN9aPPkFJbLl2Y4N8OkfYPpr0KA1/PoTaNH74MckJsExN/r3yid3whf3wIy34NSHIf3oWEQtldXkF2DsY/7LlqOv9usG/x3eugQmPge9rg01PBEpX7I37uDz2av5bNZqJizeQF6+o2nd6pza6TB6ZNSnR0YKafVVRbgyUyIrEqb0IOlYOq70iWzuHpj5Nhx5MlSvG5m4EhKg+6W+q+r6hdDgiMicVyLDOZj9Hnx8B+zcCH1vh353lGzu33rN4YJXYe7H/jz/GeQLfZ1wD9RMiVbkUln9NBo++i0cMdCP2y5w1GlwxAA/Lr/DWVC7UWghiki4nHP8uHorn81azaezVjFrxRYA2jSuzXX9j2BQ+8Z0bFZXiav8TImsSJhS2/rkc+lY6FLKuV8XfO4LpnS+ILKxdbkYvr4PprwEJ/4lsueW0tuywnfF/PEjaNoFLnkXmnQs/fnangwt+8E398PYJ3x38sF/90XD9GFBImHdfD8uu0ErOPe/+3YhNvPdjJ/oBZ//Gc58Mrw4RSTm8vIdU5Zu5LNZq/hs9mqWrN+BGXRLr89dJ7VlUPsmtGxYK+wwpZxSIisSpoQEX7146bjSn2P661Ar1bdqRFKdptBmCEx71U/ZklQ1suevCHZtid1UNvn5MOVFP8YwLwdO/Cv0uj4y4wqr1fYVqjud7+edffdqmPYKnPKQpmCSstmxAV49FxKqwEVvFt1rpGEr3939+4f8+Hx1cRep0Hbl5PHDwnV8Nms1X8xZzbpte6iamMAxrRpwTb8jOKFdIxolq7KwHJoSWZGwpfeC+Z/C9vVQq0HJjt2xAeZ9Cj2ujE6xnu6X+5a/eaMiN/62opj9vm9lSj7MF1FK6wHNe0LTzlClRmSvtX4hfHAzLP4OMvrC6Y9AyuGRvQb4lt0rPoPJ/4Uv/gJP9oY+t0GfW0vWbVkE/LCHNy/2vQgu+wDqZxx43353+LHaH98OV4+GhMRYRSkiMbB5Zw6jf1zDZ7NWM/rHNWzfk0ftakkc37YRg9o15rgjU0murqKDUjJKZEXCVjBOdtl4382zJGa9C3l7fEtaNLQaCHXSfJEWJbL7mvIy1G7spw3JnghzRvr1CUk+IUzrAWk9fZJbP6N03XTzcn1xnNH3QWI1OO0R6HZpdLv8JiRAj2HQ9lT47A++y3HWcDj1ITi8f/SuKxWLc76S9pIxcNZzh25lrVrL9woY8WuY9B/oeVVMwhSR6Nm6K4f3pq3wlYYXric335GaXI0zujZjULvG9D6iAdWS9KWVlJ4SWZGwHdYVEqv6cbIlTWRnvAmpR/lWwGhISIRul8Do+31l5YO1qFQm29fBwq/gmN/sHT+8bQ1kT4LsCf5x6qsw4Rm/rVZqkNgGLbeHdfPdeQ9m5QwYeSOsnO6TypP/z3f3jpXkxnD2c9DlIl+k56XT/Rcmg+6F2qmxi0Pi05iH/bCE/ndCp3OLd0z7M31vgK/+6p/XahjVEEUkemZkb+KG16awbMNOWjasxbC+LRncvgld0uqRkKD6CxIZSmRFwlaluk9ml40v2XHrF/pjTrgnui10XS+Gbx7wLZAD/xi968ST2e+By4OOhT6g127kv4go+DIiLxfWzoFlQWKbPdHPnwlgCdCo/d7ENq2HL4STkAA5u/zrPebfULMBnPuibw0Pq/DSEQPgurHw/YN+DOO8T+CEv/gKxwmaq0+KMHukn9apw9lw3J3FP87Mf2Hz5DH++DMei1aEIhIlzjleGruEez+aQ8PaVXnrmt70yKivSsMSFUpkRcqD9F6+YmzOzuKPr5zxFmDQ8byohkbdNGg9CKa+4j+URmMsbrzJGuFbwhu3P/A+iUEX4yYdfVdd8GOal0/2SW32RJj5jm+BAqhezye2GxfD+gW+avSgv5aPqXCqVIfj/wc6nAMf3ea7jK5fAIPvDTsyKW+WT4F3rvZfzpzxRMm/gEk9EnpdBz886sfop2VGJUwRibwtu3K46+0sPspayYC2jfjXuZ2pX0uFIiV69HW6SHmQ3hvyc2DF1OLt75yvVnx4f6jbLLqxgW9927bKF5aq7DYt9d3AO55T8g/pNVOg9Yk+KbzkXfj9Yrh+PJz+mG913bLSdzO/5F0Y+nj5SGILS23ji/Z0vtB3m968POyIpDzZvBxev9B3pb/gtdIXCOv/e0hu6ru05+dFNkYRiYqZyzdz2qPf88msVdx1UlueuzRTSaxEnRJZkfKgeVAIZenY4u2/dBxsWgKdIjx37IG0HuQ/WE55MTbXK89mvu0fO55T9nMlJECjtn4c8umPwPU/wPVjIz+VUiSZwXF3gcv33Y1FAHZvg9fPhz3b/TQ7tRuV/lzVkn3hp5XT/DzWIlJuOed4ZdwSznryB3bn5PPm1b24pv8RGgcrMaFEVqQ8qJkCqW2LP5/sjDegSk046rToxlUgMQm6XgLzP4dNy2JzzfIqa4SvRlyZC1/Vb+HHTk95CTZnhx2NhC0/D965ClbPgnP/C43blf2cHc6GFn3gy7/4LvkiUu5s253LTW9M4+73ZtL78AZ8dFMfMjPKWU8iqdCUyIqUF+m9YOl4yM8/+H45u2Dmuz6JPVTl20jqdol/nPpy7K5Z3qyeDatn7lvkqbLqe7vv4v7dv8KORML2xZ99IbMh9/uu85FgBif/E3ZtgS//NzLnFJGImb1iC6c9+j0fzVjBHYOP5L+X96BB7WphhyWVjBJZkfIivTfs3uwr3R7MvE/8fp1j1K24QL10P6/s1Fd8Rd7KaOYIsERoPzTsSMJXr7n/cmPKy37csFROk1/0hZl6XAk9r47suRu3g6Ov8fNYL58S2XOLSKk453h9wlLOfGIM23fn8vpVvbjh+FbqSiyhUCIrUl6k9/KPhxonO/0NP161Zf/ox7S/7pfDluWw4IvYXztszkHWcF9gqyzj/yqSvr/1LWdqla2cfvrGV7E+YiAMeSA6U0Qdd6cvHvXxHYfurSIiUbV9dy63vjmNu97JomfLFD6+uS9HH94g7LCkElMiK1Je1GsBtZscfJzs9nWw4HPftTUhMXaxFWgzBGo39i0klU32RN/yqG7Fe9VNg26X+lb6jYvDjkZiad0CeOsSP//xuf/14+ijoXpdPw3V8kkw7ZXoXENEDmnuqi2c9tj3jJy+gt+e2IYXf92ThupKLCFTIitSXpjtHSd7IDPfhvxcP/1JGBKrQJdfwfxPYcuKcGIIS9YISKwGbU8NO5Lypc9tYAnw7f+FHYnEyo4N8Nq5kFDFVyiuXje61+t0vh968cU9KvwkEmPOOd6auIyhj49h665cXrnyaH4zsLW6Eku5oERWpDxJ7w2blx64Euz016FJx8hUBS2tbpf6qVemVqLWkbxcmPUOHDkEqtcJO5rypW4z3+V82muwYVHY0Ui05e6BNy/x/0Zd8FpsqncXFH7auRG+/nv0ryciAOzYk8tvh0/nd2/PoFt6fT6+qS/HHNEw7LBEfqZEVqQ8+XmcbBHdi9f+CCumhtcaWyClJRx+vJ96JT8v3FhiZdE3sH2tuhUfSJ/bICFJrbIVnXPw4a2w5Hs443FIPzp2127SEXpcBZOeh5UzYnddkUpq/uqtnPHYGN6dupybB7bm5WFHk5qsrsRSvhwykTWz6mY2wcymm9ksM/tLsP5NM5sWLIvNbFqwPsPMdhba9lShc3U3sywzW2Bmj5j5yhBmVi043wIzG29mGdG5XZFyrnEHqFq76ER2+hu+C2eHc2If1/66Xw6bl8HCr8KOJDayRkC1utAqQlOLVDR1mkLmFb7HwPqFYUcj0TLmYT9Otf/vodN5sb/+8f8DNVLg49tV+Ekkit6enM3pj41h4449vHzF0dx6YhsS1ZVYyqHitMjuBgY45zoDXYAhZtbLOXe+c66Lc64L8DbwTqFjFhZsc85dW2j9k8DVQOtgGRKsHwZsdM61Ah4CHijLTYnErcQkSOvxy0Q2Px9mvOWrgyY3Die2wo48GWo2rBxFn3J2wpwPoN1pUKV62NGUX31u8WOo1SpbMc0e6ceotj8LjrsrnBhq1IMT/wLLxsOMN8KJQaQC27knj9+NmM5vh0+nc/O6fHxTX/q0VldiKb8Omcg6b1vwY5VgcQXbg1bV84DXD3YeM2sK1HHOjXXOOeAlYGiw+QzgxeD5CGBgQWutSKWT3htWz4Rdm/euW/I9bMmO/dyxB5JUFbr+Cn4cBVtXReac+Xm+NW/uRzDmEdjwU2TOW1bzPoU9W9Wt+FCSm0DmMJ9gqFW24sjLhe8fgrevhGaZMPSJ6EyzU1ydL/Jf9n3+J9i5Kbw4RCqI/HzHvNVbeXncEoY+Pobhk7P5zYBWvDLsaBrV0Ze3Ur4Vq16+mSUCk4FWwOPOucJlVfsCq51z8wuta2lmU4EtwN3Oue+AZkDhCjbZwTqCx2UAzrlcM9sMNADWlfyWROJcei/AwbKJ0PoEv276G1A1GdqeEmpo++h2GYz5ty/61O/24h+Xnw+blsDaubBmzt7HdfMgd9fe/RZ8AZeNjHzcJZU13E85lNE37EjKvz63wKT/wDf/gLOeDjsaKasV02Dkb2DVDF+t+7RHoEqNcGNKSICT/w+eOQ5G3wcnqQOXSEnk5TvmrNzC+EUbGP/TeiYu3sDGHTkANKtXgxd/3ZN+bVJDjlKkeIqVyDrn8oAuZlYPeNfMOjjnZgabL2Tf1tiVQLpzbr2ZdQfeM7P2QFFf4Ra07B5s28/M7Gp812TS09OLE7pI/EnLBEuEpWN9IrtnB8x+H9oPDf9DZGENjvDJ3ZSXgmI/+3XwyM/342iLSlhzduzdr04zSG0LLfv5x0ZHwU+j4au/wpIfoMUxMb2tfezcBPM/8y2NYczbG29qN4Iew2DcE/7LjYatw45ISiNnJ4y+H354FGo1hPNehnanhx3VXod18WOyJzwDXS+BJh3Cjkik3MrJyydr+WbG/7SBCYvWM2nxRrbuzgUgPaUmA49qTM+WKfRq2YDmKTVQh0iJJyWawdw5t8nMRuPHts40syTgLKB7oX1248fV4pybbGYLgTb4Fti0QqdLAwomoswGmgPZwTnrAr+YLM459wzwDEBmZuYvEl2RCqFqLWjaae842bkfwZ5t0KmcdCsurPvl8PYwmDkCatTfN2Fd+yPkbN+7b3JTn6h2v3xvwpp6ZNFzUDZqB+Of9h+mw2yVnfMB5O1Rt+KSOPaWoFX2ATj7ubCjKf9Wz4LNy6HVCb/8MigMi76DD27yXfu7XgKD/ur/tsubAXfDrHfh4zvg1x+H291ZimfLir1fPjQ4IuxoKqxdOXlMW7aJCYs2MH7ReqYs2cTOHD/DwBGptTity2Ec3TKFHhkpHFavHH05LlIKh0xkzSwVyAmS2BrACewtxnQCMNc5l73f/hucc3lmdji+qNNPzrkNZrbVzHoB44FLgUeDw0YClwFjgXOAr4JxtCKVU3pvmPRfP2fjjDegbnNocWzYUf3SUaf5KqLvXLV3Xe3GPlHtdsm+CWtJPgxXrem7qX76P+G2ys4cAfVbQrNu4Vw/HtVOhZ5X+XHO/e7wv3sp2vqF8N+TYdcmaNgGjr0ZOp7nx6DH2s5NftzplBf93LCXjoTD+8c+juKqmQIn3OOT7qzh4VRRlpIZ8wiMf9I/drnIV7+u1zzsqGJiw/Y97MnNp2pSgl8SE6iSaBFp/dy+O5fJSzYyYdEGJizawLRlm9iTl48ZtG1Sh/N7NPeJa8sUGtbW9DlSsRSnRbYp8GIwTjYBeMs592Gw7QJ+WeSpH/C/ZpYL5AHXOucKWlevA14AagCjggXgeeBlM1uAb4kth01PIjGU3st3z5z/mZ/ipqiuu+VBUjU4/xXfCtvoKJ+41kyJzLm7/xq+fzi8Vtmtq2DRt9D3drX2lNQxN8OE53yr7Dn/CTua8mnnJnjtfD+l1ikP+i+u3r8Bvv479L7Bj0GvVjs2scz5ED76LWxfA8f8Bo77H/9lUnnX9RJfOf2zu6HNEKheJ+yI5EDycmHm234O8tS2fj7gGW/6LuJ9f+uHJVQAG7fvYd7qrcxbs415q7Yyb/VW5q/Zxobte36xrxlUSUygWmIC1ar45PbnRDep8M+JVE1MoFqSXwq2A0zP3szM5ZvJy3ckJhgdmtXl8mMz6JnhW1zr1qwS65dAJKYsXhs+MzMz3aRJk8IOQyQ6tq6Gf7WBei18YaQbJ1XO8YY/PAaf/QF+/Qm06B3ba497Ej65E26YoFbF0vjiHv9FxPVj/ZccsldeLrx6Diz+Hi59HzKOBedgwZe+QvCS76F6PTj6Guh5DdRqEJ04tq6GUXf4MfiNO8Dpj8Zf74Plk+HZgT75H3xv2NHIgSz4Al45e+94683Zvijc1Ff8F6JHXwPH3BS5L0KjbPPOHOav3sq81dt84ho8X7dt98/71K6WROvGtTmycTKtGtWmZtUk9uTmsScvnz25ftld+Hnu3uf777M7Z9/j9uTlk5fnaNs0maNbNqBnyxS6t6hPrWolGjEoEhfMbLJzLrPIbUpkRcqpR7r6cWrNusNVX4UdTTj27IB/d4LG7f0H/lh6dgDk5cC138X2uhXFjg3wcEdofSKc+0LY0ZQvH9/hxwqe/ih0u/SX25dN8F8C/PgRVKnpW2d73xC5bpjOwbRX4dM/+MJO/X/nuzUnxmnrzcibfEJ03Rh9aVJevXONn67t9nn7zse9fqGvPp01AqrV8T0Cel0L1ZLDi7WQrbtymL9m2y+S1tVb9iasNasm0rpRbVo3TubIxsm0blybNo2TaVq3ugoniUTAwRJZfXUjUl6l9/aJbHks8hQrVWv64kGf/QGWjI1dq+z6hb6l58S/xuZ6FVHNFN/K8t2D0G82NG4XdkTlw8TnfBLb+8aik1iA5j3hwtdgzVw/xdXEZ/3S8TyfcDZqW/rrb1gEH97iK4OnHwOnPxL/vT0G/hnmjPRfEFz2gYYClDd7tsPcD6H9mfsmseCLPp39HPS5Fb66F77+mx9H2+c2XwE9hpX6c/PymZ69mW/mrWVG9ibmr97G8k07f95evUoCrRrV5tgjGtKmSTJtGtemdaNkmtWrQUKC3nMiYVCLrEh5Nfcj+PA2uO6H6HUtjAdhtMp+8w8/VvHWWVC32aH3l6Lt2AAPd4JWA+C8l8KOJnwLv/bdK1udABe+XvwpnTYtg7GP+0JMOTvgyFP8B//mPYp/7fw8313+q79BQhKc+Bc/Dr08jr0vjYnPw0e3+THZHc4OOxopLGuEr25/2YfQ8hDzcWdP9lOv/fQ1JB8G/e/wY6Gj1Ftg1eZdfDtvLd/MW8t389eyZVcuCQZtGidzZJNk2jQuWGqTVr8miUpYRWJOXYtFJL7Fcqysc/BYD199+dcfRfdalcFXf4Nv/wnXfg9NOoYdTXjWLYDnBvgP58M+K11hou3rfWvuhKdh50Zo0ccntK0GHrwVctVMGPkbWDHFF0U65cGK9wVNfh48ezxsWwNXfgF10w59jMTGq+fB6plwy8zif3Gy6Duf0C4b76toH/c/0PGcMs/nvTs3j4mLNvLt/LV88+Nafly9FYDGdarRv00q/ds04thWDahXM4TK4SJSJCWyIhLfYtkqu3I6PN0PTn3IV9SUstm50bfKtuwHF7wadjTh2LnRFyTatcmPd6+fUbbz7d4GU16CsY/BluXQuKOfrqrdUEgsNGIoZxd893++gFT1enDyP6D9WRW36+3KGfDCKX6qr8s+gPotwo5Itq+Dfx3px3if+L8lO9Y5mP85fPW/sCrLVzs+/g9+2rdivoedcyxev4NvflzDt/PXMXbhenbm5FE1MYGeLVPo16Yh/ds0ok3j2hrPKlJOKZEVkfgXq1bZz/7opz66fX7cVNAs976+D765H675Dpp2Cjua2MrL8d2Jl/zgk6tIvndz9/g5VMc8DOvm+QT5mJugy69gxVQ/x+q6edD5Qhj898rxfl4+BV4+E6rW9tN2NTgi7IgqtwnPwse3w7VjoEmH0p0jPx/mvO+He6ybB027wIA/HrAnwrbduYxduJ5v5q3h23nrWLphBwAtG9aif5tU+rVpSK/DG1CzqsrEiMQDJbIiEv9i0Sqbnw8Pd/BdYC96MzrXqIx2bvKtshl9fBGjyuTD2/ycmWc8AV1/FZ1r5OfDjx/D9w/6ImU16vtW4LrpcNpDfkxuZbJyBrw8FBKq+C8PUtuEHVHl9dyJsGebn4arrPJy/dyz39wPm5b6YmUD/4hL782clVv5Zt5avpm3hslLNpKT56hVNZHeRzSk/5Gp9G+dSnqDOJgbWUR+QVWLRST+xaKC8dKxvqtmSbvAycHVqOe7Fo7+O6yYBod1CTmgGJnwrE9ij705ekks+HGHR50KbU/xc9NOeMZ3q+1/J1SrHb3rlldNO8HlH8GLp8MLJ8OlI1U1OwwbFkH2BDjhnsicLzHJ/x11PNcXPvv2n/DfkxhnXRi28yZ2UJ12TeswrM/h9G+TSvcW9amaVEGKmYlIkdQiKyLxI9qtsh/c4r/xv2MBVK0V+fNXZrs2+3ll04+Bi94IO5roW/AlvHoutB7kxwaXsUiNlMK6+fDiaZC7Gy59D5p2DjuiyuWbf8DX9/oiT5GaA7mwPTuY+vY/YflkFh73OP3apNKoTvVDHyciceVgLbL6qkpE4kfVmr5166fRsHRcZM+duwdmv+dbtZTERl71utD7NzBvlB/HWJGtnQfDf+2L05z9rJLYsDRsDb/+2P89v3ia73YtseEczHgLWhwbnSQWoGpNul74Z7rePpJzMpsriRWphJTIikh8ybwCaqXC6Psje96FX/lxhR3Pjex5Za+jr/HjN0ffF3Yk0bNjA7x2HiRV9S3P1ZLDjqhySzncJ7PV68GLZ8DS8WFHVDmsmArr50On88KOREQqMCWyIhJfqtYKWmW/jmyrbNZwqJECRwyI3DllX9XrQO8bYf5nkF0Bh4bk5cBbl/px1ue/CvXSw45IwP8efj0KajfyFY0Xfx92RBVf1nBIrArtzgg7EhGpwJTIikj8iXSr7O5tvupr+6GQWCUy55SiHX2N/8KgorXKOuenGVn8HZz+KKQfHXZEUljdZr5ltl5zeOUcWPh12BFVXHm5MPNtPz68Rv2woxGRCkyJrIjEn0i3yv44CnJ2qFtxLFRLhmNvggVfwLIJYUcTOeOfhskvQJ9bofMFYUcjRUluApd96OeWfe18mPdZ2BFVTIu+gW2r1a1YRKJOiayIxKdItsrOHAF1mkHzXmU/lxxaj6ugZoOK0yo7/wv49C5oeyoM+FPY0cjB1E71c8s2agtvXARzPgw7ooonazhUqwutB4cdiYhUcEpkRSQ+RapVdscG3zrY4Ww/H6dEX7Xa/ne38Kv4L76zZi6M+DU0ag9nPq33UDyomeLnlm3aGYZfBjPfCTuiimPPDpjzAbQ7HaqoirCIRJf+xxWR+BWJVtnZ70F+rroVx1qPK4Pf3d/DjqT0tq+H18+HpOpw4es+QZf4UKOen1s2rQe8PQymvxl2RBXDjx/Dnm3qViwiMaFEVkTiV9VacMxNZWuVzRoBDY+EJh0jG5sc3M8t6qNhyQ9hR1NyuXuCCsUr4YLXojdXpkRPtWS4+G3I6APvXgNTXg47oviXNRySD4MWfcKOREQqASWyIhLfegyDmg1L1yq7ORuWjPGtsWaRj00OLnMY1GoEX8dZq6xz8NFtsOR7OOMxaN4j7IiktKrWgove8tNujbwRJj4X3evl7oHlk2HbmuheJwzb1/thGh3PURd7EYkJ/UsjIvFtn7GyJRxvOfNt/9jx7MjHJYdWtSb0ucVPWRNPc3uOewKmvgx9b1cXyoqgSg3fqt7mJPjotzD2icide+tqP2b0s7vh+cFwXxo8OwBeGuqnqalIZr3jh2nob0JEYkSJrIjEv4JW2W9K2CqbNRyaZULK4dGJSw4t8wqo3Ri+jpMKxvM+9UnJUafB8X8IOxqJlCrV4byX4KjTfQXq7x8q+TnycmHFNJjwLLx9JTzcCf7VBt682E/P5PKh51Vw3F2wZhZMfDbitxGqrOGQehQ07hB2JCJSSSSFHYCISJkVtMp+/kffKpt+9KGPWTMXVmXBkAeiH58cWJUa0Oc2+OT3MO016HJR2BEd2MrpMGKY/6CuCsUVT1JVOOe/frzsF/f4bsD9f3fgYQc7Nvi5kLMn+Mflk/181AC1m0DzntDzav/YtDMkVfPbnIPsib5Lffsz/fy28W7DIlg2Hgb+WcM0RCRmlMiKSMXQYxiM+bdvlb3k3UPvP3MEWIL/ICnh6n65rx793nWwaiac+BdIrBJ2VPua9hp8eBvUqA8XvuG/PJGKJzEJznoGEqv6itp5u2HAH33yuXauT9ayJ/rH9Qv8MZYITTtB10t80tq8J9RtfuCEzgxO+gc80Qs+/5O/XrzLGuEfO54TbhwiUqkokRWRiqEkrbLO+Q9eLftBcuPYxShFq1Ldz+v52d0w7nFYMRXOfaF8/G5ydsGo38GUFyGjL5z9fPmIS6InIRHOeNx/mfLdv2DBl7DhJ9i9xW+v2QCaHw1dfuUfD+vqx3uXRIMj/L9X3/4Tul0GGcdG/j5ixTnIegvSj4F66WFHIyKViPpFiUjFUdyxssunwMZFmju2PEmqCif/A858xieyT/cr/ZRKkbJxMfxnkE9i+9wKl7ynJLaySEiAUx+Gvr/1P3c8B4Y+Bb+ZAncs9PMG973NJ6AlTWIL9LkN6qbDx7dDXk7EQo+5ldNg3TwVeRKRmFMiKyIVR0Gr7MKvDl7BOGs4JFbzBXukfOl8Plz5hR87+8IpQZEcF/s4fhzlk+kNi+GC1+GEe3y3U6k8EhJg4J/gmm/g1Iegy4W+JTVSY0Cr1oQh98Ga2b5AVLyaMRwSqkC7M8KOREQqGSWyIlKxHKpVNj/PT7vTZhBUrxvb2KR4mnSAq0dDqxN9t953roY922Nz7bxcX+jn9QugXgufxLQ9OTbXlsqn7Sn+ff7132HrqrCjKbn8PF9voPUgqJkSdjQiUskokRWRiqVqLTj2pgO3yi76FravUbfi8q5GPT+354C7fQv6cyfC+oXRvea2NfDyUD/1SrfLYNjnkNIyuteUys0MTnrAF5X6/E9hR1Nyi76BbavVrVhEQqFEVkQqnh5X+oIsRbXKZo2AanV8C4KUbwkJ0O8OuHgEbF0Bzxzvu/xGw5If4Km+kD0Jhj4Jpz/ii1CJRFtB4acZb8LiMWFHUzIzhvt/T9sMCTsSEamEDpnImll1M5tgZtPNbJaZ/SVYf4+ZLTezacFycqFj7jKzBWb2o5