{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This file is part of postpic.\n", "\n", "postpic is free software: you can redistribute it and/or modify\n", "it under the terms of the GNU General Public License as published by\n", "the Free Software Foundation, either version 3 of the License, or\n", "(at your option) any later version.\n", "\n", "postpic is distributed in the hope that it will be useful,\n", "but WITHOUT ANY WARRANTY; without even the implied warranty of\n", "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n", "GNU General Public License for more details.\n", "\n", "You should have received a copy of the GNU General Public License\n", "along with postpic. If not, see <http://www.gnu.org/licenses/>.\n", "\n", "Copyright Stephan Kuschel 2016-2018\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, download the example data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "downloading _openPMDdata/example-2d.tar.gz ...\n", "done.\n" ] } ], "source": [ "def download(url, file):\n", " import urllib3\n", " import shutil\n", " import os\n", " if os.path.isfile(file):\n", " return\n", " urllib3.disable_warnings()\n", " http = urllib3.PoolManager()\n", " print('downloading {:} ...'.format(file))\n", " with http.request('GET', url, preload_content=False) as r, open(file, 'wb') as out_file:\n", " shutil.copyfileobj(r, out_file)\n", "\n", "# download the example data\n", "import os\n", "if not os.path.exists('_openPMDdata'):\n", " os.mkdir('_openPMDdata')\n", " download('https://github.com/openPMD/openPMD-example-datasets/'\n", " + 'raw/776ae3a96c02b20cfae56efafcbda6ca76d4c78d/example-2d.tar.gz',\n", " '_openPMDdata/example-2d.tar.gz')\n", "\n", "import tarfile\n", "tar = tarfile.open('_openPMDdata/example-2d.tar.gz')\n", "tar.extractall('_openPMDdata')\n", "print('done.')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'v0.3.1+318.ga7cb0c4'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import postpic as pp\n", "pp.__version__" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<OpenPMDh5reader at \"_openPMDdata/example-2d/hdf5/data00000300.h5\">\n", "The simulations was running on 2 spatial dimensions.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", " from ._conv import register_converters as _register_converters\n" ] } ], "source": [ "pp.chooseCode('openpmd')\n", "# open a specific dump\n", "dr = pp.readDump('_openPMDdata/example-2d/hdf5/data00000300.h5')\n", "print(dr)\n", "# the dumpreader knwos all the information of the simulation\n", "print('The simulations was running on {} spatial dimensions.'.format(dr.simdimensions()))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['fields', 'particles']\n" ] }, { "data": { "text/plain": [ "<HDF5 group \"/data/300/fields\" (4 members)>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# if needed, postpic can be bypassed and the underlying datastructer (h5 in this case)\n", "# can be accessed directly via keys\n", "print(dr.keys())\n", "dr['fields']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The Field data\n", "\n", "Field data is data, which is already on a grid, examples are Electric Field, Magnetic Field, Number Density, A velocity field of the streaming particles... Such data can be accessed by the datareader directly. It is represented in postpic by a postpic.Field object, which is a numpy array holding the data plus information about the axis.\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<Field \"Ez\" (51, 201)>\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEOCAYAAACaQSCZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnWuwZFd133+r+965I41kRuIhhEaW\nFKIQ89LInihOydgSxqBMcDAUYCkJEQ9noAwVqPBBCKeCAyaB2ECwwZhBowIqQggHVChYBZpQYJU+\n8JCEEBIDkZBlGEbRhIdgkDQzt7tXPnQPXF2dtaZ7z+nTr/+v6ta9fU7vs9c5fXv/91prP8zdEUII\nIY5Ga9IGCCGEmA0kGEIIIYZCgiGEEGIoJBhCCCGGQoIhhBBiKCQYQgghhkKCIYQQYigkGEIIIYZC\ngiGEEGIoliZtwDhpn7DJlx570qTNEEKIqabzwx/T/dmDdrT3zbVgLD32JJ74R6+ftBlCCDHV/N+3\nv3eo9ykkJYQQYigkGEIIIYaiMcEws41m9hUz+7qZ3Wlm/3lw/Cwz+7KZ3WVm15jZhqD85WZ2t5l9\n28ye15TdQggh+jTpYRwCnu3u5wBbgYvM7NeBdwLvcfezgR8Dr1pf0MyeClwMPA24CPhLM2s3ZrkQ\nQojmBMP7/Gzwcnnw48Czgf85OP4R4Pcqir8A+Li7H3L3vwPuBs4bs8lCCCHW0GgOw8zaZnYbsB/Y\nDXwHeMDdO4O37AVOqyh6GvC9Na+j9wkhhBgTjQqGu3fdfSuwhb6H8CtVb6s4VjU+uHKrQDPbYWY3\nm9nN3Z89WG6sEEKIRzCRUVLu/gDwReDXgc1mdmQ+yBZgX0WRvcDpa15H78Pdd7r7Nnff1j5hU31G\nCyHEgtPkKKnHm9nmwd/HAc8B9gBfAF48eNulwKcril8HXGxmK2Z2FnA28JXxWy2EEOIITc70PhX4\nyGB0Uwv4hLt/xsy+CXzczP4E+BqwC8DM/iWwzd3/k7vfaWafAL4JdIDXunu3QduFEGLhaUww3P12\n4NyK4/dQMeLJ3a+j71kcef124O3jtFEIIUSMZnoLIYQYCgmGEEKIoZBgCCGEGAoJhhBCiKGQYAgh\nhBgKCYYQQoihkGAIIYQYCgmGEEKIoZBgCCGEGAoJhhBCiKGQYAghhBgKCYYQQoihkGAIIYQYCgmG\nEEKIoZBgCCGEGAoJhhBCiKGQYAghhBgKCYYQQoihaGyLVjM7Hfgo8ESgB+x09/ea2TXAUwZv2ww8\n4O5bK8rfCxwAukDH3bc1YrgQQgigQcEAOsAb3f1WMzsRuMXMdrv77x95g5m9C/hJco0L3f0H4zZU\nCCHEo2lMMNz9PuC+wd8HzGwPcBrwTQAzM+ClwLObskkIIcTwTCSHYWZnAucCX15z+FnA/e5+V1DM\ngRvM7BYz2zFeC4UQQqynyZAUAGZ2AvBJ4A3u/tM1py4Brk6Knu/u+8zsCcBuM/uWu99Ycf0dwA6A\n9smba7RciKNgXu/13Oq9nhDHSKMehpkt0xeLq9z9U2uOLwEvAq6Jyrr7vsHv/cC1wHnB+3a6+zZ3\n39Y+YVOd5gvRx7z6Z1brEWJIGhOMQY5iF7DH3d+97vRzgG+5+96g7KZBohwz2wQ8F7hjnPaKBSdq\nrKehwZ5m28Rc06SHcT7wMuDZZnbb4Gf74NzFrAtHmdmTzOz6wctTgJvM7OvAV4C/cffPNmW4mGPq\nbHit5p9J348Q62hylNRNBF8Dd395xbF9wPbB3/cA54zTPiGGpqnUQlSP2n8xITTTWwghxFA0PkpK\niMYpCclkXsQ0D16KbjV7BhqNJYZEgiEWmzrbymkYVqswlhgjEgwhqkg9jIZa37CexDgJgxgjEgwx\nP0x6NFDdkZ2mbid6bgpViXUo6S2EEGIo5GGI+ackgZ15KyXdrJJefHSql7keBV6BwlhiSCQYYrGJ\nGvKCHIaVRHASYfIwhZFVpPCSGB8SDCGqqLt9rTNPUKAXQtSBBEPMFlmoKAwvZdcbvZ6wg19iW9LC\nW1DIM1WIjCsSQM3dEI9EgiHmn4KGPI36tIKQVHC8FO9VH7debFzYjmvinqgBCYZYbMIcRtLzb0gw\nIsLcBiSehERBHDsSDDE/lISkRr0WZcntkgnYUT1FDkFJWE75ELEOCYZYaMKQfxrGqj7XKihjSesf\nRKRywQpOqu0XdSDBENNJjcNdo5xDds7acZlWq7opbyX1hN5CFl8KchW9ZCJIeL1MMTR8VwyJBEMs\nNJEnkXkLkTC025FPkAlGbFs4QzAp5IHdrhyGqAEJhph78hBOfdfL6olDXHGhsomAo19L4SoxLBIM\nMT/U2fgn4aU4JJV4GMHxyCOA2JHotRKRCUxIRUHOhxiSxhYfNLPTzewLZrbHzO40s9cPjv+xmX2/\nYp/v9eUvMrNvm9ndZvampuwWQgjRp0kPowO80d1vNbMTgVvMbPfg3Hvc/c+igmbWBt4P/A6wF/iq\nmV3n7t8cu9ViuigJL6XJ6NHzEUvBuaV2NywTOQXZOoKhV5KNrOoGfcAs8R9NBNQSJGIdjQmGu98H\n3Df4+4CZ7QFOG7L4ecDd7n4PgJl9HHgBIMEQvyBcFDCbhDf6iKdIGDYsZYJRfb1ewaiibi8ODET3\nY0kSIw6LKVYlHslE9sMwszOBc4EvDw69zsxuN7MrzeykiiKnAd9b83ovw4uNECNj5uFPywh+PPxp\nBz9ZmaiezDYhxknjgmFmJwCfBN7g7j8FPgA8GdhK3wN5V1WximOV3w4z22FmN5vZzd2fPViT1WJq\nMI9/wjLxj4U/caMc/USikAlDVqbEhuh+smdQ67MWc02jo6TMbJm+WFzl7p8CcPf715z/EPCZiqJ7\ngdPXvN4C7Kuqw913AjsBVs7Yov/sWaWhEU9RrmI5yUdsCM6tLHXieoLhS12P+2xRuKqbLD7Yaber\ny0S5DZI5ImEJtJzIgtKYYFg/iLoL2OPu715z/NRBfgPghcAdFcW/CpxtZmcB3wcuBv7VmE0W00jB\nTO+SSXjLSdI7EoaVdiwYS4FgdAoEo5PkMA4F95M9g144q145DPFImvQwzgdeBnzDzG4bHHszcImZ\nbaXfN7kXeDWAmT0JuMLdt7t7x8xeB3wOaANXuvudDdou5pSSuH/U+EaiALDUCjyWuEi+NlWA8hhi\nnDQ5SuomqvuH1wfv3wdsX/P6+ui9QtRN1vC2grhLKxGMqPFPywT1SBTEpNBMbzFbZMtvFOxTsRQM\nQ11OZm1HIamNWUgq8DA6Vp1zAOh49bnlznJST7Xdh7O5KME5rSMo1iPBEPND0MBlcyqi5TyyBPbG\n9mrl8eOC4xDnNw51469glN9YWYoF48FW9bnsGWi6hRgWCYaYH6IVt2uO4MThpZIwVlKmxtBT+gwU\n4RJDIsEQYkRKZmdPcz1CDMtEZnoLIYSYPeRhiMlxtNnZo14uWncvm7gXbYaUjF7aECSwV1px3mOl\nFec3Rq0nsy26n3Q3wJJuY7h/evKZymOaeSQYYraoeW5CO0h6R7O5IU5uH9c+HJaJxCTLUxzqVX89\nM9ui+ykaipuWUeO/iEgwxOTIepzh3tSTb6gWJoeRfj4FZcTMI8EQc0OoMUkjFp3Llt/oBb3r1WDe\nBEArMC4rE9WT2RbdT/4MwlNCPAIJhpgcJTmMbG+LcD/r0TdQiibAQbwEyLIloaJgDZCsTFRPZlt0\nP/kziE5kn0/0sJXDmGckGGJ+CBvLuEg7XBcqbsiXg2R01viHCfFkLamonsy26H7SdQS11IgYEgmG\nmBx15zDCcExcpBuFpJJQ0WovWEI8GaUehZeyMlE9mW3R/eQT96L1zZXDEI9EgiHmhqhR7CUx/2i7\n03QJ8aAhj0Y1QZzAznIYUT2ZbdH9ZM9AOQwxLBIMMfc0tbprOqopONXUSCitcCvqQIIhFpo612ua\nBubtfsR0IcEQs0XBInq9ZEvT1WDr0ih/AHA4CD1lIamIrExUT2ZbdD/ZM4jzEXERsZhoLSkhhBBD\nIQ9DTCcFvV4PetG9oNcN0OkGCexO/NU4GGxglG3R2mmNniiP6slsi+4newbRcyvx5sR805hgmNnp\nwEeBJ9Iffb7T3d9rZn8K/C5wGPgO8Ap3f6Ci/L3AAaALdNx9W1O2iwnQ0OjMqN2LhqcCHA5CQtHx\njKxMdC6zrbF2PDJBQjLXNOlhdIA3uvutZnYicIuZ7QZ2A5e7e8fM3glcDlwWXONCd/9BQ/aKSVJj\nw1OyNEg2eik6l5WJds+ru56SpUGKkDAsJI0JhrvfB9w3+PuAme0BTnP3G9a87UvAi5uyScwgWWMZ\nhFayxrLTCbyF4DjAwXawDWoyQilaziObUxGFpDLbovtJRTMMSWkSnngkE8lhmNmZwLnAl9edeiVw\nTVDMgRusP6D8g+6+c2wGiskTzj5OurZhDiNu+Lqd6gb7cJIneCjYWyLr+UfLjkcT7QAOBjZktkX3\nkz2D6LnlOQyJySLSuGCY2QnAJ4E3uPtP1xz/I/phq6uCoue7+z4zewKw28y+5e43Vlx/B7ADoH3y\n5trtFxOmJBGbDCmNZkBHPXWAQwVzHUoE49Bq9dczsy2c0a1htaIGGhUMM1umLxZXufun1hy/FHg+\n8Nvu1V1Id983+L3fzK4FzgMeJRgDz2MnwMoZW/Qvv0hE8ftkgb/oXDfzStrB3I2kIe+2Au+nYJmP\nzLbofsKwE8hbEEPT5CgpA3YBe9z93WuOX0Q/yf1b7v5QUHYT0BrkPjYBzwXe2oDZYtrIGrde1D9I\nPIxof9Kkmmhfvd5SXChamiPPrwSCkXkYQRnSkFRwXEIi1tGkh3E+8DLgG2Z22+DYm4E/B1boh5kA\nvuTurzGzJwFXuPt24BTg2sH5JeBj7v7ZBm0X00LRqqtZmdFHL8XzPbL9I0ZffTfKO3gkCgCdaNGq\ngpBUhrRkIWlylNRNVP+bXR+8fx+wffD3PcA547NOTB0ljVhJLL5AZDwKFWXrJhQIRtjzrzuBHZGJ\nwujOnJgDjioYZnbyENfpVU22E6J20k58fY1l0f4RGSWCEZHkZCzzJMJC1Yc9fdijVyNmn2E8jH2D\nn+xfpA38ci0WicWhYMRTKArQXwOgqkxBOMaSLepCE0q2NC0QpnSQVkHP34NhwtbOZpQXqLBEZuYZ\nRjD2uPu52RvM7Gs12SOEEGJKGUYw/llN7xHi2CkIxyRbYGNRPqCoF9/Q8hvp/tzBpdrZDQXJ9cyV\nGX3ZLDEHHFUw3P3gkb/NbNndV7P3CFEHRfmIQExCUSAWk1RkEtFqgmBgV/9c2JBnIbbgoSb1RJ9P\nKjJi5hl6lJSZXQG8yMwepJ/TuB243d3/YlzGCfEokhxG1FZlDbx1qo+3ouGpJGJSd1sZegtxkV6U\nrc92j43y8WlCXsKwiIwyrPZZwCnuvmpmp9Ef5vrM8ZglFp4w6R0XiTyJzFtorVaXaT3Kj15zLrpe\nJkwlg6SiVT6ycFC0wm2Q2AawYBa6JWGsdBSZmFtGEYwvAScB+939+8D3CeZQCDEUdc61gDgklXgL\nkTC0D8XVRGXSUFXR6KWgSPUitimejHgiEoa6Px+Nkpp5RhGMncDfmtku+qvM3u7uPxmPWWLhKZiE\nF4akMg8jCEm1o/U/gNbh6oqiawFFghFtxpcNLY7CVb0sJ1M04TE5J+aWUQTjf9DfMW8J+EPgmWa2\n0d2fPBbLhKigZA5CiWC0VuOKIjHJypSEpML5I8lDaC2PHpYrCf9JLxaTUQRjr7u/Ze0BM1up2R4h\n+pR4GFFIqiTpnXgY7UPVRrQDzwPKBKMbrTybDN+1DcHxdDhycEIehljHKIJxm5m93t3fe+SAuyeR\nXiHGQDZKKmj4wiQ1sVeQNf5LB4Myh+JWObItGyJrwZpVWZlukF9pZUOLi1arlWIsIqMIxinAc8zs\nMuBW4OvAbe7+12OxTIhRiRq4pHcd5jCSUVLtg9UXXDoYK5MFS697MEKpf7L6cG85HiYV5lHShHxk\ng0RBPJKhBcPdXwo/D0M9DXgG/U2MJBiifgrWUSqahxG08XkOo/qCrUOJYHSqy/hS7C60AzHprsZl\nwqHFBUN+83yRRGYRGWXi3jcYTNYb/Hwe2DImu8QCkC4kGFGS9M48jALBiISh9XA8TMq61WW8HXsL\nkffRWk08jHABxrBIrVu0piO4JCYzT7aC/3p+C/gQ8DBwMXAH8C/GYZQQQojpY5SQ1I+ALw5+MLOz\ngf84FquEKKBolFSwS15rNS7UjjyMg8nQqk51GVtKpm0H4arMNgt2ccqWeJ/02lhidhglJHW2u991\n5LW732VmWhpENEtJmKTmkJQdrg49WSYYq0G4ajn+CtqG6nOt1WDsLIUhqQhFkMQ6RprpbWZPpr8k\nyO3ARuAOMzve3R86WmEzO53+xL8n0h+zsdPd3zvY0e8a4EzgXuCl7v7jivKX8guP5k/c/SMj2C4W\ngRrnbrSiSRCArQat8uF4aJUH5yxZlCmqJ7VNcyrEGBklJHUhgJn9MrCV/uKDW4Gvm1nX3f/xUS7R\nAd7o7rea2YnALWa2G3g58Hl3f4eZvQl4E3DZ2oIDUXkLsI3+v/ctZnZdlbAIMRJRgx2EqoDQW4hE\nAYBD1VOW0rY68koy27QqoBgjo3gYALj7d4HvAtcdOWZmJwxR7j7gvsHfB8xsD3Aa8ALggsHbPkI/\nR3LZuuLPA3YP8igMhOYi4OpR7RcLSNH6U0nPP8hH+GockvLD1eeilWKzelLbahzxJMR6jioYZnar\nu//qUd52I3C096y95pnAufQXMTxlICa4+31m9oSKIqcB31vzeu/gmBDHRjgHIWlhQ8GIh9V6JziX\nDJENBSOzTcIgxsgwHsavmNntyXkDHjNshQNv5JPAG9z9pzbctpZVb6r8apjZDmAHQPvkzcOaJWaF\nkiWy615WOwxjxRP3PDgXzc9I6ylhGp6bmHmGEYyj5SYAsrUwf46ZLdMXi6vc/VODw/eb2akD7+JU\nYH9F0b38ImwF/QmDX6yqw9130l+KnZUztqi/tUhMuFH0tOcfLA1Sd85BwiDGyDB7ev99HRVZ35XY\nBexx93evOXUdcCnwjsHvT1cU/xzwX8zspMHr5wKX12GXmBzZ/s9W0IqFk4yz5ZqibVCH83wnQmZb\nnc+gBO3pPd+MnPQ+Bs4HXgZ8w8xuGxx7M32h+ISZvYp+Mv0lAGa2DXiNu/+Bu//IzN4GfHVQ7q1H\nEuBiTgmz0dkGEtWHs9Vdw8X/ska0HUyOyxry4Hgakg3qyXfpqz6ZPYPwetkzkDAsJI0JhrvfRPwv\n+NsV778Z+IM1r68ErhyPdWJWSHvDobeQXC9oSD1qrAFawblkXShawbm0TLC8eWJbeD81PzexmIwy\n0/vzwLvc/fo1x3a6+46xWCZEFUnPNgzVpB5GcHwp8RaC5Twsm7XdqT6XlYnqSW2L7jV7BqGHIS9C\nPJJRFh88C7jMzNbuuretZnuEEEJMKaOEpB6gHzr6czP7X8C/GY9JQlA0csdbo29S5O3qc73gOADR\ngoFLiYcRnUvKRPVktkX3k+dxShboGr2ImH1GEQxz9w7wh2b2cuAm4KS8iBAJdQ8BjWLxSZqgF5zr\nLSd5gmhRwOXluKJg+KwlZXpBPZlt0f1kz6Ao6T3qtcRcMIpg/NWRP9z9w4MNlV5bv0lCUDjiqfp4\n1IgCePAN6G1IevFBQ87GlbBMeLWkTFRPalt0P9kziPI4JSOrxFwzyuKDH1z3+hbglbVbJASU9XoL\nGr5e1MAuxxV1V6pb39bGeNnxaPisr8QeRlRPZlt0P2njH50r8ObEfNPkPAwhjpl0iGxJSCpofLtZ\noxw15IlgtIIhslHYKasntS04lz2DePJiXEYsJhIMMTnSxj+I+ZdMWksFo/p4dyXxMDZWN/7t45Mc\nRrB7Xm9DbFxUT2ZbdD+pYIQeRjaEOZpYGdcjZh8JhphOSpa4aAejpJL/8tDDiJ0FOsdFW6fGFbWD\nuRNR2CmrJ7MtFIylpPEPnptCUmI9EgwxWxTE4rOEbxTzz3rxnY3V51qdZPRSIBhZAjuqJ/UwCpLe\n4TMdZZaWWAgkGGI6CePqyZyBcJmP0UM43XjwEp3jqq9n3biFbS1X2x0JSVZPZltZSCrwzLJnLQ9j\nIZFgiNki6/VGcxCScEwvCO+kHkbQkGebF7U6gYeRfAOLBGNDFJZLjIvERB6GWIcEQ0wnUe82GboT\nzlhOcxjB8czD6I6eYLFgx5is5985vvp4byURwMCTSXMYRTO9R/98xOwjwRCTo2Rxu6xxi9qwTDDC\nzfOSxr8X1JO0la1AMNL8SiBatXsY0TPN2v5wvfbs85GYzDpyOoUQQgyFPAwxnRRt6hMdT8IxwfFu\nwdap0ZYXAK3AY+lFQ1pJ8isbk/sJQlIk9dSawNaK6HONBENMJyV7NJT4y+EIobhIN5ogmIx46gZh\nrCzEFoaXIlEAWAoqKnk2kc1APIytoB4xM0gwxOQo2QI0afgsanwLkrrhZDbiHe+yJTvCxjcd9RUl\n8eOW3DJPIqIXCGD2AUXJn3Qq/gg2iamkMcEwsyuB5wP73f3pg2PXAE8ZvGUz8IC7b60oey9wAOgC\nHXfXxk2zRJ07tyXXsnZ1Q5o1omHzlnwzfEN1Pb0kUR4nieMircBuK3ieWQkP7Pa6l6vVyKqZp0kP\n48PA+4CPHjng7r9/5G8zexfwk6T8he7+g7FZJ6aLoA0JvQjAgvat1Yp75EtBb72oUc6G/Abnsnrq\ntKGTzUIPxvZmz9oDr0TMN40JhrvfaGZnVp2z/trPLwWe3ZQ9YgooSmAnRYIGNhIFgOWl6vGuS+1g\nHCzQLpm3UCPdpLHudLM1QKpZ7QVikoWXSgYlKCQ180xLDuNZwP3ufldw3oEbrN8ifNDddzZnmpgm\n0h554Em0g1AVwMpyp/L4xqXq4wDLgZgsRRM0CukEIaHVRBQOdoIlSBLvpxM8t2gPD1Dbv6hMi2Bc\nAlydnD/f3feZ2ROA3Wb2LXe/seqNZrYD2AHQPnlz/ZaKZihYPrsV9PyXkpDUhqDxP375cFjm+KXq\nc9G1AFpBE9tLbuhwIAwPdeLlaiNhWE3G/K4Gzy1LycS5JIWq5pmJC4aZLQEvAn4teo+77xv83m9m\n1wLnAZWCMfA+dgKsnLFFHaFpJo3fj3YcEsFIPIzjllcrj5+wfCgs85jlg9XXaldfC6AVeB+9JLH8\ncLd63ZJW8ty6wfUOdeKvevTc0ohUyeKQEpOZZ+KCATwH+Ja77606aWabgJa7Hxj8/VzgrU0aKKaH\nLCQVC0bc819pV4eeTkwEY/PyQ5XHT1iKyywHi0mtJotJ/axTvQZI5pUcDEQmewaxYKi/JR5Jk8Nq\nrwYuAB5nZnuBt7j7LuBi1oWjzOxJwBXuvh04Bbh2EE9dAj7m7p9tym5RAyUdy4LGKhoNtZyEpDYG\nXsGmdhySOikQjMe0Hw7LLFu1MK0mC11FInMoWjEROBDcT/YMslFkISUhqeiUdGlmaHKU1CXB8ZdX\nHNsHbB/8fQ9wzliNE0IIcVSmISQlxNCko6SC4+0s6R0sI7spCS9FnsTJSz8Ly5R4GBEHljaG5za0\nqtdEz55BOEJWISmxDgmGmBw1LyQYNYrZKKkoUX18Kw5JnRgIxub2g2GZZYIcRrh7UZzfOL61KSwT\n3U/2DEIxKdlxT3ntuUaCIWaKfOROdQPXTuZHLAUexvHt2MM4sVU9Sio6DrDRqhvygx7nIw62qofP\nZrZF95M9g+i5Zc9aLCYSDDFTpKOkggYu612vtKpDRZmHsalV3WD/ksUN+UqQwN6QLAn7UFBPZlt0\nP9kziJ6bQlJiPRIMMZWUNFbh0iBJ7zoaiRR5BADHhw15PDv8+Mj7SfbdON6r68lsi+4newZ1PmtJ\nzHwjwRD1UNIbLVnwNJu4F9gQTZqDuOcdJakhbrAjUeiXGX1MaVRPZlt0P9kziJ5bUUiq7iHUWsl2\nqpBgiLknmxndDkJCG4KeOsRhpA1JC7vRqhPYvSAZnteTLIwYlMmegRDDIsEQc0MUJskay+UgSRyF\ndvrnqhvllWh9dWA5EIyVxMOI6kltC+4newbKVYhhkWCI8VNjaKOpxi0bVRQtJNhOts9bCobPthMP\noxV4C5ltdZI+6zrDVdKrmUGCIeaerHcdNf4Z7ciTSQSjHXgfrWTxwXbiSURE96OQlKgDCYYQFUS9\ne4B25GEUZImzMlE9mW1CjBMJhhAV9BJvYdJMs21ivtF/nhBCiKGQhyFmCi8Yl59tT1pCN8jedpNJ\neFHCNysT1VNCyTMoedZivpFgiOmkoRxttBlRtHNd/1x1mV6SW+h6sONeWmZ027LNlWpFOfSFRIIh\n5oaoR5z1rqPGN+vdR43yaiAKkO24F5cJxSyxLbqf7BnIkxDDIsEQozHh4ZlZ1Cciayyjc9le26uh\nyMRLdqx6tWB0k656tLx5Zlt8PyUhqZGL1E/0/yaRmwgSDDE3lDX+1Y3y4WSv7cPBWJGDSQsbLdmR\nlYnqyWyrU2SEWI8EQ8wUWfgkDEll4aWgTLYTXtQoryY98oOBYGRl4npi20LRTJ5B9NwUqhLraUww\nzOxK4PnAfnd/+uDYHwP/Dvh/g7e92d2vryh7EfBeoA1c4e7vaMRoMTwlbUu2SGnRaKjq453e6B5G\ndBziTY8OJr14Qg8jLhPVk9kWncueQfTcMsLPpySMlX3U0xAWEz+nSQ/jw8D7gI+uO/4ed/+zqJCZ\ntYH3A78D7AW+ambXufs3x2WomF6yuHpJ0rsTNLDpTnjBuUNJQx6RlYmFKbYtup+SpPdU5DDEVNGY\nYLj7jWZ2ZkHR84C73f0eADP7OPACQIIxLqZh3aHIhIKGLxuGutqrbmAP9RLB6FVvnfpgKy4T8WAm\nTEE9mW3R/WTPIPYWkq7/pP9FtIfGRJiGHMbrzOzfAjcDb3T3H687fxrwvTWv9wL/NLqYme0AdgC0\nT95cs6li0mShqmjeQhaOORQ0sGUhqdEFo8STyWyL7id7BtFzUw5DrGfSgvEB4G30+ytvA94FvHLd\ne6r+a8PuhbvvBHYCrJyxZdL9IFFKjTOTu0lj2Qka2INJL/7B3spIxwG6wWq1mWBE18tsi+4newZF\nwiAxWUgmKhjufv+Rv83sQ8ArI6g3AAAOT0lEQVRnKt62Fzh9zestwL4xm7YYTDr0VJJsTc71elFI\nKm7cDgcN7MPduFGOQkIPJYLRawWCkTT+UT2ZbdH9ZM8gem5F/x3T0EXT3I2xMdHFB83s1DUvXwjc\nUfG2rwJnm9lZZrYBuBi4rgn7hBBC/IImh9VeDVwAPM7M9gJvAS4ws630+yX3Aq8evPdJ9IfPbnf3\njpm9Dvgc/WG1V7r7nU3ZLSZDOEKnJOldEJLKEssPRUnvLCQVTfYrqCezrdaQVPqsw1NijmlylNQl\nFYd3Be/dB2xf8/p64FHzM8SMEDUuJaHzpKEKQ1JJYxmFcA714q9G1JBnIalIMEqEKbMtDEll8zCi\nkFTdoiCRmXkmnfQWi0zBsE0PGjfIPIy4TDQMNcsTPNQNBKNVfRzKJghG9WS2hcNqC55b9qzDz055\ngrlGgjHvTDqxXUoYkkqKFHgYq91gLamg4QV4OGjID7Q2hmU2tlYrj2chqaiezLboftKQVCQM2b/O\nLP5bae7GMSPBELNFwcqzqWAE5w4mvfioh7+STNwrWbIjqiezLbqfNCQlb0EMiQRDTI6CHmwaV4+W\nBslCUpGHERyHuCFfasU5jBWvXvo8y0dE9WS2RfeTPYPoueXPesTjYi6QYIjppGBxu2gvoqyx7HSD\nZHQ3/mocDM4tJR5GNHop2lsjqyezLbqf7BmEezilOSZ5H4uIBENMJzXmMHpBIwpxSCjrxUchoVYS\nI19qVbfKWUgqqiezLbpe9gwWJochjhkJhhiNqGNZdwNSUE8oGNn6U0FDGoV2AB7uFAhGLxCMxMOI\n6slsi+4nXa22RDDCixWUyWjq/00MhQRjXpjV0VAR0e1ksfig7fVugWB0kh332tXnWhaHpJZsdMGI\nPInMtuh+smcQhpfSvEd8aibRciJDIcEQk6Poy5jN3AtKJA1fFKrJevGHO9Vfm+xuVoMGKev5R/Vk\ntkX3k86pCHMYcZGiz27eOjULiARDzBZZQ1UiGNEw1CTmfzjp4Ue0gxxGOgs9qCezLbqfXDA0rFYM\nx0QXHxRCCDE7yMMQozHNUYWop5zE73vBuW4nGVkVLFWe0Qr2w0i3jw08icy26H6yZ5DmKibNNP+/\nLSASDPFosvajaORMySqDBfVE1WRzECLBSETBglBRthFRqxXkMBLbotBTFpIKk9slolDnZwDx/0FJ\nbqPu/1ExFBIMMZ0EX3rLhoeGDU/SugQNrLeShjwQk2xmtEVpgnT13YIRTyWCEeR+ip71FDsr4tiR\nYMwS8zbKpOZx/lED51mhSDCCEBIkbW87aS0Lhm1G4SVPQlKxYMRFrMT7KJkfMYtiogULH4EEQ0wl\nYe+2JHqRhaSiU934epGY9MI1NkhcjKSeKPRUkI9IRaHkmUbiPG+dGvEIJBhictS9uF1BjNyCbm/a\neaxeRxBPJuEVURBesgIPoyi3UPL5LF6HfO6QYIh6qNs9L9iiNWzfslh8UJF1kjLRNIy6O9eRt5B6\nGNWHS8JOnrXwdW7Hl/3vyGOZKprc0/tK4PnAfnd/+uDYnwK/CxwGvgO8wt0fqCh7L3CAfqCg4+7b\nmrJbjI8sqRqXSU5mvegRbUgT2MHxurc0DRv5RDCCFUjKwk6JwxQOLygQZzE7NOlhfBh4H/DRNcd2\nA5e7e8fM3glcDlwWlL/Q3X8wXhMFUH9Puc7kdpr0bqB+iHvENUekQsFIE9glFVUfLtoPI6PGvd2l\nPZOhMcFw9xvN7Mx1x25Y8/JLwIubskcw3SuBliS9oxBO7YIRnMzCPgXPOrQ7y2EU3GvoFBSNEJqC\nf54pNm3WmaYcxiuBa4JzDtxgZg580N13Rhcxsx3ADoD2yZtrN7IRFiVuWzQ6p+BcSagqOxkmiUev\nJ7WhxvtJ64k8o4Kc90I1ygu4wu1UCIaZ/RH9sSdXBW853933mdkTgN1m9i13v7HqjQMx2QmwcsaW\nRfr3nSuKwkvhZL/Ry6SNfzDkNho5W1pNU2GfMPRUIM76ws03E1980MwupZ8M/9fu1f+67r5v8Hs/\ncC1wXnMWCiGEgAl7GGZ2Ef0k92+5+0PBezYBLXc/MPj7ucBbGzRTHCs1egtlw2rjaoqSxOHFik7F\n1DlyNekaht5Cuqd3gYtRZ9JbTIQmh9VeDVwAPM7M9gJvoT8qaoV+mAngS+7+GjN7EnCFu28HTgGu\nHZxfAj7m7p9tyu65ZgbjByXhpUwU4mGoU7BBUEM21DlvbyqYauNmmyZHSV1ScXhX8N59wPbB3/cA\n54zRNDEpap/pXX04F4yC0VhhT7mhyYtZNaEN8Q2F3kfdn4+YeaYi6S1miKLJdjVP0Bu1TMEufbWG\nqhokbPwTMbMgvJSu8lEQkSpaHLLOJdHFMSPBEJOj7