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Complexity of Logics with Kleene Star

• This course is devoted to complexity results for reasoning in
Kleene algebras and their extension, action algebras.

• These structures include Kleene star, which is one of the most
interesting algebraic operations used in computer science.

• Due to its inductive nature, theories involving Kleene star, even
in a purely “propositional” (atomic) language, share some
features with much more powerful theories like Peano
arithmetic.

• The methods used will be mostly proof-theoretic: thus, we shall
discuss proof theory for algebraic substructural logics including
Kleene star.
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About This Course

• The course belongs to the LoCo (Logic & Computation)
category.

• The Computation side is connected to complexity results.

• The Logic side is connected to substructural proof theory used
for logics with Kleene star.

• There is also connection to Language, as Kleene star is one of
the natural operations on formal languages.
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About This Course

• We suppose that students for this course have some
background in Logic and Computation.

• However, if you see a notion which you are not familar with,
please feel free to ask for definition. In fact, we mostly do not
use really advanced concepts, and many basic things could be
explained in a minute, if needed.

• We shall try to give mathematical proofs for most of the results,
but due to time limitations some of them will be just sketches of
proofs, without deep details.
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Kleene and Action Algebras

• We shall start today with the most basic example of Kleene
algebra, which is the algebra of regular expressions.

• Kleene algebras in general are a generalisation of this algebra;
an important subclass of those is the class of *-continuous
ones.

• Action algebras are Kleene algebras with divisions
(residuals), which are substructural versions of implication.

• We shall discuss complexity of atomic (equational, or
inequational) theories and also of Horn theories, i.e., entailment
of equations from finite sets of equations.

• Complexity range will be huge: from PSPACE up to Π11-hard.
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Equivalence of Regular Expressions

• Let us start with a classical algorithmic problem.

• A regular expression is constructed from letters of an
alphabet Σ and constants 0 and 1 using three operations:
⋅ and + (binary) and ∗ (unary).

• The standard interpretation of a regular expression is a
formal language, defined as follows:

𝑣(𝑎) = {𝑎} 𝑣(0) = ∅ 𝑣(1) = {𝜀}
𝑣(𝐴 ⋅ 𝐵) = 𝑣(𝐴) ⋅ 𝑣(𝐵) = {𝑥𝑦 ∣ 𝑥 ∈ 𝑣(𝐴), 𝑦 ∈ 𝑣(𝐵)}
𝑣(𝐴 + 𝐵) = 𝑣(𝐴) ∪ 𝑣(𝐵)
𝑣(𝐴∗) = 𝑣(𝐴)∗ = {𝑥1…𝑥𝑛 ∣ 𝑛 ≥ 0, 𝑥𝑖 ∈ 𝑣(𝐴)}

• Equivalence problem: given two reg. exp. 𝐴 and 𝐵,
determine whether 𝑣(𝐴) = 𝑣(𝐵).
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Equivalence of Regular Expressions

• The set of words 𝑣(𝐴) is called the language defined by reg.
exp. 𝐴.

• For example, reg. exp. 𝐴 = 𝑎(𝑎 + 𝑏)∗ and 𝐵 = 𝑎(𝑎∗𝑏)∗𝑎∗ are
equivalent, since they define the same language, which includes
all words starting with 𝑎.

• On the other hand, 𝐴 = (𝑎𝑏∗)∗ and 𝐵 = (𝑎 + 𝑏)∗ are not
equivalent: 𝑏𝑎𝑏 ∈ 𝑣(𝐵), but 𝑏𝑎𝑏 ∉ 𝑣(𝐴).

• The equivalence problem, of course, has standard solutions (e.g.,
using finite automata), but we shall focus on the logic behind it.
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Equivalence of Regular Expressions

Theorem (Hunt et al. 1976)
The equivalence problem for regular expressions is algorithmically
decidable.

• More precisely, it is PSPACE-complete.

• We shall discuss a proof-theoretic approach to this problem,
following Krob (1991), Kozen (1994), and Das & Pous (2017).

