
Lecture 3 — The File System
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 41

File System

The file system is important and highly visible.

It is more than just the way of storing data and programs, persistently.

It also provides organization for the files through a directory structure andmaintains metadata related to files.

ECE 252 2 / 41

What is a File?

But what is a file? The snarky UNIX answer is, “Everything is a file!”

As far as the computer is concerned, any data is just 1s and 0s (bytes).

The file is just a logical unit to organize these.

So an area of disk is designated as belonging to a file.

ECE 252 3 / 41

What is a File?
Files can contain programs (word.exe) and/or data (technical-report.doc).

The content of a file is defined by its creator.
The creator could be a user if they are using notepad or something, or it could bea program, like a compiler creating an output binary file.

ECE 252 4 / 41

File Attributes

Files typically have attributes, which, although they can vary, tend generally toinclude the following things:

1 Name
2 Identifier
3 Type
4 Location
5 Size
6 Protection
7 Time, Date, User ID

ECE 252 5 / 41

Directory Structure
Files are maintained in a structure.

Image Credit: QNX

The directory structure is quite familiar to us as the folders on the system.
Directories, really, are just like files; they are information about what files are inwhat locations, and they too will be stored on disk.

ECE 252 6 / 41

File Operations

It makes some sense to consider a file to be a structure.

A file has some data (fields, metadata).

There are defined functions, operations to allow users to work with and on files.

ECE 252 7 / 41

File Operations

Six basic operations are required:

1 Creating a file.
2 Writing a file.
3 Reading a file.
4 Repositioning within a file.
5 Deleting a file.
6 Truncating a file.

Let’s examine each of these briefly.

ECE 252 8 / 41

File Operations (cont.)

Image credit: https://stackoverflow.com/questions/21113919/difference-between-r-and-w-in-fopen

ECE 252 9 / 41

https://stackoverflow.com/questions/21113919/difference-between-r-and-w-in-fopen

Opening and Closing Files

We already saw in an earlier example, one way to open and close a file.

Here is a slight variant that uses FILE*:
FILE* f = fopen (argv [1] , " r ") ;
i f (f == NULL) {

printf (" Unable to open f i l e ! %s i s i n v a l i d name?\ n " , argv [1]) ;
r e tu rn − 1 ;}

readfile (f) ;
fclose (f) ;

ECE 252 10 / 41

Using the Open Call

It turns out that creating, reading, writing, and truncating involve the open call.
FILE * fopen (cons t char * filename , cons t char * mode)

In addition to the filename as the first parameter, the function is called with themode as the second parameter.

In the last example, the mode we provided was a string literal of r.

ECE 252 11 / 41

Mode Options

r

w

a

r+

w+

a+

ECE 252 12 / 41

More Mode Options

If we combine an option with a b, such as rb then we are opening the file as abinary file.

Also, as of the C 2011 standard, there is a new add-on x which can be used tomake any write operation fail if the file exists.

ECE 252 13 / 41

They Call Me The Seeker
Repositioning is also sometimes called a seek operation.

In C this is done with the fseek() call.

This adjusts the pointer for reading or writing.

This should be done with caution though, because you can go to an arbitrarylocation, even the middle of a two (or more) byte character.

And we can’t seek when a file is opened for append.

ECE 252 14 / 41

DELETE

ECE 252 15 / 41

Deleting a File

In C a file is deleted with the remove() function. This simple program deleteswhatever file is provided as the second argument. In reality, we would morelikely delete a temporary file that the program has used for some purpose, at theend of execution.
i n t main (i n t argc , char ** argv) {

i f (argc ! = 2) {
r e tu rn − 1 ;}

remove (argv [1]) ;
r e tu rn 0;}

ECE 252 16 / 41

Combining the Operations

These six operations can be combined for most of the other things we may wantto do.

To copy a file, for example, create a new file, read from the old file, and write itinto the new file.

We may also have operations to allow a user to access or set various attributessuch as the owner, security descriptors, size on disk...

ECE 252 17 / 41

Restrictions on the Operations

Aside from creation and deletion, all operations are restricted to open files.

When a file is opened, a program gets a reference to it, and the operating systemkeeps track of which files are currently open in which process.

It is good behaviour for a process to close a file when it is no longer using it.

When the process terminates, that will automatically close any open files(hopefully).

ECE 252 18 / 41

File Locks
Some operating systems support file locks.

Locks may be exclusive, or non-exclusive.
When a file is locked by one process, other processes will be advised thatopening failed due to someone having a lock on that file.
Similarly, files in use cannot be deleted while that file is in use.

ECE 252 19 / 41

Windows and UNIX File Locks
Windows uses locking; any file that is open in some program cannot be deleted.
UNIX, however, does not, so UNIX-compatible programs can, if they need, lock afile, but by default this does not happen.
In UNIX if a file is open in a program, another user can still delete the file and itwill be removed from the directory.
As long as that program remains open and retains that reference to the file, it canstill operate on that file.
However, once the file is no longer open in a program, its storage space will bemarked as free.

ECE 252 20 / 41

Locking a File

To lock a file in Linux, the call for this is flock().
FILE* f = fopen (" m y f i l e . t x t " , " r ") ;
i n t file_desc = fileno (f) ;
i n t result = flock (file_desc , LOCK_EX) ;

This example locks the file exclusively.

A shared lock would be LOCK_SH, and to unlock the parameter is LOCK_UN.

ECE 252 21 / 41

Writing
Writing to a file is easy enough because it works like printf.

In fact, the function call for it is fprintf.