n0yagxJpYIx6baqxJGpeZRUfDFtVDHPSDBE\nPTQ0O7xoGGpJ0rupGeUZBdGy6H7SdRELnnWty6BowcKZQYIxKRbJpW6ocQn39GksUZ7UU0LUWGZr\nPAXnSiY81r021sI4GHO8h4YEQ0yMvCEvCVcVrL00i4JRUCbbqqNomY+gTJQPOcrVxIwgwRCzxax6\nGEUjnpJzUTU1ehhq4cV6JBhicjTU+JfkMNKkd7gHdlKmZMmOgiWras1hTEMYS0wVEgxRDyWNZZM2\njFqmbpEpIWjkax+INOnPR0nvmUGCIaaTGsMkJT3lukNS4VyHbH5EVE/BBnX1L/FecD0x80x88UEh\nhBCzgTwM8WiaGvpXcy+1ziXRyyYIxoVC25Kuv7dqXLakJOldQmPhLe0DPgkkGGL8NNUg1RiuSsNY\ngTCkYayilVqDQpGQZPUUVDMVW/WKqUKCMW4WpLdTsl5USo2PrWj0Us1zN0a9Vv9k9eF8TkVBPSXU\n+vnE/zvpOlOzyIzv0ifBmBdmcB/jqdDSpkYVlXgY0zziKWBml0Sfwe/PJJBgzDtTvBZcGoZuyoio\nopon1NVapm7bamSqO8rTbNuMYMGuqHOBmR0Avj1pO8bA44AfTNqIMaD7mi10X7NFdl9nuPvjj3aB\nefcwvu3u2yZtRN2Y2c26r9lB9zVb6L5iNA9DCCHEUEgwhBBCDMW8C8bOSRswJnRfs4Xua7bQfQXM\nddJbCCFEfcy7hyGEEKIm5k4wzOwlZnanmfXMbNua42ea2cNmdtvg568maeeoRPc1OHe5md1tZt82\ns+dNysZjxcz+2My+v+Yz2j5pm44FM7to8JncbWZvmrQ9dWJm95rZNwaf082TtqcUM7vSzPab2R1r\njp1sZrvN7K7B75MmaWMJwX0d8/dr7gQDuAN4EXBjxbnvuPvWwc9rGrbrWKm8LzN7KnAx8DTgIuAv\nzazdvHm18Z41n9H1kzamlMFn8H7gnwNPBS4ZfFbzxIWDz2mWh6B+mP73Zi1vAj7v7mcDnx+8njU+\nzKPvC47x+zV3guHue9x97ibrJff1AuDj7n7I3f8OuBs4r1nrRAXnAXe7+z3ufhj4OP3PSkwR7n4j\n8KN1h18AfGTw90eA32vUqBoI7uuYmTvBOApnmdnXzOxvzexZkzamJk4Dvrfm9d7BsVnldWZ2+8Cl\nnrlQwBrm7XNZjwM3mNktZrZj0sbUzCnufh/A4PcTJmxPnRzT92smBcPM/reZ3VHxk/Xg7gN+2d3P\nBf4D8DEz+6VmLB6OwvuqWiFnaoe+HeUePwA8GdhK//N610SNPTZm6nMp4Hx3/1X6IbfXmtlvTtog\ncVSO+fs1k0uDuPtzCsocAg4N/r7FzL4D/CNgahJ2JfdFv+d6+prXW4B99VhUP8Peo5l9CPjMmM0Z\nJzP1uYyKu+8b/N5vZtfSD8FV5Q1nkfvN7FR3v8/MTgX2T9qgOnD3+4/8Xfr9mkkPowQze/yRZLCZ\n/QPgbOCeyVpVC9cBF5vZipmdRf++vjJhm4oYfDmP8EL6if5Z5avA2WZ2lpltoD8w4boJ21QLZrbJ\nzE488jfwXGb7s1rPdcClg78vBT49QVtqo47v10x6GBlm9kLgL4DHA39jZre5+/OA3wTeamYdoAu8\nxt1rTwqNi+i+3P1OM/sE8E2gA7zW3buTtPUY+G9mtpV+6OZe4NWTNaccd++Y2euAzwFt4Ep3v3PC\nZtXFKcC1Zgb9NuRj7v7ZyZpUhpldDVwAPM7M9gJvAd4BfMLMXgV8F3jJ5CwsI7ivC471+6WZ3kII\nIYZiYUJSQgghjg0JhhBCiKGQYAghhBgKCYYQQoihkGAIIYQYCgmGEEKIoZBgCCGEGAoJhhA1s3bv\nlZqud9xg/4LDZva4Oq4pRAkSDCHGw3fcfWsdF3L3hwfXmpu1qMRsIsEQYgTM7G1m9vo1r99uZv/+\nKGW+aGZPGfz92HW7oP21mb3PzG4ys783s98ws4+a2f8xs13juxMhRkeCIcRo7GKwMJ2ZtegvKnjV\nUcr8Q+Cuwd/PBL6x5twzgHvc/Tfob9azC7gMeDrwIjNbqc90IY6NuVt8UIhx4u73mtkPzexc+ovw\nfc3dfxi938zOAL7v7r3BoWcCtw/ObQQ2A/99cO5hYNeRzXvM7CHg8HjuRIjRkYchxOhcAbwceAVw\n5VHeu5WBQAz4tTWvnwbcukZMzgG+DGBmW4B9rtVBxRQhwRBidK4FLgL+Cf3lyzPOATYCmNnZ9PeL\nPhKSegbw9TXv/bn3MSi3VmiEmDgKSQkxIu5+2My+ADwwxN4jW4GHzezr9AVgD/0cyNvoC8ZX4Ofh\nqePc/ceDcmvFQ4ipQIIhxIgMkt2/znAb6zwTONfdD6w/4e5vXPP3QeCsNa//aw2mClErCkkJMQJm\n9lTgbuDz7n5X8LYu8JjBvvG9KrEYsc7jBpMAl4He0d4vxLjQjntCCCGGQh6GEEKIoZBgCCGEGAoJ\nhhBCiKGQYAghhBgKCYYQQoihkGAIIYQYCgmGEEKIoZBgCCGEGIr/D4/tUQ6dmEdvAAAAAElFTkSu\nQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa594036eb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ez = dr.Ez()\n", "print(ez)\n", "fig, ax = plt.subplots()\n", "ax.imshow(ez.T, origin='lower', extent=ez.extent*1e6)\n", "ax.set_xlabel('y [$\\mu m$]');\n", "ax.set_ylabel('z [$\\mu m$]');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Particle data\n", "\n", "Particle data is represented in postpic by a postpic.MultiSpecies object. It contains a number of particles and it offers a very easy to use interface to access the properties or derived quantities or even use derived quantities to create a postpic.Field object, which can finally be plotted." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['electrons', 'ions']\n", "<MultiSpecies including all \"electrons\" (37728)>\n" ] } ], "source": [ "# the multispecies Object is used to access particle data\n", "print(dr.listSpecies())\n", "ms = pp.MultiSpecies(dr, 'electrons')\n", "# now, ms is representing the species \"electrons\"\n", "print(ms)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "37728\n" ] } ], "source": [ "# we can access the properties for each individual particle, like the x coordinate\n", "x = ms('x')\n", "print(len(x))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Ekin = gamma_m1 * mass * c**2\n", "Ekin_MeV = Ekin / elementary_charge / 1e6\n", "Ekin_MeV_amu = Ekin / elementary_charge / 1e6 / mass_u\n", "Ekin_MeV_qm = Ekin / elementary_charge / 1e6 / mass_u * charge_e\n", "Ekin_keV = Ekin / elementary_charge / 1e3\n", "Ekin_keV_amu = Ekin / elementary_charge / 1e3 / mass_u\n", "Ekin_keV_qm = Ekin / elementary_charge / 1e3 / mass_u * charge_e\n", "Eruhe = mass * c**2\n", "_np2 = (px**2 + py**2 + pz**2)/(mass * c)**2\n", "angle_xaxis = arctan2(sqrt(py**2 + pz**2), px)\n", "angle_xy = arctan2(py, px)\n", "angle_xz = arctan2(pz, px)\n", "angle_yaxis = arctan2(sqrt(pz**2 + px**2), py)\n", "angle_yx = arctan2(px, py)\n", "angle_yz = arctan2(pz, py)\n", "angle_zaxis = arctan2(sqrt(px**2 + py**2), pz)\n", "angle_zx = arctan2(px, pz)\n", "angle_zy = arctan2(py, pz)\n", "beta = sqrt(gamma**2 - 1) / gamma\n", "betax = vx / c\n", "betay = vy / c\n", "betaz = vz / c\n", "charge = charge\n", "charge_e = charge / elementary_charge\n", "gamma = _np2 / (sqrt(1 + _np2) + 1) + 1\n", "gamma_m = gamma * mass\n", "gamma_m1 = _np2 / (sqrt(1 + _np2) + 1)\n", "id = id\n", "m = mass\n", "m_u = mass / atomic_mass\n", "mass = mass\n", "mass_u = mass / atomic_mass\n", "p = sqrt(px**2 + py**2 + pz**2)\n", "px = px\n", "py = pz\n", "pz = py\n", "q = charge\n", "q_e = charge / elementary_charge\n", "r_xy = sqrt(x**2 + y**2)\n", "r_xyz = sqrt(x**2 + y**2 + z**2)\n", "r_yz = sqrt(y**2 + z**2)\n", "r_zx = sqrt(z**2 + x**2)\n", "t = time\n", "time = time\n", "v = beta * c\n", "vx = px / (gamma * mass)\n", "vy = py / (gamma * mass)\n", "vz = pz / (gamma * mass)\n", "w = weight\n", "weight = weight\n", "x = x\n", "x_um = x * 1e6\n", "y = y\n", "y_um = y * 1e6\n", "z = z\n", "z_um = y * 1e6\n", "--> 56 known particle scalars." ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# or do something more complicated such as:\n", "pr = ms('sqrt(px**2 + py**2)')\n", "# actually ridiculous things will work:\n", "pr = ms('x + x**2 + (gamma**2 - 2) - sin(px/pz)')\n", "# you can look at for a list of predefined values\n", "pp.particle_scalars" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAAEOCAYAAADIa4i+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAH5tJREFUeJztnW2MLNlZ33/POVXdPT0z92XXu+td\nv+E4DsEGex0WI4JJQAkJIR8WWzKxo0RGIjIocUQ+IEFeJJwPliwLSKwkIlljKwYSkEli2XEQxCYG\nEpEEFsder9kQv6/3/e3eu3Nnpqer6zz5cE5VV/e83DN7Z6Z7Zp6fVKqqU6ernjv3/m/Xf55zniOq\nimEYB+MWHYBhnAZMKIaRgQnFMDIwoRhGBiYUw8jAhGIYGZhQDCMDE4phZGBCMYwMikUHcBz0/FD7\na7fEE4k7FUCkbWvHIwg3bpO59uZ+e/SH/T+D6J792/ZOiIhOL0u8qwgIqT0dA7j0eUFxTV9ARHGp\nT3tfnYuJBbcfxDE/47lHtxlf3c76xJkUykp5kbv//N9HnaBe4j94D8EL6kC9oKlNXfe4s7V9iZ9P\nxyrdPumaV9TRPkdTW3vutO2HA9I5XhGniA/xH75TnAuIgPcB5xTvAk5ie+kD3gVKFxBReq5GRBn4\nCU4ChQv0XI2TQN/VlK6m5yZ44jWAoNIKq8ui2g/iuJ/xgb/xu9l97dXLMDIwoRhGBmfy1Uu9UK17\n1Amh8+oU5l6nQgEqAo7Yb34PaJH8iIOQXp3mX69CQfQZbtqG1+gzirR3ivMaX6N8fL0qivjqVLiA\ndxpfp3xN4QKlr3Eo/WKCQylcTc/VFK6m375eTSiljntXp+MKjzJ0OzhRBjKmJ/EaQI3g2f16ctj2\n/Tiq+5xErL/iq+y+9o1iGBmYUAwjAxOKYWRgQjGMDEwohpGBCcUwMjChGEYGJhTDyMCEYhgZmFAM\nIwMTimFkYEIxjAzOpFAOOe3BMG7ImRSKYRw1JhTDyMCEYhgZmFAMIwMTimFkYEIxjAxMKIaRgQnF\nMDIwoRhGBiYUw8jAhGIYGZhQDCMDE4phZGBCMYwMlkooIvIhEXlKRB7stN0iIp8UkS+m/eVFxmic\nT5ZKKMC/BX5gru2ngd9W1VcDv53ODeNEWSqhqOrvAc/NNd8LfDgdfxj4oRMNyjBYMqHswx2q+jhA\n2t++4HiOHLEpmUvPaRBKFiLyThG5X0TuH0+2Fh2OccY4DUJ5UkTuBEj7p/bqpKr3qeo9qnpPrxie\naIDG2ec0COXjwDvS8TuAjy0wFuOcslRCEZFfBf4n8M0i8oiI/CjwXuD7ReSLwPenc8M4UZZqDUdV\nffs+l/7SiQZiGHMs1TeKYSwrJhTDyMCEYhgZmFAOQo7x1qckyXjYteHPKiYUw8jAhGIYGZhQDCOD\nMykUzfAWbZ8cH/JCvcoReJww94cJuv9fWX3ANYD6gICOyoucVU9zJoViGEeNCcUwMjChGEYG50Io\nN/IjKp1rB/mKdK37Fr7r3nt9/pBeZd6XzLftdX2eep+/2kV5iNPuXc6FUAzjZjGhGEYGJhTDyMCE\nYhgZLNXErSNDZFfSUSU1dIy7iswYbZXd+73a5u/TLmzfPT/EoEdV2dU/qOBSW0Bw7X62X2Paa3U4\nqQnq8FJnP7uLl9Deqznej/36NO1N8rN7fJo5/X8CwzgBTCiGkYEJxTAyOLtCaXxKZ9PO1m1DQN1s\n392b7rpXfM50r/O+pPlct98+hNSte4eAtMnFZjBkUEntrm2bTy4eNPixi5fQ+oyu3/AScMRzx97H\n+/Xpts/fs/usG3kgWK4k5dkVimEcISYUw8jAhGIYGZzNPIqL/kRds0l7jJv6kb326mg/2/oRp7va\nEN3taw5i7nVbVWL+JB2LKKrRkwi7B0E60dncSutdpvsgkvIpe7//N+/8XX/gCCC0vqLtKwE0+QmU\nced4pA5HoCc1Y4Veytt0+wTc9J7d+3eOa9xM7qZ57jLmXZYvIsNYQkwohpGBCcUwMjg1HkVEvgZs\nADUwUdV7FhuRcZ44NUJJfJ+qPnOjTsoeRl5ojbw66Rj16dZNQE6vafvZ9t65MxbbzjodiNmaeEUV\nSElFUSEQDb02xp6OWRfpGPZk7tNgyS45iTxHaM22l5AGUjam3eMlUFJT4yip8RIYq6ekpic1Iy3p\nSZ1MuWcgFTXCWONxNPyxT41QhYKh2yHg2AwFpZsAUOk0lvnYDzL1i0hE2quXYWRwmoSiwH8VkT8S\nkXfOX+yu4VhVmwsIzzjLnKZXr+9W1cdE5HbgkyLyf9Ny20BcwxG4D2D9wkuXZ5CQcSY4Nd8oqvpY\n2j8FfBR44359pQ67Eo1tIrHrP/YYNLn7wRLHNXbGNkrjPZp2BQLI/IwvJfoQFTSkjdjWTTjGP9f+\nVVaaJGOz96I4URxx7wmUrk7ngVJqPCFu0rRNdg1GbHxJ+5yOXwCotKAndZtA7ElNKRNqde39Ki0Y\nSMVAqpnjtg9KjbDqdtpE40AqSmKSsteZZDY/AHOvAZuL4lQIRURWRWS9OQb+CvDgYqMyzhOn5dXr\nDuCjEqfzFsC/V9XfXGxIxnniVAhFVb8CvH7RcRjnl1Px6nXTNP6iqfmgICEdh3jc7CUw9Rx12oIg\ntXTOm2vS2QukYwJQS9ySN2k9SxA0uI5PmQ1Vkv8QUQoX4iaBQmoKCfTchJ6b0HcTVvyYfjruy4SB\nqxjIJPoEF7dSJtFnpAlVM+/+6QczVt8+fxRKao09R1q2AyxHoWz9z0jL6D009ll349gnHQ9kEn2J\njGMeRQtWpYq5kdQ+cBUQ/QrEyWaNX6mRXRPDGhblV86HUAzjJjGhGEYGJhTDyMCEYhgZnIrfer0Q\nXA0a4sBDldkZjj7E2YkaUrVIF835zOBIP5uUjP3TAMVCEUnJRJF4H6dxZqUSrxXpoAacogiIIG7q\n3kXifZwozgVKHyhdwLtA30/o+ZqBr6KZdzUrvqKUwIofU0rNMO37rmqTjIN03Jj4ZiYixFCawYaj\nUOJcTDBuhX4awOh4tl7DSWAr9HlussZLiis8HwY8H1a4iytU6tmoB1DARljh6ck6g0E0+Bv1gFWZ\nsEnBKERj/+jkMpV61l3Fs4G2fSP0ABi6HZ6t1wAoZdL+YqEZlNkkSas9xlqc5GxI+0YxjAxMKIaR\ngQnFMDI4kx5F6oAfp8opPk6Emp2klaq0ePa8hkAo2F2hxUfPIrV0fIwSChCXBjwWGu8BcaJYO75R\nIeX1RBTnFO9jQrFfTvAu+pNBUdHzNcNiTM9NWEv7xpM0icVSaoZuBy+BgVS4NMCxlDgpqvEnFZ5S\nJoy0jIlCVSr1XK2HQEwSPj1Zb392j48v4QlshAHPVOu8ovc0T0wu8Uy1zqiM93hmss649xRPTC7y\n+PgSjuhXnqwuMhTYCMJIewylZjP0ki+JFWK2Qp+LrmYjRI+xmpKTQR0DqdikH49dRRU8QePksRHN\njzTsuexe9Ct+V/tRYd8ohpGBCcUwMjChGEYGJhTDyOBMmnnqGj8KyYRLMuEx6QhTU97s4+zG2C/4\naO5d1TH3btbMaxH3jYlHo6kXiUs14Imfma8WIiAOnA8URaBXTCh9YLU3pnQ1Az/hQm+bvqu5UGzT\ndxMuFtv0XZw1OHQ79OZMPECZlqQDcBKo5kYDVxRcrVfZDH08gWv1kGv1CiMtuTYZcmUypAoFAeHh\n7ct4CTw2usTmpMcTg0t8eXQ7O6Hgahjy9OQCT+xcZGulz1e2b+O5apWROp6oLvLYzkVKEZ7XPpV6\nBgLX6lVGWtCXONL4Wj1k3cX4HIGh1FRaxGRp+kXEWD29NAOyGe1cI3h0Jvm4n7E/DuwbxTAyuOE3\niojcknGfoKpXjyAew1hKcl69HkvbQWXfPPDyI4nIMJaQHKE8pKpvOKiDiPyfI4rnaKgDfpQqsXhJ\ny9Rp+6IZCmkrtHSrQwYPzk/9Suyr02SkT4Mr6+hTILY7polK9QqBXTMXceB8GvxY1pS+ZrVX0S8m\nXOxtMyzGrPiKW8tNhn7M5WKTVbfDJb/VVjYZuh16BEoJM8toB4RKXZpN6Ak4xuqp8GyEFTyBJ6uL\nbNQDvASeqdbYqAZcL/tcrYZcGa8wWfFs1yUPb9xC39V8ZeNWqtrz+Nolvr51C4UEnl65wMM7t/LU\nzhrP1wO+unkrE/VsacHj1SUe374IwHP1GjuhpBThuckqAWEgBRthha3QYyBFu3zeqosxIzCQmmYe\nZtmpztI9XtRydTke5buOqI9hnFpuKBRVbUYPICLljfoYxlkk+9fDIvKLwFtEZJPoWR4AHlDVf3Fc\nwRnGsnCYPMr3AHeoaiUiLyGWD3rd8YR1c6gqrgoxl1FLZxBkfC92AXBKKKTNoSCK1I1/0Y7HmE76\nCigSoh8J0fpEamIuxTNbPXJ6C0iTs3zKn/SKmrXeDsNizK39Tdb8DmvFDreXz7Putrm92GDodrjk\nRqzKhFJgIEKJ4EQICjVKpcpIYYRS4RhpwUhLxurbyVdOAk9WF7harVBK4InROluTHtt1ydXxCtfH\nfZwo16s+V7ZWeLK/zpWtFXaqgqfH6zy9vcZqOebKZJWndtZ5fjxgI6zwzPYapa/Z1B7Pjte4Olqh\nUuXZyRpboYdHuDIZUkqNw7FRD6iCp8DH3IkE+uIYa4FL3qtWl6pMdpbanls2r/E3e77eHBOHEcr/\nAi4DT6nqo8CjwG8cS1SGsWQcJuF4H/C7IvKTIvI9InLxuIIyjGXjMEL5FeAjxG+hvwv8voh8+Vii\nMowl4zCvXo+o6s90G0Skf8TxGMZSchihfFZEfkJV3980qOrOMcS0JyLyA8D7iaMAflFV37tvX++Q\nVIFFIBprl5aIcwJBQQVHmo3oYkchzWhE2kRkJ9cVy6027Z2SrN1CIKKzPh5RcIqkzftYbaWfKqwM\nizEXihFrfod1P+JWf511v81tfoOhTLjkAkPnGUiBw+FolqpTdrTCE6gJjNJD65RsHGnJZuizlaqd\nbEwGbE7i/2vXqz4b4z6FC2xPSrarkutVn+vjPpPasVn1GE8KdnZKNuseW1VJIYGtusfmpMdOXVCp\nZ7uKdnoUYr9x7amIsybjevfCdl3ifSrLqiWVery4jiH3cZkLgTItEQGzicX5pSna9jRA8iTKrB7m\n1esO4MdF5DER+YSIvEdE3npcgXUREQ/8K+CvAa8B3i4irzmJZxsGHOIbRVV/GNrXrdcC3wZ8J/Dr\nxxPaDG8EvpSq2iMivwbcC/zxCTzbMA4/HyW9bn0mbSfFS4BvdM4fIYrUME6Ew2TmP0/Kxqft88A7\nVPU9xxTbzOP3aJu1AnEB1HcCDGT1BEIyzhOH8Sh/EfgAsA28jbg03F8/jqD24BHgZZ3zlxKH0bSo\n6n2qeo+q3tNzgxMKyzgvHMajPAf8TtoQkVcD/+RYotrNHwKvFpFXEkcEvA34myf0bMPI/0ZJwmhR\n1S9yQmO9VHUCvAv4LeAh4COq+oWTeLZhwOHM/H0i8iri/+gPAAPgQREZqurWsUTXQVV/g8yxZVqH\nTlGI3YMim2uzgyJT4YjOktvQqWrfqXTfXX67bWuePe+mNC5V1yyfXdeOqnaIeEZ1iRPleT8gqBAQ\n+q5irB6PMnQ7VIxY1VgpcnZQpLaDIruV3n2nen1wji3Xx0lgvRhRq1BKYFQXOFHWih0mwVEHx1oZ\nU2Iboz6r5ZheMUH7sOrHDMs4wWzox6wWY573MZ6VsqL0NQNXserH9HxNSVxuzksgqLLiq3bZ74HE\nCpe1Bnz6P7qibq9XqYAETAc+zh93l/duKtnX6o49l3KYV6/vAxCRlwN3E0cP3w18TkQmqvotxxOi\nYSyenOISn1HVP9ecq+rDwMPAxzt9vnQ84RnGcpDzjfItIvLADfqc5NQAwzhxcoTyZzP61DfuYhin\nlxsKRVW/fhKBHCUiQijdXBUWblCFRQieaVXJtgoLu6uwNFUjfee4Y/TbrUEBFUJwMIHxpEBVuO76\nVCE+aLsouV7H86FfZSOs3KAKC+2DulVYPBqXgSDgfayk6AnslCVDN8anZe42qgGXyi1WfMUVv8KL\nBxtslyNGk5I7BhtsVj2q2nNbb4NnVlYpJHC52OT2/oDNSY91t82LVq4zUc+qjLm1d51Lg21KEW4t\nrnOtHlKjXC62CAiBwLofUbqaCTWlQB0G7GigJxO8KJV2l6KbGvX5apCLqMRilSINIwMTimFkcJiE\n465h7SLyvUcajWEsKYdJOH5ERH4ZeB8x2fg+4B6Wsfidd9QDd0A1ezmgmj27l6o7oJp9TFym5bPb\npCW7h3EGCHU0SlXlURU2RRnXceLS9arPwE/Yrkv6ruZKMXzB1exrpK1esu6226Wx1/wIT2Doxlwr\nVrhcbHKhGLFeDrm93Gi9zl2DWEZ6c9Ljzt5VtoY9dkLBbcXzqb3PBT/ilavP8ly1ylAm3Fle5YmV\nCwDc4q/zqLtMpcotxWaqDDNh3W0zdGNGOmkTjptB26W/R+pTncjZivzd43rP8bHHz2Fevb6TODDx\n94ljrx4Dvvs4gjKMZeMwQqmII4dXiN8oX1XV45+DaRhLwGGE8odEoXwH8CbidNz/cCxRGcaScRiP\n8qOqen86fgK4V0T+9jHEdPN4Tz1wneWzOWD57N3XbrR8tjY+prN8dlxhi7R8dvIs8/8NKWiAUDsm\ngEhBCKkioguMXMmoLuj5mo2iT89NuFoMb2r5bC+BUiZc8puUMsGjrLqdWIXSb3HJbzH069xWbACx\nUMSd5VXW/IhnqnVeXFyFATxTrXPJbTEoK670VxnKDn9q5WkKFxhI4MXlNe7qX6NS5YLsUErNSOGi\n36QMfXY0xnnRb7ER0qBNHFsal/cOGqtcNrGP01rjgVg5sh0s2ankEU7wl7bZT+qIpNv2y0cbjmEs\nJ5ZHMYwMTCiGkYEJxTAyOJPLZ6t31L2uYe8MZnRME4guzW7snjfmvRnw2DX7neXq6Jr6ZN7bPqJo\n6oPTtHXiUyGk2Y6apkQ6F6h9IKiwUwfGtafna0Z1rNJYuJoVX1FKYMWPW3NfSk0/mXtPaI1+KZPW\n0FcU7WBJL4EyGeKh22FATFpe8ls4Anf2+txSXOeSbjGQCRfcCIqYgBy4ilV2eFGxQU9qXlxcS0vh\nwbrb5o7yGlsKTpSBjNlSz6obE3BshLj09dDtcC0NBK3VsakxNiQw0jhbw0lgFMrWuFdME477Gfiu\nyT8O7BvFMDIwoRhGBiYUw8jgTHoUiIMbpwMiZ71J8DL1IWlC1+7BkNNzmoorfupNlI4faT+r4Jku\n1S0K6TNNNfuZii0qqGqs5h4cFSCi1Mm31OoIKhQScBKYBE/haqq0dFulHifK0EWvEic8jSlTUrJK\nXiUuRz1p7+kleplYrSUmLkuZUFJzq7/OQCp6Lg6kdBK44EZsuW0gDsBc93Ft23W3zW3FBiP1DKRi\n3Y/Y1IKgwsBVbIQeAzdmpCUbIfqPpr1JKG6FPl4Ctcbl6hoaX1JrrOG/F8ftS7rYN4phZGBCMYwM\nTCiGkYEJxTAyOLNmfoZkoFXmEojJyM8Y9mZ24oyp7yYTO+VUW3Ov08/4VCHE63RZurTO/NTUB0Si\ncReZDVVVCGk/CQ4vDhw4hIkGQhC8KCGVEC1cTDQGJzjVdoYjAer0WYhLurXJunYZu1i1pddZf2/g\nYlLSEUf7NjMnBy4eV0Tj3syiHEg050B77FE8yqb22hHNm2m5uqa9MeJNktGjjFNG16PxFxkp3r3K\nqJ409o1iGBksvVBE5N0i8qiIfDZtP7jomIzzx2l59fpnqvqziw7COL+cFqEcCvUuLnWN0pqAplKk\nEpfVbpbCVlL2MC2fPX8z0dbX0HTteI52cynRSHMteZLUt0k4pqKUyZ9Mn9Y9djIbRVDBibb7WgWX\nKkQGlVhJMUDp6uQjYmLQEft6HFXnr9olf1OrSz+I9BzczPLUpUziEhTJs7QeQgKVFjji7MmRltRI\ne+zRtk/jgzZDv/UajS8B2ns2z+8ed5d1WDSLjyCPd4nIAyLyIRG5vOhgjPPHUghFRD4lIg/usd0L\n/ALwKuJaLI8DP7fPPd4pIveLyP1VtXmC0RvngaV49VLVv5zTT0Q+AHxin3vcB9wHsH7hpSdfxdk4\n0yyFUA5CRO5U1cfT6ZuJqxEf/Bk6r96iscXFCijRI2hbRXLaL+ZHRJNPaX2MgFM0AC5ZFWX3EnT7\nBjI7ELLxJiJTr+JSm2u8C9P2dmO698nDuD2qutfqWg+yHzP5iSanoq5duyN6l3hc4dtcSvd4rJ5e\n6tP1HI1HafpA9DRtvkTCvpVUukvMHeRLGt9zkiy9UID3icjdxL/SrwE/tthwjPPI0gtFVZezdphx\nrlgKM28Yy44JxTAyWPpXrxdE0OjhU1Ix2htBJB2lJKGEZOA7+zYxmdqiqY+GvtuGChK0c86Mad/F\n3LWpqZ8mHncZ+Ma0z+33apsa/f2NfGOCG6PsJUwTe/Ox69Ts18wek87HOt03bUEdNWHmnvsdt+fs\nf74sLGdUhrFkmFAMIwMTimFkcDY9CoAqgswOeuwct0nFdCwz/mNugzRTS2fu1dyD9l6CdhNhzQjK\ntvP+uM7YzbaNrk8Jad8kH0Pb5pn1JbnJuK4f2JXsS4HMD1Sc+ewefeb9yF4JxFwfsojE4n7YN4ph\nZGBCMYwMTCiGkcHZ9Cga8yjdgYuiiiIzOQ9RjdXkG3/Q+JXOvhkAOX9tJncy70NUOje4MbJHv5mc\nCfsPgmz8iW89zAtff/awPmK/Pi/Ejyw7Z+NPYRjHjAnFMDIwoRhGBiYUw8jgXAhFOknBfa/foE/3\nWjcpuOvee33+kDmz+Sos8217XZ9nPgnZUB84cvP4WNRzj4pzIRTDuFlMKIaRgQnFMDI4k0LJyfPd\nyLfM8ELH5R3BeL55P3JQQvGgSVtw8GDJo/IQp92L7MeZFIphHDUmFMPIwIRiGBmYUA7iGOcMaVap\nycVzVj3HYTGhGEYGJhTDyMCEYhgZmFAMI4OlEIqIvFVEviAiQUTumbv2D0XkSyLyJyLyVxcVo3G+\nWZapwA8CbwH+TbdRRF4DvA14LXAX8CkR+TOqWu++hWEcH0vxjaKqD6nqn+xx6V7g11R1R1W/CnwJ\neOPJRmcYSyKUA3gJ8I3O+SOpbRfdNRzHk60TCc44P5zYq5eIfAp48R6X/rGqfmy/j+3RtmcasLuG\n48XhXctRXjATbaq4GEvLiQkld0HTOR4BXtY5fynw2NFEZBj5LPur18eBt4lIX0ReCbwa+IMFx2Sc\nQ5ZCKCLyZhF5BPgu4L+IyG8BqOoXgI8Afwz8JvD37DdexiJYil8Pq+pHgY/uc+09wHtONiLDmGUp\nvlEMY9kxoRhGBiYUw8jAhGIYGZhQDCMDE4phZGBCMYwMTCiGkYEJxTAyMKEYRgYmFMPIwIRiGBmY\nUAwjgzMplFNSrdQ4RZxJoRjGUWNCMYwMTCiGkYEJxTAyMKEYRgYmFMPIwIRiGBmYUAwjAxOKYWRg\nQjGMDEwohpGBCcUwMliKkqpHjdRKuVGjTlAvIKAeghfUgXpBU5s6Zo+bre1L/Hz3c50+8d6Kuulz\nNLW1505RgeCV2gEuXsMr4hTxAQTEKc4FRMD7gHOKdwEnsb30Ae8CpQuIKD1XI6IM/AQngcIFeq7G\nSaDvakpX03MTPPEaQFDB7bHExKLaD+K4n7Fdf+PGnRL2jWIYGZhQDCMDE4phZCCqZ29JNBF5Gvj6\nAkN4EfDMAp+/FxbTbl6hqrfldDyTQlk0InK/qt6z6Di6WEw3h716GUYGJhTDyMCEcjzct+gA9sBi\nugnMoxhGBvaNYhgZmFBuEhH5kIg8JSIPdtreLSKPishn0/aDJxjPy0Tk0yLykIh8QUR+IrXfIiKf\nFJEvpv3lJYhpYT+nw2KvXjeJiPwF4DrwS6r6rant3cB1Vf3ZBcRzJ3Cnqn5GRNaBPwJ+CPgR4DlV\nfa+I/DRwWVV/asEx/TAL+jkdFvtGuUlU9feA5xYdR4OqPq6qn0nHG8BDwEuAe4EPp24fJv5DXXRM\npwYTyvHxLhF5IL2andhrThcR+SbgDcD/Bu5Q1cch/sMFbl+CmGAJfk45mFCOh18AXgXcDTwO/NxJ\nByAia8B/BP6Bqj5/0s/fiz1iWvjPKRcTyjGgqk+qaq2qAfgA8MaTfL6IlMR/kP9OVf9Tan4yeYXG\nMzy16JgW/XM6DCaUY6D5B5l4M/Dgfn2P4dkCfBB4SFV/vnPp48A70vE7gI8tOqZF/pwOi/3W6yYR\nkV8Fvpc4EvZJ4GfS+d2AAl8DfqzxBycQz5uA/w58Hgip+R8RPcFHgJcDDwNvVdUT+SXEATG9nQX9\nnA6LCcUwMrBXL8PIwIRiGBmYUAwjAxOKYWRgQjGMDEwohpGBCcUwMjChnCFE5JtEZFtEPntE91tJ\n80TGIvKio7jnacWEcvb4sqrefRQ3UtXtdK/HjuJ+pxkTyilCRH68MxvwqyLy6YzP/I6IfHM6vrWZ\niSkivy4i/1JE/oeIfF1E3iQivyQi/09EPnjcf5bThgnlFKGq/zr9D/8dwCPAz9/gIwB/GvhiOn4d\ncbwVwLcBX1HVNxEncn0Q+CngW4G3iEj/KGM/7ZzJZR/OAe8H/puq/ueDOonIK4BH0zB2iEJ5QEQG\nwCXgn6f2beCDzYBEEdkCxscS+SnFvlFOGSLyI8ArgH+a0f1u4IHO+ben89cCn+kI6PWkGYci8lLg\nMbXRsjOYUE4RIvLtwE8Cf6vzj/wgXg8M0mdfTZw3/3nia9fnOv1ex1RQr2dWXAb26nXaeBdwC/Dp\nOBeK+1X17xzQ/25gW0Q+R/zH/xBx0tYl4A8A0mvYiqpeSZ/pisZI2HyUM0Qq3PCJTtmkLwFvSJVP\nbua+XwPuUdVlWzbixLBXr7NFDVxMvz5eB8LNiKRJOAIl05mJ5xL7RjGMDOwbxTAyMKEYRgYmFMPI\nwIRiGBmYUAwjAxOKYWRgQjGMDEwohpHB/wdQMlwcme1JAgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa58cdc82b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# we can use the particle properties to create a Field for plotting.