
Lecture 5 — Processes in UNIX
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 1

The Process in UNIX

In UNIX a process may create other processes.

The creating process is the parent; newly-created is the child.

Every process has a parent, stretching back to init.

ECE 252 2 / 1

UNIX Process
Each process has a unique identifier in its process control block.
This is the pid (process ID).
For the most part, users will not need to know or think about the ID.
Exception when trying to terminate one that’s gotten stuck.(kill -9 24601).
The init process always gets a pid of 1.
I don’t recommend trying to kill init.

ECE 252 3 / 1

Linux Process Tree

init
1

sshd
4881

screen
7574

login
1490

bash
5911

gcc
9816

vim
9920

bash
4310

pdflatex
9807

ECE 252 4 / 1

The ps Command

We can obtain a list of processes with ps.

The diagram shows each user gets a login process.

The shell (bash) is spawned from login.

ECE 252 5 / 1

Terminal Commands
When you issue a command, like ls or top (table of processes), the new processis created and the shell will wait on that process.
It might finish on its own (e.g., ls).Or wait for the user to tell it to exit (top)
When it does, control goes back to the shell.You get presented with the prompt again (e.g., jz@Loki:˜/$).
Must I log in to the system in a second terminal window to run two things at atime?
The answer is no, and there are two ways to get around it.

ECE 252 6 / 1

Run in the Background

Option 1: tell the shell we want the task to run in the background.

To do that, add to the command the & symbol:

gcc fork.c &

Control returns almost immediately to the shell.It is not waiting for gcc to finish.

ECE 252 7 / 1

Run in the Background

You may see some output like [1] 34429.

This is the shell saying: child has been created; it has process ID 34429.

When the process is finished, there is another update:

[1]+ Done gcc fork.c

ECE 252 8 / 1

Run in the Background

Notably, any console output that the gcc command would generate will stillappear on the console where the background task was created.

Maybe you want that but maybe you want to put the output in a log file, with acommand like cat fork.c > logfile.txt &.

(Telling gcc to be silent is a somewhat more complex operation.)

ECE 252 9 / 1

Example of the &
A common example of a command I use involving the &:
sudo service xyz start &

This will (with super user permissions) start up the service xyz.

It returns control to the console so I don’t have to wait.

Next: tail -f /var/log/xyz/console.log

Watch the console log of the xyz service as it starts up.

ECE 252 10 / 1

Option Two: screen
The other alternative is the screen command.

While having something run in the background is nice, it does not work forinteractive processes.

Example: text editing with vi and want to read e-mail with pine.

Could be done by saving and closing vi.

Or, start them in screen and switch between them.

ECE 252 11 / 1

Using screen

Instead of just opening vi fork.c I can issue the command screen vi
fork.c and this spawns screen and takes me right to editing the file.

The key difference is that I can “detach” from this screen and go back to thecommand line.

If I log out, screen keeps running with the vi inside it.

If I have multiple screens running, I can just “reattach” to the one I want.

ECE 252 12 / 1

UNIX Workflow

Parent spawns the child process with the fork system call.

If waiting for the child process to finish, wait.Alternatively, carry on.

When the child process is finished, it returns a value with exit

The parent gets this as the return value of wait and may proceed.

ECE 252 13 / 1

About fork
Note: fork creates a new process as a copy of itself.

Both parent and child continue after that statement.
The call fork can return a value:A negative value means the fork failed.A zero value means this process is the child.A positive value: this is the parent; the value is the child pid.

ECE 252 14 / 1

After the fork, the exec
After the fork, one of the processes may use the exec system call.
This will replace its memory space with a new program.
There’s no rule that says this must happena child can continue to be a clone of its parent if it wishes.
The exec invocation loads a binary file into memory & starts execution.
At this point, the programs can go their separate ways.
Or the parent might want to wait for the child to finish.

ECE 252 15 / 1

Putting it Together
i n t main (i n t argc , char ** argv) {
pid_t pid ;
i n t childStatus ;
/* f o r k a c h i l d p r o c e s s */
pid = fork () ;
i f (pid < 0) {/* e r r o r o c cu r r ed */
fprintf (stderr , " Fo rk F a i l e d ") ;
r e tu rn 1 ;

} e l s e i f (pid == 0) {/* c h i l d p r o c e s s */
execlp (" / b i n / l s " , " l s " , NULL) ;

} e l s e {/* pa ren t p r o c e s s *//* pa ren t w i l l wa i t f o r the c h i l d to complete */
wait (&childStatus) ;
printf (" C h i l d Complete wi th s t a t u s : % i \ n " , childStatus) ;

}
r e tu rn 0;}

ECE 252 16 / 1

Code Output

Thus, the output is:

jz@Freyja:~/fork$./fork
fork fork.c
Child Complete with status: 0
jz@Freyja:~/fork$

ECE 252 17 / 1

Fork Visually

Or, to represent this visually:

ECE 252 18 / 1

Termination?
What about termination?
On the assumption that the process is terminating normally and not being killed,the system call for that is exit.
If the program itself has no explicit call to exit, the return statement at theend of main will have the same effect.
Let us modify that code above to fork off a child process that will exit“abnormally” with an exit code of 1.
The wait function also returns the process ID of the child.
This is so that the parent can identify which of its children has terminated,though it is not used in this example.

ECE 252 19 / 1

After the fork

Afterwards, the system will need to choose which process is going to run:

1 The parent process. The child is in the ready to run state.
2 The child process. The parent is in the ready to run state.
3 Another process. Both parent and child are in the ready to run state.

ECE 252 20 / 1

Fork Design Problem
There is a task that can be split into parts ’A’ and ’B’.

Use fork() to create a child process.

The child process should call function execute_B() and return the result to theparent.

The parent process should call execute_A() and collect its result.

The parent should then collect the result of the child using wait() and thenproduce the console output.

ECE 252 21 / 1

Fork Design Problem

If no errors occurred, main should return 0; otherwise it should return -1.

If an error occurs, it should be reported to the console including the errornumber (e.g., “Error 7 Occurred.”).

If more than one error occurs, report both errors.

If both functions return zero, it means all is well and the program should print“Completed.” to the console.

ECE 252 22 / 1

Fork Design Solution
i n t main (i n t argc , char ** argv) {

i n t child_result ;
i n t parent_result ;
pid_t pid = fork () ;
i f (pid < 0) { /* Fo rk F a i l e d */

r e tu rn − 1 ;} e l s e i f (pid == 0) { /* C h i l d */
r e tu rn execute_B () ;} e l s e { /* Pa ren t */
parent_result = execute_A () ;
wait (&child_result) ;}

i f (child_result == 0 && parent_result == 0) {
printf (" Completed . \ n ") ;
r e tu rn 0;}

i f (child_result ! = 0) {
printf (" E r r o r %d Occur red . \ n " , child_result) ;}

i f (parent_result ! = 0) {
printf (" E r r o r %d Occur red . \ n " , parent_result) ;}

r e tu rn − 1 ;}
ECE 252 23 / 1

Après fork, le déluge

A short digression on a denial of service attack: the “fork bomb”.

The idea is to call fork repeatedly.

Keep doing this until the system crashes (or no work can get done).

Exponential growth (2n) processes after n calls.

ECE 252 24 / 1

Fork Bomb

Image Credit: Wikipedia user Dake
ECE 252 25 / 1

Après fork, le déluge

A system can be configured to defend against this.

1. Limit total number of processes per user.

2. Limit rate of process spawning.

Note: do not attempt this on University computers!

ECE 252 26 / 1

Signals
UNIX systems use signals to indicate events (e.g., the Ctrl-C on the console)

Signals also are things like exceptions (division by zero, segmentation fault).

It is synchronous if the signal occurs as a result of the program execution (e.g.,dividing by zero);

It is asynchronous if it comes from outside the process (e.g., the user pressing
Ctrl-C or one process or thread sending a signal to another).

Signals are, in the end, interrupts with a certain integer ID.

ECE 252 27 / 1

Gondor Calls For Aid

ECE 252 28 / 1

Signals

By default, the kernel will handle any signal that is sent to a process with thedefault handler.

The behaviour of the default handler may be to ignore the signal, but somesignals (segmentation fault) will result in termination of the process.

ECE 252 29 / 1

POSIX Signals
Here are some of the many signals described in the POSIX.1-1990 standard:

Signal Comment Value Default Action
SIGHUP Hangup detected 1 Terminate process
SIGINT Keyboard interrupt (Ctrl-C) 2 Terminate process
SIGQUIT Quit from keyboard 3 Terminate process, dump debug info
SIGILL Illegal instruction 4 Terminate process, dump debug info
SIGKILL Kill signal 9 Terminate process
SIGSEGV Segmentation fault (invalid memory reference) 11 Terminate process, dump debug info
SIGTERM Termination signal 15 Terminate process
SIGCHLD Child stopped or terminated 20,17,18 Ignore
SIGCONT Continue if stopped 19,18,25 Continue the process if stopped
SIGSTOP Stop process 18,20,24 Stop process

ECE 252 30 / 1

Handling Signals

A process may inform the OS it is prepared to handle a signal itself.

Example: doing some cleanup when Ctrl-C is received instead of just dying.

In any event, a signal needs to be handled, even if the handling is to ignore it.

The signals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.

ECE 252 31 / 1

Command-Line Signals
On the command line: to send a signal, kill followed by a process ID.
Normally a command like kill 24601 will send SIGHUP to a process.
This will, by default, kill the process.The process has an opportunity to clean things up if it wants to.
If the process is still stuck, you can “force” kill the process with SIGKILL:

kill -9 24601.
The -9 parameter sends signal 9 (SIGKILL) rather than the default 1 (SIGHUP).
Some users are eager to jump to kill -9 whenever a process is stuck...

ECE 252 32 / 1