• The idea is to give good axiomatizations for equational theories
of regular expressions (and more).

• For convenience, we shall talk about inequations of reg. exp.:
𝐴 ⪯ 𝐵 means 𝑣(𝐴) ⊆ 𝑣(𝐵).

• 𝐴 ⪯ 𝐵 is the same as 𝐴 + 𝐵 ≡ 𝐵.
• Inequation is more like implication, and it will be easier to
axiomatise.
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KA𝜔

• The infinitary nature of the Kleene star is most naturally
reflected by an 𝜔-rule:

(𝐴𝑛 ⪯ 𝐵)∞𝑛=0
𝐴∗ ⪯ 𝐵

• Let us formulate an infinitary axiomatization as a sequent
calculus KA𝜔 , with sequents of the form Π → 𝐵, where Π is a
sequence of formulae (reg. exp.), 𝐵 is a formula.

• “KA” stands for “Kleene algebra,” and “𝜔” is due to the
infinitary rule (𝜔-rule).
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Sequent Calculus

• The idea of sequent calculi goes back to Gentzen (1934); proofs
in these calculi are much more convenient for analysis, if
compared to, say, Hilbert-style proofs.

• Namely, sequent proofs have the property of analiticity:
premises of a rule can be somehow obtained from its
conclusion, which facilitates proof search.

• An example of a non-analytic rule, which could have been used
in KA𝜔 , is transitivity syllogism:

𝐴 ⪯ 𝐵 𝐵 ⪯ 𝐶
𝐴 ⪯ 𝐶 𝑇 𝑟𝑎𝑛𝑠

• If we wish to prove 𝐴 ⪯ 𝐶 using 𝑇 𝑟𝑎𝑛𝑠, we have no idea what 𝐵
could be.

• We shall avoid using such rules.
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Sequent Calculus

• As we have already said, our calculus will derive sequents of the
form Π → 𝐵.

• The meaning of such a sequent, if Π = 𝐴1, … , 𝐴𝑛, is the
inequation 𝐴1 ⋅ … ⋅ 𝐴𝑛 ⪯ 𝐵.

• If Π is empty, we have 1 ⪯ 𝐵.
• Thus, the sequential comma in Π is a meta-syntactic
counterpart of product (multiplication);→ corresponds to ⪯.

• Π and 𝐵 are called, respectively, the antecedent and the
succedent of the sequent.
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KA𝜔

Axioms and rules of inference of KA𝜔 are as follows:

𝐴 → 𝐴 𝐼𝑑 Γ, 0, Δ → 𝐵 0𝐿
Γ, Δ → 𝐵
Γ, 1, Δ → 𝐵 1𝐿 → 1 1𝑅

Γ, 𝐴, 𝐵, Δ → 𝐶
Γ, 𝐴 ⋅ 𝐵, Δ → 𝐶 ⋅𝐿 Γ → 𝐴 Δ → 𝐵

Γ, Δ → 𝐴 ⋅ 𝐵 ⋅𝑅
Γ, 𝐴, Δ → 𝐶 Γ, 𝐵, Δ → 𝐶

Γ, 𝐴 + 𝐵, Δ → 𝐶 +𝐿 Π → 𝐴
Π → 𝐴 + 𝐵 +𝑅1 Π → 𝐵

Π → 𝐴 + 𝐵 +𝑅2

(Γ, 𝐴𝑛, Δ → 𝐵)∞𝑛=0
Γ, 𝐴∗, Δ → 𝐵 ∗𝐿𝜔 Γ1 → 𝐴 … Γ𝑛 → 𝐴

Γ1, … , Γ𝑛 → 𝐴∗ ∗𝑅𝑛, 𝑛 ≥ 0
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Infinitary Proofs

• Due to the presence of the 𝜔-rule, ∗𝐿𝜔 , proofs in KA𝜔 could be
infinite.