\n", "# Particle Shapes as in the Simulation will be included\n", "# calculate the number density\n", "nd = ms.createField('z', 'x', bins=[200, 50])\n", "# note, that particle weights are included automatically\n", "# and plot\n", "fig, ax = plt.subplots()\n", "ax.imshow(nd.T, origin='lower', extent=nd.extent*1e6)\n", "ax.set_xlabel('z [$\\mu m$]');\n", "ax.set_ylabel('x [$\\mu m$]');" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAAEOCAYAAADIa4i+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHipJREFUeJztnW2MbMl513//Oqd75r443t0Ev7B+\niWVMiO3Ya7JxFMWBRGAIAWljS45sBHKkICcCS+FDpJgXKeaDpchKAgiiwBpb2AESOYBlY6IEOzgE\nFCBeG3u9zmK8iV+yu8ZL5F3Y+zLd51Q9fKg63Wf6zsyt8Z2Z7un7/KTWOadO9Tl1+/Z/Tv37qXpK\nZobjOEcT1t0AxzkPuFAcpwIXiuNU4EJxnApcKI5TgQvFcSpwoThOBS4Ux6nAheI4FbTrbsBp8My7\nWtt9zjdgCAPMBEBCmIFRjku5lfJhH1stA4a6i4EMKie4cXvQOUCH1Nd4cMTKvirqH1zH9h0vtlq5\nB2suP4pTvsfe/Em6vauqqbuVQnnW3RP+0vteS2cNs9SSLNBbYBZbegvMY0tCzGNDtEAy0cWGaCKm\nQEyBPoZ8HANmIiWRRvuWhEVlAUVBIu8nUMplMlAEUtlP5PORck6oHGMs6xuEmOuG4Vyy/L5978+C\nCP2yzlA/9LZ4D2Yolm9QEKQDvk3rKj+KU77Hxz/x8/VNqa7pOLcxLhTHqWAru16dtTy2dwd9CsxT\nSzLRp0CXGmIKdCl3t+Z9g426WymVrlYSKYXsZ/q8JQ1drGX3SkP3qgesdKMSo+6URt2i1XMsz8XS\ntSrX0qjLFXpbdNsULZ/rrbwvd68W3axkqDcwI3Qpd7n6BCktul4mLf3LiOOWH8ZJXecs2hq6Y9St\nruk4tzEuFMepwIXiOBW4UByngi0Vik9vdk6WLRWK45wsLhTHqcCF4jgVuFAcpwIXiuNU4EJxnApc\nKI5TwVYKpWomjuMcg60UiuOcNC4Ux6nAheI4FbhQHKcCF4rjVOBCcZwKXCiOU4ELxXEqcKE4TgUu\nFMepwIXiOBW4UBynAheK41TgQnGcCjZKKJLeI+kJSQ+Nyu6S9BFJny/bO9fZRuf2ZKOEAvxz4PtX\nyt4G/IaZvQT4jXLsOGfKRgnFzH4L+NpK8X3Ae8v+e4EfPNNGOQ4bJpRDeLaZfQWgbJ+15vacOMdd\nDsE5e86DUKqQ9BZJD0h64Oknu3U3x9kyzoNQvirpuQBl+8RBlczsfjO718zufcadkzNtoLP9nAeh\nfAh4c9l/M/DBNbbFuU3ZKKFI+iXgvwLfIulRST8C/DTwWkmfB15bjh3nTNmoNRzN7E2HnPozZ9oQ\nx1lho54ojrOpuFAcpwIXiuNU4EI5ilOMA+qcxBg9GJpxoThOBS4Ux6nAheI4FWylUGp61Wbatz26\n8te3kMSJ+JDVWx/RFNPR7Tzq/El5kW31NFspFMc5aVwojlOBC8VxKthKodhKRz4Vj5EO8RoGDF3r\nI7vY5ZzG11mU7T8+6H3VHNDMfbes+F87zFaty0Ocd++ylUJxnJPGheI4FbhQHKcCF4rjVLCVQjF0\ng3G3kaFPo2DjuN44CGm23JaLrt5kZOC1v45xrCDlQYHAfeZ92D/okuW9tthW3/aAhtj+XzWOeh1W\nZygfX3ML2EqhOM5J40JxnApcKI5TwVYKZfAo+15o4UnG2xxsFCmF3J0uZflEPl5uNSpf3GyxFSsD\nIQ+qdxgH+RDd6E9MZV8rZfuuVWlUjvIVqz7k692/2TWPYJOClFspFMc5aVwojlOBC8VxKtioBHgn\nRSwepLeGPgWiBfoUyr6IKZAs18v+JMdLUireJeXXwpOkFW8yeJaUPYnGXuQwtL/O4DU0OmfK9mKx\n5YDzQzc/gGIpG+qI8saDG6Oj4hyr70mW/4ym4ieasNxvm7yNKZfHlN8zrrPajoP2x3UGXzW8d8Pw\nJ4rjVOBCcZwKXCiOU8G58SiSvgg8DUSgN7N719si53bi3Ail8H1m9oc3q5QINxh5My2MfEwl2FiM\nfEqBtDDvywCjJS2NfMoGU8P5GkZBweE9qybeGAy8ELbf0I/qIJCymzcpG/OVHwjyDSoaNzbbyaDR\njaY9JQhN3i7KE4oJa5ts4Mu91EcsqBj7iJIt60jQBuj6vD9pl+Y/sN+8rxr+Q0z9OgKR3vVynArO\nk1AM+A+SPiHpLasnx2s4XntytobmOdvMeep6fbeZPS7pWcBHJP3Pstw2AGZ2P3A/wHNedtfmDBJy\ntoJz80Qxs8fL9gngA8CrD6u7q3n2J0OQMS19yvCKo/3FYMiDZj1p/2hHGx+PbA1hNF+rnF+cUw4Q\njgc0LvYX9zlkf3nrpScwQwmGyWMyULLFMclKELT4jsTSa4z798mO9gUhoJjytSUUU76OtLxeKL6k\nj7l+HyHGfXVMQl2/vFeM+Rws/cpw/5sNrlwT50Ioki5JesawD/w54KH1tsq5nTgvXa9nAx9Q/mvX\nAv/KzH5tvU1ybifOhVDM7PeBV667Hc7ty7noeh2f/Z38UDr5ki1eTdmGkF8KhkLK5wMQDDUJGoNg\ny20AawyavLXFtuwHSlmpF3LZ2JsMxzf4FJYDLLPvOOAVQT0oGqE31CcUDS32E6FP0CfUJ4iGUlr6\nkSF2Aou+v4Xl18DaACEHc6wNyzrDfkxYGxa+xdoAs/myzmwOfVz6EinHaYpHGcrVx/zvLVuTFn7F\npP3+aQOSVWypUBznZHGhOE4FLhTHqcCF4jgVnItfvY6LAdMQSSEbXTPRhBJ4lNGEREyBkFIOPqZA\n06QyQNKy3w0hZ5E0YYk86zGEfPVemFk2vWVrScXggpnyXyCDZIbSMpOkRvG1xczIEjBULGY9kY16\nLNti5ENnKBUTHy2b9pj3FVO+Xp+yeR9M/DATMd+xzFzMJlwlwGiTJtcNIu1OCAmYNKQLE8LTwnYm\n2LR8VZqw3J9OiBenqO+hvYhNW6zr0GSSB0LO5nD5IhYCNpvBhZ1l+c40X6PrcznkIGQTlvuhWf74\ncNCf9DOcDelPFMepwIXiOBW4UByngq30KDvquDyZkUzMQ1OyRQZ6C4vJXMlEF/M5gzKhazmpq4tN\nycwSlhlaUh7ZmJriXWKe2GWLbCXC+uxVEsreIoCVfCrKsbVlMLF4kuw98n7T2f7tPBXfYoQu5cBi\nGaioLuZMMLFszfYPNhwGLaYETYM1DQqGNdl3AFjTkC5OFp9df3nKxCBNG/oLDc3/nZAu7RAvTAht\nA21DvNgSngrES1P6Sy2tGUwn9JcmTOcd7OxgbcC6Dps00AZsNkfFD9neHtqZ5vZ1XQ4whjIBbNIu\n90Mok8oS0OQGHuZLTtmv+BPFcSpwoThOBS4Ux6nAheI4FWypmY/cMblOQnSpobecSrVP2RDOUzbx\n89QuloUwE/PUZBPPfnOfU7CKGEs2l1C2fchmXsXUmyECVoKGhpbZVGAZXCwjgMNg2GcQohF6aGY5\noBjmKW9ncRFczOZ92FqeKQh55uEok4k1o79/IQ9Xtt1JNtJmpJ2WtNMQ2kDaaYi7DW3Ihnr+zBaZ\n0V1uiVMxfWqH+R3ZnLc7U9LFCd2llsmkZX7nDvFCgLYlXdqhu9wyiRFNJzkrS9eTdlusCTRdl38I\n2GnQ3gw9s7S167JhN4MyknjxA0T59yxGHa8GHz3g6DibxU2fKJLuqrhOMrOnTqA9jrOR1HS9Hi+v\no55xDfCCE2mR42wgNUJ52MxedVQFSf/jhNpzIrQSd0yu0Q3ZIgmLZSAAZrGls0CfetJoGbt5apnH\nZuFXAOaxWfiVPmSv0zSBvs+9VjORCFjJimLJkK14E5YzFEOE0GWP0swg9NDuGaHLr/Z6JPSJcL1H\nXSLMOuhLlpOuz333GPOgzMXFBU1TtiEH9poAoQxgNCNempKmDTKjv9ASd0QzDcTdQL8bsABpIvbu\nCIS+5fpdDdbA7uUp8ztalMj+5BumdJfydWd3tHn5icmE/vKE+TMCFwG7UAKOMRJ3WxCEvodpi00C\n1vcLb2HzDgshD8os5ePZjpA92OJfu8EzHL/rhOo4zrnlpkIxs71hX9LkZnUcZxup/nlY0j8DXi/p\nKtmzPAg8aGb/6LQa5zibwnHiKN8DPNvMOkl3k9MHveJ0mnVrNAQuhnmOo4SGLjVEAn3Kv9O3ivTW\nMIstCZWl7ALTENlTS28Nisu+cJQRQwJagkGSlZ/3RYohZ2uRsBhGS8Tl946Xrguj+MkQM2k6aK8l\nQpdo5onmakeYR3RtlrOY7M3y4MKYct9+yLIYQs7e2DR5IKEZCgHaJmeSbwJWJl+RjP5iS9xtUDK6\nyw1xAm0r+l0Rd4SsIU6hvyTme4HukkhT6C82zC8FmrmRLrT0lxvijkjThu5SGeg5aekvNPQXcnvS\nhQk2yVlbhntasuxRgrAYS6wkD4pkMci0xIMCixjRDdksKVlaOPrXpZPmOEL5b8CdwBNm9hjwGPCr\np9Iqx9kwjhNwvB/4T5J+QtL3SHrmaTXKcTaN4wjlXwDvJz+F/jrw25J+71Ra5TgbxnG6Xo+a2U+N\nCyTtnHB7HGcjOc4T5VOSfnxcYGZntmKPpO+X9DlJj0h621F1O4tMQs9EkYkiO2W/DYkgY6LINPTs\nND2tEhMlJiHm45BoR3WnIdKERFOytzRhmYo1p19NOQXrYRgo5dmOjGY1qs/BxtBZNvGzRJhFwl6H\nrs/RtT3s2nXs6jXsylXS00+Trl4jXb9Oms1IezOs75cGf/lBZSPfNNnMt4E0bUg7gTQVcTdk035B\nxKlIExGn5LIdkVpKOcRdSNNs6lMrUhuIE5HaHNCM05I6tm1yvZYykzKUgaIp1y2uO7UBKwMgLZSA\n43hAZ4oLo37TNerhhtSwp8lxhPJs4MckPS7pw5LeIekNp9WwMZIa4OeBvwC8FHiTpJeexb0dB47R\n9TKzH4JFd+tlwLcB3wn8yuk0bR+vBh4pWe2R9MvAfcDvnsG9Hef481FKd+uT5XVW3A38wej4UbJI\nHedMOE5k/jOUaHx5fQZ4s5m945Tatu/2B5Tt65iWBVDfAnD33T7NxjlZjvON+tPAu4DrwBvJS8P9\nxdNo1AE8Cjx/dPw88jCaBWZ2v5nda2b3fuNdLhTnZDmOR/ka8JvlhaSXAH/3VFp1Ix8HXiLpReQR\nAW8E/vIZ3dtx6p8oRRgLzOzznNFYLzPrgbcCvw48DLzfzD57Fvd2HDiemb9f0ovJf9EfBHaBhyRd\nNLNrp9K6EWb2q1SOLZuooUt5wGNn40GR+e9CZ82BgyKTiT4F+jLhC3IiipjyhK2cZKIMhiwZJS2V\nSVuHIbBQMt+Pl60zSC3IRJyGxTJ16ieEkAcUqmvz4MHpJE9eOmRQJE0z/qAgpmzqOgiTBpIRZk1O\n0JCM1OYGNHPDAjRBNHMAI14QzdwIXZ55FuZGmOes+qFPNJ0RS7bKZj7EhGKu15OX0o4pJ4IIIWfe\nL24ylGX0KO2wBtSE5SS0kCeWGexPGnHYftCy7JRjKcfpen0fgKQXAPeQRw/fA3xaUm9m33o6TXSc\n9VOTXOKTZvYnh2Mz+zLwZeBDozqPnE7zHGczqHmifKukB29S58CZj46zLdQI5U9U1Ik3r+I455eb\nCsXMvnQWDTlJIolraVqRhaU5XhaWmE19SoEYA6lkjrQYsKRFJsjFi+Va8hKkJv/MmCYlS8tONvYQ\nCJ1Ik4AF5Sws06ZkYdlZZGHRIVlYNM7CYpaXTLCyjF0pa9vBWOclJuKOaPYSoc8ZZSZXIs1ExImY\nXknEqbA9aK9FpldDziBzvaed5IGRYR6ZXM0/BtD1tNcj7fUGi5FwvSPttCDR7MX87w9C8x6lSf4B\noiyFx2QCMc9iXBj7xPIHirLm/RitIROLR+YcpwIXiuNUcJyA4w3D2iV974m2xnE2lOMEHN8v6ReB\nd5KDje8E7mUDk9/1ZjzVXTy9bPb9Sjb7PmezHyZp5WXi9rfJQn4lQJPc7Y4l6GgSYQqhzxOpQm+E\n3aZks5/cNJs9q9nsh2W9Y0TznHWxkQjzpgQyE81OQ9iLNLOGZtbQXu1zQDSIyZU+X3Yq2itzpm1e\nbjtc65gAaRrQvGfnqZ54IS9B117pmD6dv066PkOXd1DT0Oz1WBNQ22aP0iXUtosAoaaT7FfMoJTL\nbLmMNuzPzn9G2etXOU7X6zvJAxN/mzz26nHgu0+jUY6zaRxHKB155PAF8hPlC2ZHDt5wnK3hOEL5\nOFko3wG8hjwd91+fSqscZ8M4jkf5ETN7oOz/b+A+SX/1FNp0y8ys4anuQvEhp7B8dr9/+Wzi4EsE\n/ZBIoiyfPfYqJaZSwjkkU0lMYaSUsy6mFhRF06ksnx1ubfnslMu010EscZQuEroJmnWEvYbQTQjX\nOgCmTaC90hHmif5CQ7g6YwrECxM0m9PEyORCC13P9MkZXZxC3xOuzphcKTGSeYeSwaQl7PV5Ce3J\nBPpIM4totyTvkdBkgsWyilY7fDBl0Gepw7DaFiwHQg7nzojqJ8pIJOOyXzzZ5jjOZuJxFMepwIXi\nOBW4UByngq1cPntmE650OyS0GOTYWxnYOJqtOBj3IaA4GHYzSDGXYcISWCrLOgD0ZQDkEGQspl4l\nEyQmQqTUGWWKLJhYznYUQJ7xp0CZ/ZfPZXMflsvadSGb+t5KELLJBj22ZVYh0Ke8zFu0vDUr0U4r\npt9yUBRQF1GfGxZmXR48eSWg6x3NrENxmg1/afewPF5zbTfPcLw6z8FACeYd7dUOSgBRfUKTCXQ5\n+6N2piXYGdHubrlgHhQps/z5Lsx8zj65MO6hIuB4ysbenyiOU4ELxXEqcKE4TgVb6VHEMnvKPBWP\nMvImfRnc2KewyKiSBzySs6qYSFFlOezlgEdi9iyL4GLxI4olsFiChmLwKhDiMFgyv8b5LW2YkyRK\ndndbWAoowUgt32ch+x0LVrKYKGdY6Q3F7ENCI4gB+lSCoZYndg3LUYf8HvVpUaYQ8n5KOZt+jDBP\ni0lfmnVoUvxDTGieB00y72iu5QGP9DEPepxMsqfoE+xMc3kb0M5O/qcP5YPvKMvq5SXpRn+3xwHH\nsB5fMsafKI5TgQvFcSpwoThOBS4Ux6lgK838yooQOXBIToU6vGLZ5iCjcsBrOF9G/1qZrTgY+H0B\nxpWtFsHFsrZ8ZGT8WWRmkS3N+aJ83PKcyXQZlBz+lA0mf8geGpVnSyZhlhZvMgOTEYBcnDBCHn07\nmN9FBLGY9bSMhqpPi7Xd1S9nTi72m4D6tJhFqcGcD3WGwKIZNhj1mEcSD6OArewDiyDjeFZjTsc6\nyr5yWErVM8SfKI5TwcYLRdLbJT0m6VPl9QPrbpNz+3Feul5/38x+Zt2NcG5fzotQjsWeTWlD7ne3\nZVW7UHyJlJe9bsh9+TyBTiDL3Xxb6QPbkAGy9NXHx4PnGPwJYz+i5bkh4LjiVfb5k8P2y61kLDyF\nSRByxscybhNCWUqhZGW0xb8r112aHZZLJITivQZWl09IKQ96tOxZrAn50yxLOjDMqGya7FlSwtom\nz24c6hzgS/YtU3FYhhUd4lHWxMZ3vQpvlfSgpPdIunPdjXFuPzZCKJI+KumhA173Ab8AvJi8FstX\ngJ895BpvkfSApAeuPTk7w9Y7twMb0fUysz9bU0/Su4APH3KN+4H7AZ7zsrvOPouzs9VshFCOQtJz\nzewr5fB15NWIjySQaBUhlBhKgD4FGhmElOMnZshUxt4lzEJOYKISb1CeSGXDBK1gEFV8jW7wEQey\nktke2Odbxl5FZivH++vkY1vWhYPbULNM27jvP/QpQhmdudgvJwYvUvZt4TPCYlDlYsIVFL9iyzqU\ndg91hhjJaltW236EL7FxVpYzYuOFArxT0j3kr8UXgR9db3Oc25GNF4qZbWTuMOf2YiPMvONsOi4U\nx6lg47teXw+NjCCjJZKGoFoowcQUsJCQiZSMSParOYtnDpSlQJndyDJgl7TwuovIYigDKIfY2FH+\ncuXcqqkfym4w9KycH96fVsoW1zq8EQsTPFoiYl9gb0xgZPa1fx8WAyQX20WZltddNPaIQY03O94Q\n/IniOBW4UBynAheK41SwlR5FZI8CEIpfMcuDIUMZFJm74DnoiIwQUl7WoZQNy16X0YjFVFD22e9X\nytZGVRfnBu9S62FWBkce6FMO8jb7rlUZjKsJ9t3q/s2ueQTrCCwehj9RHKcCF4rjVOBCcZwKttqj\npNEkLK14lmES17C/rDNM7hp8iRbeY+UmowlVtswKUc4tymrae0A/fF/M5CD/MjAsQ73YVt3ykIYc\n00fUZJbf0LjIcfEniuNU4EJxnApcKI5TgQvFcSrYSqFoxfWOg48H169M+DGMJdzntIey/ccHva+a\nA5p50IDIozjM1NuazPW67ntSbKVQHOekcaE4TgUuFMepYCuFUtMbHgKQqonQfZ1RvMp4400ucpPj\nETcbQHjU+ZPyEOfdixzGVgrFcU4aF4rjVOBCcZwKXChHcYrd7RPxL2fAtnqO4+JCcZwKXCiOU4EL\nxXEqcKE4TgUbIRRJb5D0WUlJ0r0r5/6WpEckfU7Sn19XG53bm02ZCvwQ8Hrgn44LJb0UeCPwMuCP\nAh+V9MfNLJ59E53bmY14opjZw2b2uQNO3Qf8spnNzOwLwCPAq8+2dY6zIUI5gruBPxgdP1rKbmC8\nhuPTT3Zn0jjn9uHMul6SPgo854BTf8fMPnjY2w4oO3Bk33gNxxe9/PJmpBesZJMyIjoHc2ZCqV3Q\ndIVHgeePjp8HPH4yLXKceja96/Uh4I2SdiS9CHgJ8DtrbpNzG7IRQpH0OkmPAt8F/HtJvw5gZp8F\n3g/8LvBrwN/wX7ycdbARPw+b2QeADxxy7h3AO862RY6zn414ojjOpuNCcZwKXCiOU4ELxXEqcKE4\nTgUuFMepwIXiOBW4UBynAheK41TgQnGcClwojlOBC8VxKnChOE4FWykUnyvonDRbKRTHOWlcKI5T\ngQvFcSpwoThOBS4Ux6nAheI4FbhQHKeCLRWKL6fmnCxbKhTHOVlcKI5TgQvFcSpwoThOBRuRUvWk\nmajn7t2n6KxhllqSBXoLzGJLb4F5bEmIeWyIFkgmutgQTcQUiCnQx5CPY8BMpCTSaN+SsCjMBFGQ\nyIvHJ1DKZTJDEUhCBkrk85F8HIXKMVbqRMAgxFw3RIGBku2rP9SVGaFnUScM7++tvAcwQ7EMFQ2C\ndMCw0XWVH8Up3yM9Xv+jjz9RHKcCF4rjVOBCcZwKZFu4JJqk/wN8aY1N+CbgD9d4/4PwNt3IC83s\nj9RU3EqhrBtJD5jZvetuxxhv063hXS/HqcCF4jgVuFBOh/vX3YAD8DbdAu5RHKcCf6I4TgUulFtE\n0nskPSHpoVHZ2yU9JulT5fUDZ9ie50v6mKSHJX1W0o+X8rskfUTS58v2zg1o09o+p+PiXa9bRNKf\nAq4A7zOzl5eytwNXzOxn1tCe5wLPNbNPSnoG8AngB4EfBr5mZj8t6W3AnWb2k2tu0w+xps/puPgT\n5RYxs98CvrbudgyY2VfM7JNl/2ngYeBu4D7gvaXae8lf1HW36dzgQjk93irpwdI1O7NuzhhJ3wy8\nCvjvwLPN7CuQv7jAszagTbABn1MNLpTT4ReAFwP3AF8BfvasGyDpMvBvgL9pZv/vrO9/EAe0ae2f\nUy0ulFPAzL5qZtHMEvAu4NVneX9JE/IX8l+a2b8txV8tXmHwDE+su03r/pyOgwvlFBi+kIXXAQ8d\nVvcU7i3g3cDDZvZzo1MfAt5c9t8MfHDdbVrn53Rc/FevW0TSLwHfSx4J+1Xgp8rxPeQVKL4I/Ojg\nD86gPa8B/jPwGfK8S4C/TfYE7wdeAHwZeIOZncmPEEe06U2s6XM6Li4Ux6nAu16OU4ELxXEqcKE4\nTgUuFMepwIXiOBW4UBynAheK41TgQtkiJH2zpOuSPnVC17tQ5onMJX3TSVzzvOJC2T5+z8zuOYkL\nmdn1cq3HT+J65xkXyjlC0o+NZgN+QdLHKt7zm5K+pex/4zATU9KvSPrHkv6LpC9Jeo2k90n6X5Le\nfdr/lvOGC+UcYWb/pPyF/w7gUeDnbvIWgD8GfL7sv4I83grg24DfN7PXkCdyvRv4SeDlwOsl7Zxk\n2887W7nsw23APwT+o5n9u6MqSXoh8FgZxg5ZKA9K2gXuAP5BKb8OvHsYkCjpGjA/lZafU/yJcs6Q\n9MPAC4G/V1H9HuDB0fG3l+OXAZ8cCeiVlBmHkp4HPG4+WnYfLpRzhKRvB34C+CujL/lRvBLYLe99\nCXne/GfI3a5Pj+q9gqWgXsl+cTl41+u88VbgLuBjeS4UD5jZXzui/j3AdUmfJn/5HyZP2roD+B2A\n0g27YGZPlveMReMUfD7KFlESN3x4lDbpEeBVJfPJrVz3i8C9ZrZpy0acGd712i4i8Mzy8/EzgHQr\nIhkCjsCE5czE2xJ/ojhOBf5EcZwKXCiOU4ELxXEqcKE4TgUuFMepwIXiOBW4UBynAheK41Tw/wEg\nUeqDkpzuEQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa58cdfd080>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create a Field object nd holding the charge density\n", "# note, that particle weights are included automatically\n", "qd = ms.createField('z', 'x', weights='charge', bins=[200, 50])\n", "# and plot\n", "fig, ax = plt.subplots()\n", "ax.imshow(qd.T, origin='lower', extent=qd.extent*1e6)\n", "ax.set_xlabel('z [$\\mu m$]');\n", "ax.set_ylabel('x [$\\mu m$]');" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAAEOCAYAAADIa4i+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGMVJREFUeJzt3WtsZPd53/Hvc87cZ0guV5e1vLr4\nptjxRZIb2YZhu02Quk3TAooN2LCLFgqQQglaA+mLAHYvQNwXQYMiSVukRVq5NuK0aQKlbWDXDZLa\nrtOkSeNYUeWVbFmWLGml3ZV3V95dkkPO7Zzz9MU5M5whubt/ejmcIfn7AAOeOTwz88zs/njOM/9z\nMXdHRK4tmnUBIgeBgiISQEERCaCgiARQUEQCKCgiARQUkQAKikgABUUkQGnWBUxDxapeoznrMmTO\ndVmn7z0LWfZQBqVGk3fZj866DJlzX/UvBy+rTS+RAAqKSAAFRSSAgiISQEERCaCgiARQUEQCKCgi\nARQUkQAKikgABUUkgIIiEkBBEQmgoIgEUFBEAigoIgEUFJEACopIAAVFJICCIhJAQREJoKCIBFBQ\nRAIoKCIBFBSRAAqKSAAFRSSAgiISQEERCaCgiASYq6CY2WfM7IKZPTk277iZfdHMnil+Ls+yRjma\n5ioowK8DP7Zl3ieAL7v73cCXi/si+2quguLufwRc2jL7AeCzxfRngZ/Y16JEmLOgXMUJd38ZoPh5\n64zrkSPo0FyazsweAh4CqNGYcTVy2ByENcp5M7sNoPh5YaeF3P1hd7/f3e8vU93XAuXwOwhB+Tzw\nYDH9IPC5GdYiR9RcBcXMfgv4v8AbzeyMmf0U8IvA+83sGeD9xX2RfTVXPYq7f/Qqv9K1sGWm5mqN\nIjKvFBSRAAqKSAAFRSSAgiISQEERCaCgiARQUEQCKCgiARQUkQAKikgABUUkgIIiEkBBEQmgoIgE\nUFBEAigocn1m1542u7FlDgAFRSSAgiISQEERCaCgHHVX6xuieHOeRaNpi+PJ6eLncJooxkrlHR4b\nFTfb9pwHoXdRUEQCKCgiARQUkQAKylE0MbZxnf6jVCaq5D2HlcpYpbLZl5RKYBFWqWDVKhbHRJUy\nVimPHmvlEpjl88ulzecppke9y3hdo9rmp19RUEQCKCgiARQUkQBzdZLuazGzF4A1IAUSd79/thXJ\nUXJgglL4EXd/ZdZFHEhm4F5MR0CWN+JxjGfpqDn3tJguF9O1KhZH0B/k09UKdHt5816pYEmCNZvg\nGZ4kWLMBpRJ0ulgtv6CTD/L5NkhIB8nm/H4/b+rTFM8YfZngSVLU5eDpZO0zok0vkQAHKSgO/E8z\n+4vieo0TzOwhM3vUzB4d0JtBeXKYHaRNr/e4+zkzuxX4opl9q7jcNpBfwxF4GGDRjs92PS2HzoFZ\no7j7ueLnBeB3gXfOtqI5Nz5gd5WBRSuXRgOCVirlvcP4AGJkRK0m1mxi5RLR4gK2uJAPLC60sEY9\nf97jS9hCK3/e5SVYWsiXX1rEqhUsMmxxAeq1/LGtJtao59ONBowGN0sT0+M7XU68l/H3uE8ORFDM\nrGlmC8Np4K8BT862KjlKDsqm1wngdy3/C1IC/rO7//5sS5Kj5EAExd2fA+6ddR1ydB2ITa+ZGB1g\nNIXbtOuGLTsbRlhkYwdZ5b+LqlWsUs7nNRtYvZ73E4163q/EMX58CW81iOo1spuXSG9awCplspuX\n8WYdq5TpnVwiPd7CSiUGJ48xuHWBqF4jPXEsf85KheTEEiw0sTgiu+lYPl2pYIutUT9izUbep0D+\nu3Kx02Vp7O/58OCvfaagiARQUEQCKCgiARQUkQAH4luv78uNNny2x39DPBt77mvUtnXnv92+j2KH\nx7x5j3DP8qY4czDPG+NyOd+ZsVHPH9IfYK0mXq1gK6v54CBgpRK9Ey1KGwNK3UU2TrbAoPlSi/U7\nF6id3yCqVVl9TYWFM0btdJmV19aotDMqLy2yfleLhXYPa1dZv73OQjeBcpneq5pULsdEV+qkxxeJ\nVlYhTbFWEzLHer28to0OFif5UZX9Qf6+4hhPson3ivvUd5zUGkUkgIIiEkBBEQlweHuUra7Tc1i0\n94NYno1tM4+//ni/sq2QLXXsolcavgfPonznwuLx+U6FGXiWb+/HMW4R3mpgSYoNBmTHWng5JqrX\nSG5eINrID9Rqn6zQuBhhyRKrd5WIu9A4vsTK68qU1yvECy1W3gDl9RL1Wo0rb4Tm2ZjWLUtceUNM\n8/kq8WKL1Ttj6herlCtl2rdXWHCoXWrRfVWDxkslrOJkx1pYt5e/50YdkgRLEqhWob2ev5figLKJ\nfmW406enwZ/VbmmNIhJAQREJoKCIBFBQRAIc3mZ+SxO8Y7O+U6O826Y+2zLINdaoW2STDf3V7FDH\nqN7QZt6zsWXTzdOjpml+dpUkyX9fKRcNfoQ3a9AdYEmd/vF88LHaatK9tU7tFaPUaLB+0ij1YrJy\ng7XXQPWS0T/RYuXujKXnS8TLC0RvaNN9sYUvNKi+aYWNZInObQ3aP9An+5MylrVo35Wx/O0ylVqN\n9h1GpV2ifKzFxokSzXIZj2MGy3Wq38tPt5ot1Ik6XajkZ20ZDqBaqYRF/bxvj4ZN/JYvR6Yw+Kg1\nikiA665RzOx4wPNk7n5lD+oRmUshm17nitu1tkli4M49qUhkDoUE5Sl3f/u1FjCz/7dH9eyZbT3J\n+Lb+lt/ZtXY8jCLIdh4gdPf8uXboQ7b1JlcbZCzq2taTFPcnahvWEuXLeJpiZnkdWbT5vlImj3Qs\nl/LBuzjCqlXIMjyOSVtV4uK1esfKWOaUF5ps3BJTXi8RLzTovCqjfsHoLsfYnRv0aLB+W4WbXn+J\nQWOZ6JY677vrKf5s8V7ShRoPvPZxfvP8u2m/OuZtd7/Ieu0kWaVO/fY1Bs0FvF6lczKhdzamulxj\n44RBqYTFEb3lMtVyfiaWtFnJLzeRpHitkr+PyPL3Mvzo4rg4y2RU9IM7f8R7IaRHefceLSNyYF03\nKO7eHU6bWfl6y4gcRsFfD5vZfwA+aGbr5D3LKeCUu//qtIoTmRe7+Xr4fcAJd78D+CD52RqbU6nq\nRg0360eXbC62b4ubWXEbXvY5ijZvcTx5M5v8fXT9j2zUn3g2dvPN29Zyx/uTyPJeYljb8FYuT/4s\n3sNV64nGep3hpbCjol8pzlafNEt4OSZrVum3IgaNiHShSm/ZSKt5D8NNPZK60bnZeN2JV0gWUzo3\nR7zntudI6hG9YyXev/wkSR2SVoUPH/sa5aUenVuMv3XrKdJKRO9YmTfecoGkZnitSuOWdZKGMViM\n6S87xBFeKdNvRXicj/Gk9aLOUpyP/VD0a8Xl8LadjWWvD7TbYjcDjn8GLAMX3P0scBb4valUJTJn\ndhPDh4H/bWY/Z2bvM7OlaRUlMm92E5T/BDxCvhb6+8Cfmtl3plKVyJzZzabXGXf/+fEZZlbd43pE\n5tJu1iiPm9nPjs9w9327Yo+Z/ZiZPW1mz5rZJ67/gPFmdnPwzsab83zm9U93GnoqVM8mG3nYuYHf\nad5w4HFYn1nezA5vZhO30C8WgM2BSDO8FEOcf2mRlQ0vRWTVEmkVspKRVWOS+nC6RK3RJ6tA0nLu\nal2CasagCW9unCMrwaBuvKlynqzipNWIeyo1avU+g5ZzX+00Hhtp1bi9cYWsDJQilpsdsjIk1Yik\nkY2+ZEirFO89IivnjT1xjJeGX8ZE2wdgmc7Rqds+wl0sewL4GTM7Z2ZfMLNfMLMPTauwcWYWA/8W\n+BvAm4GPmtmb9+O1RWAXm17u/mEYbW69BXgb8C7gd6ZT2oR3As8WZ7XHzH4beAD45j68tsjuj0cp\nNrceK2775STw0tj9M+QhFdkXuxmZf4JiNL64PQE86O6/MKXaJl5+h3kTG/nFBVAfAqjR2IeS5CjZ\nTY/yV4BPAR3gI+SXhvub0yhqB2eAO8bu306+G82Iuz/s7ve7+/1lfRkne2w3Pcol4A+LG2Z2N/BP\np1LVdl8D7jaz15LvEfAR4G/v02uLhK9RimCMuPszwD17XtEO3D0BPgb8AfAU8Ii7f2M/XlsEdtfM\nP2xmryf/i34KqAFPmlnD3TemUt0Yd/89drNv2fBkC8Nxjag4wAmw4YFYURR29vjQExVYhEXFWMrw\npAfD5xt/jh1fIyvOPu95fVGUH5Q0XHbrmEmWTRzEdU2jsR3HkhTSDNKUaOBYkmFJRtyDKHGiXkqp\nM5xO6G5UWOxDqW2cbh+HXkR5Hb658WqiBEpd51v9E0R9I+5lnOp36XYqlNvG4927sNSJe86ZjWNE\nAyDJuLxepzKAUi+jtBHn72OQEPeK9+UZ0SDDijotGX6m2ejfcPQZkO+EanHQv9D3bTebXj8CYGZ3\nAveRX3z0PuDrZpa4+w9Op0SR2Qs5ucRj7v6Xhvfd/UXgReDzY8s8O53yROZDyBrlB83s1HWW2fHI\nR5HDIiQobwpYZnqnEReZA9cNiruf3o9C9tSw3xs/LUe22fT66ISKeb6/37OwXM3oDJETR91d/Tk8\n83zHPs8gi3A2d5oc1Zam28/CMmz8dzKcnzlk6ea8QZKfhWWQUFpPsEGK9RMq7SaWOfFaj+rlBnEv\nJW734HtNSh0nSuC58zdTWo2pv5LxJy+/jkono7qS8sXLb6XUgVK7zyNX3sFgpcrCRecLF+4h7meU\nuilPX7yVpa5j3R4bF2+hseGUV1Mql0uQZlh/QKWdN/BZmhF3kvzLjCQtLktXvN8kmTxqdPND3NW/\n0W7pTJEiARQUkQC7GXDctlu7mf3wnlYjMqd2s0Z5xMw+brm6mf0q8M+nVdiN8swnbhNnREnT/JY5\nZI6n2ebNffKWptvnFTdgx7NEQt6nTBxQNH5GmMlCJ+tN0/zSa8VtorZBsvlzkIxqZ/j+iveTP+Hw\nrC9FXwL5Y3u9fLs/zXsQ6w6wtQ2qVwZUVhOitXUaF1PiToKtbVD/bkSl7bTOpfiLDaqXjObLfb73\nneOUNzIqFzv88enXUV514rUun3v+bVQuxrTOpTzxzO3E3ZTypQ6dMwuU1zOs06N+tkR1NaN8uUvj\nvEOS4J0u1cuDvNY0JV7v573JoI91+5vvr3gv+ftJR/+2QVcNuAG7Ccq7yHdM/FPyfa/OAe+ZRlEi\n82Y3QRmQ7zlcJ9995Xn3KX/VIDIndhOUr5EH5R3Ae8kPx/0vU6lKZM7sZqfIn3L3R4vp7wIPmNnf\nnUJNe2PLys6znf4mbI6T2viZ4PeshMDt5h1WzKMrQVv4trdFm8/jxRiRZ55fbavY2ZD+ID9hQ5oR\nrXexJMU7HcqXOng5xtvr1C50iDYG+MYGzbNOZTWl+kqHhRcWiLtO5XybpWduptzuEV9eI3v2JLXL\njq1t0PvWnTTPG/WXN2h9e5Foo0N0pU3r9DKVtR7e7dJ6yaleToivtGmcb+CDAfQHlC938MEAHyTE\na8V0fwDdXvFZpniSbH6uw95s24e39/1K8BplLCTj8/7j3pYjMp80jiISQEERCaCgiAQ4vJfP3uo6\n32T71iZ+ry8jEPpN+rZGNPwbeE/ZPLIyTUfTXgyueuZ4v59fOsIzrJ0fmOqdLtGVNl6t4J0upVfW\n8lfu9mid7VPaGBBfXGHxdB0M7NIKS88tEbf7+FqbpWehdjnBu12OPQ2Vdkp8cYVjzzaJNnr4apvF\nF1NKKz28P6B1pk/5Shdfa1P7bisfcOz38xr6g7z+jQ7088beer3RZ+iD4U6RPvrCIv/MtFOkyMwp\nKCIBFBSRAIe3R7nhQacpbvPuprZdv49i+70YoMM9384vDgzzJMEoBiI3OvnZafp9vL2O9Qdk/T6+\nuoaVy3iSUD3fzi9hvbJK/WwLr5TI1trUX1zD+gO822PxhT7llS70Byw934XU8ZVVmqcXsY0uWa9H\n80wHa+eDiNXvrmPdHr7RIb60SjZI8oHE9npeS5riG518XprmfdXWvgQmD96awiDjOK1RRAIoKCIB\nFBSRAAqKSIDD28zfqCk3h1Mzam7HvozwLN97etgMFwORWa+HxXHeMK9v5EdUDpv8anE600srEEWk\nnS7xKytQrZD2B8SvXM4vb9cfUD27kn8RkCSUz16BKCLrdInPX8G7Xbzfp3R+JW/Q04z4e1fwLMsb\n99X2ZtO+vjE6cjRv6rPRFxDj72UW/zZao4gEmPugmNknzeysmT1e3H581jXJ0XNQNr3+pbv/0qyL\nkKProARFdmviLIpjOw2ODdoNz+SCF0dBdsl7gn4//33mZO11LI7wQUK2uoZVK3iakq21sUol7xku\nreDFzpd2eQVKpXz5ldXR8/jqGgzyXiRrr+fz05RsI++NRjUMaxweyTisd6eBxX3sVeZ+06vwMTM7\nZWafMbPlWRcjR89cBMXMvmRmT+5wewD4NeD15NdieRn45as8x0Nm9qiZPTqgt4/Vy1EwF5te7v5X\nQ5Yzs08BX7jKczwMPAywaMcP6He7Mq/mIijXYma3ufvLxd0PkF+NWHZr65nfi75leMDa+EFQnqb5\nGRk9w7s9iCPI0nw6TfP5vd7muMv6en65veF4TBxvPna4M+ZwjGRifr7D5qissR0eJ3d+nP3fvbkP\nCvAvzOw+8os5vAD89GzLkaNo7oPi7vN77jA5MuaimReZdwqKSIC53/SSKZgYvNs+EDk+yOfJAE+L\nS+Elgx3OgDI2QFk09xZno8fmO2A6WXF5udHzDM9yM7HzpudfCozXOCe0RhEJoKCIBFBQRAKoRznq\nrraTYbbDWRiv1seMn7HRU0bXl5p47Pg8Jp7zqvXMEa1RRAIoKCIBFBSRAOpR5Pqu1sdc7SyNu13m\nANAaRSSAgiISQEERCaCgiARQUEQCKCgiARQUkQAKikgABUUkgIIiEkBBEQmgoIgEUFBEAigoIgEU\nFJEACopIAAVFJMBcBMXMPmRm3zCzzMzu3/K7f2Rmz5rZ02b212dVoxxt83Io8JPAB4F/Pz7TzN4M\nfAR4C/Bq4Etm9gPunm5/CpHpmYs1irs/5e5P7/CrB4Dfdveeuz8PPAu8c3+rE5mToFzDSeClsftn\ninnb6BqOMk37tullZl8CXrXDr/6Ju3/uag/bYd6Op+/QNRxlmvYtKKEXNN3iDHDH2P3bgXN7U5FI\nuHnf9Po88BEzq5rZa4G7gT+fcU1yBM1FUMzsA2Z2Bng38D/M7A8A3P0bwCPAN4HfB/6BvvGSWTA/\nYGfsC7Fox/1d9qOzLkPm3Ff9y6z6pZ364G3mYo0iMu8UFJEACopIAAVFJICCIhJAQREJoKCIBFBQ\nRAIoKCIBFBSRAAqKSAAFRSSAgiISQEERCaCgiARQUEQCKCgiARQUkQAKikgABUUkgIIiEkBBEQmg\noIgEUFBEAigoIgEUFJEACopIAAVFJICCIhJAQREJcCgv+2BmF4HTMyzhZuCVGb7+TlTTdne5+y0h\nCx7KoMyamT3q7vfPuo5xqunGaNNLJICCIhJAQZmOh2ddwA5U0w1QjyISQGsUkQAKyg0ys8+Y2QUz\ne3Js3ifN7KyZPV7cfnwf67nDzL5iZk+Z2TfM7GeL+cfN7Itm9kzxc3kOaprZ57Rb2vS6QWb2l4E2\n8Bvu/tZi3ieBtrv/0gzquQ24zd0fM7MF4C+AnwB+Erjk7r9oZp8Alt394zOu6cPM6HPaLa1RbpC7\n/xFwadZ1DLn7y+7+WDG9BjwFnAQeAD5bLPZZ8v+os67pwFBQpudjZnaq2DTbt82ccWb2GuDtwFeB\nE+7+MuT/cYFb56AmmIPPKYSCMh2/BrweuA94Gfjl/S7AzFrAfwX+obuv7vfr72SHmmb+OYVSUKbA\n3c+7e+ruGfAp4J37+fpmVib/D/mb7v7fitnni15h2DNcmHVNs/6cdkNBmYLhf8jCB4Anr7bsFF7b\ngE8DT7n7r4z96vPAg8X0g8DnZl3TLD+n3dK3XjfIzH4L+GHyPWHPAz9f3L8PcOAF4KeH/cE+1PNe\n4I+BJ4CsmP2PyXuCR4A7gReBD7n7vnwJcY2aPsqMPqfdUlBEAmjTSySAgiISQEERCaCgiARQUEQC\nKCgiARQUkQAKyiFiZq8xs46ZPb5Hz1cvjhPpm9nNe/GcB5WCcvh8x93v24sncvdO8Vzn9uL5DjIF\n5QAxs58ZOxrweTP7SsBj/tDM3lhM3zQ8EtPMfsfM/o2Z/R8zO21m7zWz3zCzb5vZp6f9Xg4aBeUA\ncfd/V/yFfwdwBviV6zwE4A3AM8X0PeT7WwG8DXjO3d9LfiDXp4GPA28FPmhm1b2s/aArzboA+b78\na+B/uft/v9ZCZnYXcLbYjR3yoJwysxpwDPhXxfwO8OnhDolmtgH0p1L5AaU1ygFjZj8J3AX8s4DF\n7wNOjd3/oeL+W4DHxgJ0L8URh2Z2O3DOtbfsBAXlADGzHwJ+Dvg7Y//Jr+VeoFY89m7y4+afIN/s\n+vrYcvewGah7mQyXoE2vg+ZjwHHgK/mxUDzq7n/vGsvfB3TM7Ovk//mfIj9o6xjw5wDFZljd3S8X\njxkPjRR0PMohUpy44Qtjp016Fnh7ceaTG3neF4D73X3eLhuxb7TpdbikwFLx9fECkN1ISIYDjkCZ\nzSMTjyStUUQCaI0iEkBBEQmgoIgEUFBEAigoIgEUFJEACopIAAVFJMD/B/tOErKSUQkuAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa58cda5898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# average kinetic energy on grid\n", "ekin = ms.createField('z', 'x', weights='Ekin_MeV', bins=[200, 50])\n", "ekinavg = ekin/nd\n", "# and plot\n", "fig, ax = plt.subplots()\n", "ax.imshow(ekinavg.T, origin='lower', extent=ekinavg.extent*1e6)\n", "ax.set_xlabel('z [$\\mu m$]');\n", "ax.set_ylabel('x [$\\mu m$]');" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAERCAYAAACU1LsdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmQbFd9H/Dv797unvXN20EPLQgp\nwgQVZpMl7DgpwEkQVApRjmxEwhpTCouSuGIqNsFlqqjCccpVXjAGlYJlWYRILMEpuSxDjFEKTCGM\njIUWKMHTAhrpobevs3T3vb/8cc75ndO3b8/M05ue7pn3/VS9mp6+954+fee+OdPnd3+/I6oKIiIi\nAMhG3QEiIhofHBSIiMhwUCAiIsNBgYiIDAcFIiIyHBSIiMhsykFBRG4VkYMi8tA6tPUyEfmmiDws\nIg+IyJuTbZ8RkUdE5CH/ms1zfT0ionG2KQcFALcBuHad2loA8HZVvdK3+QcissNv+wyAFwF4CYAp\nAO9ep9ckIhpLm3JQUNWvATiaPicil4vIl0Tk70Xk6yLyojW29QNV/aF//DSAgwD2+u/vVg/A3wG4\naF3fCBHRmNmUg8IAtwD4D6r6SgAfAPCJs21ARK4G0ALwaOX5JoC3AfjSOvSTiGhsNUbdgfUgIrMA\nfg7A50UkPD3ht/0igI/UHPaUqr4uaWMfgE8DeIeqlpV9PwHga6r69fXuOxHRONkSgwLcJ57jqvqy\n6gZV/SKAL650sIjMAfhLAL+pqvdWtn0Ybjrp369fd4mIxtOWmD5S1ZMAHheRXwIAcV66lmNFpAXg\nzwHcrqqfr2x7N4DXAXhLzacHIqItRzZjlVQRuQPAqwHsAfAMgA8D+CqATwLYB6AJ4E5VrZs2qrb1\nVgB/CuDh5Ol3qur9ItIF8CMAp/zzX1xLm0REm9WmHBSIiGg4tsT0ERERrY9NF2huyYROYmbU3SA6\n/wiAmomFcMcfZx3G2ykcO6yqe1fbb9MNCpOYwTXyC6PuBtH5w//SlzyHdrt927KJCQBAubzsnuPg\nMJa+ol/40Vr24/QREREZDgpERGQ23fQREW0wyXq/1m0DaqeNpOF+xWjpt5XFeveO1hk/KRARkeGg\nQEREhoMCEREZDgpERGQYaCYiIMvd11D3MQkaS54PPk5LaLFCrchwbNkdvA+NFX5SICIiw0GBiIgM\nBwUiIjKMKRARJPNF7Ur/d6ImSWYrrS+lCi3WkJC2UhsirJc0RvhJgYiIDAcFIiIyHBSIiMgwpkBE\nsWBdzdy/basjksQjaravdKzPjZBM+tdpoJHhJwUiIjIcFIiIyHBQICIiw0GBiIgMA81EFIveqQ8a\np4FfH0GWPO8PJqva6mu2ylpy7FoS21YMZNOG4ycFIiIyHBSIiMhwUCAiIsOYAtH5TgSSh78P3dee\nmEKIGbRacf6/rIkVhLhEcmzWavoHro1yYSFpVuzxSvXyaGPxkwIRERkOCkREZDgoEBGR4aBARESG\ngWai84G4oG42NYVyadk9F4LFqtCw8lldIpnfry4RTRoNSNMnrbXbfdstYC39f3+GZDfkeWybK7CN\nHD8pEBGR4aBARESGgwIREZmhDQoicrGI3CMi3xeRh0XkP9XsIyLyMRHZLyIPiMgrhtUfIlpBUbh/\nWvZlkkmjEef/q9slg7bb7l+pg4vb1bSr3a79gyrjCWNimIHmLoBfU9XviMg2AH8vIn+tqt9L9nk9\ngCv8v2sAfNJ/JSKiERjaJwVVPaCq3/GPTwH4PoALK7tdB+B2de4FsENE9g2rT0REtLINiSmIyKUA\nXg7gW5VNFwJ4Mvl+Hv0DB0TkRhG5T0Tu62B5WN0kIjrvDT1PQURmAfxvAL+qqierm2sO6ZtYVNVb\nANwCAHOyixOPRGfLz9drp3vW1ediEbxu37y/djsxB6En1uD/a/siedrpYqC6OESW28I/2unPf6Dh\nGeonBRFpwg0In1HVL9bsMg/g4uT7iwA8Pcw+ERHRYMO8+0gA/AmA76vq7w3Y7S4Ab/d3Ib0KwAlV\nPTCsPhER0cqGOX30TwC8DcCDInK/f+6/ArgEAFT1ZgB3A3gDgP0AFgC8a4j9ISKiVQxtUFDVv0V9\nzCDdRwG8f1h9ICKis8OCeERkepLPfLA4BHzd9t6ieNJo2qpt5XJyZ2AIPtcU0au+lmT1gW/xq7Zp\nt+MP4D0mG4FlLoiIyHBQICIiw0GBiIgMYwpEW0WIATT8XHxN0lfdQjkA6gvZVefwa5LetNuBFiv8\nbWmJbZ2aTSvch6JlXKCHNhQ/KRARkeGgQEREhoMCEREZxhSItpoV5uolE+jg1IH6Ynn+uRUX0AHq\n8whCXyy2EF/c4huyyt+mzE/YUPykQEREhoMCEREZDgpERGQ4KBARkWGgmWiLsRXLshzwBeyk4f+r\nSwZpuL8F65Lb7NgkcWxQwpu113Rta9u3pxqD0+lzg16rpn3J8/oV2Wjo+EmBiIgMBwUiIjIcFIiI\nyDCmQLRV+Hl7m6NPE9F8gpjkGZBVYgoiVpyurghdKLDXc4w9UcaFdNK4gX8cYhmW+FbWxA8azf52\nk4V9avnif0xsW3/8pEBERIaDAhERGQ4KRERkGFMg2iKk2XJf/Xx7OtvekwtQmYeXPLeYQzY5CQAo\n2x2b/6+NUQxqO8h8TMCK3RUDt0mzYYXzdHnZ717EY2viB9nUlOvn0nJtnIKePX5SICIiw0GBiIgM\nBwUiIjIcFIiIyDDQTLTZZPmKyWZa1AeETSUwrKVCMn9M7hLVpKnQZb9fCORmOfqWbZPMCtv1BItD\nQTy/ez4365paXIJ2uj37Q6Sv+J2WimzS/XqS3P3tWi4txaCzBZ9Xea901vhJgYiIDAcFIiIyHBSI\niMgwpkC0GUnN33Nhfn2lbRhQaM4fE2IUNu+PWNROWi3IxAQAoDh2LGnXtZnt2A4AKI8c7U9oCzGD\nooh98c9pu9O3v2QClCEu0R83qIul0PrgJwUiIjIcFIiIyHBQICIiw5gC0SYjzUZfrgEQF7KxnIM6\ndff1awmov+8/xByS/WyBnE63f/EbyWJOwomT7mtSzC7kMJSLS3FbZTEgyaSvX2mMQcv+hXRC0T+0\nWrGIHq0LflIgIiIztEFBRG4VkYMi8tCA7a8WkRMicr//91vD6gsREa3NMKePbgPwcQC3r7DP11X1\nXw2xD0REdBaG9klBVb8G4Oiw2iciovU36kDzz4rIdwE8DeADqvpw3U4iciOAGwFgEtMb2D2i8SN5\nbgHfuCpaEowNyWu6xgSvNNmtbhW1JPFNFxcHNmMJZapWCS/0KhTwg6oVs5OeoHUlea3RjAXzyuR9\nhCC1/yoi6A9D07kY5aDwHQDPV9XTIvIGAP8HwBV1O6rqLQBuAYA52cVrgIhoSEZ295GqnlTV0/7x\n3QCaIrJnVP0hIqIRDgoicoH4m41F5GrflyOj6g8REQ1x+khE7gDwagB7RGQewIcBNAFAVW8GcD2A\n94pIF8AigBtUlVNDRKvQTtclsK1Cmi1op+2/yeLXagJbWUB90lqc5y/65/61jIlkYVuY90clyay6\nfYUifVpqb0wEgHbaVoiv9035dv3X2gWFJPap2i6tbmiDgqq+ZZXtH4e7ZZWIiMYEM5qJiMhwUCAi\nIsNBgYiIzKiT14iozkrBUi37VzbzzwMAMr9Smgi047eVPplMy/6gb5YnyWVJ4LZSzbQ2WFwXuE72\nteCzdSRpN1R1zXPXr2Qbsjw5NrYvjabfrX9bzz4hiM0V2s4aPykQEZHhoEBERIaDAhERGcYUiMZQ\nWiyuOi+upUKkJikrzPn7uXhN/+TLfHJaswHtVObZtYSWlb8P6wrXSdYfy6iLJyTPx/eRx/cS+pKF\nBLSiL24izYYlqJU1K6tJtSBgKhN7PTCmcNb4SYGIiAwHBSIiMhwUiIjIMKZANI7CXHw5oKBbUojO\nfZ/HInnhmPTYcN9+pxvn8kM4QBUIdevCXL2WlhMQ7/lPcg2CNM4QGhTpP7amLzbv39NeWFhHURb9\n8YDqa9UW4Wu14v418QhaGT8pEBGR4aBARESGgwIRERkOCkREZBhoJhonPrErm5gA4AKrtnpaqiZp\ny4LEZRKgDcHXUEguPS5NTgsF7EIwWTUJHGe+jSSoHArsdTtJ24jb6gLBQTVRLZP+HLhMIBqS23r3\ndX1xv7q03V9oD50OuIjjs8dPCkREZDgoEBGRWdP0kYhMAngfgJ8HoAD+FsAnVXVpiH0jIqINttaY\nwu0ATgH4I//9WwB8GsAvDaNTROetMFffrokjBFpCGi7mkMYCrNBdGgsI8YDcTwpkYvPxoVicLi/b\ncxYf6HaSeEDhm5OeBDXXbl5fFM/HN0Lhvp7ENwnJcxrbrRPaCG+727WYRnps9eVVdXDSH61qrYPC\nT6nqS5Pv7xGR7w6jQ0RENDprjSn8g4i8KnwjItcA+MZwukRERKOy1k8K1wB4u4j82H9/CYDvi8iD\nAFRVf3oovSMiog211kHh2qH2goh6aOEnypP5dmm27LlwH36IFWhaO06SCQA/4V6G+/m1tMVr0nn3\nMFcvoUadKoDehXJ6i9r1H9vT/xATsZhGsshOdd9SISEvwx+n7bYdm+/d7bp79HhcvCfEQKamUJ4+\n444J+Ryl1sc5aE3WNCio6o+G3REiIho95ikQEZHhoEBERIaDAhERGRbEIxoFEWTT0wCActEXBiiL\nmFiW9QeDw3OS50DpC86FgG9SwK4uKSwEeutWO7PXTI6FSDzGAtdFXzG7tO3eYnu9f29anxqNJKjt\nk9NaTWRz29wrHDocjw8rxC0suq91K7+127WBblu5zlZq0xic9iuzlQsL/ccRPykQEVHEQYGIiAwH\nBSIiMowpEI2CZDa3jcVYbDgkcdk8fbsN7fq5dV/wTkRicltd083kv7XNqSdF8jL/t2CID5Txb0NL\nXssaSQKaWrsapvWT+EXoa77Nx0iWl/sWAbL31WzEGEoobtftQs8sWHvWD/9Yl5Zjf7NKnKMoUC3S\nh0xskaJwlnR5OSbStVzRPyxKbYzkfMdPCkREZDgoEBGRGdqgICK3ishBEXlowHYRkY+JyH4ReUBE\nXjGsvhAR0doMM6ZwG4CPwy3QU+f1AK7w/64B8En/lWjrKwvo4mL/036+PfPz3lqUybx3zE2wQnhJ\nbMFyDEofe0jyFOK2+sV7wr3+2YyLC2R7d6N46oDb5mMZ2m4j3+byCcI9/lqq5Q9o4fosIigtNuBj\nAP492EJAlf6WldiHdssYA0gX4bFCdyE3Ir7/sECQ5HnMXUhjG1lvbIbqDe2Tgqp+DcDRFXa5DsDt\n6twLYIeI7BtWf4iIaHWjjClcCODJ5Pt5/1wfEblRRO4Tkfs6WN6QzhERnY9GOSjULcxae3+Yqt6i\nqlep6lVNTAy5W0RE569RDgrzAC5Ovr8IwNMj6gsREWG0yWt3AbhJRO6ECzCfUNUDI+wP0Yay1dN8\nspkux0SsdJsVggsB56KAhuStZIUxC8iGQnOSfBivJm4hWQUtzyHq9i19EhmKIibLhXalGQvNWRC4\ndM8n/dN0VbZOb2BbWk1LSgvvW0SSleFi4bxQwC5drS0Ek+1953k8L+G5srQEvXS1OEsWrCugR2Zo\ng4KI3AHg1QD2iMg8gA8DaAKAqt4M4G4AbwCwH8ACgHcNqy9ERLQ2QxsUVPUtq2xXAO8f1usTEdHZ\nY0YzEREZFsQjGoVkvt/mzpeXkyJ1fn4eRSyOl86tW/JabLIveW1m2m7xC3P2WhTJgjteUVisIGsk\nCV5WaM7P42diz1kcJE0E8wv/iEhcJChv9fQXGpPdQlyi55ZDiXERizMk2+x9a/8iRPb+VfsLAQJA\nx7fXdO8nm5hAuRSLEZLDTwpERGQ4KBARkeGgQEREhoMCEREZBpqJhsWvEiZ53pfEle/aGVceWxpc\nz0taLQuQpoHmupXXqslrKEvbL2zTUpNqoUmIt3D907QyaQgEd2PAV30CmNqqaXGb5L4ETZb1rqCW\n9F1LtQS00EZPVdOQANdu9yWqaZEkxpUrr5gWEvfSvcKxWc228LPKZ2dQnD7jX+P8THLjJwUiIjIc\nFIiIyHBQICIiw5gC0ZBkk26OXaanUB4/ASDOrZcnT1sCWCjeBpH+4m6dTiyON+Hn7IsiJod50mjE\neXz4+f60nbBfsxEL0lmhuwzQ5HE4LiSqNWLyWoh/hBiJNBox9uDjF9ruxBiGjznE+EDHEu7s/Zfa\n389GUrgvjR9UYwnaH1tBqdAV/ty1eEhRU0yw2UjiL4Pb2Mr4SYGIiAwHBSIiMhwUiIjIMKZANCSh\n0B3yPOYOhPv1k7wF8bEHN7dfuTc+y6yoXYgplAsLfQvVoNEAKgXkJM+BkFcQYgHp/f+h0F6n2zu/\nbw1UFvJJuibNVv8bDvtpCcDnaFQXxelpL20wxFX624vxiST2YPvX/F2b1a30i/jeqnGbVKfb97M6\n3/CTAhERGQ4KRERkOCgQEZHhoEBERIaBZqIhCYXV8kzi6mptF2DOZmct0BpWE5M8h0xN+oN9ELYs\nLXlNFxb8c7GonbVbFP1B2LLsWeEN8AX2vMy/Vokl65etypbnyCZc2+ViXJ0sbLcV0LrdmDQXAryq\nfQXxYkA4WUmuelyiZ4W48L6yJGAfgsbpuU2C5KEgXgi0oyggraY9rrLEwGYDme9PsTy4UOFWxk8K\nRERkOCgQEZHhoEBERIYxBaL1kBazq+gpvOaTuWSiBV1u92yXVhMyO+OeO3XaHVCWyELSWs0cty06\nU/faWdb3fJqoph2fnJUsfGNKhfpkOJvbB+KCN93kPVXm/i1pD/0F8aTRtP2yVlhsp0Q+N9VzLtDp\n2ONs2zbfVhe6uOhf1P09m83OQKanAQDdpw5Y3zHpYgm5P5/lseOx8GBNTMHOU6fbs5jR+YifFIiI\nyHBQICIiw0GBiIgMYwpE5yCfm3MPpiZRHDriHvsF30MegOQZtAyLz7tt5fETce696efWu13o0ePu\nuZCHkOf9Bd4yiffpl0lRt2pxuLK0eXS1nIgcaxbiB2k+QfX4ZH4+5EDIzAz0jMvRQIhb+PeQzc6g\nPOniJTZ3L1lsNyzUU/QX0BMRaCVPQZeW+2MfmVi/Sp8rot0uJMQU/Nds+xyKY37xo/A+8jw+tjcm\nyHfscPv5mEa5tIStip8UiIjIcFAgIiLDQYGIiAwHBSIiMgw0Ez0bmS8Mt23Wf5/FQm+W4JUkQYXk\nKB+EdouT+TZCsLhUW5HNVjbLkQSVk0S0utXFqgXxsswK4qUrq4VicWHFN213+gLR2fZttvJYCNYC\nMXgO37/y+In4uvY+ipgY51mBuk59YpitDBfOmZb9xe+AGNiWmIgWjrGkvDRQ3ElWowv9CwFnqTmH\nZRl/jul2f1OArZLHQDMREZ0POCgQEZHhoEBERGaoMQURuRbAH8LNjH5KVX+nsv2dAH4XwFP+qY+r\n6qeG2SfaAiQu5jJquuALtLWaMeHMJ3FlvlCbdrtxTj3M5ycF6GzhmqkcRV2xtqo0npAWebNYQs2i\nNX4u3y1o4/cL8+TNRlw0x59TmZiICWRpwlqY3++mSWkhaaym4FyIr6jYtvBaoR9axCQ7WzAnea2e\n2Exd8l3ok98kIhY/sAWKSo3Ja6FrviChHRMe+ziR2EJHarGgEEtZqQDiZje0QUFEcgB/DOBfAJgH\n8G0RuUtVv1fZ9bOqetOw+kFERGs3zOmjqwHsV9XHVLUN4E4A1w3x9YiI6BwNc1C4EMCTyffz/rmq\nfy0iD4jIF0Tk4rqGRORGEblPRO7r4PxcN5WIaCMMM6ZQcxMwqpNwfwHgDlVdFpH3APgzAK/tO0j1\nFgC3AMCc7NqaE3kUZbndc54uJG9z0cn962HBeZvfFbE5aF2PhdeTYmhhfrxI780P885F1jMvPbA5\nH0vIZqZsnt/m8aenkLV7F94Z3K0VXiudYw/F38KCNsk8eIiHaLsdi975c1seP2GF5iyHIZOex4Bf\ntCc8tvc4leRAxHl7wN3nb+2GBXMGxQlCbMTHB8p2x16r7pg0P8GumzS+Uc1TSHISZGoq9rcbFx8C\n3OJHIS8FNdeU+EWQRGRLFMob5ieFeQDpX/4XAXg63UFVj6hqOMv/A8Arh9gfIiJaxTAHhW8DuEJE\nXiAiLQA3ALgr3UFE9iXfvhHA94fYHyIiWsXQpo9UtSsiNwH4MtwH2VtV9WER+QiA+1T1LgD/UUTe\nCKAL4CiAdw6rP0REtLqh5imo6t0A7q4891vJ4w8C+OAw+0BERGvHgnhBGrjzSUCSSV9CkIj0F9RK\nkmLqAoBaTXIpSwuMapIgY49DEHOLJsf0yHILgoZgn0y0LLGqtmiZHSv95zvLYuLSiVMAXEE38a8R\nflbl6dPx/PogYjY5gTIEP/22bGoKevFzXVcWfPjr5OkYXA1B4iIWcLNA6sKC29ZoALMzrr1QtO3M\nQs91A8Aldm3b5h6fOtXzPnu+lgrklfctUl8kr6wU55MsHpusNpY1KscmSWY9iW3huvXvMWs14znw\nPwtdXEK5uOSPzXva6FFT8M6K0WX9hfNqV36rsZaAv3uRmkJ7yWMLqhdZDD6HGyBaLbuRIdux3T3X\nbKJ8+iduv3INSYhjimUuiIjIcFAgIiLDQYGIiMzWjSlYAbKsL+FFJM5NWpJL3XxlTZxhVTXzulml\nGFq6+El8LjmuiIlR2vVzk37+UtvtmJxlMYjNE3sIBc9CsTiZnorxg6AooGFxlDDfrAOSudKfqXsQ\n29uz073W7h2uYF162DOHURw56h5vn3MvdfmFaBxwz3Wfcik1WhTIDx13BzViQp3NtyftSnhP+XJP\n39KCbjLpFqkpT562Am3W92Sxm554Q4hxhfaQJGmFeXwgJlvVzN9bobn0WimT66wmdlb6uEHP/5+6\nGEXlmtd2p/f/VfK6mizYY33LM1sMZ6UrWarXSXX7CrEEyWpigapJwb4QX8p6F/Xx28TvJy0X98om\nuihrihfaz4gxBSIi2go4KBARkeGgQEREZvPGFER6iqUBfj6vel90ntff696XO6D189fluc/XazXO\nkMYn7B70moJvrSYw4+Yw0dzhD81ipcGwcMpyG7rg7gtXX5BL2+24ePqI8x5CwbBsdsbm3e19d5P4\ngRWXS87/oFhC4PfteWe5nwsPc+YTLeCMzz/w88q6eycsgrTLndvs+BmoP98W+5iYsLhOOO/SalrB\nvnQheZnyi9n7n4HU3fveThaSr8oEuux/puEaSPMPwrVdlujLccj65/ZTVmAvnVsP8rw236OuiF56\nDIDe/x+h+N7UlBXCC7EHy1eYmIgxsaRYXiigF+I2euq09SksWiRz21CeOOn2C9dMniPzOSDqcyPc\ngkPu2LCtp3iivahgpVhhiKWE1wdg16q223aNWKxDFZm/forj7rWyyUmI70Nx1MemxjzewE8KRERk\nOCgQEZHhoEBERIaDAhERmU0XaJY8Qz4754KwdUGialC1VEBj0TnbbaWga7lKcPNsZBlQVF+rv32R\nbgyWpgHDSlIRGg1I0wcAJ31gc9sMdO/20JD72i2Rt32gedkFvWSpDfWP0fGBwDRhKi0Edo5B6Wxy\n0gqF6ex03LDc6emTdru9PyugPrg8KOCf1ewbcvrCKljtTmwznM+dcygud6vD5qf8fkdPWMDTkuu2\nzfYFh7Nts/H6SYPjobCfv2HAisK1WjEBbdYnPzUaVjAv/dmupCdRbYXtPUlaIUFuhYJ0UpaxqF0S\nELag78mT1n4IumZzrnBfeex4Emz3gdnJCQvqVgPYMtECQl9CsDjLYl+a4RwmiaQWaI/FDuP7yiHb\nZt1zIYCdnoM9u9x+nS700JGevmS7d8YCiX6biLiESgD5bpf8iMWl+P8mXbku3OQQkvwmWoC/qcLO\nxfY5S6LMff+K4ycwzvhJgYiIDAcFIiIyHBSIiMhsupgC4AvX5Xmcy+yJH1TmmNcaRwDWN5awUpvV\n5CFU+laki5aEOWu/rdO1xT1wGn6/LBZo83OaOjUB9fPjus3P6W+bhlTPgSokvF44n90C0o2P3ddu\nLM7XTZLiwly5n4fV7W5+t5xuoez4pC+/OI0stWPhs2KFcy3Z6klrwOBkrXBs6c9zmSzYkvn3euoM\n8nAuTvoTWRQxue2yi9xzZ5asGCEyH8uZnYb4BXws3tBsWJKi7PKF+CzRKr6+JXUt9C+yI41Gf9G3\ntHhiJgOfk7wRY0NhPjvPIT4xLyw4pMvLMbHLx3ygivLosZ5j0WhApl3xPjmTFLELfQjnTjW+j/BV\n1ZL77LoO8ZAiLjDVV6AOgKb/X6oJdaXGgnNpYmA3JhCGdi3xLcQCuv1FBNEtAO32PpdJX7FK7Xbj\neQ4xj+fuhYbrJpyTorD/G9IIC0dNWhKphPMdjtPSYlfh/3RaPHFU+EmBiIgMBwUiIjIcFIiIyHBQ\nICIis/kCzYIY2LHkNR+cygVQvy0EmHNY4FGQBK7qkqFCEGtU1URXWDmqR+i7Bf1KoFtZEWth0YLP\nmQ+OYXICGqp7pqtPVQOZrSZKX/HTAq+NzAKp2vAJPxM5ulOhmqf70jjjAnrNY4sxwGzVWmteq8xg\nP7/0T5Sy8vdKZVG8Fa1QLTQGD4veADPgA9zu3Ha3uSB9c7m/qml39wxyfx7lJ8mqatVryq7BpAJu\nSAgD+qviNhqWPGcJUXlmwU1M+WD+8RPxWmn6n9POOcjBw257COLXVQhOqwuHoH+nk/xcQnC+6F8l\nLUkos5sd0gS5cG47nVihNwl6u41lf7JbmqiWbKtWQUYahM2Scxeu6VC1tCji/+XFmMBo59v/3tBO\np+dn5NoVuwb0lH//6XUb2p2djj+D5EYCPHePa6ZMAvFhtbpwzfiv2bZZFJc9z3X9kLspofvEj+Nb\nnJ21c1KGRMcNwE8KRERkOCgQEZHhoEBERGbzxRSA/nnpugnnuphBXUJUTfzAZmGfzapra0m6WmG1\np3WTzo2GFac6nVh4LKwmlSZddeL7DedAQ1JclgENd2zZ8nOiy120DvrEHL/yW5okVCu8vs1dl4D6\nOd70Z1E992s5r67h/phC0lbPPH4oAFjtE4DmM74I3Kkztt1WFlvsxqSokLyXx5hLf7JZHmMJc24V\nLul04hx52DY9CfHnGD7ZDHmYs3RYAAAM/klEQVRmhfZ6VhVM58Dhzn94l5YAl2fA0nLv6Wk2+mNn\nWR5XkrMEsNwVeEvPn5Zx3n5yMu7viyta/6ambIU9PXWqd1uzCYQCdsdPxvcQ2vVJkL6DPecHU5Mx\n+TKc/0YjrkDoz52WDXfOkVznkxPQMws971GazRiP8LEHVY19QSywZz8X/1UWlnr7AAB5ZvG2bMec\nO7YRfzcVO93PvtF5rts2EVd06+xzSYaNI8esqF77yovdaxWK5oOPuTZ8MT1ptuxnVoaf8Tqt6MZP\nCkREZDgoEBGR4aBARERm88UUshwyOxPvt382BuQh9N1nvtoxa32uNr6xhnjFMPMlQuGxTjcWL6s7\np0kRNg2F1EL+QbvTX/DP7gVPFwpaW/5FX7G+9Njkfu/adu3e/Awa5uDDffCdbt+94jrRsgKAsuSL\n1DVyqM/P0AnXRhaOR1zUSCdylJlfiCVsa+TQaTcX3J1z8+2t0KeytPnjzi43194UgZz098GHWM1k\nEzrpXzfEZhq5HVtuc+3mZRljN2FeefsMZMb1SU4v2LZyu5vHVh8HyucPxZiC37+7awbN+SPxPANA\nq4nOBa6AW+Ogj68sLtvrFX5Rp2yhDTl6wo5x/ZyBTuSxr0DMd5mdQneHPwfdWNAynNvOc+bs/Nj9\n//41O/t2ID/hzkF2/JSdn9CX0s/nN+ePxH7699/eO4WpHx5CqpyZwuLFbrGg6SeOu/e43LG+LFzq\n2p08uIjsxELPe+zumEK27PqXhUWaGjmKGX8NbPfXx0LbXq872/Jf97ptSzG/ob3TX1svvxzS9bky\nPgeoO52huPoKAMDU9w4AAM685HlY3Ove48zT7jUm/+FxlKEIY4g5FcVZF9njJwUiIjIcFIiIyHBQ\nICIiw0GBiIjMpgs0d+aa+Mm/vBDt7QJU4pcqsOc03bbCc2kbWvNc7WtUSX+AtHa/Oqvtt8L22veT\nfN/Xq0Hnx69GpmHhrIZCc43HhMPLcHDyGuG9V/+8EI3PZWpfLTYssX0Jq6FZ7pdCMhegzPy2LFOo\n73RcuEuR5z6A7LeVZexwo+GL8+UZljs+QNjN/LYS26ZcQbjljgtenj4ziaJw26emXfBueiLD8ZMu\nsajbdsG7xkQXz9vlgsSHT7tA5ZnjU0DhXnt614J/Hy7IeebwNND1Qe9ZF/Tbs7vEoWcucM+dCslP\niskLXLuLJ/a593iiES+vC5b9+96J4hkfyFxy7XbmCmRzvnjfwT22rfQxd93ngqHlyUvQPO4TsHy7\n7b1doHSF2ZpH3basC7S3++tizvWvcbCFzMdNiym3rXxOE3LErTTXOON/PjnQucDtKGdcAlbjVLxA\nOs8NRQbd+28cakJ8zLmz0wf/p3chO+SCr+LPXTFbovUct719yK2Ml5/OUEy5a6B1gTvvy8f2IT/t\ng/f+1M5cchKLi66f5VFfdDBXPO8FrojggWX3Wsef2QH4a+jSy59x7baW8b159/MoO+59vOj5B/Dz\nux8FANzx6CsBAIsLE9i7ywV6333pNwAA/+upq3HwlEvW2z7lVrf77Rd+EQDwzTNX4P8+848BAM+Z\ndD/3D1z4Jfyk6wLcnzt0NQAgkxLveI5r76Ut1/4jnSk82dkNAHjt9LxrI5/BfNcVedyRuTe+pAW+\nvHAJAOArL8SaDPWTgohcKyKPiMh+EfmNmu0TIvJZv/1bInLpMPtDREQrG9qgICI5gD8G8HoALwbw\nFhF5cWW3XwFwTFX/EYDfB/Dfh9UfIiJa3TA/KVwNYL+qPqaqbQB3Ariuss91AP7MP/4CgF+QNS8q\nQERE602GtaCMiFwP4FpVfbf//m0ArlHVm5J9HvL7zPvvH/X7HK60dSOAG/23PwXgkaF0+uzsAXB4\n1b3Gx2brL7D5+sz+Dt9m6/M49ff5qrp3tZ2GGWiu+4u/OgKtZR+o6i0AblmPTq0XEblPVa8adT/W\narP1F9h8fWZ/h2+z9Xmz9RcY7vTRPICLk+8vAvD0oH1EpAFgO4CjQ+wTERGtYJiDwrcBXCEiLxCR\nFoAbANxV2ecuAO/wj68H8FUd1QLJREQ0vOkjVe2KyE0Avgy3Cs6tqvqwiHwEwH2qeheAPwHwaRHZ\nD/cJ4YZh9WcIxmo6aw02W3+Bzddn9nf4NlufN1t/hxdoJiKizYdlLoiIyHBQICKiSFW33D8A18Ll\nMuwH8Bs12ycAfNZv/xaAS5NtH/TPPwLgdau1CeAFvo0f+jZb/vl/BuA7ALoArk/2fxmAbwJ4GMAD\nAN6ctH0SLrZyv//3slH3128rkj7dlbT9BIAf17Q1yvP7mqSv9wNYAvAm3/4JAB24u+Ds/G5gn/8z\ngO/5n/vfwN03Ho55h9//h/5xaPtJAD/xr/ExxCnfkfUX43sNr3R+e67hpP3H/DVyOG1r1H3GgOvY\nb7sNwOPVc7xuvz9H8Ut7mP/ggtqPArgMQAvAdwG8uLLP+wDc7B/fAOCz/vGL/f4T/of4qG9vYJsA\nPgfgBv/4ZgDv9Y8vBfDTAG5H7y+tFwK4wj9+HoAD/gd8md/3iXHqr992esD5/QKAH/l+pG2NtL9J\nX3fB/YKa9e1/wfdnVNfEawBM+8fvTV5jF9wvp10AdvrH4Zr4NtwvkhcD+CsArx+D/o7rNVzb3+o1\nXLmO/xLAv/Xtfza0NQ59rrmOw363YcA1vx7/tuL00bmU17gOwJ2quqyqj8ON9lcPatMf81rfBnyb\nbwIAVX1CVR8A0LOGpKr+QFV/6B8/DeA0gHlVfczv+41x6u+g8wv3S+DVcHdXhP69acz6ez3cL9KX\n+Nc6DffJYlTXxD2q6td1xL1wuTsA8DoAf62qR1X1GNwvk5MAFgFsA3Cr78ftG3yOa/s7xtfwoPNb\nJ1zH18ANBnfC/eJ9U7LPuPT5egB/lew3VFtxULgQ7iN3MO+fq91HVbtw0wq7Vzh20PO7ARz3bQx6\nrYFE5GoAU+gt2/FaAL8mIr8vIhNj0t9JEblPRO6Fu5ifDG3BTR9dWGlr1P0NbgBwR6X9j8L9Rfbm\n5PyOos+/Ajdg9by2t+T/hfM6j9Gf47S/Zoyv4Wp/7RoWkTf5Yw4mbc3795G2Neo+B+E6Tn1URB6o\nnON1sRUHhXMpr7Fez69KRPYB+DSATyRPfxDAf4H7y2UXgF8fk/5eoi5V/98AeBfcX69pW1r5Our+\nhvP7Erg8mdDOBwG8CMCH4T76/3p6yEb1WUTeCuAqAL874LWlpq2RneOa/obnx/IaHtDf9Br+A7jF\nHKptaaWtUfe5eh0H4Tr+GfSe43WxFQeFcymvMejYQc8fBrDDtzHotfqIyBzcXOZvArgntK2qB3wb\n8wD+FO7j6Mj766cI4KcHvg1XlPAwgB0ALvFtpG2NtL/eLwP4c1XthPZV9YC6SdkLAHwd8fxuWJ9F\n5J8D+BCAN6rqcvW1vQm4v1rn/fGhjQ0/xwP6O7bX8KD+Vq7h/wdgDsDepK2L4D6dpdfXSPvspddx\neC8H1FlG7zleH8MKVozqH1yW9mNwAaAQ7Lmyss/70RtA+px/fCV6A0iPwQWPBrYJ4PPoDSC9r/Ja\nt6E30NyCu8vgV2v6e0loG+6vmd8Zg/7uBDDhH++BC3o+6dsOgeYr07ZG2d/k+XsBvKZyjq9O2r89\nnN+N6jOAl8MFIq+o9HUXXIxmp//3OFyw9gUA7vPn/Eq4qYU3jEF/x/IaXqG/ddfwS3z71UDz+8bh\nmqi7jpPn9vmvkp7jdfsdulG/rDfyH4A3APiBP9kf8s99BG4kBoBJ/0PaD+DvAFyWHPshf9wj8Hd6\nDGrTP3+Zb2O/bzNcfD8D95fDGQBHADzsn38r3G2R6e1mN/m2F+BuP3wI7ha1Xx6D/v4cgAf9Bf4g\n3LxnaPtHcAPEfrjb6n5x1P312y4F8BSArNL+AoBlAM8A+J8A/tsGXxNf8a/dc2uk3/bv/P774abo\nQtvz/phHfZsj7y/G9xoe1N++azhp/3G4TwhHfFsfHYdzPOg69s9/1b+Ph+Cu49n1/P3JMhdERGS2\nYkyBiIieJQ4KRERkOCgQEZHhoEBERIaDAhERGQ4KRERkOCgQnQMReUJEHhSRq87imMtF5H4ROT3M\nvhE9G8xTIDoHIvIEgKtU9fCzOPa0qs6uf6+Inj1+UiAaQETe4/+iv19EHheRe9ZwzBMi8tsi8k1f\nlfMVIvJlEXlURN6zEf0mOhccFIgGUNWbVfVliCU1fm+Nhz6pqj8LV3TvNrh6+K+CK7VCNNYaq+9C\ndN77QwBfVdW/WOP+d/mvD8LVpTkF4JSILInIDlU9PpReEq0DDgpEKxCRdwJ4PlzBt7UK5Y/L5HH4\nnv/naKzxAiUaQEReCeADAP6pqq62TCnRlsCYAtFgN8GtdXCPDzZ/atQdIho23pJKdA54SyptNfyk\nQHRuDgH4m2eTvAa3uArRWOEnBSIiMvykQEREhoMCEREZDgpERGQ4KBARkfn/4jvyWccMQm0AAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa58cdda128>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = ms.createField('z', 