The first argument to this is the file pointer where you’d like the data to bewritten to:
vo id write_points_to_file (point* p , FILE f) {

whi le (p ! = NULL) {
fprintf (f , " (%d , %d , %d) \ n " , p−>x , p−>y , p−>z) ;
p = p−>next ;}}

ECE 252 22 / 41

Reading
Reading from a file involves the use of fscanf which is a mirror image of
fprintf.
i n t main (i n t argc , char ** argv) {
FILE *fp ;
i n t i , isquared ;
fp = fopen (" r e s u l t s . dat " , " r ") ;
i f (fp == NULL) {

r e tu rn − 1 ;}
whi le (fscanf (fp , "%d ,%d \n " , &i , &isquared) == 2) {

printf (" i : %d , i s qua r ed : %d \n " , i , isquared) ;}
fclose (fp) ;
r e tu rn 0;}

ECE 252 23 / 41

File Types
Files we are familiar with often have extensions separated from the file name bya period, like fork.txt.
The txt extension tells us some information about the file, i.e. it is a text file.
These things are mostly hints to the OS or user about what sort of file it is.
In most operating systems, any program can open arbitrary files...
A .docx extension is only a suggestion that it should be opened by a wordprocessing program.
OSes typically allow setting a default program for the extension: e.g., alwaysopen .docx files with LibreOffice.

ECE 252 24 / 41

Directories
A directory is really just a symbol table that translates file names (user-readablerepresentations) to their directory entries.

They typically support the operations:

1 Search
2 Add a File
3 Remove a File
4 List a Directory
5 Rename a File
6 Navigate the File System

ECE 252 25 / 41

Directories

There are simple file systems where there are no such things as subdirectories.

Textbooks may also bring up a structure where each user has his or her owndirectory but cannot have subdirectories either.

Tree-structured: there is a root directory, and every file in the system has aunique name when the name and path to it (from the root) are combined.

ECE 252 26 / 41

UNIX Tree Structured Directory

In UNIX the root directory is just called / (forward slash).From there we can navigate to any file.

To run the ls command, we will find it in the bin directory as /bin/ls.

This is an example of an absolute path.

ECE 252 27 / 41

UNIX Tree Structured Directory
Most of the time we do not have to use the absolute path (the full file name); arelative path (the path from the current directory) will suffice.

Example: compile something with a command like gcc code/example.c.

The file example.c is in a subdirectory of the current directory called code.

The system will work out that we need to start from the current directory (e.g.,
/home/smzahedi/ece252/) and prepend that to the given file name.

This produces the absolute path of
/home/smzahedi/ece252/code/example.c.

ECE 252 28 / 41

Deleting a Directory

What if a directory is not empty?

If it is empty, just removing the directory is enough.

If it contains some files, either the system can refuse to delete the directory untilit is empty, or automatically delete the files and subdirectories.

ECE 252 29 / 41

Deletion

Also, what does it mean to delete a file or folder?

The delete command sometimes does not necessarily actually delete the file orfolder, but instead moves it to some deleted files directory.

If it is deleted from there then it is really gone, but while it is in that deleted filedirectory it can be restored.

ECE 252 30 / 41

Sharing of Files

File systems may also support the sharing of files.

There is one copy of the file but it has more than one name.

In UNIX this is called a link and this is effectively a pointer to another file.

Links are either “hardlinks” or “symlinks”.

ECE 252 31 / 41

Symbolic Links
Symlinks, or symbolic links, are just references by file name.

So if a symbolic link is created to a file like /Users/smzahedi/file.txt, thesymbolic link will just be a “shortcut” to that file.

If the file is later deleted, the symbolic link is left pointing to nothing.

A future attempt to use this pointer will result in an error.

It would be expensive, though possible, to search through the file system to findall links and remove them.

ECE 252 32 / 41

Hard Links

Creating a hardlink is creating a pointer to the underlying file in the file system.

If a hardlink exists and the user deletes that file, the file still remains on disk untilthe last hardlink is removed.

The file structure maintains a count of how many hardlinks reference a file, and itis only really deleted if the count falls to zero.

ECE 252 33 / 41

File Permissions

Files usually have some permissions associated with them:

1 Read
2 Write
3 Execute
4 Append (write at the end of the file)
5 Delete
6 List (view the attributes of the file)

ECE 252 34 / 41

Access Control: UNIX-Style

These are used often in UNIX(-like) systems.

Each file has an owner and a group.

Permissions can be assigned for the:

Owner
Group
Everyone

ECE 252 35 / 41

Access Control: UNIX-Style
There are three basic permissions:

Read
Write
Execute

Permissions are represented by 10 bits:1 indicates true and 0 indicates false.
First bit is the directory bit.
Next three are read, write, execute for the owner.Then read, write, execute for the group.Finally, read, write, execute for everyone.

ECE 252 36 / 41

Access Control: UNIX-Style
The permissions can be shown in a human-readable format.
The order is always the same, and so a dash (-) appears if a bit is zero(permission does not exist).
The character d is used to indicate a directory.
r to indicate read access.
w to indicate write access.
x to indicate execute access.

ECE 252 37 / 41

Access Control: UNIX-Style Example

Example: -rwxr-----

This means:

not a directory;
the owner can read, write, and execute;
other members of the group can read it only
everyone else has no access to the file (cannot read, write, or execute).

ECE 252 38 / 41

Access Control: UNIX-Style

Permissions can also be written in octal (base 8):r = 4, w = 2, and x = 1.

Start with 0, and then add the value of the permissions that are present, usingzero where permissions are absent.

Example: 750

ECE 252 39 / 41

Access Control: UNIX-Style

More details: like what the permissions mean on directories,

Advanced topics like setuid, setgid, and “sticky bit”.

Beyond the scope of this course.

ECE 252 40 / 41

Access Control: UNIX-Style

The obvious shortcoming: very coarse grained.

Another strategy is used by SELinux and Windows NT: ACLs.

... But we will consider that beyond the scope of the course for now.

ECE 252 41 / 41