kNLrS+u5llBdseMfMDTcysmpm9Gawfb2YZUbhXEaksCo+VXTZh7/qcXTBnpB8bW6VGePFJybQ6Aa7+BlIyfJffr/7muzRGgnPww6Pwwqn+fXPlF+V7LlupmOKx8NOeHTDnA2h3ur70EZFQFKdFdjcwwDnXGegCDDGzXsG2h5xzXYLlYwAzawdcALQHhgBPmFlisP+TwNVA62Ap+ApvGLDROdcKeAh4oMx3JiKVW0Gr7OhCrbLzP/NTaGiuw/hTvwVc8Sl0udhPWfLqObBjQ9nOuWszvHmxn/an7clw9dd+fK5IrFWtCSfdHxR+ipN5ZeeNgj1boaO6FYtIOA6ZyDpvW/BjlWA5WAnJM4A3nHO7nXOLgAVATzNrCtRxzo11zjngJWBooWNeDJ6PAAYWtNaKiJTKz62yX+5tlc0aDrUaQUa/cGOT0qlSA854DE77Nyz+Hp7u76fqKY1VWfDMcb6r8qB74byXVfxLwnXkyX7Iw9f3xUfhpxnDIbkpZPQJOxIRqaSKNUbWzBLNbBqwBvjcOVdQQeVGM5thZv8xs/rBumbAskKHZwfrmgXP91+/zzHOuVxgM9CgiDiuNrNJZjZp7dq1xQldRCqzwq2yu7bAvE+h/ZmaRiWemUH3y+GKT8Dlw/ODYcrLJTvH1FfhuRMgZydc/hEcc2PkplQRKS0zGHK/L/z02R/Djubgtq+HBZ/73i0JiYfeX0QkCoqVyDrn8pxzXYA0fOtqB3w34SPw3Y1XAv8Kdi/q04A7yPqDHbN/HM845zKdc5mpqanFCV1EKrPCrbKf/8l/QFS14oqhWXc/NU56Lxh5I3xwM+TuPvgxOTth5G/g/euheU+45lto0Ts28YoUR4Mj4NhbIOst3+ugvJr9LuTnqluxiISqRFWLnXObgNHAEOfc6iDBzQeeBXoGu2UDzQsdlgasCNanFbF+n2PMLAmoC5Rx8JOICHtbZSf/188LmpYZdkQSKbUawiXv+kI5k1+A/wyBTcuK3nfDInh+EEx5CfreDpe8B7UbxTJakeLpcyvUS4eP7yi/hZ9mDIfUttCkY9iRiEglVpyqxalmVi94XgM4AZgbjHktcCYwM3g+ErggqETcEl/UaYJzbiWw1cx6BeNfLwXeL3TMZcHzc4CvgnG0IiJlU9AqC741Vl1IK5aERDjhz3D+K7BuPjzTHxZ+ve8+cz/242k3LYWL3oKBf1R3SCm/qtb0XYzLa+GnjYth2Tg/d6z+PRWREBVnoFhT4MWg8nAC8JZz7kMze9nMuuC7AC8GrgFwzs0ys7eA2UAucINzrmCehOuAF4AawKhgAXgeeNnMFuBbYi8o+62JiAR6XAXb10LPq8OORKLlqNMg9Sh481fwylkw4I9wzG/8VD1jHoamXeC8l3z1Y5HyrnDhpw5nQ3KTsCPaK2u4f9QwDREJmcVrw2dmZqabNGlS2GGIiEh5snubHwc76x2o3Ri2rYbMK2DwfZrrUuLLhp/g8V7Q7gw4+9mwo/Gcg8d7+uEaV3wSdjQiUgmY2WTnXJHjwko0RlZERKRcq1YbzvkPDP47WCKc+TSc+pCSWIk/KYf7YRHlqfDTyumwbp7vViwiEjIlsiIiUrGYQe8b4LdzoLNGqkgcKyj89NHt5aPwU9ZwSKgC7YaGHYmIiBJZERERkXKpak0Y8gCsnQPjnw43lvw8yBrhx+7WTAk3FhERlMiKiIiIlF9HngStB8Po+2HLyvDiWPQtbFsFnVTkSUTKByWyIiIiIuWVGZx0P+Ttgc//GF4cWcOhajK0GRJeDCIihSiRFRERESnPUg6HPrf4ZHLRd7G/fs5OmD3SV1CuUiP21xcRKYISWREREZHyrqDw08d3xL7w04+jYM9WdSsWkXJFiayIiIhIeVelRniFn7KGQ+0mkNE3ttcVETkIJbIiIiIi8eDnwk/3xa7w044NMP9z6HgOJCTG5poiIsWgRFZEREQkHvxc+CkHPrs7Ntec9S7k50Cn82JzPRGRYlIiKyIiIhIvUg7342VnjohN4aes4dDwSGjSKfrXEhEpASWyIiIiIvGkzy1QrwV8fHt0Cz9tXAJLx/rWWLPoXUdEpBSUyIqIiIjEkyo14KQHYO1cGP9U9K6TNdw/dlS1YhEpf5TIioiIiMSbI0+CNkNg9P3RKfzknE9k03tD/RaRP7+ISBkpkRURERGJR0OiWPhpVZZv8VVrrIiUU0lhByAiIiIipZDS0hd++uZ+SKoOtRtB9bp+qVFv7/Pq9YKlDiRWKd65Z7wJCUnQ/swo3oCISOkpkRURERGJV31ugeWTYN4o2LUZ8nMPvn/V2vsluEUlvnVh5tvQehDUTInBTYiIlJwSWREREZF4VaUGXPy2f+4c5OyAnZt8UrtrM+wq9Lyo9VuyYfUs/3z35n3P3eWfsb0XEZESUCIrIiIiUhGYQdVafqnbrOTH5+fB7i0+qc3dAw1bRz5GEZEIUSIrIiIiIpCQCDXq+0VEpJxT1WIRERERERGJK0pkRUREREREJK4okRUREREREZG4okRWRERERERE4ooSWREREREREYkrSmRFREREREQkriiRFRERERERkbiiRFZERERERETiihJZERERERERiStKZEVERERERCSumHMu7BhKxczWAkvCjkOK1BBYF3YQEvf0PhIpPf39SCTofSRlpfeQlFUL51xqURviNpGV8svMJjnnMsOOQ+Kb3kcipae/H4kEvY+krPQekmhS12IRERERERGJK0pkRUREREREJK4okZVoeCbsAKRC0PtIpPT09yORoPeRlJXeQxI1GiMrIiIiIiIicUUtsiIiIiIiIhJXlMhWAmbW3My+NrM5ZjbLzG4O1qeY2edmNj94rB+sP9HMJptZVvA4oNC57jWzZWa27RDX7B4cv8DMHjEzC9ZfbmZrzWxasFx5gOP7mdkUM8s1s3P225ZX6PiRZX195NDi9D10m5nNNrMZZvalmbUI1ncxs7HBfcwws/Mj9TqJHEh5+hsKtp0X/H3MMrPXDnB8NTN7Mzh+vJllFNr2iZltMrMPy/jSSDFVwPfQP4Jj5+x/bomeOH0f6TOhFM05p6WCL0BToFvwPBmYB7QD/gHcGay/E3ggeN4VOCx43gFYXuhcvYLzbTvENScAvQEDRgEnBesvBx4rRswZQCfgJeCc/bYd9Npa9B4K9jseqBk8vw54M3jeBmgdPD8MWAnUC/s11lKxl3L2N9QamArUD35udIDjrweeCp5fUPA3FPw8EDgN+DDs17ayLBXpPQQcA4wBEoNlLHBc2K9xZVji9H2UgT4TailiUYtsJeCcW+mcmxI83wrMAZoBZwAvBru9CAwN9pnqnFsRrJ8FVDezasG2cc65lQe7npk1Beo458Y65xz+H56hJYx5sXNuBpBfkuMkOuL0PfS1c25H8OM4IC1YP885Nz94vgJYAxQ50bZIpJSzv6GrgMedcxuD8605wGkKxzYCGFjQkuKc+xLYWry7l0ioYO8hB1QHqgLVgCrA6mK8DFJG8fg+0mdCORAlspVM0K2nKzAeaFzwD1Dw2KiIQ84GpjrndpfgMs2A7EI/Zwfrfj5n0KVzhJk1L0n8gepmNsnMxpnZ0FIcL2UQp++hYfhvgfdhZj3xH6QWliA2kTIpB39DbYA2ZjYm+Hd0yEHOsSyILRfYDDQoQQwSJfH+HnLOjQW+xveIWQl86pybU4LYJALi6H10MPpMWIklhR2AxI6Z1QbeBm5xzm051HAUM2sPPAAMKumlilhXUB77A+B159xuM7sW/63fgCL2P5h059wKMzsc+MrMspxzSkRiIB7fQ2Z2MZAJ9N9vfVPgZeAy55y+5ZWYKCd/Q0n4Ln3H4XsqfGdmHZxzm0pwDglJRXgPmVkr4KjgWIDPzayfc+7bEsYopRRn76OD0WfCSkwtspWEmVXB/4P1qnPunWD16uDDfMGH+jWF9k8D3gUuPdQ/CGaWWGig/f/iv21LK7RLGrACwDm3vtA3ec8C3YNz3FtwjkPdS0EXF+fcT8Bo/LeJEmXx+B4ysxOAPwCnF/4G2czqAB8BdzvnxpXwpRAplfLyNxRse985l+OcWwT8CLQu4m8oG2genD8JqAtsKOXtSwRUoPfQmcA459w259w2fI+ZXqV4SaQU4vB9dED6TFi5KZGtBILxKM8Dc5xzDxbaNBK4LHh+GfB+sH89/If8u5xzYw51fudcnnOuS7D8KeiSstXMegXXvrTQuZsWOvR0/NgMnHN/KDjHIe6lfsHYDDNrCBwLzD5UjFI28fgeMrOuwNP4JLbwf8hV8f8hv+ScG17Cl0KkVMrT3xDwHr4YWsG/o22An4r4d7hwbOcAXwVj3CQEFew9tBTob2ZJQVLVn+DfcomuOH0fHehe9JmwsnPloOKUluguQB98N44ZwLRgORk/1ulLYH7wmBLsfzewvdC+0wgqyeGr2mXjB9xnA/cc4JqZwEz82MPHAAvW34cvFjAdPz6m7QGO7xGcfzuwHpgVrD8GyAqOzwKGhf36VoYlTt9DX+CLhxRcf2Sw/mIgZ7/YuoT9Gmup2Es5+xsy4EH8B74s4IIDHF8dGA4swFcdPbzQtu+AtcDOIIbBYb/GFX2pSO8hfKXip/HJ62zgwbBf38qyxOn7SJ8JtRS5FLyRREREREREROKCuhaLiIiIiIhIXFEiKyIiIiIiInFFiayIiIiIiIjEFSWyIiIiIiIiEleUyIqIiIiIiEhcUSIrIiIiIiIicUWJrIiIiIiIiMQVJbIiIiIiIiISV/4fAOObzyysy9UAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Predicting/Forecasting\n", "\n", "# getting the predictions\n", "x = df[features][-n_past:].values\n", "x = sc.transform(x)\n", "y_pred = regressor.predict(x.reshape(1, n_past, n_features)).tolist()[0]\n", "y_pred = dummy_invscaler(y_pred, n_features)\n", "\n", "# creating a DF of the predicted prices\n", "y_pred_df = pd.DataFrame(y_pred, \n", " index=pd.date_range(start=df[['Close']].index[-1]+datetime.timedelta(days=1),\n", " periods=len(y_pred), \n", " freq=\"D\"), \n", " columns=df[['Close']].columns)\n", "\n", "# getting the true values\n", "y_true_df = df[['Close']].tail(n_past)\n", "\n", "# linking them\n", "#y_true_df = y_true_df.append(y_pred_df.head(1))\n", "y_pred_df = y_pred_df.append(y_true_df.tail(1)).sort_index()\n", "\n", "print('y_pred:\\n', y_pred.tolist())\n", "print('y_true:\\n', y_true.tolist())\n", "\n", "# plotting the results\n", "plt.figure(figsize=(16,5))\n", "plt.plot(y_pred_df, label='Predicted')\n", "plt.plot(y_true_df, label='True')\n", "\n", "plt.title('BTC price Predicted vs True')\n", "plt.legend()\n", "plt.savefig('{}/Predictions.png'.format(modelname))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Close
2021-06-1036625.629
2021-06-1137012.388
2021-06-1237245.567
2021-06-1337207.199
2021-06-1437543.775
2021-06-1538584.722
2021-06-1639018.287
2021-06-1739340.405
2021-06-1839586.889
2021-06-1940092.391
2021-06-2040572.011
\n", "
" ], "text/plain": [ " Close\n", "2021-06-10 36625.629\n", "2021-06-11 37012.388\n", "2021-06-12 37245.567\n", "2021-06-13 37207.199\n", "2021-06-14 37543.775\n", "2021-06-15 38584.722\n", "2021-06-16 39018.287\n", "2021-06-17 39340.405\n", "2021-06-18 39586.889\n", "2021-06-19 40092.391\n", "2021-06-20 40572.011" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# export to csv\n", "y_pred_df.to_csv('{}/preds_{}.csv'.format(modelname,n_future))\n", "# show\n", "y_pred_df" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }