!HH> Normal 3He liquid parameters beyond zero-temperature limit ! TODO -- Vm, Cv, Cp, ... from ?? !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !> Heat capacity, Cv/R vs T [K], Vm [cm^3/mol] !> Original formula from Greywall-1983. !> Note that Cv = Cp up to terms (T/Tf)^3. function he3_cv_n(t, v) !F> implicit none include 'he3.fh' real*8 t,v,a,b,c,d real*8 s1,s2,s3 integer i,j dimension a(5,4), b(4,3), c(3,3), d(3) a(1,1) = -2.9190414D0 a(1,2) = 5.2893401D+2 a(1,3) = -1.8869641D+4 a(1,4) = 2.6031315D+5 a(2,1) = 0D0 a(2,2) = 0D0 a(2,3) = 0D0 a(2,4) = 0D0 a(3,1) = -2.4752597D+3 a(3,2) = 1.8377260D+5 a(3,3) = -3.4946553D+6 a(3,4) = 0D0 a(4,1) = 3.8887481D+4 a(4,2) = -2.8649769D+6 a(4,3) = 5.2526785D+7 a(4,4) = 0D0 a(5,1) = -1.7505655D+5 a(5,2) = 1.2809001D+7 a(5,3) = -2.3037701D+8 a(5,4) = 0D0 b(1,1) = -6.5521193D-2 b(1,2) = 1.3502371D-2 b(1,3) = 0D0 b(2,1) = 4.1359033D-2 b(2,2) = 3.8233755D-4 b(2,3) = -5.3468396D-5 b(3,1) = 5.7976786D-3 b(3,2) = -6.5611532D-4 b(3,3) = 1.2689707D-5 b(4,1) = -3.8374623D-4 b(4,2) = 3.2072581D-5 b(4,3) = -5.3038906D-7 c(1,1) = -2.5482958D+1 c(1,2) = 1.6416936D+0 c(1,3) = -1.5110378D-2 c(2,1) = 3.7882751D+1 c(2,2) = -2.8769188D+0 c(2,3) = 3.5751181D-2 c(3,1) = 2.4412956D+1 c(3,2) = -2.4244083D+0 c(3,3) = 6.7775905D-2 d(1) = -7.1613436D+0 d(2) = 6.0525139D-1 d(3) = -7.1295855D-3 if (t.lt.0.1D0) then s1=0D0 do i=1,5 do j=0,3 s1 = s1 + a(i,j+1) * v**(-j) * t**i enddo enddo he3_cv_n = s1 return endif if (t.ge.0.1D0.and.t.lt.2.5D0) then s1=0D0 do i=0,3 do j=0,2 s1 = s1 + b(i+1,j+1) * v**j * t**(-i) enddo enddo s2=0D0 do i=1,3 do j=0,2 s2 = s2 + c(i,j+1) * v**j * t**(-i) enddo enddo s3=0D0 do j=0,2 s3 = s3 + d(j+1) * v**j enddo he3_cv_n = s1 + dexp(-s3/t) * s2 return endif he3_cv_n = NaN end !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Heat conductivity, K [erg/s cm K] vs T [K] and Vm [cm^3/mol] ! Original formula from Greywall-1984 paper function he3_tcond_n_greywall(t, vm) implicit none real*8 he3_tcond_n_greywall include 'he3.fh' real*8 t,vm if (t.lt.0.05D0) then he3_tcond_n_greywall = 1D0/t/( . 1D0/(- 4.1884746D1 . + 1.9262839D0 * vm) . + t/(- 1.8546379D0 . + 2.3695190D-1 *vm . - 6.8284756D-3 *vm**2) . + t**2/(+ 4.3617792D-1 . - 4.2101673D-2 *vm . + 1.0050221D-3 *vm**2) . + t**3/(- 9.4328296D-2 . + 8.9196267D-3 *vm . - 2.0903165D-4 *vm**2)) elseif (t.le.1.3D0) then he3_tcond_n_greywall = . + 2.5498997D0 /t**2 . - 1.1861905D-1 /t**2 * vm . + 1.7187787D-3 /t**2 * vm**2 . - 1.4861472D2 /t . + 7.2176329D0 /t * vm . - 7.5439157D-2 /t * vm**2 . + 1.0311239D3 . - 4.1084636D1 *vm . + 6.8188534D-1 *vm**2 . - 3.3746517D3 *t . + 2.2612612D2 *t *vm . - 3.4207801D0 *t *vm**2 . + 2.5913792D3 *t**2 . - 1.4574998D2 *t**2 *vm . + 2.1389643D0 *t**2 *vm**2 else he3_tcond_n_greywall = NaN endif end !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !> He3-n thermal conductivity, K [erg/s cm K] vs T [K] and P [bar]. !> !> Dyugaev-1985. Measurements from Greywall-1984 (7mK-1K) and !> Kerrisk,Keller-1969 (1.5K-Tcr) are used to obtain some semi-theoretical !> model for thermal conductivity and viscosity (see below). !> !>