• However, each proof should still be well-founded, i.e., while
infinitary branching is allowed, each path from the root should
be finite and reach an axiom leaf.

• Equivalently (see Aczel 1977), the set of sequents derivable in
KA𝜔 can be defined as the minimal (w.r.t. set inclusion) set of
sequents including all axioms and closed under inference rules.

• This set is the least fixpoint of the immediate derivability
operator, and it is reached by its transfinite iteration up to the
closure ordinal for KA𝜔 .
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Cut Rule

• KA𝜔 admits the cut rule, which is a generalisation of 𝑇 𝑟𝑎𝑛𝑠:
Π → 𝐴 Γ,𝐴, Δ → 𝐶

Γ, Π, Δ → 𝐶 𝐶𝑢𝑡

• A syntactic proof of this would be rather standard, but involves
transfinite induction.

• We are not going to details of this proof now, since on one of
the next lectures we shall present such a proof for a more
general system, ACT𝜔 (infinitary action logic).

• However, already today we shall obtain a semantic proof of cut
admissibility.
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Substructurality

• Let us concentrate on the *-free fragment of KA𝜔 and compare
it with more well-known syntactic system.

• The intuitionistic propositional calculus (IPC) in it sequent
form (see, e.g., Takeuti 1975) also uses sequents of the form
Π → 𝐴, but now formulae are built using intuitionistic
connective: & (conjunction), ∨ (disjunction), ⊃ (implication),
and constants ⊥ (falsity) and ⊤ (truth).

• In usual formulations of IPC, antecedents (Π) are multisets or
even sets of formulae. That is, order does not matter: IPC is
commutative.
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Substructurality

Axioms and rules of IPC are as follows:

𝐴 → 𝐴 𝐼𝑑 Γ, ⊥, Δ → 𝐵 ⊥𝐿
Γ, Δ → 𝐵

Γ, ⊤, Δ → 𝐵 ⊤𝐿 → ⊤ ⊤𝑅
Γ, 𝐴, 𝐵, Δ → 𝐶
Γ, 𝐴&𝐵, Δ → 𝐶 &𝐿 Γ → 𝐴 Δ → 𝐵

Γ, Δ → 𝐴&𝐵 &𝑅
Γ, 𝐴, Δ → 𝐶 Γ, 𝐵, Δ → 𝐶

Γ, 𝐴 ∨ 𝐵, Δ → 𝐶 ∨𝐿 Π → 𝐴
Π → 𝐴 ∨ 𝐵 ∨𝑅1 Π → 𝐵

Π → 𝐴 ∨ 𝐵 ∨𝑅2
Π → 𝐴 Γ, 𝐵, Δ → 𝐶
Γ, Π, 𝐴 ⊃ 𝐵, Δ → 𝐶 ⊃ 𝐿 𝐴, Π → 𝐵

Π → 𝐴 ⊃ 𝐵 ⊃ 𝑅

Γ, Δ → 𝐶
Γ, 𝐴, Δ → 𝐶 𝑊𝑒𝑎𝑘 Γ, 𝐴, 𝐴, Δ → 𝐶

Γ, 𝐴, Δ → 𝐶 𝐶𝑜𝑛𝑡𝑟 Γ, 𝐵, 𝐴, Δ → 𝐶
Γ, 𝐴, 𝐵, Δ → 𝐶 𝑃𝑒𝑟𝑚
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Substructurality

• Logical rules of KA𝜔 and IPC are similar, up to renaming of
operations: ⋅ to &, + to ∨, ⊤ to 1, and ⊥ to 0.

• There are, however, significant differencies:

1. There is no counterpart of ⊃ in KA𝜔 . Implication is only on the
top level,→. This will be fixed in action logic.

2. KA𝜔 is substructural, i.e., it does not include structural rules
𝑊𝑒𝑎𝑘, 𝐶𝑜𝑛𝑡𝑟 , 𝑃𝑒𝑟𝑚.

3. IPC does not have Kleene star. In fact, 𝐴∗ trivialises to 1 in the
presence of 𝑊𝑒𝑎𝑘. Thus, it is important for logics with Kleene
star to be substructural.
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Course Outline

• Now we have seen some syntactic definitions, and let us take a
look at the course in general.