'p', bins=[200,50])\n", "# and plot\n", "fig, ax = plt.subplots()\n", "ax.imshow(f.T, origin='lower', extent=f.extent, aspect='auto')\n", "ax.set_xlabel('z [m]');\n", "ax.set_ylabel('p');" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEOCAYAAACetPCkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X2QJdV53/Hv0/dlZnfZBZZFILEg\nhEWkgHiRvAYnJhGybAm5UoE4KlvEtmRZqY0tq1yuxJXYZcfEll12lZP4JbaEtyRMSMpItspUFOvN\nCpYKOwjM2sGAZAHLi8xoQcuysLBvM3NvP/njnNPd996+s9O7c2fu7vw+VVNzp0/36XN7eu6Z7qfP\nc8zdERERWa5srRsgIiKnFnUcIiLSiDoOERFpRB2HiIg0oo5DREQaUcchIiKNqOMQEZFG1HGIiEgj\n6jhERKSR9lo3YBK6NuOzbFrrZohIYha+K1PF1DrGYRZ83paz7mnZccyyiWvt7WvdDBGJrNMFwHuL\nYYE6kKlzv9+97HV1q0pERBpRxyEiIo2o4xCRk2cGZli75u63VW6bu+s21WlAHYeIiDSijkNERBpR\nxyEiIo2o4xARkUZOy3EcIrLKYsDb8zGB72z8uLIUUPd+f6AumV664hARkUbUcYiISCPqOEREpBHF\nOETk5GWt8WXu+MLC+OJxcRGZWrriEBGRRtRxiIhII+o4RESkEcU4RGR5UhzD8/i9jE1YZZxGKi4L\nDSz+j+r9kWrTtjVFMqV0xSEiIo2o4xARkUbUcYiISCOr0nGY2W1mts/MHhlTfqOZPWRmD5rZbjO7\nrlL2PjN7PH69bzXaKyIi463WFcftwA1LlN8NXOXuVwM/BnwMwMy2ArcA1wLXALeY2dmTbaqINOX9\nfvFVxzIbCKAPFZbBczklrMpvy93vAQ4sUX7IvXhEYxOQXr8T+KK7H3D3F4EvsnQHJCIiEzY13byZ\n/Qsz+zrwGcJVB8AFwDOV1ebisrrtd8bbXLsXmZ9sY0VE1rGp6Tjc/S53fyNwE/DhuLju2rY2sY27\n73L3He6+o8PMpJopIrLuTU3HkcTbWt9mZtsIVxgXVoq3A3vXpGEi653n8cvHTrZkrZpkh+54r4f3\nevXVpthIXb1m5ZdMjanoOMzs9WbhzDCztwBd4AXgC8A7zOzsGBR/R1wmIiJrZFVSjpjZncD1wDYz\nmyM8KdUBcPdbgX8JvNfMFoGjwA/GYPkBM/sw8ECs6pfdfWyQXUREJs/8NJzfd4tt9Wvt7WvdDJHT\nS7pdVPeZEcus1Rp7S2qslAMrr3mUt3qL6jT8rJom9/vdvOwHlnVPcCpuVYmIyKlD2XFFZHmKQXqj\n2XFT2bgBgEtdrRTZcb1mnerAQKXPnRq64hARkUbUcYiISCPqOEREpBHFOERkeeqeelpOmRnW7gDg\niwvj16t7ampkOkGZBrriEBGRRtRxiIhII+o4RESkEcU4RGRZrB0+LjyPsYhqXCON07BsNN7hXo7v\nqBkl3nikuaw5XXGIiEgj6jhERKQRdRwiItKIOg4REWlEwXERWZYUHE8D9Xy+GhwP/4Nap40v1CRB\nTKvFGQK9Ehwv6k1l8/PlBkqlPpV0xSEiIo2o4xARkUbUcYiISCOKcYjIsuQLi0A58dJgYYxZ5K1y\n8qWaiZdqJ3qKsY061umW2y6VIFFWla44RESkEXUcIiLSiDoOERFpRDEOERmQzc4W8YxqMsIU2yiS\nHNbwfn908qWsRdYNEzkV9Va3WVhIO6hpTNintVqKcUyRiV9xmNltZrbPzB4ZU/5DZvZQ/LrXzK6q\nlD1tZg+b2YNmtnvSbRURkeNbjVtVtwM3LFH+FPBWd78S+DCwa6j8be5+tbvvmFD7RESkgYnfqnL3\ne8zs4iXK7638eB+wfdJtEhGREzdtwfEPAJ+r/OzAn5nZX5vZzjVqk4iIVExNcNzM3kboOK6rLP4u\nd99rZq8CvmhmX3f3e8ZsvxPYCTDLxom3V+R05eMSC6ZEhlkIfg/EwK0SxO7lQ5tZGRQfDpyHHcYV\na4pS4HyJQYKy+qbiisPMrgQ+Btzo7i+k5e6+N37fB9wFXDOuDnff5e473H1Hh5lJN1lEZN1a847D\nzC4C/gT4EXd/rLJ8k5ltTq+BdwC1T2aJiMjqmfitKjO7E7ge2GZmc8AtQAfA3W8FfhE4B/iIhcvd\nXnyC6jzgrrisDfyhu39+0u0VEZGl2dj7maewLbbVr7W3r3UzRE5J1m6XyQjrPh9iPGOgLAsxCMsM\n7/UG188q8QmvmeQpG4pf1E3yBKP1yoq63+/mZT9QE2katea3qkRE5NSijkNERBpRxyEiIo1MzTgO\nEZkidbGN4VhEdaImT2M7av4XzWsmb6qwOEajdpKnJTe0clvFP1aVrjhERKQRdRwiItKIOg4REWlE\nHYeIiDSi4LiIDPDcawf5LTkDYJq9ry4Qboa1wwyARQA87xf7GFg23JYU9LYx49JS8kMFx1eVrjhE\nRKQRdRwiItKIOg4REWlEMQ4RGRASFY7GMZYaoJfiH7S6eC9N2hTqSPENYDCOYUP/t6YBhtV1BhIk\nju7fUpykLvGiTIyuOEREpBF1HCIi0og6DhERaUQxDpH1JMYClkoOeNxkgyk2URNz8H5/JM7giwvl\nOIylYhFLJUNME0ANLHO8XzMxlEycrjhERKQRdRwiItKIOg4REWlEHYeIiDSi4LiIDLIMqAk6L5XI\n8ETEeqzdjrsaHzi3Vqt+lr+6oLlMnK44RESkkYl3HGZ2m5ntM7NHxpT/kJk9FL/uNbOrKmU3mNmj\nZrbHzH520m0VEZHjW40rjtuBG5Yofwp4q7tfCXwY2AVgZi3g94B3AZcBN5vZZZNtqoiIHM/EYxzu\nfo+ZXbxE+b2VH+8DtsfX1wB73P1JADP7BHAj8LXJtFRkHUjxg+EEg+PWG1gW4wk1g/iWHDSYterj\nIimBYWqLeaqsXCduVxvKMDv++5CJmLaj/gHgc/H1BcAzlbK5uExERNbQ1DxVZWZvI3Qc16VFNauN\nzStgZjuBnQCzbFzx9omISDAVVxxmdiXwMeBGd38hLp4DLqysth3YO64Od9/l7jvcfUeHmck1VkRk\nnVvzjsPMLgL+BPgRd3+sUvQAcKmZvc7MusB7gE+vRRtFRKQ08VtVZnYncD2wzczmgFuADoC73wr8\nInAO8JE4m1cvXjn0zOxDwBeAFnCbu3910u0VWRfSjH3VwHUMVltmODWz8cVAdJrtb2BA3lLZaT3H\nOt24TWV2wCLwfZzA+nA7qlWn+mRVmZ+G6Yi32Fa/1t6+1s0QmVo2E27n+mKvvuPI4+dCzTSutR3H\nkjuzYvrY4Wllj2upjsMqYdDT8HNstd3vd/OyH6iLLY9Y81tVIiJyalHHISIijUzN47gisorSrajK\nyLp0C4pWi6wdXufHKreI4rreq7ktVL3NtdxbWA1Yuz1Sr3W7ZdPm51d8nzKerjhERKQRdRwiItKI\nOg4REWlEMQ6RdahISlj3GGvu+HB2n2pCQR99NNZa8bHZumyE7vjiwujy+DhtelS3jKGMxkiKx4Or\nyxZ7S0/klFXapMd1V5SuOEREpBF1HCIi0og6DhERaUQdh4iINKLguMg6kpINWiv8z5jPl4HjFDC3\nFqMz61lWDBC07mzYdmGxTFS4VA4qszHLs4H9DiZUHEyZlHU7uIePq+pgvxSUrwv2Wyeuv9irDejL\nidMVh4iINHLcjsPMXrMaDRERkVPDcq44Pmtm/8nMNky8NSIiMvWW03HsAA4C95vZeyfcHhFZCWbl\nV5Xn4Dn5wmKIUVRjD5ZVBvnlg4Prqq9bLWi1ihhCKPfxg+wsw9ptrN0ebNPQPrLZWbLZ2bheaIt1\n2uV++v3wVW1Taku3WyY9jPuwVivEQJYaJCgn5Lgdh7v33P03gbcC325m95rZP5l800REZBod96kq\nM7sEeCfwhvj1euAPzKwDPO3ub51sE0VEZJos53Hcu4Hfj98/Cjzh7j0AM3vtBNsmIiJTaDkdx/e6\n+566Anf/xgq3R0RWQmXcRTVpYEoWWIxxWKgkACxiAa1yXERFsSyOoxhIPJgmcuq0izhEsd+8D60Q\nf2iduQmA/suHKuM2wn5tNs6DfjiHPCRF9MXUpNZIosMisSKUE1PVtVdW3HJiHLWdhoiIrE8aACgi\nIo2o4xARkUYm3nGY2W1mts/MHhlT/kYz+4qZzZvZzwyVPW1mD5vZg2a2e9JtFRGR41uNJIe3A78L\n3DGm/ADwU8BNY8rf5u77J9AukdOX53g+/v9CX4yB6zGD9orkgSnAbVkZjI5Bd/qjs/qZGXbWmaF4\n/wtpYf0gvDQQMA46zI8ei/tcLGcHrM4sOFSH9/v1Mw+mpI3HeY9y4iZ+xeHu9xA6h3Hl+9z9AWBx\n3DoiIjI9pj3G4cCfmdlfm9nOtW6MiIhM/3wc3+Xue83sVcAXzezr8QpmROxYdgLMsnE12ygisq5M\ndcfh7nvj931mdhdwDVDbcbj7LmAXwBbbqpuasq5Zu1Pc9x8IDcQfihiGj06y5LmPxiTyPj60bR3v\n9fBXDo0ujwP08kOHi/qKOEYRMxmdjMkXF+L7qfmoci/jGFWx3qzbiau1ByZ/kpM3tbeqzGyTmW1O\nr4F3ALVPZomIyOqZ+BWHmd0JXA9sM7M54BagA+Dut5rZ+cBuYAuQm9lPA5cB24C7LPz30Ab+0N0/\nP+n2iojI0ibecbj7zccpfw7YXlP0MnDVRBolIiInbKpjHCJyYqzThjzGOKqxgzRRUzFhUyVGkGIL\nVi2P22atMmliTULBaoJEhpMLVhIuDm7jg+2zyp3zFP9od8r6h2Ix1umWVQ1M8BTrTWNQlojJyImZ\n2hiHiIhMJ3UcIiLSiDoOERFpRB2HiIg0ouC4yGnIF3vFLH+DBTFg3ovBbKsMAEyz+LVqZgDM+2Gw\nIJXBg2Mm2BsJno9LuDicyHCwiYPtzb1MilgEvxcHg+fD9cZBg96vSbAoJ0VXHCIi0og6DhERaUQd\nh4iINKIYh8hpaCRGkcRBdin+YWbkx8IESuRhG/e8jGOk8IDZaHLDyoC82sSHlRhGEfeomdCpdgBg\nimNU4yXDEzK5h0mfRvYb6ikGANawdrusOx9zrGQsXXGIiEgj6jhERKQRdRwiItKIOg4REWlEwXGR\nU1VWCUgPBXgtM6jNSBuD0zEg7VY3MC8bDa7XrlcOHhwIcA8HwC3DUlPjIELv9cpAfcq6WxfQT7MO\ntjvFDIRpn9ZuVwLhZZA8BeqtFcryhZoAupwUXXGIiEgj6jhERKQRdRwiItKIYhwip6jqrHrDYQXP\nHaMmZjA8A2BVSnLYaZcxkDSILu/j1AwAHE5UaFmZ/LCISeT1AwCLBIbZQB3e65VtSfGP3uLoAMC6\n91Ct12tiPEmrRdYO5fkxDQBsSlccIiLSiDoOERFpRB2HiIg0ohiHyKkmTWiU4grjxj+0uoPlWauc\n3Kku5pCSHC7k4+MHVGIRno9MpDQQi0jttAyG4y1mo9tW30dqC2XsBEYCObVjP9Ky2ghHisl0u5Br\ngqcTpSsOERFpZOIdh5ndZmb7zOyRMeVvNLOvmNm8mf3MUNkNZvaome0xs5+ddFtFROT4VuOK43bg\nhiXKDwA/Bfzn6kIzawG/B7wLuAy42cwum1AbRURkmSbecbj7PYTOYVz5Pnd/ABhOKHMNsMfdn3T3\nBeATwI2Ta6mIiCzHNAfHLwCeqfw8B1w7bmUz2wnsBJhl42RbJrKWYuA6m5kBQjB4ZLY7y8qgeBGs\nrgS281653tAgvoFZ94YH+FFJKOheBtdTwsJ2JUFiCnD3Fit1Z2VZMQDQB+ooRxAODXLsjQbdU/LE\n6vsvkhy2w8ebV5McpmOxuIgPDyiUZZvm4HjdQxFjf9Puvsvdd7j7jg4zE2yWiMj6Ns0dxxxwYeXn\n7cDeNWqLiIhE09xxPABcamavM7Mu8B7g02vcJhGRdW/iMQ4zuxO4HthmZnPALUAHwN1vNbPzgd3A\nFiA3s58GLnP3l83sQ8AXgBZwm7t/ddLtFZl6xUC9hfBzVvP/n+dYe/CWrff75TaJZZX4RPg4MCgG\nF6bYgc/Pl+Vx4J73FivxkDjoLrNK3GM0PjIw4DDFIsyL+sp2xeSGsX6rmZTKWlmZyDC1I+8XMZbq\ntiNJIN3LbaSxiXcc7n7zccqfI9yGqiv7LPDZSbRLREROzDTfqhIRkSmkjkNERBqZ5nEcIrIE76eJ\nksp79dbpluVxeTGeod8vx0pkldhAkaCwV6yXxohU4wBF8sAUsnAnJR6sHQNSaVfdWI0UbynHXcTY\nyeJQHCZun95bioXk8/PFtq1zzwnLDrxUvJ8iJjM7Q3746GDdim+cFF1xiIhII+o4RESkEXUcIiLS\niDoOERFpRMFxkWllRrYxJOzMjx4Ly/I+ZDE6PWZQHBAG18Xg9MAseWkkXFpUnekvDQSsjNcritrl\nR0UZ6LZycF9RT38gKF5WbaNtiduUA/XKoHYZiI+B826HbMvmsIfn95fbp2MQj4/3y+SJRZv6OSMj\nAKHcNiVNdC8D6t0QiM+PHBndTnTFISIizajjEBGRRtRxiIhII4pxiEwry7DZMBDP5ueBcKs+2xTi\nHime4cfm8ZQUMA7iMyoDBJNq7KFVE8iolsXEiSmK4tXQRAprtDrksV3ERIXWaeMpV2FloqZioN7m\nGLOZnx8ZhGfdTvzeLWMLKSbS7+PH5ov6wr7KGE/RjmoMKOmXiQ/LxIvlsU1HyefnyzhPGgB59Ght\nzGa90xWHiIg0oo5DREQaUcchIiKNKMYhMq3yPp7Gb1QXHw73/7N4j97dR8dstFpYpz24rKq451/+\n71is18uh2x1cPzN8McRPihjL+eeSPRNmcy4SJC72aG05I7bzaFFvSkzoHmM2rRbeXyjaWuW9HpZi\nNuk9LyxicR9F7CS2J9U3ombsSBqfQatVxoAqsZYibtQr65ZRuuIQEZFG1HGIiEgj6jhERKQRdRwi\nItKIguMi0yyPif+6afa7XpmwL68kBUyB4jwGgnPHqQmKF4kM4/+MnQ4sDCZLNLNiAGBRb1YmNEwD\n8dj7LfKFxVhfKMu6GaSEiDE4bbQgG/qoycvBiWkmwCSbmSHvD83iRyVgnWY27LbLIHoKdJsVDwVU\n308R/k6BcPeiDXXB8zR7IpYNjn4UQFccIiLSkDoOERFpZOIdh5ndZmb7zOyRMeVmZr9jZnvM7CEz\ne0ulrG9mD8avT0+6rSIicnyrEeO4Hfhd4I4x5e8CLo1f1wIfjd8Bjrr71ZNuoMiaMxtJppdt2lQ/\nsC0N9kv3+rOMLCYIzI9V7ten+//VetPgubhaNpsVA/DylEQQyjhBdeKnFB9JAwurg+Qq9aaISREv\nODZfDjhMsY1OB+L2WUoomOIqCwtFfflCnNAps4EJpEKh4wwlILSsiIsUgxIrAyQHJnSqSV5YJInc\nMBualM+SHz48uItOtxjQuF4TIE78isPd7wEOLLHKjcAdHtwHnGVmr550u0RE5MRMQ4zjAuCZys9z\ncRnArJntNrP7zOym1W+aiIgMm4bHcUcnTi5T1Fzk7nvN7BLgz83sYXd/orYSs53AToBZNk6mpSIi\nMhUdxxxwYeXn7cBeAHdP3580sy8DbwZqOw533wXsAthiW9fnjUc55WSbNgFgGzeSv/giULnP3mkX\ncYUinlCNhVQnQkoTL3W6o8vSz+2yviKZXz8vxjGk2MXAOI60j8yKOEU1uWAhJUvMDD8SkhummIll\nVpanti8u1ry31KZ+0ZasXfm/MsUsejVJCdM4Ds/LcR51MZ7lqkwgVewrHtvWtq3094e77764MLLp\nejANt6o+Dbw3Pl31ncBBd3/WzM42sxkAM9sGfBfwtbVsqIiIrMIVh5ndCVwPbDOzOeAWoAPg7rcC\nnwW+D9gDHAHeHzf9h8Dvm1lO6OB+3d3VcYiIrLGJdxzufvNxyh34yZrl9wJXTKpdIiJyYqbhVpWI\niJxCpiE4LrJupUFytnEWOxJn9ItB4PzQ4Ur5hvD9WKdMypeSCJrhKclgDLb7K69U9hEGB9rMDPmR\nI4P7N8M2hqcQU5n3cywF1tMsgwsLxcC6xN2x4eSFlEkD06DEtG61zBd75eDG4UGOfcpAfO3MfmGZ\ntbL6wHclgWJ6j241D28OLzMbGFxYbXfaX1xYHhcFx0VERI5PHYeIiDSijkNERBpRjENk0tJ9c8vK\niZai/FBIoNea6Rb3zS1OjtR61Tb82LGwYhHD2IClOEYl+Z61YmK/tH6WlftNgwLzfjEoLg3wI7My\nVlLEHMo22+xs3DYvByamsna72Cafnx8oq7a5mgyxKG+1iv2W76E1WkeSZUXiwSL+0OuVCRXPiGWL\nvcHki4Bt2kR72zkA9J/fnxpSxI/aZ50Zqn3pYPE7SDGW6iRQtmFD0Xabice0DCUVsZcikeJpnABR\nVxwiItKIOg4REWlEHYeIiDSijkNERBpRcFxkUmKQt33RdgB8dob86TD1TMowm52xqVx3KLiav3Sw\nzFjbCYPpHMhffiVukoLf7SJw6zGwTqtVCYSnQW2UQfFqwL4mGF0EquMgPj+WlcHzFBzfuLEI9ttC\nHAhXDWKnAYOvHCrrjbP9ZWdtwV8YygYc17ctm8lffCkei3LWP9u8ObZlviyLg/3SIEbyHH/p4Mj7\nKYLdaUClGaQBfXlNMDu2JTtvC773WwN10O8PtCt8z2hfEOaf86MhO3B//wuj7ThN6IpDREQaUcch\nIiKNqOMQEZFGFOM4WXWDlaCc8WwleF6z7PQdXFQrJbbLygFkRdK9lJDPrEyYV0lIx/CMdZkVM8al\n++XeK2ekS/sYHkhWtGNoEB9Zi9Y5W8PrWNZ/4QDWjvGBOKgs3zhDlu7Fp3vuZ4b79vT6xaAyi8kG\nrdst30eMcdiGWYixgYE2tQeTAVorK99PJT5SHrN4HLudsnw+xCnMDFJsY+NsbNPRciBcatO2s7BD\n4X5+iq1Ukyb6TExyGGcEBIr34+1W+btK53L6ud0qYxZxYCFZOfNhsX8ziDEgFsP+vVdJnpjeo+f4\n4ThAsRjQ2C9nHEwxkzwv/55THbmXcaaN5QBA4u8tS7Mcdtr4lhivSsfs4CtFEsTi995qkb9SHTV4\natIVh4iINKKOQ0REGlHHISIijZyeMQ4zrNMN90KHn1vPstHn21utwefaY5kN3++sTvSStq0uq+zf\nq+VDZSPLqsnebMzrYem+cDXW0S+fR7f0Oj2j3s8rr+MkOf28vF+fnlHPvZy8pl+5lx+3Lcryyn7r\nYjB1KscW4liBNF4g3Xvvdopn7Yt75N0O3okJ89qpjow8HZ7K8RuZsCczvMiEF2MXLSNlx7NevG/e\ny/FuvOcd6+scOEp2INyPzreGe9rHXn0GM/vDPfvssb8P227byqHLXxVex+Oy6cHZ4tzLZ+J7axn9\nN1wYXr5wKO4rxTByeueGfdj5ZwHQ/uaB4r2lWEO+aYYsxjPsSExo2GmTn3VGaFOK3VQmXvJN8d58\nv1v83oo4wewMniZ6inECKOMi9OK50u2U4yxSPOXofDmOIiX9qyQvLM7B2dlyWYqntFtlQsHeYL35\nlo3lPuKQDGu3yvdRnVApHb+0/+4Z2OEYU0nne7cDm7OB94N7ERfyGMPIjm0qz6VYr3faZGeH34ef\nURkrMhveR7b5jOI49ruhnvzM8LvqHDsPfzG8gd6bXgdAf0Ob2a99Myx7LowPaW3ejMV68jgGJa8k\nsJzG5Im64hARkUbUcYiISCPqOEREpBF1HCIi0siqBMfN7DbgnwH73P1NNeUG/DbwfcAR4Efd/W9i\n2fuAX4ir/oq7//fj7W/h1Rt5+sd3MP+qXhEEHdzhMoNLS8Smj7ve8D6s8j2WDcRx07LMi/WKeH1R\nlpPF8ur3VhaCZu1WCPx1WjndlsfXoY5O5nRbYb1uFtZrZzlty2N5+J7hZHF/6Xur8l7K/zSMLG5b\nPGNATjvW07F+8X02WxxZFr73itdJn4xFD42ez0MA8ljeqSwLp+yit8h99MD3h/4X6li/2EdWeR+p\nTdvaIfh9VusIx7wz0L7Lu3s5rxXW29sPwdcnFs/liu6zALw2Bovn+ov8r1euBODcWN/Nm7/JXC8M\nDvuDF/8RAM8vnMH7t/1lbEs4Tnfsvw6Apw9v5fWb9gJww1kPAfBnL13BV186P7Y4DCS7ZtvjHFgI\nA83+7sXzADiy0OHis54H4KJNYXDg7ucv4qUjIZi8cSZs++Zzn+OxgyGI/62DMWGgG1e8Ouz3SC+8\nxyf3n8PiQnhv5219GYDtm3t8dV9oy9GjYb0NGxa46ryw7d+9EOo9+MpGsngOvOXCOQCeO7yFvS/E\nWfbi7+yNr/kW7fj7eOz58D4W4j63b3uJS88M72f3c+FhgsNHZjhzcwh6f+8FXwfg3ucvYd/LIag8\n0wmDNf/NpX/BvQe/DYCH972G5Mde/xUAXumHwPXnn72Mo4vh9/3u1/4/AK7b9Cj/7dnvCcfnyOZ4\nvJ/gR8++F4BPHPyOUO/B1/C6TU8D8MFt9wDwzf4ZfP5gOAe2dcKDDzdufqjY/zO9LeE9eou3zIQE\njt/qh3N1exvOzMLvat7D+fbIQjg2s9bnvPh3eyQGxZ/pbaQVh2NubYUHJPpuHMjDe0vn8awtFust\nEP5+0t/RsMfnz+exdy/WltVZrSuO24Eblih/F3Bp/NoJfBTAzLYCtwDXAtcAt5jZ2RNtqYiILGlV\nOg53vwc4sMQqNwJ3eHAfcJaZvRp4J/BFdz/g7i8CX2TpDkhERCZsWmIcFwDPVH6ei8vGLRcRkTVi\nvkqDSczsYuBPx8Q4PgP8mrv/Zfz5buDfA98NzLj7r8Tl/xE44u7/paaOnYTbXABvAB6dwNtoYhuw\nf43b0NSp1ma1d/JOtTarvSfute5+7nJWnJaR43PAhZWftwN74/Lrh5Z/ua4Cd98F7JpM85ozs93u\nvmOt29HEqdZmtXfyTrU2q72rY1puVX0aeK8F3wkcdPdngS8A7zCzs2NQ/B1xmYiIrJHVehz3TsKV\nwzYzmyM8KdUBcPdbgc8SHsXdQ3gc9/2x7ICZfRh4IFb1y+6+VJBdREQmbFU6Dne/+TjlDvzkmLLb\ngNsm0a4Jm5rbZg2cam1WeyeN+kVbAAAHjElEQVTvVGuz2rsKVi04LiIip4dpiXGIiMipwt3X3Rdh\nEOGjhJjKz9aUzwCfjOX3AxdXyn4uLn8UeOfx6gReF+t4PNbZjcv/KfA3QA94d2X9q4GvAF8FHgJ+\nsFL3y4SBlA/Gr6vXur2xrF9p06cr9T8JHCM8bljUtdZtBt5Wae+DsY2/NAXH+N8CX4u/97sJj0em\nbd4X1388vk51PwM8F/fxO5R3EdasvdScw5X6DwKLhKcmi+O71m2uO48rdT8N/H1NXWt5jOvO4Zti\n2e3AUwydwyv6GbqaH9jT8AW0gCeAS4Au8LfAZUPrfBC4Nb5+D/DJ+PqyuP5M/EU/EesbWyfwR8B7\n4utbgZ+Iry8GrgTuYPBD7R8Al8bXrwGejSfBJXHdp6epvbHs0Jhj/Bngh2L9n0x1TUObK+3YSugo\nnpyCY/w2YGN8/ROVfWyN7dsKnB1fp3PiAcKHzWXA54B3TUF7687hrbH+T8X2rNXfXW2bh8/jobo/\nBXwjtqNa15q2t+YcTuvdzpjzfaW+1uOtqmuAPe7+pLsvAJ8gpDypuhFIyRQ/Bbw9JmK8EfiEu8+7\n+1OE/xquGVdn3Oa7Yx3EOm8CcPen3f0hYGD6PHd/zN0fj6/3AoeAOXd/Mq77f6epvWNcE/d1LaHD\n+AThxL5pCtv8buKH7xQc4y+5+5G4/D7CuCUYTb3zt4Qro6PAZsLDIzcSOr10jNesvTXn8D7g7XFf\nhwhXgGv1dzfuGA9L5/BThCdCd1Xat+bHeMi7gc9V1pu49dhxLCeNSbGOu/cIl9fnLLHtuOXnAC/F\nOsbtaywzuwbYwOAo+O8G/p2Z/aaZzUxJe2fNbLeZ3WdmN8Vt9lXqmovvo1rXWrc5eQ/hdla17mk4\nxh8gXEEM7Ds6Fr8uiNvPVV5fMLzNGrS3EM/hOK9rUf+vEv57/sHK8Z2GNhfnMeGD+5lUF+FW1VQe\nY8I5fOfQsl81s4eGzuEVsx47jrok6MOPlo1bZ6WWH1dM8vg/gI9UFv8cIRXLJwmXp/9hStp7kYfR\nr/8K+C3g/Jq6fKiutW5zOsZXEP6DT9b8GJvZDwM7gN8Ys2+rqcuHvq9le9PydA6/v7L454A3EsZy\nzVAe32loc/U8fj/hau5UOMZXMDgwOh3j72DwHF4x67HjGJfepHYdM2sDZxJutSyVGqVu+X5Cpt/2\n0PIlmdkWQnzgF4Avpbo9jKbfHvf3B4RL3zVvb7wdQbzV82VgC3Bupa7thP+Qq3WtaZujHwDuIty/\nnopjbGbfA/w88M/dfX5439EM4QpuLm6f6qjWtZbtHTiHPWS8ngMudPdnPdyIPx/4C8rju+ZtHjqP\nHyDkvNsPnAVcxJQd4+gHgLvcvZhMIx3juG71HF45kwygTOMXYdDjk4SgVQpQXT60zk8yGPT6o/j6\ncgaDXk8SAl5j6wT+mMGg1weH9nU7g8HxLuHpiZ+uae9FqW7Cf/a/PgXtPZuQiBJCwrbHCf8BPclo\ncPyD03CMK8vvIwQfp+IYA28mBE8vHWrnVsK99rPj11OEAP7rgN3xmF9OuI3xfVPQ3oFzeOg8vqZS\n/x3p+E5Bm+vO42di3Sk4fvlQXWvW3uFzeGjZq+N3o3IOr+jn6Gp8WE/bFyG9yWPxF/LzcdkvE3p0\ngNn4i9wD/BVwSWXbn4/bPUp8gmVcnXH5JbGOPbHOdHJ+B+E/kMPAC8BX4/IfJjyuWH3U7kOx7iOE\nRy8fITye9wNT0N5/DDwc/wgeBj5Qqf8pwpXGC7GuX52GYxzLLga+CWRDda/lMf4/wLcYerQ5lv1Y\nXH8P4TZKqnsubvNErHM1j29te6k/h6+mnOFzPm73P4Ffm5I2j5zHlbq/QehE9hAejf3+tW5v3Tlc\nWf7n8T08Eo/xGSv9GaqR4yIi0sh6jHGIiMhJUMchIiKNqOMQEZFG1HGIiEgj6jhERKQRdRwiItKI\nOg4REWlEHYfICjKzi83sqJk9uEL1bTCzB81swcy2rUSdIidLHYfIynvC3a9eiYrc/Wisa7n5t0Qm\nTh2HSANm9uPxCuBBM3vKzL60jG2+bGZviK/PMbNH4us/NrPfNbO/NLNvmNl1ZnaHmT1mZh+f9HsR\nOVHqOEQacPdb4xVAyoP1X5ex2esJSfMgzEj4cHx9BfCku19HmLzn44QU2G8Cvn8S8yiIrIT28VcR\nkRq/Dfy5u//vpVYys9cC33T3NAvhlcBDZjZLSNf9W3H5UeDjHtK6Y2ZHgIWJtFzkJOmKQ6QhM/tR\n4LXALy1j9asJWXaTb48/Xw78TaVDuQq4P9a/HdjrykAqU0odh0gDZvbtwM8AP1z50F/KVYT025jZ\npYT5qB9mdObBKyk7mKsY7GxEpopuVYk08yHCxEpfMjOA3e7+r5dY/2rgqJn9LaEz+DvgfYTbVH8F\nEG9bbXD3F+M21U5EZOpoPg6RFWRmFwN/6u5vij/vAd7s7q+cZL1PAzvcff/JtlHkZOlWlcjK6gNn\nxsd1NwP5yXQaaQAg0AGWc2tMZOJ0xSEiIo3oikNERBpRxyEiIo2o4xARkUbUcYiISCPqOEREpBF1\nHCIi0og6DhERaUQdh4iINPL/ASbg8CAMEAREAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa594036e10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = ms.createField('z', 'gamma', bins=[200,50])\n", "# and plot\n", "fig, ax = plt.subplots()\n", "ax.imshow(f.T, origin='lower', extent=f.extent, aspect='auto')\n", "ax.set_xlabel('z [$\\mu