!> function he3_tcond_n(t, p) !F> implicit none include 'he3.fh' real*8 t,p real*8 tk, k0, dk0 tk = 0.121830D0 - p*1.459840D-3 + 1.321430D0/(p+10.23327D0) k0 = 77.37037D0 - p*0.489282D0 + 623.451D0/(p+16.32097D0) dk0 = 3.103759D0 + p*0.0249499D0 . - p**2*1.82331D-3 + p**3*4.035088D-5 ! dki = 2.797180D0 - p*0.0107957D0 ! . + p**2*3.24248D-3 - p**3*1.219298D-4 if (t.lt.he3_tcr) then he3_tcond_n = k0* (tk/t + t/tk + dk0) else he3_tcond_n = NaN endif end !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !> Emery factor vs T/Tc and P [bar]. !> !>

In normal He3 transport properties (viscosity, spin diffusion, thermal conductivity?) !> are suppressed just above Tc because of some fluctuation effects (Emery-1976). !> This is clearly seen at viscosity measurements (Parpia-1978, Carless-1983, Nakagawa-1996). !> The factor has form 1 - $G(1 - \theta/\alpha\mbox{atan}(\alpha/\theta))$, where $\theta = \sqrt{T/T_c - 1}$. !> !>

Values of $G$ (pressure independent) and $\alpha$ were obtained by fitting !> viscosity data from Carless-1983 and Nakagawa-1996 in assumption that at high !> temperatures they should follow Dyugaev-1985 model. !> !>

Note that in Carless-1983 temperature scale Alvesalo-80 is used. To convert !> it to Greywall-86 scale one should multiply temperature by $k=0.893$. function he3_emery_factor(ttc, p) !F> implicit none include 'he3.fh' real*8 ttc,p, A,G,th if (ttc.lt.1D0) then he3_emery_factor = NaN else ! Fitting done in data/1983_carless_visc/process_data.m G = 2.318858D-1 A = -4.067317D-2 + 4.841729D1/(6.0755 + p) th = dsqrt(ttc-1D0) he3_emery_factor = 1D0 - G*(1D0 - th/A*datan(A/th)); endif end !> He3-n viscosity, eta [poise] vs T [K] and P [bar]. !> Pure Dyugaev-1985 model without Emery effect. See function he3_visc_n below. !> function he3_visc_n0(t, p) !F> implicit none include 'he3.fh' real*8 t,p real*8 te, e0 te = 0.064795D0 + p*2.949606D-5 + 5.351244D0/(p+16.87556D0) e0 = 22.3125D0 + p*0.375D0 - 36.09375D0/(p+7.5D0) if (t.lt.he3_tcr) then he3_visc_n0 = 1D-6*e0* ((te/t)**2 + 1.41D0*te/t + 1D0) else he3_visc_n0 = NaN endif end !> He3-n viscosity, eta [poise] vs T [K] and P [bar]. !> !> Model from Dyugaev-1985, it uses thermal conductivity experimental data to get viscosity. !> At low temperature Emery effect, reduction of viscosity close to $T_c$ due to fluctuation !> effects, is taken into account. !> Very good agreement with Betts-1963,1965 at high temperatures, and with Carless-1983, Nakagawa-1996 !> at low tempeatures (temperature scale correction for Carless-1983 is needed). !> !>

!>

!> !>

There is also a complete viscosity model in Huang-2012, but for me it does !> not look as good as this one. !> function he3_visc_n(t, p) !F> implicit none include 'he3.fh' real*8 t,p he3_visc_n = he3_visc_n0(t,p) . * he3_emery_factor(t*1D3/he3_tc(p),p) end