• The topics of the five lectures will be as follows:

1. We shall show that KA𝜔 is sound and complete w.r.t. various
interpretations, and present an alternative, finitary
axiomatisation KA.

2. We are not going to prove equivalence of KA𝜔 and KA, but
rather reduce KA𝜔 to a circular proof system LHKA⟳ (Das &
Pous 2018). This yields decidability of KA𝜔 .

3. This lecture is for complexity of reasoning from hypotheses
(Horn theories) of Kleene algebras.

4. We shall add implications (divisions) to Kleene algebras,
yielding action algebras. Here we prove complexity results for
commutative action algebras.

5. Here we sketch complexity proofs for the non-commutative
case, and also consider action logic with exponentials.
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Complexity

• It is well-known that IPC is decidable in polynomial space (in
fact, it is PSPACE-complete).

• The key to the PSPACE decidability procedure is the possibility
to make proofs in IPC having a polymodal bound on depth
(Dyckhoff 1992).

• Such a proof could be exponential in size, but there is a
non-deterministic depth-first search procedure for finding it.

• And, by Savitch’s theorem, NPSPACE is PSPACE.

• For KA𝜔 , all of this will not work, due to the presence of the
𝜔-rule, ∗𝐿𝜔 .

• Proofs are infinite, no “out-of-the-box” finite proof search is
possible.
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• For KA𝜔 , all of this will not work, due to the presence of the
𝜔-rule, ∗𝐿𝜔 .

• Proofs are infinite, no “out-of-the-box” finite proof search is
possible.
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Complexity

• In general, infinitary systems like KA𝜔 could have complexity
up to Π11.

• Recall that a set of natural numbers (or finite objects, e.g.,
sequents) is in Π11 if it can be defined by a second-order formula
of the form 𝜓(𝑎) = (∀𝑋 ⊆ ℕ) 𝜑(𝑋 , 𝑎), where 𝜑 is an arithmetical
formula.

• One could expect ∃𝑌 𝜉 (𝑌 , 𝑎), where 𝑌 is the infinite proof (i.e.,
Σ11). However, the key issue here is checking that the proof is
well-founded, and this is non-arithmetical.

• There is, however, a much better complexity bound for KA𝜔 ,
namely, Π01.
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Complexity

• The Π01 complexity class allows one ∀ quantifier over finite
objects.

• This class is dual to the class Σ01 or enumerable (r.e.) sets.
• If a logic is described by a calculus with finite proofs, then it
belongs to Σ01: provability means existence of a finite object
(proof).

• For Π01, disproving of a sequent means presenting a finite
witness against it. (The negation of ∀ gives ∃.)

• A syntactic proof of the Π01 upper bound will be, again, given
later for the larger system ACT𝜔 .

• However, semantically it is obvious: given soundness and
completeness (to appear), we disprove 𝐴 ⪯ 𝐵 by presenting a
word 𝑤 such that 𝑤 ∈ 𝑣(𝐴) and 𝑤 ∉ 𝑣(𝐵).
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Complexity

• If we manage to reduce the infinitary proof system for KA𝜔 to
a finitary one, we get Π01 and Σ01 at the same time.

• By Post’s theorem, this gives decidability.

• Indeed, the algorithm seeks, in parallel, for a proof of the
sequent or a witness against it.

• Exactly one of the searches succeeds.

• If we also manage to impose a polynomial boundary on the
proof depth, we get PSPACE.
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Soundness and Completeness

• Before going forward, let us discuss relations between syntax
and semantics for the infinitary system KA𝜔 .

Theorem
KA𝜔 ⊢ 𝐴 → 𝐵 iff 𝑣(𝐴) ⊆ 𝑣(𝐵) in the standard interpretation.