m$]');\n", "ax.set_ylabel('$\\gamma$');" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEOCAYAAAB8aOvdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXuQJVd937+/7vuYx86s9iEkIQk9\n7OWxIBDFIpLYZRuMg2RXSSqHhyCkwIGoMFYcF3GCCI5cUULFwVXGJFEKK4EATmHxqCJek6WEeVVh\nymBtESGQFKFlJdBohaR9P2bmPrp/+eM8+zU7q53pmdn9fqqmbt/Tp8/59bk999w+3/79fqKqIIQQ\nQupI1toAQggh6xdOEoQQQhrhJEEIIaQRThKEEEIa4SRBCCGkEU4ShBBCGuEkQQghpBFOEoQQQhrh\nJEEIIaSRzlobcLb0pK8TmF5rMwg57xAR1EVskNT89tQsrznIvjLQw5pzAkcOquqFp6u34SeJCUzj\nNfKra20GIecPSWpeel3ki4uVfekm86MtO3HClEUTiXTMV47mtizPVtdW0shX9Qs/WU49LjcRQghp\nhJMEIYSQRjb8chMhZOVZalko6XWXPFbHY7sRCQ9ixAjp9837wcC2vwLGklWFdxKEEEIa4SRBCCGk\nEU4ShBBCGuEkQQghpBEK14SQKuJ+P1b9GGqd5PzOHJot4ftgxWwviMddWrEckkBHw+VaSlYZ3kkQ\nQghphJMEIYSQRjhJEEIIaYSaBCGkiAika74a3Gs+Px/2Ww846fWC/hA520lqYjvBOs7pYBAc6/K8\n0K4OIv1C+Jt1PcJPhRBCSCOcJAghhDTCSYIQQkgj1CQIOR+xAfeSyUnkiybYXiG3g92PmqRCzsdB\nRCCJ2DJ7WJqGY5fq3gUQtIH+AEBs4EBJU2TjUWP/pF1avZMQketF5BER2ScitzfUebOIPCQiD4rI\nZ9q0jxBCSJHW7iREJAVwF4BfAzAH4D4R2a2qD0V1dgD4AIBfUNUjIvK8tuwjhBBSpc07iesA7FPV\n/ao6BHAPgJtKdf4ZgLtU9QgAqOozLdpHCCGkRJuTxKUAnojez9mymBcCeKGIfFtEviMi19c1JCK3\nisheEdk7wqCuCiGEkBWgTeG6Ts0qq1IdADsA/AqAywB8S0RepqpHCwep3g3gbgCYla1Utgh5rqRp\nRXyGasguVxeIzznLqVaD+Unij9XRuHKsOiF6XN0H25aqVgVrkeBsly8RQJCsOG3eScwBuDx6fxmA\nAzV1/lJVR6r6GIBHYCYNQggha0Cbk8R9AHaIyFUi0gNwC4DdpTr/G8BrAUBEtsMsP+1v0UZCCCER\nrU0SqjoGcBuAewE8DOBzqvqgiNwpIjfaavcCOCQiDwH4BoB/paqH2rKREEJIkVad6VR1D4A9pbI7\nom0F8D77RwhZLVzyn+GwNgFQnRbhneSchlGjOZhqdn9c1il91dQkJvLJjOqSGkmCZHrKmHbyZOEc\nyOrCsByEEEIa4SRBCCGkEU4ShBBCGuEkQQghpBFGgSXkXMUKyNLrAShGXPXkGnnRRdSV+WatMJ2g\nIh4XnOuWaKNWLD8deXN7ZPXgnQQhhJBGOEkQQghphJMEIYSQRqhJEHKO4wLyqUjQEJI0qmB/K+pp\nAuc5BzwXwK9JV1hCi1i6/XzJdn3QQTrRtQrvJAghhDTCSYIQQkgjnCQIIYQ0Qk2CkHMdF5hPEq87\nSNf860uaQnpdAEB+6lTl0KX8GSRNoXUJgFxSoshnwvtPuPbqdAurjUiKSruJtRGoZiojqwvvJAgh\nhDTCSYIQQkgjnCQIIYQ0wkmCEEJIIxSuCTlHkY4Ve51oHIvFrsyJ2oXjOl58Tjpmfz4E4MRkKzBr\nTXY5aA4dDu12JDE7UdoK5q5/HY+Ljn2ujst+Z4MSapb7Mm9z1H4yZbPWLQ6CnWRF4J0EIYSQRjhJ\nEEIIaYSTBCGEkEaoSRCy0UlSiFvDd0HwgLCuXxMQzzvJZVWnNs0VIma/TPZNUwDyRacjjMy+NIVq\nSR+QJDjqWe0gHwyCHmK1iGRmxuybn4eOxrY9+5s1TQuOeNYoSKfv+3XHen0iLeoaZOXgnQQhhJBG\nWp0kROR6EXlERPaJyO01+98pIs+KyP32791t2kcIIaRIa8tNIpICuAvArwGYA3CfiOxW1YdKVT+r\nqre1ZRchhJBm2tQkrgOwT1X3A4CI3APgJgDlSYIQcgZIIiFxUExW9GuoJZEQdK8G5/OQD0ehP+t/\nIb0ukskJ09XBQ/aAoHHI5lnzeuhw1afCvc+ykGzI6SM69DpF0Rib9KjOP2M0qvRPVoY2l5suBfBE\n9H7OlpX5RyLygIh8QUQub8c0QgghdbQ5SVRdO6tRf/8KwJWq+nIAXwXwqdqGRG4Vkb0isneEwQqb\nSQghxNHmJDEHIL4zuAzAgbiCqh5SVfet/98BvKquIVW9W1V3qequLvqrYiwhhJB2J4n7AOwQkatE\npAfgFgC74woickn09kYAD7doHyGEkBKtCdeqOhaR2wDcCyAF8AlVfVBE7gSwV1V3A/hdEbkRwBjA\nYQDvbMs+QjYq0uvVi7mOpGalt+TcVtmnzhFPivURCcdDFIP4AUYkd8H7jh03r+NxJZBgvrAY2ioJ\n0oK0IkBrroAVs2vPNTG/d5PJSeNkR1aMVj2uVXUPgD2lsjui7Q8A+ECbNhFCCGmGHteEEEIa4SRB\nCCGkEQb4I+QcQHo9ACgk/HFB/AQ1a/iyRDA9YOljvV6Qhv5qKAQbbKykPumQT0hU49wniQRtJTbJ\naSI5nehWC95JEEIIaYSTBCGEkEY4SRBCCGmEmgQhGxwdjSFLrMlLp+Nf88VFe1Aejq3xo/BlPjhg\nEAJc0h9oHpIXWT8ISYOPg9ZoC17rSCJ7c+tXMYr6Lvlf6HgctIrYh8LqGT6xUo2+Ip1OsCVfwp+E\n1MI7CUIIIY1wkiCEENIIJwlCCCGNcJIghBDSCIVrQjYATnwGapzUNA+B+ErlQJTxrUGgrgjMcSa7\nmkxvQXyuSxETjnfitOZxmRTaMIWldiQJZVaQlm7P2x878DkHPCem1wb/kwTitXYK12cK7yQIIYQ0\nwkmCEEJII5wkCCGENEJNgpANjuYKkZqgeM7prQ6nO9St1+eZ1zik07UHZAVdZEl7xqOa7qT2fUGv\niHUFLTrpGRNq9ASX4MhqHHUOfNLr+qREOmoOSEjq4Z0EIYSQRjhJEEIIaYSTBCGEkEaoSRCynnEJ\neSYnzfvRqD6ZT3nNv9OB9PsAAB1ajSBer3c+FOOawIBJGjQDpwOoFv0n3D7nR2E1BM2yoC34/vJw\nbF3wP6eF2D6N70bJpjiYYB11CYlOp2eQZcE7CUIIIY1wkiCEENIIJwlCCCGNcJIghBDSSKuThIhc\nLyKPiMg+Ebl9iXpvFBEVkV1t2kfIukNz85fbv6TmX1ZzI0rnVlyWBJpl0OHIiNauDcAI4UmKpN9H\n0u9Dej0kk5NIJieN2N3pFIL6SSJGxBYxbUZ/tQH+YsXZ9atLCM6FQ7VRnJZeD9LtmIB+qkEod8e4\nv0KDpp6Ox95mcua0NkmISArgLgA3ANgJ4K0isrOm3gyA3wXw3bZsI4QQUk+bdxLXAdinqvtVdQjg\nHgA31dT79wA+DGCxRdsIIYTU0OYkcSmAJ6L3c7bMIyKvBHC5qn6pRbsIIYQ00KYzXV2GEr+IKCIJ\ngI8AeOdpGxK5FcCtADCBqRUyj5B1iFt7r3Ogs85ikqaQ1P7eq0nMU3BkKyUi0iyDOKczX29cTSyk\nCiAv1KtLHCRpGsp9e5HTnXfIyyrH+lPOtZJ0KF9Y8E566QWbTQvHT8YHmdOf6CNfHJgyH7BweZoI\nqafNO4k5AJdH7y8DcCB6PwPgZQC+KSKPA/h7AHbXideqereq7lLVXV30V9FkQgg5v2lzkrgPwA4R\nuUpEegBuAbDb7VTVY6q6XVWvVNUrAXwHwI2qurdFGwkhhES0Nkmo6hjAbQDuBfAwgM+p6oMicqeI\n3NiWHYQQQpZPqwH+VHUPgD2lsjsa6v5KGzYRQghphlFgCVknuMxvtSK1dQSTTsc/7ZH0gx6nVuB1\nIrSqohJKVRI4wThEd62PAuvbLYjTpYWHguNcNcJsXObPKRK4fVVnexoE9GTTLAAgO3a8aosdJxMt\n1h7rynpdiBXtC6dWd55lwT6ns10dDMtBCCGkEU4ShBBCGuEkQQghpBFqEoSsB5IUyaZpAJGTWJ4h\nmZiw+60DW+Qk5xzipNvxmkWsZ1Qd4qLAfVYTQNLxeobfFwXuqwuK549FCh1ZeyKHOOn1rP3OEXBU\nzVZndYBkagr5wkKhTCb6QK9b7LPbCW2cPBXO1eonuc2+J6pVmzUPNrmi8RjSMX0kk2aMsxMnlh2M\n8HyCdxKEEEIa4SRBCCGkEU4ShBBCGqEmQch6QHOvMRSKS/4P0un4NXcdj6rtRL4MXlso+DeU/CQy\nILHr/+qq5UkImGd9MWRy0vssOB3CJymK2tMs81pEajUWHSZeK5Fuxx9rOkh8H05X0FPzSEYjPy7G\nzgy51WOCJhKdtmtXJEQNtXpFwc5R5IPigh1Sh1gS3kkQQghphJMEIYSQRjhJEEIIaYSTBCGEkEYo\nXBOyHlAtZpNzxeWyLKt3+HIideRIFpzKbHDAWPCNHOsqAQUl8cc6JzSZ3QSZn7fNiW8/3WwC8eXO\nwS0PgQWd7Ro7uJWyxIlIbUBDJ2L7zHxZVg0wGJ+HE86jY6QTzjcfDEI7DjcePtghBew6eCdBCCGk\nkdNOEiLybhH5koj8lohMiMi/EZF/KyLXtGEgIYSQtWM5dxK/D+B2AK+BSUH6QgBPA/gvIvKOVbSN\nEELIGrMcTWKoqj8Ukd8DcBDALlUdiMinAHwLwKdW1UJCzhdcQD7rGKaDSH9w+3q9KGFQWK8XFZRx\nAeycXiFRED4fTC8NvxML2oDd74Lv6YGnvfOe0zak061oDMV+bdujcTWxj9U10O8DPlBhFFhwVNQp\npNOt1V18X06biHQLP06JhGRMhTY7lfZIleXcSXxRRP4SwA0A3quqA1s+ArB91SwjhBCy5pz2TkJV\n/1BE/iGAGwG8SkT+A4BHAfQBHBGRlwB4RLUuPyAhhJCNzLIegVXVrwD4CgCIuW97EYBXArgWwEft\n+ytWyUZCCCFrxBn7SaiJhvX/7N9frLhFhJyPxEl7XHKdeH/se+DW3dX6MiQSnvmPNIJyAECZmgo6\nhvNhGFcD5mmWBd0htcH/anwZCm379f1oQSG324kEzSSx9SIfBW+nP6+oDWnWKSASdIq85lhvh0Ld\naNb4hzjbpd+HDgaVw8936CdBCCGkEU4ShBBCGml1khCR60XkERHZJyK31+x/j4j8QETuF5G/EZGd\nbdpHCCGkSGuThIikAO6CeZR2J4C31kwCn1HVa1T1WgAfBvAnbdlHCCGkSpsB/q4DsE9V9wOAiNwD\n4CYAD7kKqno8qj+NknZHyIYmdmYrBZNLN8960bku0J9vYnIScKLzwAa1yxXIrQib1DnMpaFPJ2zX\niMSaB3FXx1Yoz6LfkfaYWMTWib5t2to+imxPbFY7EeSlgIHOgS3PMu8QFzvreVvykIWvKrDHb5Z4\nAj+pOhoW9yfeTv+p2M8q6fd9cMDzNQBgm5PEpQCeiN7PwYT6KCAivwPgfQB6AF7XjmmEEELqaFOT\nqJvOK1Ozqt6lqj8H4P0A/qC2IZFbRWSviOwdgY+sEULIatHmJDEH4PLo/WUADixR/x4AN9ftUNW7\nVXWXqu7qor+CJhJCCIlpc7npPgA7ROQqAE8CuAXA2+IKIrJDVR+1b38DJvwHIecEbj0+mZxAdvyk\nKXRr7osDvzauNWvffo1+cRAFs4sc8GxQwKA5xPqH1RdG45BMyAX96/RDf07X6PXqdRHbjnecc3Yj\n0iKStKiLwGoYTs9w7cYJhFy7DUmRyvULAQ7LGkuNvY0B/Fy5S1gUaS3emXB6CmLLT+dQeK7S2iSh\nqmMRuQ3AvQBSAJ9Q1QdF5E4Ae1V1N4DbROT1MMEDjwBgKHJCCFlDWk1fqqp7AOwpld0Rbf+LNu0h\nhBCyNPS4JoQQ0kirdxKEnM8kffuQRRrW7d2yeb64COkazcInHRKpPJsvaQK1wfLSqSlz7Px8WF+3\na/NJv+/X0NUnMxKIDbDnguXpYFBZz9fROPgzOLIMOi5pJZIEfSDGBSh0Afk0r/Thz3+sQSeJEwj5\n+i4hUcefow+AmGUV7ULjJEiujVjrqLG37hxcmS4Oim2eh/BOghBCSCOcJAghhDTCSYIQQkgjnCQI\nIYQ0QuGakJZwgeKSNPUOaQUHLSfC+qxwacWBS7PcB6wr7HPHOEe3SPB2QriIFDLCmS6TsN8JwsNh\nNQsc4IX1IPRmwSmvN2G7VX9sLE67oDzlAH8QiQIHhgB/FUF6VDNONU6Hkkg4tM6ZTqvCtljHwzwS\nqL2IniRIbBDDfH6+0t/5AO8kCCGENMJJghBCSCOcJAghhDRCTYKQllCrSWgUIM8F4ks3z0KHZk0e\nuQvglyCdnTXHRAH3NLMB+2xAPkgS1t2d5pBHyYTcen6aVuL1x05qcHZJAuSmP69xpKlfu3faASQJ\njmbOJrcPRu+I3th6Vce14FhYTXBUVw9ikxRlWTV5kiReO4k1Hme714KyHJI2B1SUnulD0gSaL5HQ\n6DyAdxKEEEIa4SRBCCGkEU4ShBBCGuEkQQghpBEK14S0hcsWp+qz0BWysTnURW3tAFZAdaI3cvWi\nqhe646ipUk0l77OspVVhWIfD4DjmM77lVfE3y3xCel8/3h9nlyuJyYoo6m0pkqukaRSltuP7Sqan\n7Pk6QXzs7UsmJ3xbzsHNtZdsmobYY8dPmuzIAgAuK+DsjOniyNEg8tdknIsdFc/XjHQO3kkQQghp\nhJMEIYSQRjhJEEIIaYSaBCErSDJh1sul10N24oQptBpDMjlp3qepd45za/T5yVMh4JzLTJdl0KPH\nzDFuX5p4PcMjSVj/r1s/d/syRMEBR5VjT/ebMWRos7pCIrVZ2yQpBipMZ6agCwtVmwEk05Pm3BGc\n/iRNg6Obc2TLtb6vOJsdjHbjxtbrPZJ4bSM/cdKeQha0ENtXsmkambUFri/VsB2RTE+b3VYX0tGw\nUudcgXcShBBCGuEkQQghpBFOEoQQQhqhJkHISuACyM2Y5/Cl14XYZ/id7uB9BBAl+LF6hY7HwTfB\noqMxkNtjXGA6FUhe9E0wFZJCvdivwVdJE99fSKojYc3dJx0aVQL8SafjgwPmbh0+V++z4HSU/OQp\nf56JsyWREESv5BfighUWzkclWusf23pZGLO6RE3O72NUTcSEXEP/9ljNFUmv9Bu5u8yvQxGIPW+f\nvGm0RP0NTqt3EiJyvYg8IiL7ROT2mv3vE5GHROQBEfmaiFzRpn2EEEKKtDZJiEgK4C4ANwDYCeCt\nIrKzVO3/Atilqi8H8AUAH27LPkIIIVXavJO4DsA+Vd2vqkMA9wC4Ka6gqt9QVZdI9jsALmvRPkII\nISXanCQuBfBE9H7OljXxLgBfrtshIreKyF4R2TvCYAVNJIQQEtOmcF2NPIaKtmYqirwdwC4Av1y3\nX1XvBnA3AMzK1to2CGkVF9TOOasNa5RMKxArMp8prYAWM6BJtwMdZMX2Ae+cV+kbCEKqauQsFkRy\nv22z2ulwCLHB72Sib17HYyAr2iebZwF7TjKOMuLV4PtwovTioJBZL66D0SgS3YtjGG+LSiHTHAAg\nz8M5xg585fPOIzE7cozz9rn+FgcF8dz14cZFowCIfiycg+RgUP1czhHanCTmAFwevb8MwIFyJRF5\nPYAPAvhlVeVtAiGErCFtLjfdB2CHiFwlIj0AtwDYHVcQkVcC+DMAN6rqMy3aRgghpIbWJglVHQO4\nDcC9AB4G8DlVfVBE7hSRG221PwawCcDnReR+Ednd0BwhhJAWaNWZTlX3ANhTKrsj2n59m/aQc4Q4\nmc9a4QLM2QBy0uuGtfaeTYgzZZLhFNbnnRNer+hI58q8c5jXK9JqYqE46ZAL/hc5n/mEQNKJkvjY\nNfXYuc2tuQMFRzS3z9tdo0V4O6N9PslRklQC8TXpGa4tp9m4V43q62JYhfaJipyduUYBDe35JHVy\naCiXuuvHnX+SQPpWs3Hnn2toMx6zcxSG5SCEENIIJwlCCCGNcJIghBDSCAP8kfWPSFg7t6+SpmHb\nrVurmufu3bbD+Q6sUEJ7l3DGkZ86VbC1Qh6C+FnjQnV3Dr2etz3oFF3IYlFXqKVmfV9EkGc2iU8S\nxscH7HMaSOw3YNf6i5qJaTs/cbKqj0gCyWzf3a49x+D34OolE30fPK8QgA/WN8P6HOS2f+l2grYS\nBzOs+KIMg+7jNII0dTmRosRBeSWwYIwPepjnXjtJ+v3Qh/N5cQEae70QUDAbukbCObnAhmkKHWz8\np/h5J0EIIaQRThKEEEIa4SRBCCGkEU4ShBBCGqFwfaaUhcnYeajstNPkMFQSITVyADpXg4SdESUH\ns2RyArBZ27yDVl39urbS1Gcjy48eM6+DQUXwXK6oLf0+5AXPN9vzi6a9+Xm/37UjaeodvZwQ7IRh\nSRPI9FTB9lgsFueglSuSTUYkz09G4niZWNR1RVEwP9+uSJRJLZyv2GB2Gj8UINVgexXHtfh6t6K7\nd5pD+Kx0NK4E+PPtSxI+v9hBzQnr7hyyPPyPZKENf4xrLxLig31pUcQuUXjwoeyIF227YIIYjatC\neJL6LILJ5lnXMLJhVdjeaPBOghBCSCOcJAghhDTCSYIQQkgj1CQcUlzblDQtBCgDAKRpCAZWXguN\ny8ptFspOMy/7ddc8rJM7B7HxOEp8snHXOGtJbBC8iT5kcgIAIN2wvu0SxNQ5pBXWyJ2zmBv78diX\nJdu2mn3zCz6RjCM7eBg6MuvHLhBfcuE25E8/a7pYXPR15bjVB/LIqcyuUSfWdp/QBqg4/cU2i9Uc\n9PDRcP3Y602Hw3DtFRLxhOvRt1W69kQEqsXgc6oSAudF129Z59EocY8PYCeJv/Z8Mp/RuHrNp2nk\nvGg/s+HIr9d7RzN7XKznxOejcTA9f1LFsRBk1UCEiQTNoi5gYU08vtjx0icxcmVJNDZxkEVnkrtW\nkgT5iROFfmVyMozVCjlyrgW8kyCEENIIJwlCCCGNcJIghBDSyPmjSbi12DgwXBQ0bkmtoS64ml8r\nzYrB5Crd1ugS5T4SCfqFs63bhaT2Wfp4zdg/q211ivkF89w/omftN4peIRJ8IezavHS7fjz9Ou54\nXFybBhrHXOzz/xqvlbsxtevHsmVzcT+AZLwZ2bNGf3Dr5rppCkm+HQCQPzFnKmaZTywEGwRO0jQE\nnRsFPwlMTZptFyDOrU/HQd/sPs0ySFL6d1QNCXbKCXLKuPFxy+VJUtG/Csf6NfoMJemiEKQv6dnA\nfaqA0xjsa5woyV97WeZ9JbzWkeUmCRMirSYOLFhK3COxJuI+p7z6eUunE9qrSyxUowUVWnH6g/Pn\naPq/KZdrHvSoSDcU68vjNDAdDoNvxQaGdxKEEEIa4SRBCCGkEU4ShBBCGuEkQQghpJFzR7gWKTjC\nmdekVqT2aJ2I5spqnF+egyC85BG1onYS9pUF7k7HC4CwTlvYPIPECYRONF0YQE8acdUJn3nk0LTW\nOGE4mZkJTm2xWO3EQJfRreA4t0SGNgDqxi+LMoW5dqzjlnS7vg/v3DU9iXRgArPJ1gtM2aGjPuOa\nz+g2ORk5cDnnsqQS8E1VIRI5xcUkSQgkNypmjzNvIqc6f2zkwFV6yEHzGqe2PAqIFwnY/qGASGAv\nC7cFQdp9FmlaKAdgnMbc/5wL7KehXyeIJ5MT/uGKMAbG3qTf9334oIOJ+Mxw7hzjAIf++pmdQX7c\nOLCpezggESQzM6ZsYcHakYf+7MMLhXOru6ZcWexM58611wvl7ly16tAIEaT2gYzs+HFT1O97G7Jj\nx21f6+P/sgneSRBCCGmk1UlCRK4XkUdEZJ+I3F6z/5dE5HsiMhaRN7ZpGyGEkCqtTRIikgK4C8AN\nAHYCeKuI7CxV+ymAdwL4TFt2EUIIaaZNTeI6APtUdT8AiMg9AG4C8JCroKqP231LLzxHiAiSiQm7\nTriEI1xectACwrrj6bSG06yDnzF+PbOmXxccDahqFuMx1AaaK6xLW53CBcbT2Wno9s1mv7U9HYwh\nVp9QmywHg0FIiOPWhbNsdZzxRELgvAusbUkS1uvdmrLmVS3iTMa/pq7TKbyjXZZVrgeZ6AOXX2LK\nBtamwdCPhdckel2v/cA6v8lEvxJoTsfj4EDmAvZ5/SFcn8nMJrNvog89FQW7gw3Sd7qAkEC9I1lS\n1UkAVBIRATVOZJFG5zWbNA2BB52DX5qGcXGBCk+cDIEA3TXa6wJlTcLR7YTET6OiFmX6CA6nEms1\nxvAoyVMUhNM6Mfp9GPljvN40zqCHjxRMSS7Y7PtwWgcA/zmm09O23zxcI87WOHGY0zU7Hf+/6fuY\nmgK2bzHb9trPTy2RUGod0OZy06UAnojez9kyQggh65Q27yTq4gk8p5+sInIrgFsBYEKmz8YmQggh\nS9DmncQcgMuj95cBOPBcGlLVu1V1l6ru6qF/+gMIIYQ8J9q8k7gPwA4RuQrAkwBuAfC2s241sUHi\nup2QZMSt6zc9X7/UmvtK6w9n2kchyUnJzjg5u1ufzTL/LL3Om+fC5bD4dVSZtOuzUxPIZ2wQvU1T\nvn2x66fi1pFH4xB0zrU7HBUCuAHL1y7EPu+ebt8GnbK+Ha79xUHwiYi0o6UCJj4n7Hh7bSKPfAKc\nLLWwGNaPj9rn17MMgB1H++y9pCH5jg8aOT0d1rDdvjQN++0aOU5W1569FrQ4KH72ro2y3lB4bl+i\nTSmWqVaD5MU6hbMzSljkfQiyLASNtOOUdDuQCfP5ZYs1+oK7LkaR5pcGW5yPhZaPzbJKkD6TMMl+\nPlHypvCZOT+MPARjdPqDavCZqGNszzvWJt110elUPwMRwAXu22z0Ixw8HB3rAocmIVCiv5azyH/D\njnunA1m0/0vO74SahEFVxwBuA3AvgIcBfE5VHxSRO0XkRgAQkVeLyByANwH4MxF5sC37CCGEVGnV\n41pV9wDYUyq7I9q+D2YZihAruD62AAASGElEQVRCyDqAHteEEEIa4SRBCCGkkY0f4E9tMLXYQeoM\nAsKtO+oCi9XhzjF2uHOCHgAsWCHROv3IiRNIrPAIF1Svpg/tdoC+FdRSK9Yien7ZiaFZFkRFJwaq\neucnteL4eNb2uThGeswKdE7Mi52mfJa+PIjJ7hyT5Ow+x9J51grjgwFwyIqZ0QMCThjNLjYOUOmR\nU97pTdx/T7+HZNqcb+72xaLytBOE7eczHIbzdcL1eBwc3Zy9aRLK4vN3QrQmoS93jBNhe10Ai8Vj\nRZBcuM0caoPL6an5cMxE9KSgFa79eUQPFEhac2264HfdTvUaztWPqT82+kxcH/GnUpeBrzI+iYR2\nI+He9xG367atMyoiQdzvO3WqKLy7vpzIfeSYqZfloT/nTHj5NshR+/BCFLDP1fNBR3vd4KA5a4Vw\n+1lIIt7RNLfZD7XJCbFFeCdBCCGkEU4ShBBCGuEkQQghpJGNr0mIXfeTxOdlkTion0vMslydwq17\nrkaQu9VAtT55kcPpFHkOzex6uVuX7fcriWSk7rxFgtbQCcmb1GoX2rWJYSY6GE8Z57PErvl2DhkH\nv+TkfAiMt8yxjdel9XQazTLbMd039B87mAHFNe+R3TcaV9bk85lJX+bHNm7P6Q7OITFJgq7Q6dvj\nBsH5zq+vJxVnMYj4dfBkwrwWgtG5NfLZmeC4FukVesLoQroQ2WnxSXqGo0owPVUF3Dq51yZCsEC/\n1p/nxcRZ1vZK0D9HHgXpi/r0n9E4JEeqMBxV/19jh8H4NSlpQFleTO4EmPF2/w9ZTSKg+BxKTo4y\nHIX/kTjZk9WykmcOmn3DUUgcZrU5F+Aw2TQNvfR5xuTDxgFzPPekPzenKWqWQ0elRFarCO8kCCGE\nNMJJghBCSCOcJAghhDTCSYIQQkgjG1+4rsM5KqXwERklTmexhNC77Aik68lJ7wxFXRd1UxYWfZRK\ncQ50nU4QAeNzzIvZ3YxAaPt1mbuGY3SeNg5HsMKo60tjoa/gROcy7DkHMQGk9BloXvz8ym2cjrLI\nmEdlEjlmecHanneahiioh404rAsL4RjnQLYwhCzYqKm+k6T6uTintTQJIrUTSif61Wio/V4YNxfh\nVyQIsi5rXOxMZ1ErMvv97thxyVksFnXj+t6hLw02u897FDkKlkRiLTj9Bcc+n6XPCebRcZV9SRIe\nDnDC/cJicfzsPilFfBYRHw3Zi89xe+58JIn2u2swelBgEAnD7thxdG7OfnctDIbQUSniayL+f8hF\n0I2zBeqWWVPkCnpdwD4gkduIs8mzIeuhvvhK09YgAx59zNq5+s52vJMghBDSCCcJQgghjXCSIIQQ\n0si5qUnE1Dnh1BQ55EzWuoGQhWqjYu33a7BZHpx96hwLparteJ3ixCmoD/YXORQBhQxoRY2g9GHk\nWv3pUjfGp9OOYoe4pNxH5Chl90knrdqeppCuG4sk1HeShHMsHEfteZ0gaBI6YXQHidaP/dr3JuM0\nJeMx4Jzf/Jp7GpwbozV173QWO5pF6+q+fad3xOdjy5wGpfMLYZ3elskFfejRY8Ux6/YAu4Yuh4+G\n/t01svUCMzwLA6hz7nPtbpoO9dy14vZNTfpgkPL0s2Hs3DW43TijyTOHg57ixuLCLZDjNmjkSavB\ndDqQWROY0uk5cuhoGJdNJjtjPjsFOfBs4RSl2/W2BF1Ow+dsj8XiIGggnegr1Gl9kcOpDyTog2am\n1UyJXt+QEASyb3W+LRf4gJxjew7Zlh56l1xkyn76pDntiy5Evs18BjL3lKlX/gyfI7yTIIQQ0ggn\nCUIIIY1wkiCEENLIxtckOh3gou1Ap0FoWK7GULfGvcyyio4R1ynXLwQaPE37df2fqX/GcwlU6PqI\ntYlSkiNNJCQdinwnpFfzzH3dNlDxX1iSOt8W13953T7elyZQdx72GpHByNvs1n613wvPtC+EwHhO\nT8gnbeDCEz2I1W9cu/nspO82PXjc26uTZi0522z2d5x2kefh2GlTJxGBHHPr6qm3SWen/H7frrVp\nfKFZe+88cxxyyvoG2Haz7bNIFq1mcdiuTXc6/vn73AZi7DzxbNBOrL35lk1I40RSANDtIJs2z/on\nudUmTs4DVrPJ3Zp7khh9xfbnz2PCjt+CXfN3z/5P9KCT5thkZsaPD7o2eGHH2JZsmgrJqtw59rtI\nZo1O4LWbTop8xoy3W/NPF4d+TPMoGVbvmLXFotOTmL/KJP2Z2mf1gsHQf1Ynd5qETZMHFtA5aP1m\n7PUzvHgGMjY2dJ866s8x22L6GG0y9fo/O+V/mmczZjxP/ZwZz4mDQyTz5hxHW82+4bZL0VkoBhvM\n+glOvdRoElNTpt6xl2zBcMae7zVGm9j6tweQ/+wZcx5Wi9LhELnTxpb51cA7CUIIIY1wkiCEENII\nJwlCCCGNcJIghBDSSKvCtYhcD+CjMB5U/0NV/6i0vw/g0wBeBeAQgLeo6uNLtTne1MXBX7gIw1mB\nOm0zei2XqRT3l8u0Tkut29e0vVS9pcpK1NoBVIPfLbdfqWkzPu+6Mlc/UeSdsA0AyMWbEsZYq2Pr\n6sfjHpfF27YNKdUT0RCHzwbfk0SDJm8NkESRpkVhP8sSaG72px2zr9vtYDg0JzQep77dmWkTYG6U\nGTH01MkJ5EOzvzNhxNhN0xmOnzBCY75ohfBujm3bjOh8csGIhotHJiAjK7peYITubs8ct3hwEjJ0\nYrERJS+4aIyjzz7f2Hks+re8xNiUnbQi9dGOCVAIYLTV2JROXwD8zAiZ6bw512xSkW2x+w9vNcfO\nCzQ1gza8yIragyvQO2TPw7Y72JZBO0b87R+04zMSjKbNseNtRoztPttBumj7mzD7RhePkB7ebvaf\ncF6HwOLFrj8zPt3j9jNTYPA8K8x2XLtdJEOzfzRrjMo3T6PzjBW/rS6eTSjwfDM++cEtvs/cPqeQ\nu33HL0XnuAu6Z170sgVoZuzEob4f7u7zjXNempqy+ae3QsbGlgm7b/vMKcw9ZURstZ/j9ucfw9+/\n2ATd+8r+F5txPNnH1GbzQMFNV98PAPjqgRfh6HFznv0Jc12850VfAwA8unARvv3U1QCAya7JIvm+\nq/8aPxsZMf2LT73S2AbBmy/5HgDgDdOPAAD2nHoJ9i9cCAB43eaHAAC/MbWIIzYb5WxiBO4cit2n\nzFh9dQeWRWt3EiKSArgLwA0AdgJ4q4jsLFV7F4AjqvrzAD4C4D+1ZR8hhJAqbS43XQdgn6ruV9Uh\ngHsA3FSqcxOAT9ntLwD4VakkxSWEENIWbU4SlwJ4Ino/Z8tq66jqGMAxANtasY4QQkgFWXaSnbPt\nSORNAN6gqu+27/8JgOtU9Z9HdR60debs+x/bOodKbd0K4Fb79kUAHmnhFE7HdgAH19qIM4D2rj4b\nzWbau/qsJ5uvUNULT1epTeF6DsDl0fvLABxoqDMnIh0AmwEcLjekqncDuHuV7HxOiMheVd211nYs\nF9q7+mw0m2nv6rMRbW5zuek+ADtE5CoR6QG4BcDuUp3dAN5ht98I4Ova1q0OIYSQCq3dSajqWERu\nA3AvzCOwn1DVB0XkTgB7VXU3gI8D+HMR2QdzB3FLW/YRQgip0qqfhKruAbCnVHZHtL0I4E1t2rSC\nrKvlr2VAe1efjWYz7V19NpzNrQnXhBBCNh4My0EIIaQZVT3n/wBcD/OY7D4At9fs7wP4rN3/XQBX\nRvs+YMsfgXk8d8k2AVxl23jUttmz5b8E4HsAxgDeGNW/FsDfAngQwAMA3hK1fRxGm7nf/l271vba\nfVlk0+6o7ccB/LSmrbUc39dGtt4PYBHAzbb9YwBGME/Z+fFt0eb3AXjIfu5fg3kk0R3zDlv/Ubvt\n2n4CwM9sH/8ZYTVgzezF+r2GlxrfwjUctb/fXiMH47bW2mY0XMd23ycBPFYe4xX7/lyLL+02/2BE\n8h8DuBpAD8D3Aews1XkvgI/Z7VsAfNZu77T1+/ZD/bFtr7FNAJ8DcIvd/hiA37bbVwJ4OUxsqvhL\n7IUAdtjt5wN4yn7gV9u6j68ne+2+kw3j+wUAP7F2xG2tqb2RrVthvrA22fa/YO1Zq2vitQCm7PZv\nR31shfmy2gpgi91218R9MF8sOwF8GcAN68De9XoN19pbvoZL1/H/AfCPbfufdW2tB5trrmNX75No\nuOZX4u98WG46m3AgNwG4R1UHqvoYzK+B65ratMe8zrYB2+bNAKCqj6vqAwAKEehU9Ueq+qjdPgDg\nJIA5Vd1v6357PdnbNL4wXwq/AiPMOftuXmf2vhHmi/Ua29dJmDuPtbomvqGq87b8OzC+QwDwBgB/\nraqHVfUIzJfLcQALAGYAfMLa8emWx7jW3nV8DTeNbx3uOn4NzORwD8wX8c1RnfVi8xsBfDmqt6qc\nD5PE2YQDaTq2qXwbgKO2jaa+GhGR6wBMouhB/joA/1JEPmKj5K4HeydEZK+IfAfm4n7CtQWz3HRp\nqa21ttdxC4C/KLX/IZhfbG+JxnctbH4XzARW6NuyaP/cuM5h7cc4ttezjq/hsr3+GhaRm+0xz0Rt\nzdnziNtaa5sd7jqO+ZCIPFAa4xXhfJgk6gIElh/paqqzUuWnRUQuAfDnAP5bVPwBAP8a5pfNVgDv\nXyf2vkCN1+jbAPwWzK/buC0tva61vW58r4Hx03HtfADAiwH8IcxSwfvjQ9qyWUTeDmAXgD9u6Ftq\n2lqzMa6x15Wvy2u4wd74Gv5TABfXtKWlttba5vJ17HDX8atRHOMV4XyYJM4kHAhK4UCajm0qPwjg\nAttGU18VRGQWZi30DwB8w7Wtqk/ZNuYA/E+Y29c1t9cuKcAuJ9wHEz/rIIALALzAthG3tab2Wt4M\n4IuqOnLtq+pTahZ1LwbwLYTxbc1mEXk9gA8CuFFVB+W+LX2YX7Vz9njXRutj3GDvur2Gm+wtXcPf\nBDAL4MKorctg7t7i62tNbbbE17E7l6fUMEBxjFeG1RI71ssfjMPgfhhByYlHLy3V+R0UBanP2e2X\noihI7YcRoxrbBPB5FAWp95b6+iSKwnUP5imG36ux9wWubZhfO3+0DuzdAqBvt7fDiKhP2LadcP3S\nuK21tDcq/w6A15bG+Lqo/U+78W3LZgCvhBE2d5Rs3Qqj8Wyxf4/BiL9XAdhrx/ylMEsRv74O7F2X\n1/AS9tZdw9fY9svC9XvXwzVRdx1HZZfYV4nHeMW+Q9v6sl7LPwC/DuBHdvA/aMvuhJmpAWDCfmj7\nAPwdgKujYz9oj3sE9kmSpjZt+dW2jX22TXcxvhrml8UpmKx7D9ryt8M8hhk/3nabbXse5nHHH8I8\nEvfmdWDvPwDwA3vB/wBm3dS1/ROYCWMfzGN8v7nW9tp9VwJ4EkBSan8ewADA0wD+F4D/2PI18VXb\nd+FRTLvvn9r6+2CW9Fzbc/aYH9s219xerN9ruMneyjUctf8YzB3EIdvWh9bDGDddx7b86/Y8fghz\nHW9aye9PelwTQghp5HzQJAghhDxHOEkQQghphJMEIYSQRjhJEEIIaYSTBCGEkEY4SRBCCGmEkwQh\nhJBGOEkQchaIyJUisiAi969Qe5Micr+IDEVk+0q0ScjZwEmCkLPnx6p67Uo0pKoLtq3lxqQiZFXh\nJEHIEojIe+wv+/tF5DER+cYyjvmmiLzIbm8TkR/a7c+LyH8Vkb8RkZ+IyC+KyKdF5Eci8vHVPhdC\nngucJAhZAlX9mP1l72JD/ckyDvt5mKBxgMmW9wO7fQ2A/ar6izCJZj4OE9b5ZQB+c6XzABCyEnRO\nX4UQAuCjAL6uqn+1VCURuQLAk6rqMuS9HMADIjIBE0r9T235AoCPqwmlDRGZBzBcFcsJOQt4J0HI\naRCRdwK4AsC/W0b1a2GinTpeZd+/FMD3osnjFQC+a9u/DMABZbRNsg7hJEHIEojIqwD8PoC3R1/w\nS/EKmJDSEJEdMPmPfwCz1PT9qN7LESaTV6A4sRCybuByEyFLcxtMEqBvmPz12Kuq716i/rUAFkTk\n+zBf/A8DeAfMUtPfAYBdeppU1SP2mHjCIGRdwXwShJwFInIlgC+p6svs+30AXqmqJ86y3ccB7FLV\ng2drIyFnA5ebCDk7MgCb7SOyMwDys5kgnDMdgC6A5SxvEbKq8E6CEEJII7yTIIQQ0ggnCUIIIY1w\nkiCEENIIJwlCCCGNcJIghBDSCCcJQgghjXCSIIQQ0ggnCUIIIY38f8TumoJ0qIkyAAAAAElFTkSu\nQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa58ce81c50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = ms.createField('z', 'beta', bins=[200,50])\n", "# and plot\n", "fig, ax = plt.subplots()\n", "ax.imshow(f.T, origin='lower', extent=f.extent, aspect='auto')\n", "ax.set_xlabel('z [$\\mu m$]');\n", "ax.set_ylabel(r'$\\beta$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The Simulationreader\n", "\n", "The Simulationreader represents an entire simulation, i.e. a series of dumps." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "There are 5 dumps in this simulationreader object.\n", "<FileSeries at \"_openPMDdata/example-2d/hdf5/*.h5\">\n" ] } ], "source": [ "sr = pp.readSim('_openPMDdata/example-2d/hdf5/*.h5')\n", "print('There are {:} dumps in this simulationreader object.'.format(len(sr)))\n", "print(sr)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Simulation time of current dump t = 3.29e-14 s\n", "Simulation time of current dump t = 6.58e-14 s\n", "Simulation time of current dump t = 9.87e-14 s\n", "Simulation time of current dump t = 1.32e-13 s\n", "Simulation time of current dump t = 1.65e-13 s\n" ] } ], "source": [ "for dr in sr:\n", " print('Simulation time of current dump t = {:.2e} s'.format(dr.time()))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAACYCAYAAAD6BITsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztvXm0fUlV5/ndd3jTb8hf/jKTzJTE\nTBSKAhQSRdRWFBFnljhhg0NBFRZ2IVXYogJaVWiJVUh3KYhadLZgJoWaCmqLtJalKKas6lLmeUaQ\nhCTn3/zeu9PuP07EiW+8E+eeO5w7789ab93z4pyIE/fefeLuHXvHDlFVGIZhGIZhGIZhGMasaSy6\nA4ZhGIZhGIZhGMZmYAaoYRiGYRiGYRiGMRfMADUMwzAMwzAMwzDmghmghmEYhmEYhmEYxlwwA9Qw\nDMMwDMMwDMOYC2aAGoZhGIZhGIZhGHPBDNANRUQeJiLvEpHzIvJvFt0fw6gbEblaRG5zMv6fF90f\nw6gbEdkVkT8RkbMi8vpF98cwZo2IfLeIfEZELojIYxbdH8OoGxF5iYjcIyKfX3RfZokZoDNGRF4n\nIneIyDkR+aiI/Aid+yoR+QsRuU9E7haR14vItUPaeriI/JVTNj4uIt995Pw3isiHReSSiPy1iFw/\npGs/DeAtqnpCVX91+ndqbDIi8jQR+ZCIXBSRT4jI4135DSKiTlnwf/9uSDs3isjfOhm/XUT+PZ3b\nEpE3iMinXJtPqOjWswHcA+Ckqj6/jvdpbCYjjL3f7+T/vIh8UES+a0hbHzjyPPRE5E/o/E0i8hER\nGYjIMyu69n0ArgZwhao+dZr3aGwWIvJcEXm7iByKyM1Hzj3Cnbvf/f2liDyCzn+D0zHOisinRrjX\nnoj8hlOqz4rIbZO2BeD/BPBcVT2uqu8a+Q0bG8cwGXfnS+WSrtlyevXtQ+7zBDde87j+jFH7caSt\nBwF4PoBHqOo147zfVcMM0NnznwDcoKonAXwngJeIyJe7c5cDuAnADQCuB3AewG+lGhGRFoA/BvAm\nAKeRKdevE5F/4s5fCeAPAfw7d/7tAH5vSL+uB/CBad6YYQCAiHwTgF8C8M8BnADwdQA+eeSyU05h\nOK6qvzCkud8BcBsyGf56AP9KRL6Tzr8VwA8BGGVm8HoAH1RVHe2dGEaREcbeBwJ4HYCfAHASwE8B\n+B0ReUCqPVV9pH8WkD0v/wiAvZfvAfAcAO8coXvXA/ioqvYmeW/GRvM5AC8B8JqSc9+HTN6vBPBG\nALfS+Yuu3k+NeK+bXFsPd6//+xRtme5ijMowGQeGy6XnpwDcNcq9SMc5rqq3jNEP5noA96rqKPdc\nbVTV/ub0B+BhAO4A8P0l578MwPmSc18C4AIAobL/DuAX3PGzAfwPOncMwD6Af5po668A9AEcuDb/\nCYBvB/BBZEbwZwH85KI/L/tbjT8A/wPAs0rO3QBAAbRGbOsSspk////rAbwocd3tAJ4wpJ2bAXQB\ndJyMPwnA45BNzJwDcCeAX170Z2d/y/83wtj7lQDuOlLnbgBfPULbX+/aPpY491YAzxxS9+edfHdd\nG88C8BAAfwPgLDLv/+8t+vOzv+X+Q6YY3zzkfAvAjwG4lDj3JACfqmj/YW7MPVlx3dC2AGw7OVdk\nRusnXPkLnM5yHsBHAHzjoj9T+1uuv5SMjyKXAB4M4EMAvg3A7UOue8Kw88P6ceT8k5zePnCyfjOA\nHWQTnPcCOAPgbQCuXvRnWsefeUDngHPxXwLwYWQG6J+WXPp1KJ/Zk5KyL3HHj0Q2cw4AUNWLAD7h\nyiNU9YkA/hYhjOWjAF4N4EdV9YRr86+q3pdhiEgTwGMBXOVCE28XkV8Tkd0jl37anfst560v4+UA\n/pmItEXkYQC+GsBfjtsvVX0mgN8G8DIn438J4BUAXqFZNMIXA/j9cds1NpKqsfftAD4kIt8pIk0X\nfnsI4L0jtP0MAG9w4/VYqOqLAfxHZEbmcVV9NYBfQGYcXw7gOgCvHLddw/CIyBlkE9WvRCZrk/CV\nAD4N4OddqOP7ROR7x21EVQ81ixoAgEer6he734jnAvgKp7t8C4BPTdhPY7MYRS5fCeBnkBmFVTxA\nRO4UkX8QkV8RkWPjdsjpKd+G4E19JrLfiMsAPAjAFQD+txH7s/SYAToHVPU5yEKtHo8sTPbw6DUi\n8igA/x7lYSgfRhYG8FNOOf9mZLPne+78cWSz3sxZd99R6AJ4hIicVNX7VXWU8C/DuBpAG1m41uMB\n3AjgMQD+rTt/D4CvQBZW8uXI5PG3h7T3JtfWPjKZf7Wqvq2mvnYBPERErlTVC6r6P2tq11hvho69\nqtoH8Fpk4eOH7vVHq4xKEdlDJus319jXLrJn7QtU9UBV31pj28aGoaqnkCm/zwUw6XrL65BN1pwF\n8AWurVtE5OE1dLGPzDP6CBFpq+qnVPUTNbRrrD9D5dKt82+p6h+N0NaHkek+1wJ4IjJd55dr6mcX\nmeH5EFXtq+o7VPVcTW0vFDNA54QTnLciE/p/xedE5CEA/gzA81T1b0vqdwF8F4DvQLb+7fnIPDh+\nYfQFZOuPmJPIwlJG4XuRheF+WkT+RkS+esR6xmbjZ+Jeqap3qOo9yAbebwcAZ+i9XVV7qnonskH+\nm0XkqKxCRE4D+G8A/gOysJMHAfgWEXlOTX19FrJw8w+LyNtE5Mk1tWusMVVjr4g8CcDLkIVhbSEz\nTn9TRG6saPp7ANyHLGS2Ln4amXf2712yo39RY9vGBuImUl4F4LVl65or2EemRL9EVTuq+jcA/hrA\nN9fQt48D+HEAPwfgLhG5VUS+YNp2jY2gVC6d9/JlAP71KA2p6udV9YOqOlDVf0A2Dn9fTf38rwD+\nHMCtIvI5EXmZiLRranuhmAE6f1rIwv8AAJJlqv1LZOuJ/uuwiqr6XlX9elW9QlW/BcAXAfh7d/oD\nAB5N7R5z9xlpsb6qvk1VnwLgAQD+H1h4ojECqno/MkV81EQ//rpUWOMXAeir6mudwXo7ssQX3z59\nTwFV/ZiqPh2ZjP8SgDdMEiZjbB4VY++NAG5zEy0D57H/O2TreYbxDACvVdXakmQ5RehfquoXAPhR\nAL/hJjgNYxoayDz+D5yg7iih6BOjqr+jql+LzPOvyMZ2w6himFw+FFn+ir+VbCuUPwRwrYh8XkRu\nGKFtRVrHGRtV7arqz6vqIwD8LwCeDOCf1dH2ojEDdIaIyAMk257iuFsb9C0Ang63vtJlT/wrAL+u\nqq8aob1HiciOSx39k8jc/Te7038E4EtE5HtFZAdZOO97VfXDI7S7JSI/KCKXudn+c8hCWwxjFH4L\nwL928n45shnpNwGAiHylZHvONkTkCgC/imz7n6Ph4gDw0ayK/IC7/hoA/ytobbOIbDv5BoAt9zyM\nNNCLyA+JyFWqOkC2mB8wOTdGoGLsfRuAx3uPp2R7Ez4eQxQcEbkOwDcAuCVxbsvJuABou/uO9Fst\nIk91bQPA/cgUIZNxo4CItJycNQE0nZy13LlvEpHHOL3lJLKolvuRJWSBG593kC2/EFd3q+RWtyHL\n9Pwid8+vQRYt8OcTtHX0PTxMRJ4oItvI1qruw+TdcAyTcQyXy/cji8C60f39CLLEhTcC+EziPk8Q\nkS+UjAcBeCmyzOmj9KPqPXyDiHypZPk2ziHz2q6HjC86C9I6/wG4Cll41RlkgvM+AP+Szr8YmYJw\ngf/o/M8A+DP6//9A9iNwAVnI7kOO3O9JyGLR9wG8Bdn2L2V9ewuAH3HHW8hCH+93/XwbgK9d9Odn\nf6vxh0xx+A0n559HZmTuuHNPB/APyLIW3oFsrdw1VPdVAF5F/z/Ryd9Z19b/DWCPzn/KPTP8d0NJ\nv25GFl7j/38dsrV8F5BFBnzXoj87+1uNvxHG3ucC+DiyJQ+fBPB8OveDAD5w5PoXAfjbknu9JSHj\nTyi59ucAvI7+fxmyjKAXkCWhe/aiPzv7W84/JztH5ezn3LmnOl3iArKMzn8K4FFU9wmJum+h8x8A\n8IP0/yMB/H/ud+CDAL571LYS/Vb//AF4FLJIhPPIwtnfhGz988I/X/tb/N8wGXfnS+XySDtPwJEs\nt+7ZeLw7/gk37l5CZqC+EsCJUfsx7F7IdKiPuD7eiUy/GmlXgWX/E/cGDcMwDMMwDMMwDGOmWAiu\nYRiGYRiGYRiGMRfMADUMwzAMwzAMwzDmghmghmEYhmEYhmEYxlwYKQuTYRiGYRiGYRirj4h8Clny\npj6Anqo+1u3F/XvItiD5FIDv12yrNcOonZVMQrTVPqY7O6cW3Q1jiTg4OINO92It+y4tA80Tx7R1\nlcm4EejdfQb984uVcZdK/jYA28gmMN+gqi8WkQcj27P1NIB3AvhhVe0Ma6t5/Ji2rrh81l02Voje\nvfejf2E5xnG37cHbAXxWVZ88sYyfPj37zhorQ++++5ZCxp0B+lhVvYfKXgbgPlV9qYi8EMDlqvqC\nYe1k47jJuBHo3TuajK+kB3Rn5xS+4rE/tuhuGEvE297+64vuAtz+T68FcA2AAYCbVPUVk8wqtq46\nhQf+x+fMtsPGSvHZn/mNRXcBAA4BPFFVL4hIG8BbReTPkKWh/xVVvVVEXgXgWQD+y7CGWldcjmt+\n9nmz77GxMnz+F1+x6C4wz0O27+VJ9/8vYVwZP30a1/60ybgRuONlSyXjR3kKsm1AgGyP4rcAGGqA\ntq44jWtfYDJuBO74pdFkfG5rQEXkNSJyl4i8n8pOi8hfiMjH3KtNhxurTA/Z/n8PB/BVAH5MRB4B\n4IUA3qyqDwXwZve/YawcmnHB/dt2f4ps/9Y3uPJbAHzXArpnGLUgItcB+A4Av+n+F5iMG+uFAvjv\nIvIOEXm2K7taVe8AAPf6gFRFEXm2iLxdRN7ev3AhdYlhVDLPJEQ3A/jWI2WmmBtrg6reoarvdMfn\nkc2ePxDZrOIt7jJTXIyVRkSaIvJuAHcB+AsAnwBwRlV77pLbkcl9qi4pLhfn02HDGJ+XA/hpZJEs\nAHAFJpJxU86NpeVrVPXLAHwbssnyrxu1oqrepKqPVdXHNo8fn10PjbVmbgaoqt4G4L4jxaaYG2uJ\niNwA4DEA/g6TzCqeN+XcWE5Uta+qNwK4DsDjADw8dVlJXVJcjs2ym4YxESLyZAB3qeo7uDhx6Qgy\nbsq5sZyo6ufc610A/gjZWH6niFwLAO71rsX10Fh3Fr0Ny0iKORAr552uKefG8iIixwH8AYAfV9Vz\no9aLFJcTppwby42qnkG2RuirAJwSEZ9T4DoAn1tUvwxjSr4GwHe6JC23Igu9fTlMxo01QUSOicgJ\nfwzgmwG8H8AbATzDXfYMAH+8mB4am8CiDdCRYeV8q726yrmKLPWfMR0uMcsfAPhtVf1DV2yzisZa\nICJXicgpd7wL4EnIQs3/GsD3uctMcTFWFlV9kapep6o3AHgagL9S1R+EybixPlyNLIHcewD8PYD/\nV1X/G4CXAvgmEfkYgG9y/xvGTFh0Ftw7ReRaVb1jHRXzVTToUn2WFdyqZxG4RBWvBvAhVf1lOuVn\nFV8KU1yM1eZaALe4LSoaAH5fVd8kIh8EcKuIvATAu5A9B4axTrwAJuPGGqCqnwTw6ET5vQC+cf49\nMjaRRRugppgb68TXAPhhAO9zSVoA4GeQyffvi8izAPwjgKcuqH8LZd7TMTZtUj+q+l5ka5uPln8S\n2Roiw1gbVPUtyMLMTcYNwzBqZG4GqIj8LrL9ha4UkdsBvBhrqJivotezCn5P5g0tR1XfinI7y2YV\nDcMwDMMwjI1nbgaoqj695NRaKOZzMzyrbjNj+9C/TzNEjVFY5HQM39uk1TAMwzAMYzlYdAiucZRp\nNfYFG6iGsYwxAGaMGoZhGIZhLAdmgC4LCa29Lq9q5K30TZoWbtTMLAxPkUxQVetr3R4BwzAMwzCM\nxWEG6BRMbSCOanROehsttpkbo1O6hGxdqFEH3sCc9ro6DVTDMAxjSiwayzCMIZgBOgFTGZ4lVfM2\nhcvcQUOKZWXN86A+0EKZIrGGsyZj1AzRzWOSJyFpTI5oiBZwDwS3OaoxamG5xlyZUsYNY2mZ6Icg\nUWYDsWFsDGaAzouUtzNlWHKZO470j4qBPrIrfVsDKhzkbtFw3cBCdI3ZkxuJCUWc53TG8XZqQlAl\ncZ1hzJUqY3Mc71CqLZNtY1FMY2xW6RVmlBrGxmAG6Jwp9Z56YzMyQFEoizyk7rwM+AZ0nBuWZGz6\ngz55jCyc1hiDcfSPyJgcYnjyddUBBpF2npUkFPbIw1mhsJs31Jg5Yz04dGwCaawKVTJedt5k3FgV\nplwSZwTMAB2RicJuo3DaRIhtM/wz8MeNcH7QksJ1SW9oiY4vfddkr2hs0m0gbIz6EF1udMQHxwxZ\nAyj3YKaMzUZDC2VVjxqLljcsBwMplEXRABOE6BrG2ORe/tS5xHVlVMpoMZLFMGZGlTwPK5uU4vy5\nKfHG4qhrhwqT4RwzQOeFE76k0Unlgzadb6XqFNtkgW706bQ7Zg9qo5tdzE7TpDFqD4lRA9JgwzI7\nbjSKBmijESSyWaGc90npHgwahfMD3xSd0oEp6saMiGb9jrzy+aKoxue1RNP28pw0Nnk2xmTcqJEy\ncUrJuENTz0IZ0aVDLi4GvBTLDWMWVMn4OE358dlkOMcM0LpJeT0RdIMoxJYNy63suL8Vyvptb5SG\nNgf8jaUM0B4dd7MLmt3ij0KjQ/1Mhe2yN3MCb6ixeQxb45mdz17ZAG06w7PJBmjCaNVozTI9I/lR\n0O5THlDuk60RNWYOPwONYpmkDNTIs0/nU2v5TXaNJUJTnv8xRNSv5ReTa2MZGGZ4TiiiSRnfcK+o\nGaBDqHWblURCISVvpvdssoHpDc/+FtVpFY3aKMttoyjJqbBcoXsre029sqPTGZ0Wjru58GMTGZvN\norG51cqEr9UMQsge0IY7HtCDwx7QXj8T5A5NvNDd86M4RHeUd2EYQyjz9Hh5J29nHgXAEyuJcTr2\nelKjA382MXU+SJQBZqAa9ZIwLCNdI/eKTuYBRT5pSM9IKmrFxm5jjiQ9+lMOrZw4cdMnXMwArQs/\nKCe8ngBltCUDkr2dvZ1MY+nthTq9XecV3Qll7A1NJSHyXk8AaB5kr619qpP3L1Ti+vn4H2XGTXhD\n7YfAOIpP/hOt8RwUjr3RCQDbrV70CgBtiiNPGaBdikM/THhbD11T8VpR8pDK0QPDmIKEch6FnruJ\nF2kWJ1ayE8UQ3AFHyvT9cdHLb+FcRu1UrcFPeYISkyxJb2hkdNKx/5ngiUL/e1I2Tm+498iomSh6\ncYhHf9JJlsTFuVc0unlFm2uEGaAJatvnMwq3zV55jWcUbuuMTG90AsEY7e0FiYwMUKfQSD/UaXTp\nfH5/Dl90dWigj9aNJs7X5Q01T+j6kUo4VOYBbTsvJxubx7cOAQB7rRATvtMM51MG6EE/DFuXGhQe\n4Mh3GorWig7vu4XjGiORVEw43NaNn00KKW9lxw0uo2P/vPDw2O+T916yYxqmw4RKFGaesEZNro1J\nKQunTYSUw+sizeKzAKSXUkTGphfuVOh5mdpg6oQxa1LjfNlzkVzLzySyam24DJsB6pg63DbZZrF9\n5cQozaIx2tsN53vHNHoFgMEOadIJgW8ccOxXsSP5utBD6gf9UOT9TKyZmxYLy11v0luq8HrP7LjF\nIbjOKGWjc7cZZlFabnakF2XfCvTczE4rsYa0rB/iZdxE0KgDXtKTe0CpzMljs8wAda+lerYbv6M2\n84ibSTpsGOORTLzCSbUSHtAGG6O5NzMURXOCvpy3nPNJFHnsNoE3xiGaoKu4tMqz6eW91MufiA6M\nvPzuYp5JzOdYxpDxMd7TsmMG6DSkDMxE2C0AqPuk++wB3Q7XesOzvxukq3vczRoeD8p5c4fCE53S\nzZlA++2gqHclu6mQwPe8AUpJiDhs12/ZouRVjR9MpwxZYiLjCJIIwWXDcMd5Pr3XEwBObV0CAJx2\nrwBwnGZH2k54u7Rg+gI9OK1Odp49pP64R16kPmnv+Wz8qo/exuJIhR8ieD4btKa53Xae/3aYWOEw\n9JSXv9PjMPPsNQpE8etCeUYziloZ7W0YRilVnh4OKXdefu/tB2KPf8rLP2gUx+dB5CE9UvloP0zG\nDWYSeShTAZLhtuOv5dfUmBzdM+HlH0fGU+dXSK3ZaAO0Vq+nlyPyaqb29IxCcLfp2Bmg3ugEAD2Z\nKSx7Jw/yspN74bjtlPsuGaDnLoUFo5ca2XG3H+J2vbHZP6C1ouQNHbjzDcqcy+8p91xOOfibN3RN\nSGT25LDbFikhPvT2eDsInDc8H9A+n5dd1grGaMoAPcsLpR0dyt516EJ0D3qhrEt73ebhuFH2rhUa\ntY3FkVBMIv3YKeUtUsS94bnbJi8/GaNNtwi/T8bkvtBaCwcn0vKTjjy5mJooNCXdqAUeHn24basY\nZt7eCjLOY79PPNcnXYUnCL0qyiG66q+1sdmogyrPYaqMJlmkVZT7RkWYeZT80E2yRENyb8S1/Gs6\njm+0AToTOAkReUD9np+c0Zb16K4Lsx1cFgbwk5dniviDTp3Jy67dPZcf7zo35j41esfuyfz4M81T\nAIBzg2PhPp1MsWkekgEabNq8nPse2+lr+iQYtRGH3YbB2icXOkbu98tchqwryQC9onkh1JHseehq\ni8qC1n3oys83w8TLOTfxwvdOrVU1jIkpWQPqvZkcYtt2x2x0HqM1z5Vh5k4R71Cbudc0ZXQaxixJ\nLLXw3s5owrGdWsvPgbdhTO/7RF29RLI4wxjGLH7ahyTaihLMNYrGKBudwonjfL1oxnIGa/WTntbl\nZCMN0Lq2V0nu88ke92bxOLX1CgCon11pB4He3coUlpPtYCGeagfv0J5T5Ldp88+LvWCM+vrnqU1/\nnwF5Nav6qbTFRf7+asyMa0mK1gOvkPA2Km0OwXVrO3mN53E3+3GyEVI1n2peDHUku/ZAg0co8oY2\ndwtt+vu0GyFUl/vUkxUaoY3lhHWIREhWap3zbivI6F6FATqgGxw6T/4htdlJKEOmsBsTkwi31VT4\nIZAr4rzG03v82ejcYy9/wgPK+PJ+jyJVcoU9LeOS0uNMhTAmJfEMRJnL8+iWMAHOkS4pD2iP5Lnn\nyge0w0S+1G1Dx+6NNEBnQqMoSGzk+RDcOOw2CGL/RCbUpy4LBuZDTt0DAPiyk/+Yl33R9l358Qmn\ntJ8fhMxFn9x6AHUpa/+wG77mM/uZktO/lA4FHuwX+x5tGZDaFN0wCEl4hICgiB9rUQiuMzavagXP\n/jXkAd1x3s4DTXuHLg4yI/Oe1onCfRpRmKTJqzF7vJzx9kM+9HynmfaA+gnEQwoj71E47nYrm3y5\n2AiTMCbPRq2MkdgklWzOG5hbtPZ5p8XJ5LLzPQ7BpWM/uSKJ0PZKSbdHYfOY9XeeTKqVybZf0w8A\nWy328mev8Q6GYUz3ntEB5VfJ20/teTstK5CsaGMM0FlkuY2TELnXaOsVNkCzVw7B5WNxyYVO7ATl\n/MrtTBG/kpTzq5rh+EQjU2K8lwgAzrVCKKKvz22e3dlz96bwF+qH7yf3PXpPeaKZUKeuwcDWha4e\nUTSJ94DSoL1N2W196O3pVvBwXtHKZJSNzqspjGvHDeAHyqnjwrXnW7uFNu9pHi/cu0nbtUhChk3a\njFKSm5Gz1zOc9qG3nGTIez4vK4lkSRmgzIFbw7/VCjJ84O7TY4dSKhzX1jkbo1C1Ji6R8ZYTDvlo\nK04wd3IryPuW8/J3qsLMabK85/NQ8L0T22lZYiJjVsR7mhejW9qkq6QmWQa0/1s3kZ1/08W10gAV\nkdMjtDNQ1TPVl60wFRlvww8+X0fHeQpnKmuRcLswWR7AfWKWB7bvz8seRAlaTjjN53wjlB1ouPb2\n9hWFNv19+N7RfqWpdf+J97lOmXFNxicnNU/AM4AcSuiPOdmKpx9dl2iz5Nq8jNr094nunejnJs1x\nmIxPQTSQF9fsRNlpXXkUhuUUEvZqchh5wzXAZXytrx8laMnvU9bPRNmaYzI+BSlviZac948AlfUT\nMlp5S7o21E/cs6wfw8rWFJPxOeHV+cTkYrvFXn6e5HbroNkATWQ2jycN6+rwajKKB/Rz7m/YR9UE\n8IW19GhFyT2gifWUQPAs8iT3gBIdbju3Pq8N2nPpadnDybkR2+7paCt7jGidkavPbfrwgUNqKOpT\n7gFNvw+/HnTNnhuT8QmJPaDZK3tAfYZPANhynp49Srvsw8hP0Trmy2jt5rbLBtrWINcHWqzPbfr7\n8L2bUba6Yt83QIcxGZ+USg/o8Fny1NrnvUYxBLdJ0yydZhiUff1WIuFFtA2AeUBNxuukZBI6ta+t\nD0Xkdc4cZu7H5DYpG51+OPb1m00KM3f3KZ0M30w2V8br/JGuSgORGOf9mBslVuTttpyXvytBYW72\naaIxsaa5Up7res9LGo47igH6IVV9zLALRORdNfWndqYKva0STt402XsOE95EIIS0RkvZaIFzHrrV\nIIF2698462eT3k/D3ZTL+Fp/zG3mPxp079jYdP3k5BbR+/RhMSmvAL23KcNi5pyYaKVlfFnIxSDh\nqQGAgXsg2NPjkwsd0HUHnPUqURZf2y606e9T1o9N8nwSJuOTUuUBjbZHyY47pHj4ENoLlCCuReO0\nl10OweVrfX1u098n3mdusz2gMBmvlxLPo+bJVGgfTx9CSyG2h/2iesllfK2vz23mY3aVB3SzMBkf\nh0kNL7+WP7GnOXs9ecLFT7LwlnAcjnvg1vBzm/1J1vIvqTE5CaMYoF9d0zUrTcqQjX7vfWgqG53R\netDslb2NHAbrZwB51vBYw3tAg7KyTTEBbTfTsg0KCaBrff1oJtLd5yLdO+qTz4IbGdKcha4YgitH\nzgErt4bTZHxCxgrBHaIM9yNDtThDyGX9CqXa38dCcCNMxuukRCn2hmGfDMOuU7SjvWoT6z25jK/1\n9fsJQ9eU8wiT8TqoCnP1yVRIHnMDksdxGn/7yTE5UZ8nVFIyXtXP9cdkfFLGMdwSSylSNKhRb1g2\nKgRTY8OhoiP+utEuWzUqDVBVzVeSi0hblWLhEtdsAqmtSELqcrqOjdEKOfMzJbyNypl+ljDo7n7Y\nx3NHQhKiPcnCDy9R43f3wz6EmR1WAAAgAElEQVSgvj632StJg360n6V9T7z3PDHRij4kJuP1kFr/\nxkqGV7Av9EOirDNOts82QhKhLQlbslx04baHJFtnKeuzr89t+vsMSj2gKz5tOAEm4zXDHiE2DPvO\ny0/eyktdF0beCDLKsplK0HKhG8LQfX1u098n9oCO/zbWCZPxepGydc55Ns+gJPj1bQe9EEJ7icIT\new3vIQ0qJ1/r63ObuWxTP2QDx27GZHy+SCKTPi+FaFF0Ycst+RlwWWIvcstgHhg5C66I/CaA7xGR\ni8hi0N8L4L2q+spZdW5S6trns7Ss4b2AdM+k55Dr+OuGCx8rIWd7zgDtBaOySVpGao9EvtbXL8s8\nF/peTEhU7sl16zIoSlL8+ehXim6QSmowIvP0qq6SjC+S6KtNGHa815vfwxAISvX93b287G63fQqv\nXe4gyOuW8+5zGcv43b0ThTb9ffje/WRoF/Udm4HJ+JQk0uUrZZXoudMHCJN+Xt7YgLzQoj1qE3sk\nHpDs7ney8f3wIIzzvW6zcG+kvEcbiMn4lKSS/3AWuK4b5xsUZu7Wbp4l5bpL8uz3g+ayS4cUZu6S\nUvQ7pKt0ffhLom9HjzcMk/GaqPCupyaueyVJhvLkh4kEdFw/9oCO0ac1ZJxtWB4P4GpV7YrIAwE8\nGsCjZtOt5aDMkA0e0OK1seGWPk7RdzN/PPN9d8cp5w3aZoW8PzuShdYeaBjI7+8Fb6mvz232+xUe\n0Eb8WjhOJLfwn0e07HM1w3E3TsbrJLUUmMNlfWbPfdr3x0+ScFIWpi3ZTEdXw1B1b/94oT636e/T\nLzEwV0ccZ4LJeB0kQhKBYBDy2p7Dw0x2WfHo9jg5hZs5J2WFjdWOU8r7ZGzmhqd5QFOYjNdBlN+q\n6A1V2s+w7+S5Q3ItQh5Ot4yHw8j5Wl+f2/SKhVQp7JuJyXjdpDI9U1E/YUD2KPdEyyUD5bIo07Ov\nn7rnhsr1OAbo/wRwOYC7VPWzAD4L4E9n0qslJBn5kQxNTZ9P1ieh67kB+FI3KNL3dDJjskHZPM9T\nqKFPMsQJWM71wnlfn9v09ykT+JRxXfk+j9bFyobjbrSMT0IUbuuUix4pFocN8oA2s4mQexvBW+ll\nm2X4bCtMsqRk3BudAHB3JzNG7z0kD2jHeUB5TznqU57AZTPDuUzG6yDyNlK5U6AHPXounLey16Es\nts1Iu89e+VkiRTw3Nnt8z4r1cRsp2jkm43UQTW5QKGI+fnISoqxsn+S22w7jb57Rltr0XnwA0EN3\nTDIuvYSMr4GSURMm47PEG4vRunu3vIImCjkxXKqsG+0Jmlo2sdkD9TgG6E0A/kZEXg3g75C5+8/O\npltLTp6IpxhuW+r1TMiZ9IuD8fmD4K28s5F5MC/RGs4dSuXvFz2zy99nTASA804R5zb9ffjecaeG\nv4+wTyj9UOSHK/+DYDI+DUP2QARCWOH5bpgk8WskBiRkF/pBXlMG6MVeOH/WtcVt+vukwl+4nxuK\nyfg0JGas0x4aNiCd8t0ghZ3bTBigEc5ulVRYbSTWifF3M0XdZHwacs9jsSwimoTxBmYo6nJ4eErG\nu2xsFidZquxLzTdrXHm9YxJMxkdhnPEv5QFlL39ifX83sbyNy/haXz/28ifunWJNx/FxDNDXAXit\nq/McAI8SkR1V/eKZ9GzejLjuEwhjaLR9SW64lawB9U3SAC00AA8uZV/FOQTvz6WDzPBs0ca38b6L\nbtAvSRbgvT480+jv0+DBn2fwE32P3pO/J7931z1Jbc0ChIcritEt3nMJWG8ZrwstygNAaxy6POiS\nMeq9/J0wSXJmP5P3bUptzntreQO1VxKe6Nd5HpKHM5d7DllkY7TiPa25QmMyPi5sbHqlmyxIIaW5\n4Y6Fz/vxMTHOjnT7PH8AleVZ1alz/Gue5yQoZpTeAEzGx0UThh/rKjSO5/KcMlBpkiWZvDDh+I/u\nlZgnjOWePLH+ucDGjN2MyXjNRGHmTh55jX3X6TX7pL/wliqptfx8bXfIuv1NTa41jgF6u6q+mAtE\nZLvs4lWmMolRag1oKjFRIktuNND3aTDtujTklygVf9Otq5hUNn3z/OPh7sMKUqx8+6ISI8MbmWNs\npjvnPT2nYWNkvDZSa4P4PM0G+hAUnhDpuH1pL9EG5A1SmlOTLFH6fzeryNkTB4nwmRTT5ipbUUzG\np8GJJnsjG2yAugCVxmGijMdcVu5TDlDWUbyx2aay7eKs3iCaNFz6sXaWmIzXQPQTT/LqtjtMT2KP\ntdVF8Vqe+B60XYRXyXOx0RK+iTI+CwdGWTtenqOlFC6Tc5NCyxP7hPJkeacTrvX146UUiX7MQrCX\nVNcZxwB9t4g8T1Vf4QtU3R4JS8DUmW8r26d/EkbasLWR2cXudDSQ08Vu5wntFF360cx5VXZD3rMz\n5YHtF+8tZVnm8guKx/F7d0ZC4uOokzkkNlpqGV9GNDFwsuGXWu/QTykpUbrzce6ZWCeUarNRPI6q\nLOkAPQNMxsclpRxE3qFw7A3PVthJKD9udEJDDcoinooQ4W1CB1vZiV4IjkHPXRwZmqlxfByDYH0w\nGZ+GVJg56y3O8GzSJ+pzyEWe/6oQWv5p8JMsW3yFk3HyeqZ+bzZIrhmT8bpJRLpEMuoMyF6TE22F\nSj03Fg/K1jl7A3TAundCf9kgxjFArwbwJBF5AYB3AngPgHer6utn0rMloNIrngoXSYWdAMEAJcWj\neUCz5N5LyMqMnzmnOtWKC83YuG+XZ879QB/Nbla0mVw+V+n1pPZX5+HaOBmfGo609msceGKFwk18\nyDmHLIbwxMS6iDKiyINESLgLS9Q2KS4t0qDceWmyFVFxz/XBZHwa/DhOUSWUpBwttwNf+3yQvS13\n3L5E4VqHtD+cD/eiCcP+NoV+7RWfmzwPARuqNPZra3UG3RlgMl4DPCazjuCNzdalUNa6mMlb6yA9\nyZLy8vMkS2/HTbIc48ir4nXSpPMVW9qtObXIuIg0AbwdwGdV9cki8mAAtwI47dr9YVVNp6hfJHX9\nXpd4Hv34zmOuX7vJCeIOu6TfJBJtocP6T6PQZt522VKJNddLRjZAVfX7gdzN/0gAXwrgcQA2Y1CP\nQlKHSEVJmIAfgDkMSxNhWLwbRdMpM81DUlxI2RG/8J/WXlIOIvS3nccp5GfJZxjLDMT8eIyZ8zzE\nNrpu9X4cNl7GJyC5/jhSXEhRd96hBsWU+9n0aGJlnPBEp3QPyNj0Mh7ZtLyOWYuNygrK6ySYjE9J\nIkFLSlFn75A3PLfOBSFv7veoTibw2qIkRbv805wd97doZr2XuHe07t6Xb4ZcM9PKuIjsALgNwDay\nD/8NqvrilVHOpyXlAaVjr8OwR7+97yZZLobBm/WWpK6yzbLrllKQ/tLYKT5rtg9oRo3j+PMAfAiA\n31z7lwD8iqreKiKvAvAsAP+llk4vI6xXJDKbJ6MPaaYw0n8Sygrneckn4KnNvClWnjdo+cTIBqiI\nvA9us1v392YA182oX6tLNGjTANwvGmks+00/q7hPMeVOcWlTGc+c54p62cz5rptVpIeg58r6UagL\n9SlPMMDKTPradWNaGReR1wB4MrLU6F/iyk4D+D0ANwD4FIDvV9X7a+34nCmNfvYD9CA9AHvDs3Up\nlHlFnb1IY4UnOoWFlRlfPfaKcgPuuCS0a53DcWuQ8QchS35xDbIR6CZVfcU6yrknmSAimi0Px152\nmx0ex7ML2ueCrdK4cBAq9VwDLdoblLI6+0mW5h49S4lkR6lxOkqssSEDeQ26yiGAJ6rqBck2s3yr\niPwZgJ/AqirnqTFtDHGIJjqczDXJ9PZ6y6STLNrIBnLvCQXCYxFnfx6n04myNXkE6tDHReQ6AN8B\n4BcB/ISICIAnAvgBd8ktAH4OqyLjVaTEqGSSxRuJUbSWr8IGJG+X5QzHssiBlOfTR2NFa5uTy4kS\nfV8DxgnB/XpkG90+CsDTAPwugA8iE96pEJFvBfAKZLn7flNVXzptm4uibLYuX3vJM4kknPkAfoFC\nt845xeU8bb1yEI59EiOlsJTBTphCbJ3IjjsUh54bmLvFUF0AyWQCKxRCOy3TyvjNAH4NmYLueSGA\nN6vqS0Xkhe7/F9TV4YWTkPcoYyINuk1ngLJ3qHXRnZvSyx91KfeKUjv8Q+HlfXPkmplWxnsAnq+q\n7xSREwDeISJ/AeCZWGc5P0rFON+MwnKzwsbFIPhy7mKo3skuli3OrhjktbXXcm1S8gtveJpHKMVU\nMq5ZiMQF92/b/SnWWTlPUSbjTkdoRMuJssLWBdJVKiZZhEKzejtN1yaFLM4rQctqUoc+/nIAPw3g\nhPv/CgBnVNV/s7cDeGAtvV0UZZPJiQARnszzy+N4styfj6KpeJLbia6U5AfIl1pQHb+leX+XJsM5