!HH> He3 Polar phase !> susceptibility component along d vector chi_par / chi_n !> chi_perp/chi_0 = 1 !> see Leggett-1975, VIIID f.7.53 and f.7.54 function he3p_chi_par(ttc, p) !F> implicit none include 'he3.fh' real*8 ttc,p,gap,f0a,Y0 f0a = he3_f0a(p) gap = he3_gap(ttc,p) Y0 = he3_yosida(ttc, gap, 0D0) he3p_chi_par = . (1D0 + f0a) * Y0 / (1D0 + f0a * Y0) end !> dipolar length perpendicular to the l vector, 4g_d/K1 function he3p_xid_perp(ttc, p) !F> implicit none include 'he3.fh' real*8 ttc,p,K K = he3_grad_k12(ttc,p) he3p_xid_perp = dsqrt(K/he3_gd(p))/2D0 end !> dipolar length parallel to the l vector, 4g_d/(K1+K2+K3) function he3p_xid_par(ttc, p) !F> implicit none include 'he3.fh' real*8 ttc,p,K K = 2D0*he3_grad_k12(ttc,p) + he3_grad_k3(ttc,p) he3p_xid_par = dsqrt(K/he3_gd(p))/2D0 end !> magnetic length perpendicular to the l vector (4g_d/K1) function he3p_xih_perp(ttc, p, h) !F> implicit none include 'he3.fh' real*8 ttc,p,h, gap,dchi,K gap = he3_gap(ttc,p)*const_kb*1D-3*he3_tc(p) dchi = he3_chi_n(p) * (1D0-he3p_chi_par(ttc,p)) K = he3_grad_k12(ttc,p) he3p_xih_perp = (gap/h) * dsqrt(K/dchi) end !> magnetic length parallel to the l vector (4g_d/(K1+K2+K3)) function he3p_xih_par(ttc, p, h) !F> implicit none include 'he3.fh' real*8 ttc,p,h, gap,dchi,K gap = he3_gap(ttc,p)*const_kb*1D-3*he3_tc(p) dchi = he3_chi_n(p) * (1D0-he3p_chi_par(ttc,p)) K = 2D0*he3_grad_k12(ttc,p)+he3_grad_k3(ttc,p) he3p_xih_par = (gap/h) * dsqrt(K/dchi) end