• Corollary: KA𝜔 admits 𝐶𝑢𝑡 .
• Soundness is easy: all axioms are valid and inference rules
preserve validity.

• For completeness, we invert the left rules and exhaustively
consider all words 𝑥 ∈ 𝑣(𝐴).

• This is an infinitary brute-force procedure.

22/38



Soundness and Completeness

• Before going forward, let us discuss relations between syntax
and semantics for the infinitary system KA𝜔 .

Theorem
KA𝜔 ⊢ 𝐴 → 𝐵 iff 𝑣(𝐴) ⊆ 𝑣(𝐵) in the standard interpretation.

• Corollary: KA𝜔 admits 𝐶𝑢𝑡 .
• Soundness is easy: all axioms are valid and inference rules
preserve validity.

• For completeness, we invert the left rules and exhaustively
consider all words 𝑥 ∈ 𝑣(𝐴).

• This is an infinitary brute-force procedure.

22/38



Soundness and Completeness

• Before going forward, let us discuss relations between syntax
and semantics for the infinitary system KA𝜔 .

Theorem
KA𝜔 ⊢ 𝐴 → 𝐵 iff 𝑣(𝐴) ⊆ 𝑣(𝐵) in the standard interpretation.

• Corollary: KA𝜔 admits 𝐶𝑢𝑡 .

• Soundness is easy: all axioms are valid and inference rules
preserve validity.

• For completeness, we invert the left rules and exhaustively
consider all words 𝑥 ∈ 𝑣(𝐴).

• This is an infinitary brute-force procedure.

22/38



Soundness and Completeness

• Before going forward, let us discuss relations between syntax
and semantics for the infinitary system KA𝜔 .

Theorem
KA𝜔 ⊢ 𝐴 → 𝐵 iff 𝑣(𝐴) ⊆ 𝑣(𝐵) in the standard interpretation.

• Corollary: KA𝜔 admits 𝐶𝑢𝑡 .
• Soundness is easy: all axioms are valid and inference rules
preserve validity.

• For completeness, we invert the left rules and exhaustively
consider all words 𝑥 ∈ 𝑣(𝐴).

• This is an infinitary brute-force procedure.

22/38



Soundness and Completeness

• Before going forward, let us discuss relations between syntax
and semantics for the infinitary system KA𝜔 .

Theorem
KA𝜔 ⊢ 𝐴 → 𝐵 iff 𝑣(𝐴) ⊆ 𝑣(𝐵) in the standard interpretation.

• Corollary: KA𝜔 admits 𝐶𝑢𝑡 .
• Soundness is easy: all axioms are valid and inference rules
preserve validity.

• For completeness, we invert the left rules and exhaustively
consider all words 𝑥 ∈ 𝑣(𝐴).

• This is an infinitary brute-force procedure.

22/38



Soundness and Completeness

• Before going forward, let us discuss relations between syntax
and semantics for the infinitary system KA𝜔 .

Theorem
KA𝜔 ⊢ 𝐴 → 𝐵 iff 𝑣(𝐴) ⊆ 𝑣(𝐵) in the standard interpretation.

• Corollary: KA𝜔 admits 𝐶𝑢𝑡 .
• Soundness is easy: all axioms are valid and inference rules
preserve validity.

• For completeness, we invert the left rules and exhaustively
consider all words 𝑥 ∈ 𝑣(𝐴).

• This is an infinitary brute-force procedure.

22/38



Soundness and Completeness

• Suppose, 𝐵 = (𝑎 + 𝑏)∗𝑎(𝑎𝑏)∗ and 𝐴 = (𝑎 + 𝑏)∗(𝑎 + 𝑎𝑎𝑏). We have
𝑣(𝐴) ⊆ 𝑣(𝐵).

• Let us construct a proof of 𝐴 → 𝐵 in KA𝜔 .
• First, we decompose the product:

(𝑎 + 𝑏)∗, 𝑎 + 𝑎𝑎𝑏 → 𝐵.
The goal sequent 𝐴 → 𝐵 is derivable from this by ⋅𝐿.

• This sequent will be derived by ∗𝐿𝜔 from the sequents

(𝑎 + 𝑏)𝑛, 𝑎 + 𝑎𝑎𝑏 → 𝐵
for each natural 𝑛.

• Finally, each of these sequents is derived using exhaustive
applications of +𝐿.
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Soundness and Completeness

• Now we actually have to prove Γ𝑤 → 𝐵 for each 𝑤 ∈ 𝑣(𝐴), e.g.,
𝑏, 𝑎, 𝑎, 𝑏, 𝑏, 𝑎, 𝑎, 𝑏 → 𝐵.

• Thus, the first stage of proof construction is essentially
brute-force along all (infinitely many of) words of 𝑣(𝐴).

• Now for each word we have to prove that it is in 𝑣(𝐵).
• This is done by applying the corresponding right rules, and at
steps for + and ∗ we choose the correct way.

• For example, if we wish to prove 𝑎, 𝑎, 𝑎 → 𝑏 + 𝑎∗, we first use
+𝑅2 and then ∗𝑅3.
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More Models

• The standard interpretation can be generalised to language
models.

• In a language model, 𝑣(𝑎) could be an arbitrary language, not
necessarily {𝑎}.

• Soundness still holds, and completeness gets inherited from the
standard interpretation (which is a specific case of language
model).

• Further generalisation leads to the abstract class of
*-continuous Kleene algebras.

• Basically, a *-continuous Kleene algebra is any algebraic
structure (𝒜 ; ⪯, ⋅, +, ∗, 0, 1) in which axioms and rules of KA𝜔
are valid.
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*-Continuous Kleene Algebras

• Algebraically, (𝒜 ; ⪯, ⋅, +, ∗, 0, 1) is a *-continuous KA, if the
following holds:

1. (𝒜 ; ⋅, +, 0, 1) is a semiring (this includes associativity for ⋅ and +,
commutativity for +, distributivity, and the roles of 0 and 1).

2. Idempotency: 𝑎 + 𝑎 = 𝑎.
3. 𝑎 ⪯ 𝑏 iff 𝑎 + 𝑏 = 𝑏.
4. *-continuity: for any 𝑎, 𝑏, 𝑐, we have 𝑏𝑎∗𝑐 = sup⪯{𝑏𝑎𝑛𝑐 ∣ 𝑛 ≥ 0}.

• Another example of *-continuous KAs is the algebra of binary
relations over a set, product being composition, + being union,
and ∗ being the reflexive-transitive closure.

• KA𝜔 is sound and complete w.r.t. interpretations on
*-continuous KAs.
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Finite KA theory

• It happens to be possible to reformulate KA𝜔 as a finitary
calculus.

• This gives a Σ01 upper bound, and, by Post’s theorem,
decidability.

• Kozen and Krob prove that KA𝜔 is equivalent to KA, the logic
with the following rules for ∗:

→ 𝐵 𝐴, 𝐵 → 𝐵
𝐴∗ → 𝐵

Γ → 𝐴 Δ → 𝐴∗
Γ, Δ → 𝐴∗ → 𝐴∗

→ 𝐵 𝐵,𝐴 → 𝐵
𝐴∗ → 𝐵

Γ → 𝐴∗ Δ → 𝐴
Γ, Δ → 𝐴∗

Π → 𝐴 Γ,𝐴, Δ → 𝐶
Γ, Π, Δ → 𝐶 𝐶𝑢𝑡

• Axioms and rules for other operations are the same as in KA𝜔 .
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Finite KA Theory

Theorem (Krob 1991, Kozen 1994)
KA and KA𝜔 have the same set of theorems.
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Abstract Kleene Algebras

• Algebraically, results of Kozen and Krob mean that the
inequational theory for the standard interpretation coincides
with that for interpretations of reg. exp. on arbitrary Kleene
algebras.

• The easiest way to define an abstract Kleene algebra: an
algebraic structure which obeys KA.

• More accurately, Kleene algebras are defined as idempotent
semirings with the following conditions for Kleene star:

1. 𝑎∗ is the least 𝑥 such that 1 + 𝑎𝑥 ⪯ 𝑥 ;
2. 𝑎∗ is the least 𝑦 such that 1 + 𝑦𝑎 ⪯ 𝑦 .

• Thus 𝑎∗ should be the left and the right Kleene star at the same
time.

• There exist left and right KAs.
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Kozen’s Completeness

• KA𝜔 has the same set of theorems as KA, and they both
axiomatise the inequational of each of the following classes:
1. the standard interpretation;
2. interpretations on the algebra of languages, with arbitrary 𝑣(𝑎);
3. interpretations on *-continuous Kleene algebras;
4. interpretations on arbitrary Kleene algebras.

• Moreover, one can take only “left” versions of Kozen’s rules
(left-handed completeness).

30/38



Kozen’s Completeness

• KA𝜔 has the same set of theorems as KA, and they both
axiomatise the inequational of each of the following classes:
1. the standard interpretation;
2. interpretations on the algebra of languages, with arbitrary 𝑣(𝑎);
3. interpretations on *-continuous Kleene algebras;
4. interpretations on arbitrary Kleene algebras.

• Moreover, one can take only “left” versions of Kozen’s rules
(left-handed completeness).

30/38



Kozen’s Completeness

• However, there exist non-*-continuous Kleene algebras.

• Moreover, equivalence between KA and KA𝜔 holds only for
theoremhood, not for entailment of sequents from finite sets of
sequents (hypotheses).

• The lecturer is not aware of a concrete example at the moment,
but we shall see this from complexity results further in the
course.

• In this course, we are not going to prove equivalence of KA𝜔
and KA. Instead of that, we discuss alternative finitary
formulations of the logic of Kleene algebras.
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Circular and Non-Well-Founded Proofs for KA𝜔

• The formulation of KA with fixpoint rules, presented above,
does not enjoy cut elimination (thus, not that good from the
point of view of structural proof theory).

• Das & Pous (2017) introduced a better formalization, based on
circular proofs.

• We start with a naïve approach.
• Replace the rules for ∗ with the following ones:

Γ, Δ → 𝐵 Γ, 𝐴, 𝐴∗, Δ → 𝐵
Γ, 𝐴∗, Δ → 𝐵 ∗𝐿 → 𝐴∗ ∗𝑅0 Γ → 𝐴 Δ → 𝐴∗

Γ, Δ → 𝐴∗ ∗𝑅

and allow infinite (non-well-founded) paths in derivations,
provided the following correctness condition holds.

• Correctness condition: for every infinite branch, there is a trace
of 𝐴∗, which undergoes ∗𝐿 infinitely many times.
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Non-Well-Founded Proofs for KA𝜔

• Let us denote the system with non-well-founded proofs by
KA∞.

• Das & Pous (2018) prove that KA∞ enjoys cut elimination.

• We shall not need this result, but rather consider only the
cut-free version of KA∞.

• Moreover, we require Γ to be non-empty in ∗𝑅 (otherwise the
rule is meaningless).

• Under these assumptions, no correctness condition is needed!

• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.
• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.
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• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.
• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.

33/38



Non-Well-Founded Proofs for KA𝜔

• Let us denote the system with non-well-founded proofs by
KA∞.

• Das & Pous (2018) prove that KA∞ enjoys cut elimination.

• We shall not need this result, but rather consider only the
cut-free version of KA∞.

• Moreover, we require Γ to be non-empty in ∗𝑅 (otherwise the
rule is meaningless).

• Under these assumptions, no correctness condition is needed!

• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.
• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.

33/38



Non-Well-Founded Proofs for KA𝜔

• Let us denote the system with non-well-founded proofs by
KA∞.

• Das & Pous (2018) prove that KA∞ enjoys cut elimination.

• We shall not need this result, but rather consider only the
cut-free version of KA∞.

• Moreover, we require Γ to be non-empty in ∗𝑅 (otherwise the
rule is meaningless).

• Under these assumptions, no correctness condition is needed!

• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.
• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.

33/38



Non-Well-Founded Proofs for KA𝜔

• Let us denote the system with non-well-founded proofs by
KA∞.

• Das & Pous (2018) prove that KA∞ enjoys cut elimination.

• We shall not need this result, but rather consider only the
cut-free version of KA∞.

• Moreover, we require Γ to be non-empty in ∗𝑅 (otherwise the
rule is meaningless).

• Under these assumptions, no correctness condition is needed!

• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.
• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.

33/38



Non-Well-Founded Proofs for KA𝜔

• Let us denote the system with non-well-founded proofs by
KA∞.

• Das & Pous (2018) prove that KA∞ enjoys cut elimination.

• We shall not need this result, but rather consider only the
cut-free version of KA∞.

• Moreover, we require Γ to be non-empty in ∗𝑅 (otherwise the
rule is meaningless).

• Under these assumptions, no correctness condition is needed!
• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.
• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.

33/38



Non-Well-Founded Proofs for KA𝜔

• Let us denote the system with non-well-founded proofs by
KA∞.

• Das & Pous (2018) prove that KA∞ enjoys cut elimination.

• We shall not need this result, but rather consider only the
cut-free version of KA∞.

• Moreover, we require Γ to be non-empty in ∗𝑅 (otherwise the
rule is meaningless).

• Under these assumptions, no correctness condition is needed!
• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.

• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.

33/38



Non-Well-Founded Proofs for KA𝜔

• Let us denote the system with non-well-founded proofs by
KA∞.

• Das & Pous (2018) prove that KA∞ enjoys cut elimination.

• We shall not need this result, but rather consider only the
cut-free version of KA∞.

• Moreover, we require Γ to be non-empty in ∗𝑅 (otherwise the
rule is meaningless).

• Under these assumptions, no correctness condition is needed!
• Indeed, in all rules, except ∗𝐿, the premises are strictly simpler
than the conclusion.

• Thus, each infinite branch traverses ∗𝐿 infinitely many times.
• Moreover, the number of 𝐴∗’s is finite, so by pigeonhole
principle there will be a trace.

33/38



Non-Well-Founded Proofs for KA𝜔

Theorem (Das & Pous 2018)
KA𝜔 and KA∞ (its cut-free version) derive the same set of theorems.

• The direction from KA𝜔 to KA∞ is easy: we just model the
𝜔-rule by an infinite branch:

Γ, Δ → 𝐵
Γ, 𝐴, Δ → 𝐵

Γ, 𝐴, 𝐴, Δ → 𝐵
⋮

Γ, 𝐴, 𝐴, 𝐴∗, Δ → 𝐵
Γ, 𝐴, 𝐴, 𝐴∗, Δ → 𝐵 ∗𝐿

Γ, 𝐴, 𝐴∗, Δ → 𝐵 ∗𝐿
Γ, 𝐴∗, Δ → 𝐵 ∗𝐿

• The ∗𝑅𝑛 rules is several iterations of ∗𝑅.
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Non-Well-Founded Proofs for KA𝜔

• The opposite direction is based on the following lemma:

Lemma
If KA∞ ⊢ Γ, 𝐴∗, Δ → 𝐵, then KA∞ ⊢ Γ, 𝐴𝑛, Δ → 𝐵 for each 𝑛.
• This lemma is proved by induction on 𝑛.

• We replace 𝐴∗ with 𝐴𝑛 and go upwards the proof. At the points
of ∗𝐿 we refer to the induction hypothesis.

• Now we may eagerly apply the 𝜔-rule, and translate finitary
rules to KA𝜔 .
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