\nDUyq/2tkjI4TgnsfgLe4P4jIQwH822k74GLQfx3ANyET+LeJyBtV9YPTtj0rJBXCl3DZ8wxho5vV\nYcWkfSlcvHUme+a37g+DdvP+TEnRc+fzMt0P59XFYUkrfI2t3TCot09m48r25cfyss7l2fnOqVCn\nu0ezkm3/HkM/owcqaaCu+FPgmFbGVfU2EbnhSPFTADzBHd/i2q5VMZ9morfK2VfZTrSoxx0nsoIC\nIaQ8tT5ui0K3GhWhWwMyOjvH3LoKTnzULHr5Bzz72PahNKOP5FN/TkPamefTU4OM3wHgDnd8XkQ+\nhExJmbmcrwT5JAythTvMtBA5HxbNDc6ELfv0MDNMZTsksWzQdhaNkzuFNldd8ZgldegqTi95B4CH\nINNPPoERlXMReTaAZwNA8/JTY/d/6fFOmx55+ffdJMs5yr51H21L2XXKUDsMyo3BZaH+sbZrM7G3\nnVFgWhkXER+p9Q4ReYIvTt2qpH6Q8dNLLONl46Qfp1lXoaVB7fPZ8bE7QgPHP5vJcPu+oIM3DknB\n8XqwsK5C27CczsbxCw8Mz8DFa7NrU4YsQGv51/RRGCcE96Gq+jH/v6p+TEQeVUMfHgfg46r6SXef\nW5EpM8tlgCb94lSSGJRjA9Ut0iflun0hKN2ti9nvWuMCuYcuZYM5G50DOsYgG/S1G6YiOfGtN0wb\nbTJQt7JjDoWJ3odT7lnhb/B2McMUnxU3RGck41c7pR2qeoeIPGDI/cOgfuVlZZdl11bctOqXZCbj\nmR8rS7z83hiN1sc5z3/rAu39uU/ThgP/YHEYOWWWa3hjs2j0ppJgALMR09SKu1E/43lOaNYp426y\n5THINkIfSc5XRnGpQiqOkw8gzXL3esXjZjN57cj3WVMlZVzqkHFV7QO4UUROAfgjAA9PXVZS9yYA\nNwHA9hc+aPV+FKtkKyFnfhJaOkEhHxzQZPmBm2TZoYnGzl6h/rT92BRqkPGvAfCdIvLtAHaQrQF9\nOYBTItJyEy3XAfhcqnIk49cvsYxXyEhk7NHwG5b20Hm/cudsiF4Z3H1vOJ/LeKjUvOqK/LhzxU6h\nTX+fMgN01N01VpVxQnBvEpEvBvBZZDHnOwDeLyJ7qnppeNWhPBDAZ+j/2wF85dGLWHHZ3h6unNdF\npLTyiZSxKYWD3OjkOqWbkft9RMlYlO1spkR6wasZmY19H+9FYS3kAYWrz22yIh/6Sae9XsRbWETn\nNXrNblBoclXDdmcl4yMRDepf9MDaP8Gpf68TW54kt0SJPOZFw5DXxzX3XejWRVo7dCmEDqTWDnGu\n/kE7K2/u8n38Yn/2zhYnhqJ1n6n3MYEQr4BOVIuMi8hxAH8A4MdV9ZyMuHA2VlyuW4lRQlNbBHFS\nuoQSM+BsnX7MbVJ4IddPlPG1vn7UZrN471g510LfN4jaxnFVPSMibwHwVRhROV8bSJ5SmfBT27xF\ng2o3GKPqPKDSLFvsVmyzcmeBzWYqGVfVFwF4EQA4D+hPquoPisjrAXwfsmRbzwDwxzPq/3yo8oDy\n+VSkH+vrKR2dog99eCOXJXXvivvMerJ8mRgnBPcbAEBEvhDAjQAe7V7fIyJ9Vf2nE/ZhJLc/Ky4n\nT9SvnFeRFFRWTPwaT7oslWnWh+ICRwxUDyna6tYE8VqJaJY84R2SdnD5+/pIeDv53tynYX3P+qKF\n+nn48Yo/LDOS8TtF5FrnFboWwF2T9m8pf3sTYVJRyHbkAU1FAWQXtM6F2XK5QL+fbu2Q8NqhXpg5\n94Zp7xiFLLr7SNlet0P6vmhm7Q2tQ8ZdYpY/APDbqvqHrrg2OV9qcuU7fDtxUiznkeekWG4NZ2sv\njONyPCyLaLgxnScPla719blNP3M+oO1WSlP5bxjTyriIXAWg64zPXQBPQpYd9K+xqsp5VWhG9CPv\no6BItlIyzlmZ3RrONq1jBuki8J7RlH5C9bnN3DtUJeOVG44OP72KzFAffwGAW0XkJQDeBeDVdfR3\nWUntRQuEOe7+Lo/jTscgXSR3AgEYOBlvbtHaH7rW1+c2810pNjTyfBwPKABAVf8RwD8CeKMvc7Ph\nk3I7gAfR/wufWfThINF2K4PEwMchtl4OEwM5EAy2yOik43y2j2a5c6WbZ1yiPvlsAGRg8sPhjrnN\nvMuDtCGcvw82ajVxPvIYaaFNZtXWiNYs429Epqy8FCuktEz0jflK0ageDvOJCl6Y7zycOAxeT73E\nySucBcszjfw89Pz6uOJ9YhlN92lUci/V+FWXkkll3GVKfDWAD6nqL9OplZTzkUh4YCKFgfURr7hQ\nmFXvWHbB4HgwKpsH4aPOJw0pdKtP1/r63GY/pbikklesi8BOwBTj+LUAbnHrQBsAfl9V3yQiH8Q6\nKOdV9poPAOEhM9r6KnuN5HHX7QG9R+uYj4WJwlTZgK719aPwxFbx3mVe2SSrpXZMRB26iqq+BW4t\nqVsK97j6erikeNnhSZZkCG4Qsr6beBlsBf2jwev2va5CZXxtP5+c5Ps4W4P3tN2gicRKA1RE3qmq\nX1Zx2W0Aqq4p420AHur22PossoxePzC8ypyomjWMQvjcP5wBNIpVdK8lrvZQyGFWCQM0un+jWIeu\nzesnwuNKQw/y1OcVxmTV4L5Cg39dMi4iv4ssEcuVInI7gBcjU8h/X0SeheyH4qnT93h6pvl6tOyX\nPxHWkkpmxeHbja7zcNJifp+UBQC040K3aFZRDmnQd/W5zZRHvnQvOV804p6gVZ/bsv5e1DiOfw2A\nHwbwPhF5tyv7GSypnNdOIvwwpbj0aJbbJ3nrnqSZ8V7QERudzNhkZYWv9fW5zZHXDm0Qdcm4qr4X\n2drmo+WboZw7SmXciSbLo08Gt3UqTJxs7Z/Ijxt+ORBNsnTpWl+/V+UdSqeu2BjmoI9vLjzJ4mSO\nExl2jjsZPRVkeOs8jeMuvFyPh0kWvtbXj5IjetneULkexQP6cBF575DzAmDiRZmq2hOR5wL4c2Tb\nsLxGVT8wbjvsZdNJNvKrMDaTCizbl17pLVNRUzHnKaJ1QO6YvJrxWlTfKNVhD2gzMZWZumVkjPo2\nSy4eotxXvrcpjdIZelJrkXFVfXrJqW+cqFc1M5NPL9VombGXeG7gE1ylkrIghLVwVlCh83n9qvtU\n9bMmquasFkhdMv5WlL+1pZDz2ok8QS6ShZUVijQcOH2jR3t2dk5kx7yNijZ38+Omy5Lb3w5jd+ck\nHbv6FHmOwba6e6dnzvNQxSUTwhkzU11lY/DrhznzOIXBipfx3aKMH54OD4PQJEvzwCVg2QnPAF+b\ny3h4LIKMRyG4xX5uGCbjdRKtOaZlFfk4Hs53vYyfoq0OL5AB6kLKB8eC0cnXdvNxnO/jnrUWK9TU\nvzUX8VEM0FFiyfvVl5Sjqn8K4E+naWOu+HBaLvMLlEuSDOVGWiIxUXbC1W+yMemeDg6BjeJiigZo\nFG7r6kdt+msjz1RRbS5zciXfR4m3dIWYuYwviqm/Gd7IPmXYETLi4oUopDv3qJOSQVmdU5mekag/\nzuSE72c8mVNsXvgJn0DZWTJjdG1lfK744TMy/MKhX3YchSz6bYF2glHZOkVrlntOcaFf49iAdWXH\nwz37O05x2eIQspUfh6fFZHxSUgNUSXii3ykl3i6iKOMHl9Eki0s8x2s8O5fxsWv7GMm4U85RJtdz\nmlRcMkzG6yBPcJUex/0EXo9mGg9y/YfWde6Etfytgz1XFuR6/0qqf6Vr8wQZoFu554puzt0s6uvr\nRKUBqqqfnkdHlpHIq8rZbX1ZYl1opKemjMVBUXlm2HsruVFKoz9nU0kZoLwe1NdPhuDSe2Oj2b8P\nJPrORO/DX5duf9nZZBmfmnG+5nzQ5zXJ05lmmpLxUZtcHRGdGpPxKUhNPkRr0dhDU5xI9GOytkNZ\n91g4bjh1ccBhjryG1G1S3t8NA3VuAJetF0oq50swDTJDTMZrIp9ESSvncN6aHnv+XTbyAScmokkU\n6fvnItRhY9N7hQbbnHI/0bdUhnUbxzeb1PdfMdTlYzbLWCTvRe97J9etQyUv90DY55xzhnZOUf1T\nLqP/Dsu4tws4twv9dnhnV9XYPcFnsAyMnYRoI/Bf5hhfYEpHURSNtOoQXKrvlJnYEKZQxFSypGgW\nJ7cmh98yEaqY6vvEbNAPxNqQGvAm+R4TSSOiZCleXnkrId6CwrmUovT9PCHjgwRSWeQmHYBTz/8U\nW7MYa4QXw5KZcy88Ssp5z3kp+6SQ86bnucLBmXXZs+mNzdboynlqSyTDGAkvmixj7IV0cijsIXWy\n3aFs5F3y8uc+OR6n20E4xXmChCdz/HPRK8tCdOTVMDwT6PA8/oqTTSG5V5eQ6JDW6ueZcRG2f+Nl\nEf3jJOO7WRRXg9v0EzNdDpkZo9MrLvtmgI5IyhsaiUnfG4NUJ9VQpQHK4bSJ7VOk2I+o+UaifpWX\nifuUCi/m+w8Je1klr+cqMYkdNdE3kTA6k19palO4EZrM9y4k75BPvNLkRFuUcKiRKOOkXL6+pvZI\nrPrgSt+He5bZuSSJ68YwRif5PcxvOUYdoyaiRe5U7teAkjHYoFnyRjPTtFt0XhJyolFouxSuq6rT\nc0r5oB80+gFtO6ReaU/IdbHcMAKamC0XMhZbO9m6/J2dkDhubys7bjXoueA1dU7eUmUA0Btk8nqp\nE2ZuDg6y494Bbd0yoMnJVLSWYYwDyziN462tbBzf2Q3Z+XfatAzI0e2F8bfvBLJJbbZbxWjoA8oF\ncLCf6TU9/j3o89i/3rI9sgEqIm8G8J/dek1fdpOqPnsmPZuCqRMSjUpCTsZykPC1xeWeQello7Kq\nzQYryK5OpEAlGppEp56TVjxPo3aVZHwReAW49CtJWVkJjz6HGnrDMdqwmdKYS6IszvScaDPl+a8I\nT4zeU8IgWBdMxicgIUfs/fFGJwBsb2dKyu5WUM53WllZm65rJTemDfRogV3XGZkHvSD3+05Rp4TR\nUHoIklEA6yfOSUzGa4JX8zSDvLbbmRyf3AnCd+XuRQDAFdsX87LdZngGWi7OvEcyut8PhuW9h9la\nunsaYU1dv++yhnZJrhsJr+oGsvEyPomemjIFEpOLANDeysZslvHTu9n+5MdbNOiOwYVepsPctx8y\nG3kZ73V5mV1FQ3W99yVgHA/ogwG8QES+QlV/3pU9dgZ9Wh5KjbRE6GuVi2OKH/9oXWhFuuapDe4J\n3kfSSFxNZWcDZTz9RScTDg3xfpc23ygeD1rsAXUDL21KLttbVMcZgyUbmPv63Ka/T2XK/ipDWotF\n0eM1oTd0wWyejE8Lz5InsuCyt9PPkl+2E/ayvWxrP3tthzJWzhvOGB2QwLJyfrabLSo62wlJXfxk\nkFdggNgb6vsZJ8VbUi2kfkzGj5Ia58vGLCmeZ3nfcl6d41tBEf+CvbMAgOt37s3Lrmydz493Gpm8\nH1DK6Ht6YZuWTzevyM73g0p68TD7HTgsy3xbGdk1xntePTZbxmcwscYTzg03fm63gtfzqu0LAIDr\ndu/Pyy5vhQmXputInzp3fy9MqNy+fzkA4GKXIrz870kU2VgTKzDcj2OAnkGWZv9XReRPAPzQbLq0\nOiQ9rRXSM5ZHL8T9hftULuhM1R+9TzN5H6uDyfgojBF2G3tA3Wu0b6LzYFJ6/sYh7fnp99bisFu6\n1tdP7hU3eqRweaji+mEyPgoVaxBYYWhRmNVuO1O0vdEJANfsZIr4Ndtn87LLmuF8WzIlp6tBrs/2\ng7H5+cPirgqHzht6SCFg3Q79nOf9K1kTstYibjJeN5G8O2/o8XYwQK/aymT8+q178rIb2uF4zxmg\nl8gA/VTjyvz4ktv086522Nbi3uaxwr2NHJPxuqHx0YeSH2uHENwrnQH64O2787JrWmFM32tkz8Ml\nyiD3+WYYu/3ky92HQcbzkPUVMBZnwTgGqKhqD8BzROSZAN4K4PKZ9GoZqXBn12aQ8RpQ+PWYZUqE\nFuowIQxrdOme6n2s/u/E5sh41XpP9WUJK67KK5rICgoAXr/mVPz9XRdmtUdGJ6+B6LptWNq01oKu\nzetvFe9TuWdc2ftIhBr7/X2jYSDlDV1+ZWlzZLwuEhMqDQ5JpNDaPaewcCji9buZIv5FW0Fxuap1\nLj/eEecdosxFd/dO5sfbTnnvkkBf6GZKzkVaM3dIfer7NaCbqdiYjHsmWetbMYQ1ndK80wzeoStb\nmXLORudDyON/opGN2ecHoQwI13p55zabjYoMWpMMtaszTldhMl4HFbrMViPI42nn7YxlPIzjJxqZ\njnJ+cCEv82M7ANzZvazQ5qj9WFfGMUBf5Q9U9WYReR+AH6u/S/WSDJedlkkyihytO06Vski/xHua\nKLfEtLHiM3hgFuRhXUkZn4bKj5nDUCeR3WgvOeftpAyh/S1nQO5S+CCFHzbc2ghOd87X+vrcZp6E\nqDGZDOXzOhXPRXK99vKzcTJeJ5LwgDZJzrwCfbxJa4eameLCRuc1zWCg7rm2LmmYbWfO9PcKbfr7\n8L1TSYw2SJdhTMZHoWoJQYkyERIKccKh7LgtYTJmR8I4vS3ZAN2l83ytr89tDlL3r9yOYnUG4ikx\nGZ+CsBc46SckOynZ89aPzZcAABywSURBVLLJRqU3OgHguDjPZ4PGaSkutWAG+WR3Wm5H3Vt9VRnZ\nAFXV/+vI/+8A8C9q79EqMYtFvuy1yfe54hDZMdryWnHVWrhJWEPNZu1lfIy9pMoGxKPXVbZJp33+\nCV6v2fdbVGzT9kKUbMWn6h9QRmi+tr9VbDPPczFO2G2FdZ1nKo13iR7e5hLOsq+9jE9LxZ6feRGV\ncWZPn2xlm2a5jzmF5KQExYR3qNiTTN63NCjklwbhWl+f2/T3aURGZ7GflenM11DBMRmfAB7WcqU4\nrZz7Y04o1HWzfrz+rZ9QEriMr/X1uU1NKeeJfq6jLlKFyfgEpPT1EtkaJGTcr9HvlwyqTb9Qmtrh\na339uM1UVFlq4iV5y5VnY7ZhmXlm3FkKyDzdKwsU9DVdVzo3av308kQ8bEFKsSxVJ7HuEwieyQHt\nqNLbcbPptNcbr+cUt8aNlseht9OgYym0GTyg1Leq9W/R+0zUyfcaStQdg1nMWRkzoNRwcy8lW6b4\nNT1sLPoELHtUdlyCy37PhSc2Bh0qoyy67jg2QIv7JkZr5aqMURtqjTK8bNB+hIN+OPbrjn1WTyAk\nW7m7HxILnWqEhESHmnn8z5ATiK/19blNfx++d7RHosmwAZAxOUadVKJB0kG6LvLqYi8oFvc5Gb23\nH9Zw3te/lB8PNDs+MwhCHl3r6nOb/j5876nDcVdIsdgYA3Ql8TI56Wbis/B8GmtBKsttyuuZ3ge0\n5DhFwhgd0KjjQ2d722mrVdymzryWlK/19bnNVBKiJBXvIxViy58Re0P1yHWGcZQmyUszIShc1jTt\n2pgnqWgQ/m0gI7Dr9jHkbJ73d7Mw8c93T+VlJxphvaf36J9TStBC1/r63Ka/D987OWavoRffmDF+\nPpkmNFjO+m7y41I3TBSe6WaJ4Xh9/t2UhOhAs4nC8yTjfK2vz236+4DuLRs0yWIGqGEYRfLQkMRg\nOM6gyNXzENxQ5pMHScnmyy7SEIMm/TiE8T2vHxmgo4bgMlWKTW5hrvkvgjGcVHIuwodUDTgU0c2I\ndHhvTwq3baFZKONrff1BFM6VmizaHMXFmCEp5Zw8NH7PwvOHYSC+6zDzZt7ePp2XNWnNmzdGzw92\n8rLbO+FaX5/bzPdGpHtvknJujMk4ER4pXWbABmgmc5coI7/fq/aOHZpkoWzmpxreAxr2+byDJll8\nfW4zTxZXJtej5ptZ0TmYjTRAZ5KYaJasuSfTQm9nyDizw6mEQ6m1CWWKbmJZWXTa701I3szcg9lP\n/3oM3MDM4bSDrWL9eL/RYgKW5C4rZRfk53kNVPZalZgoYsnXgxqOCb4bjZ4V8s4PMkHsJtbHHVJs\n+YFyJsSOKwsG6CHFnPv63Ka/T7w2b+y3Eb938yStH5Os9fXXDngxGynnHReeeBAU6bv3s1DDY81g\nVHZJ3vcamYxforUSdxyELSp8fW7T3wdRCG6in+Ng4/DmkvrqSZ6E5Ew72fi6fxi8lfceZAbkZ7ZD\nsmFOpHW8mU2yXOiHSZbPHIRrfX1u099HymQ81fc1GqY30gD1zHxdqFGKGZ3zZ+RtVlC8rnDskET9\nUiPNr9GnjLVex+lxUpd2YjBmAzQRwsttIhGCKwmDISqLrO8jr0yJwl+5TYuxGiQTS9FhIjFKtx+E\n88BlcL5AbnqfxfZemhnf7p/Pj3fcPqAHNIvC1/r63Ka/D987lSim1BMwybopY3WpmGiQ1DjPXplB\ncdzbR1C0P+cmRC52ggF5+3bw/vitirr9YJSePQz1z17MwhMPL4b6up9dKx32gBa6HkfZJNc+m5Ab\nR/A6AMtTn8+7SUOhkHHJwmn7AxqnnVcTAPZabpKF1njedSmsc777XDbJcng+tCkHTsa7aWUhLCda\nTxneaAPUMIwShhmj064BbVKlVvE+7M1MTeBzkiJvjHKbU68BHWZ4rukPwUYyyXfp5ZETtJBC4r2U\n+/2ghJx1BuSZflBWOD3/MXd8kWZR+Fpfn9v09+F767ThiWucGdcYH1bO+Vh9SDjJ2MEgU6r7FC57\nYTso2n5PT1beO4fk5d93sn8Qzjdy71C6f7rmkWHGFFRMsElCl4nl3S+lCMrGYTMbf++RMDYfUMb+\nLTfJ0qFJlgv7lFTLTa7IfjjfOCxOFFbpP/EbKSlfEcwAdZg3dPaY13MJSYXdcnnKQ1pirFXq874p\nDpdtZZUG9MwJKxaJNRBsgKo3PMsy3qa6kXt/E/cBSt6nFuqMFY5rrAcJD2iPlOpDp5BwpsPzLiSL\nMyK2JYTgXnQG6AEZoHytr89t+vvwvSujGQwDqNZqEx7QSDnv+lfaTqLrQs/JW9ltU1iK36+WJ0m6\n5Nk8zI4bHbqnNzzT+enC+yhVzk3fMIYTyTWFYeVHPNHozKV9CpftdIIJ1XCTLDwp2N8P573h2din\nSRYn45GkthKT6WuKGaAJVm6N6JJjhucKMiQMNQ67HV4n0nG8XcfbrPhjmk5PhoOV6dbFrbfCfcqS\nEqRmPzl8MXdzldQ3VpdRldKS794PZQNSTLqkiO+7DIdnOrt52Z2tLHSLk7IcDoJyvu22WeGye3rB\nAL3z8GShTX8fvvcgESY5kQzbutDNoOR7zu068jzSDkBodKVw3q83UNqvOYp0SWT0b/QTxiZ3ySet\na1NOANZYk2O/DdTGGJDcN1je3UQIi7BeclEntA/5oB0E0q+GYKO2TaG13tsZPzeuna1wo36zTHFZ\nP8wANYwNJKwRm2ANaFXynjLkyCtXmTR6cBL9OOndHX8NaMowEVOAlo9pv5PEHrGcsn9A6zA7efp+\nCsHtZh7M7UYwKvs0te33+TwYcMr/sAbU1+c2O/keieQBTe2XOK0BacboelC1tpnXyyeqNMg75PIJ\ngbaqjZT30Gai0YqImQEvr/CPA7Wj7B1K9D2i4j0bG0CFLRfJIE+OONnmiZf8sgOSRzIWNWGARpM4\niWckX0JElpgkVJG406nC1cQM0CFYWO7kmNdz/tQ6bzbiNiySOi7RCPLiqNKQ60pI2hNlRnGiTFL7\n3FWGH6duND42iqwgCdkoXQOa2D/uXCczIFukmXTJAN12Ws4haSHnuyFBi6/Pbfr7VK4BtWHYKKPq\nB6NCOW+FHSjQ7GQXR96dcfID+IS3lOHc6/4DTjA3RpuGEVGlV3DIuZPj5gGd9wJZGhLuC7lNOu9/\nO3jLuN3ivdOWcnm/VxkzQEdkFsboIo20dXs/Rg1UhOvlYapRdsSqOnQ65QFtxK+FSqlusjE5iF+5\nH6XOm3yNE9+zuAZ15My4xubgZZ8fAfIO9RqZJn3QImOymSWiaJBAdsjV03Jrh3g9J2dSPN/J6h90\nQ5t+j0S+d1nWUmODqUkMIk+OM0CbB0Ge25eyY2+IAkc8QYllTTzm54ZncPxj0EqELE5LRXIaY3OJ\n5sW9AXoYCr0xmszEPAJe3mmXlrAP+obKoxmgE5AytEY14pbRSJvEGF3G92GMT+nXmDK4vLFXFkaV\n2oaFcSeiPTvdIgsOrarc95bTL/aKVm3wcBbXNQGAQuLrssJwmNj6JaWwxNuwGEvHqL/qlZ6g4aHp\nSgLtJ8kPEAxI76XsUMbE7VaI7fKG6YDuc0jX7ncyFxBnDe25PRK1y1p8RTh96vMYJ2zCsuSuBqmv\np+ork+E6AIuOD0ts74fC7bOZxt6+GORaOkFTl352zGtEdYsiB4452ZYwMdPfGf57MmpETVwpcZ2p\nMptBYngsG8oauQEayrbPZzLcPGC5pgmXxPDIIbr9nUzeDynLYoMmXI72LTpe0yHXDNCaWBeDbF3e\nhzEBVWFYqbJkCC6dr1KGGkdegZAxka+NM00U61fNSqaarPD4jlxmrDaTfKesJZAXUotF4Rzdx6/h\nBNIGaI/WdnZdpsUeJRzKDc9e1WxNBSbPBjCWgituApDXxzUPnXJ+MSwMbVzqhAucAQpOUrRHkzQt\nlwWXngsZpKzFVIdG7bmxkswi7DqRQTk58ULedy/jk06yQFruuuKYHSdrrFgoPSorEK5uBqhhGEVG\n3gd0/HVnURVvbLLR2awyQLm+v468nUf7U1a/KglR8lrT2NeGYV9p2dR4HgVARicrCc4g5CZ77h82\nMLsNUlz8bDxV4rWdfouLyNvpDc8ozDHRp8iLz0lhhnhDTcTXm6rvObVUIqGoyyAIX8Mp4o39YIDK\nRVok2nOafIsnXiix0W7btcme2Ebh3ig7HvY+TJ5Xj7q+szJPd3I5UDEKgB0y4gbyxj5Fr1wieXfP\ngzZ4kiUsYJadZqFNfx9NTbofPU6VTfM5VTkK5oAZoIZhlCKJeJBogi5SgIv1k+NjFM/lXsnolBYp\n525g5gQrylp1viZv+GgalaTWgHJYcOJ9qmkxq8EsFtMkNiiPDb/EzuHkyVFnLPZpPVG/WdHPREZb\nidZ7+sbTRqU0nGKDxLM2LZYZd/ko+xqGfT0l51Lr8uO9l/35xAReNyjnekDxix2nqG9RRqHt4AHN\n91mmNvP78L0bieNpjVILx10OZv3Zp+bUWbZaxeMBhdDmc3qHZIAmJlmEJlkQ1d8utOnvE92bqidT\nUs+CBRmjZoAaxgqS2u4jSs7jy6a9UVWIbZWXkRk2mNIMoLAxmljno4PEjVJKyDh9S7zPOqPRkxOZ\nFd+hsQASn39q31spS8Tlv2luxhuTJNfRjHeCqP2+9zhxPxOVWHl3spXc3za7wN3ING4DR8ZPbwyG\nolg5zy4eRGV+D4oyqzaxRiLaXqWRaNO/ljw3iTBKYwWZxRA04kRE5PWk8TO1PUo04ZJfSHLdc4Zp\n6jqqz23643hiZYw1zbPw8o8Y+V4HZoAaxprABo2mFMy6jJs6jSQ32AoboHxcOIjPh8F6yj4l0+RO\nSUK5t31CF8yoX3PZuZQHlLyVySgAf5qVjHH2SPQe0GFt44iB6dtnZaZqljv1KJm4bh65ch6KIqXZ\nOTF720FQ+i68ULfDhY128Hb6SUOhsgFd6+tzm/4+sRFQ7KdhjIKmfo950o4mOgZtZyySk77vZFPb\n5KKkcNv8mMr4Wl+f2/QyXpaEMdnnNZqkNgPUMFaEhRsvFY7HpLJatYYh4RWNTvu1coNGyQVD7lPR\nN5GS0wv8mJOTCMZwZv1cpJwuUVhu4jhhC5YJeXIKJbkulY4TRm0qudfMc8pZOO5imeIjTym3AIVv\nJ8JuAaDvFGjeTqK358LMj2+HdihUUdqZqqkUgsvX5vWjLSqK947CE72Ml72PSeTR1o3Oh2k/32mH\nmoQH1G/7AwD97ay8txvKertORneDDDd2Sd79es6dYGHytb4+t+nvE0+yJDygk3xe004kziEs1wxQ\nw1hDckNGyyw7r0lziF5dN08fa2LQT3lAG01KbuHKB6TlD3g9qF8jmkogULY2qC4HJ3+0PuSx7ONe\n9OSBkTHq1xB5IIvHkdeT90h0OncUQpsKXR9nwiQxyeLlfRD9ghefi7J1zkPvb6K62kwbDOLHZJIt\nNgz9UHZIz0Ajz8YcLtzepoRDLknRgLKCHl4elPP9K9wWFadI4T+u7t4kkKlw3EUo58bqUTFxrdth\nsOw7V3v3ZLhg/yAra3bIhcnz4p3drB2S8YMrwrX7p32boU5/Twv3rmSN5NUMUMNYderan29UbyUR\n6cmjrldItBmF3UrxODLsUjOEFf1M9aN0HB/mVa1zJtD2VVwOKtd9JkJsWQQT4bhslKa8omORCIn0\nyS3icHSqkq9jTocH5+G6VZlxjeVjFsNFYvzUKBt5OO67aBQ5Fk4f+gRZFKnSbwflu9l1xmQ73Khz\nPBx7w7N3jO7jvEPapgesKpFWXSJsBuryMQu5L1lvOXAGYW8vFHpjdP+QQmyFZNwlmetTGPnBKdpO\nyxmevT3yunrDsxkNztSRmt70ksqzGaCGsYokt1GoCIeL0tcm1ogipYySV8VXKa1TvGVyzU7CExt7\nC4vtlHkWk4koEgp7pW4dbcQ+/HyyTIZcN047ZoyOziwMppS3MnG+NBN07iFNlFUlEWIib2eijn8W\nS7JQJ0NvNXFsEyobS+lWQp4oUiUcDtyyiJ4k9jOkDJ+svDd63mNP58mA7Tpvp/d6AsBgZ1DsB5NQ\nztdpfdxaMq23etz7lNXNU9pSh9gIdHLci8Z5t40KR2C1wjPQcImeB5TouXMZTbic8jJOPw7eAOXn\njzOg579HJW9kms9znLqz+L2AGaCGsZ4kDLtUOG40rkUKh1vPEHkmXR3O8sZrcrwyXNJmPqOeSDgU\nr32kbkqqrFhfE/dhI0ATmUyTKf2B/LPTlAJWMmOa2/PcTF0bShsLJTYwpVjG4bg+EWJY/haOy7Ys\nSvy4x8+lq86JYHwVehaj7NF5P/m5gLGq1Kn4jaqcU7ir0LKIfMwlA7NzPBPSTocUcvIU+bGYvaoD\nDjvcyo5li5Zf+HGYFf4+DdR+C8Y6lfMUS+o9WmvmNY/AOYTI09508j7YIQ/oTjYA946FgfTgCpJ3\nN87zON3fC0qIHsuOmzu0jYuT8T7J9SBacD3yOxmfJZBrM0ANY8UZFvrKmTFT4028TjIxI84XNI68\nApFlqLlbJq30pgzQ3BAmJYLXeA4Ss9yaWteaMEB5Nj6yYH39khn+/DjlqY2MzqKBWWZ0Dv2OTKlZ\nHkb0gJZt8ZNMUtSPX4t1nLySkEQJstwzJCmPfkk/KpMYzWhG21gQtXqy3QuvyyflvNXKBLnB4+de\n9sKKNB/ne0jTmLjVLCr8jB/7e7Sn7iDy2q53eKJRM6nvluSR5bm9lRmJLJeDnWzG43CHEmmdCLLZ\n88svaJKluRUG/W1Xv9GgtabuGdFDyg6dijBbU7k0A9Qwlpz8R3sCL1qc6ZUMotwIo/NsCTWKRlpu\nTEbdSITtRspzwshL/OD3u+ldz32XJGEMRiQ8RtG9NWGMRrcc7qlNeUAjgyDRt4n0I66fd9eshJkw\n7HMdw5hLhdamw3I1WSdErpIMRh75otc1dZ+Rjc4ybG/Q5WPaR3/YV1nqAfWvrJwHQdtyyvneVjeU\nNZ1RSnUGFeNW6tpOP4z9lzqZUh5NSCYH3RImee9VTBK+aIzGLH7mErZcdEtWX1jG3STL3nYnL2v7\n0PO9IIM9XvPsjpvUTitx3KU6lw6zNaTdbpB7EdJ/Em9p5vumzlG2zQA1jBWk1BM3vFY4dIOh0mAY\nLelxM38axam6l7JQvoSBGe9vlTBQveHZo/tEyrkLBZaEMQgArUGxzIeIlY1uqZDHZqKfHNLoPo84\nARIbo+78lN+LeUMrGMc4mkBZTK0hS4bLltZ3B6nMuSVbt+TGZFkkob+2LIQ3Wal4XaSL+edqrA8n\n0VDyupKJH2O5qPwew2GTxsJtp5yf2D7Myy7b2gcA7LVIYSch98YmG6Vd+m251MsU8bMukygQFPpu\nMwzkvWmMTmM5WZIhgj2gLfd7f7wd5Pmy7UzGtxqTxcV23BrSs4dBxju9VuHeC2eOkyyiK6jxiMjd\nAD49g6avBHDPDNqdBavUV2D2/b1eVa+aYftzxWQcwGr1FTAZHwuTcQCr1VfAZHwsTMYBrFZfAZPx\nsTAZB7BafQWWRMZX0gCdFSLydlV97KL7MQqr1Fdg9fq7rqzS97BKfQVWr7/ryip9D6vUV2D1+ruu\nrNL3sEp9BVavv+vKKn0Pq9RXYHn6W7WrkmEYhmEYhmEYhmHUghmghmEYhmEYhmEYxlwwAzTmpkV3\nYAxWqa/A6vV3XVml72GV+gqsXn/XlVX6Hlapr8Dq9XddWaXvYZX6Cqxef9eVVfoeVqmvwJL019aA\nGoZhGIZhGIZhGHPBPKCGYRiGYRiGYRjGXDAD1DAMwzAMwzAMw5gLG2+AishTReQDIjIQkcceOfci\nEfm4iHxERL5lUX08ioh8q+vTx0XkhYvuDyMirxGRu0Tk/VR2WkT+QkQ+5l4vX2QfNw2T8XoxGV8+\nTMbrxWR8+TAZrx+T8+XCZLx+llnGN94ABfB+AN8D4DYuFJFHAHgagEcC+FYAvyEizfl3L8b14dcB\nfBuARwB4uuvrsnAzss+LeSGAN6vqQwG82f1vzA+T8Xq5GSbjy4bJeL3cDJPxZcNkvH5uhsn5MmEy\nXj83Y0llfOMNUFX9kKp+JHHqKQBuVdVDVf0HAB8H8Lj59i7J4wB8XFU/qaodALci6+tSoKq3Abjv\nSPFTANzijm8B8F1z7dSGYzJeLybjy4fJeL2YjC8fJuP1Y3K+XJiM188yy/jGG6BDeCCAz9D/t7uy\nRbOs/RrG1ap6BwC41wcsuD9GxrLK0rL2axgm48vJssrSsvZrGCbjy8myytKy9qsKk/PlY1llaVn7\nVcVSyHhrETedNyLylwCuSZz6WVX947JqibJl2LNmWftlLBCTcWPdMRk31h2TcWPdMRk3PBthgKrq\nkyaodjuAB9H/1wH4XD09mopl7dcw7hSRa1X1DhG5FsBdi+7QumEyvnBMxmeMyfjCMRmfMSbjS4HJ\n+QwxGV8KlkLGLQS3nDcCeJqIbIvIgwE8FMDfL7hPAPA2AA8VkQeLyBayhdlvXHCfqngjgGe442cA\nKJvlMuaLyXh9mIwvJybj9WEyvpyYjNeLyfnyYTJeL8sh46q60X8AvhvZLMYhgDsB/Dmd+1kAnwDw\nEQDftui+Ur++HcBHXd9+dtH9OdK33wVwB4Cu+1yfBeAKZJm2PuZeTy+6n5v0ZzJee99Mxpfsz2S8\n9r6ZjC/Zn8n4TPpncr5EfybjM+nf0sq4uA4ahmEYhmEYhmEYxkyxEFzDMAzDMAzDMAxjLpgBahiG\nYRiGYRiGYcwFM0ANwzAMwzAMwzCMuWAGqGEYhmEYhmEYhjEXzAA1DMMwDMMwDMMw5oIZoIZhGIZh\nGIZhGMZcMAPUMAzDMAzDMAzDmAtmgC45InKDiOyLyLtram9XRN4tIh0RubKONg1jGkzGjXXHZNxY\nd0zGjXXHZLxezABdDT6hqjfW0ZCq7ru2PldHe4ZREybjxrpjMm6sOybjxrpjMl4TZoAuEBH5BRF5\nHv3/iyLybyrqvEVEHuaOrxCR99O514vIr4nIW0Xk0yLytSLyWhH5qIi8enbvxDDSmIwb647JuLHu\nmIwb647J+PwxA3SxvBrAMwBARBoAngbgtyvqPATAx9zxowC8j859KYBPqurXArjFtf8CAF8C4HtE\nZLu+rhvGSJiMG+uOybix7piMG+uOyficaS26A5uMqn5KRO4VkccAuBrAu1T13rLrReR6AJ9V1YEr\nehSA97pzOwBOAXi5O7cP4NWqeoc7fwlAZzbvxDDSmIwb647JuLHumIwb647J+PwxD+ji+U0AzwTw\nzwG8puLaG+EE3PHl9P8jAbyTHoZHA/g7ABCR6wB8TlW1pj4bxjiYjBvrjsm4se6YjBvrjsn4HDED\ndPH8EYBvBfAVAP684tpHA9gBABF5KICnILj8vxTAe+jafDbG1eMHxTDmicm4se6YjBvrjsm4se6Y\njM8RC8FdMKraEZG/BnBGVfsVl98IYF9E3oNMgD+ELGb9F5AJ/N8Duft/V1Xvd/VY+A1jrpiMG+uO\nybix7piMG+uOyfh8MQN0wbjFzl8F4KkjXP4oAI9R1fNHT6jq8+n4AMCD6f//VENXDWMiTMaNdcdk\n3Fh3TMaNdcdkfL5YCO4CEZFHAPg4gDer6sdKLusDuExEPgFgkBL2Me+5K9kmum0Ag6rrDWMaTMaN\ndcdk3Fh3TMaNdcdkfP6IrYM1DMMwDMMwDMMw5oF5QA3DMAzDMAzDMIy5YAaoYRiGYRiGYRiGMRfM\nADUMwzAMwzAMwzDmghmghmEYhmEYhmEYxlwwA9QwDMMwDMMwDMOYC2aAGoZhGIZhGIZhGHPBDFDD\nMAzDMAzDMAxjLvz/ZADhz8mhbu0AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa58ccee898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(1,5)\n", "for dr, ax in zip(sr, axs):\n", " f = dr.Ez()\n", " ax.imshow(f.T, origin='lower', extent=f.extent*1e6)\n", " ax.set_xlabel('y [$\\mu m$]');\n", " ax.set_ylabel('z [$\\mu m$]');\n", " ax.set_title('{:.2f} fs'.format(dr.time()*1e15))\n", "fig.set_size_inches(13,3)\n", "fig.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }