
ECE 252: Systems Programming and Concurrency Spring 2024

Lecture 5 — Processes in UNIX
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi

The Process in UNIX

Earlier on, we mentioned that in UNIX, a process may create other processes. The creating process is the parent
and the newly-created process(es) is (are) its child(ren). Every process has a parent, stretching back to the init
process (or launchd) at the root of the tree.

Each process has a unique identifier in its process control block, and in UNIX we call this the pid (process ID). For
the most part, users will not need to know or think about the ID of a process except when trying to terminate one
that’s gotten stuck (kill -9 24601). The init process always gets a pid of 1. I don’t recommend trying to kill
init. In most cases, init will just laugh off your attempt (“’tis but a scratch!”) but you might end up rebooting
the system or causing a crash.

init
1

sshd
4881

screen
7574

login
1490

bash
5911

gcc
9816

vim
9920

bash
4310

pdflatex
9807

A tree of processes in a Linux system.

In a UNIX system, we can obtain a list of processes at any time with the ps command. The diagram illustrates
that each user, when logging in, spawns a login process (and an administrator can log people out by killing their
login process... not that this is necessarily a good way to do it). The user’s shell (these days, almost always bash,
the Bourne Again Shell) is then spawned from login. That shell provides the command line interface where the
user can enter a command.

When you issue a command, like ls or top (table of processes), the new process is created and the shell will wait
on that process to finish (in the case of ls) or for the user to tell it to exit (top); when it does, control goes back to
the shell and you get presented with the prompt again (e.g., jz@Loki:˜/$). This would, on its face, seem kind of
limiting – do I have to log in to the system in a second terminal window to run two things at a time? The answer
is no, and there are two ways to get around it.

The first thing we can do is tell the shell we want the task to run in the background. To do that, add to the
command the & symbol, like so:

gcc fork.c &

This will return control almost immediately to the shell (as it will not be waiting for the gcc command to finish).
You may see some output like [1] 34429 which is the shell saying the child has been created and it has process
ID 34429. When the process is finished, there is another update, looking something like:

1

[1]+ Done gcc fork.c

Notably, any console output that the gcc command would generate will still appear on the console where the
background task was created. Maybe you want that but maybe you want to put the output in a log file, with a
command like cat fork.c > logfile.txt &. (Telling gcc to be silent is a somewhat more complex operation.)

A common example of a command I use involving the &:
sudo service xyz start &
This will (with super user permissions - that’s the purpose of sudo) start up the service xyz but return control
to the console so I don’t have to wait for the xyz service to be started to enter my next command. This is good,
because the next thing I’d like to do is tail -f /var/log/xyz/console.log which will allow me to watch the
console log of the xyz service as it starts up to see if there are any errors.

The other alternative to get something to run in the background is with the screen command. While having
something run in the background is nice, it does not work for interactive processes. Suppose you are working on
some code in vi and you would like to pause that for a minute and write an e-mail (with pine or whatever the
cool kids use for command line e-mail these days). One approach is to save and exit vi and open up pine. The
other would be to start up each of these in screen and switch between them.

Thus instead of just opening vi fork.c I can issue the command screen vi fork.c and this spawns screen
and takes me right to editing the file. The key difference is that I can “detach” from this screen and go back to
the command line that spawned it. And if I log out, screen keeps running with the vi inside it. If I have multiple
screens running, I can just “reattach” to the one I want to use next. To get a full understanding of screen, try
the command man screen and the user manual will appear to give you some information and instructions about
how to use this. Or you can use Google.

Show Me The Code!

The workflow in UNIX is as follows. First, the parent spawns the child process with the fork system call. If it is
interested in waiting for the child process to finish, it will use the system call wait, in which case the parent will
be awaiting the completion of the child process. When the child process is finished, it returns a value with the
exit system call. The parent process will then get this as the return value of the wait call and may proceed.

What does fork do? It creates a new process; it makes a copy of itself. The parent and child continue execution
after the fork statement. If fork returns a negative number, the fork system call failed. If it returns 0, the process
that got the 0 back is the child. If it returns a positive value, that is the process ID of the child.

After the fork, one of the processes may use the exec system call, or one of its variants, to replace its memory
space with a new program. There’s no rule that says this must happen; a child can continue to be a clone of its
parent if it wishes. The exec invocation loads the binary file into memory and starts execution [SGG13]. At this
point, the programs can go their separate ways, or the parent might want to wait for the child to finish. The parent
is then blocked, waiting for the child process to execute.

Let’s put this all together in an actual C-code example adapted from [SGG13]:
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char** argv) {
pid_t pid;
int childStatus;

/* fork a child process */
pid = fork();

if (pid < 0) {
/* error occurred */
fprintf(stderr, "Fork Failed");

2

return 1;

} else if (pid == 0) {
/* child process */
execlp("/bin/ls","ls",NULL);

} else {
/* parent process */
/* parent will wait for the child to complete */
wait(&childStatus);
printf("Child Complete with status: %i \n", childStatus);

}

return 0;
}

When executed, this code starts up and attempts to spawn a child process. Let us assume that the fork command
succeeds and we do not enter the error-occurred block. After the fork there are now two processes at the statement
if (pid < 0) . The child process calls execlp, replacing itself with the ls (list directory contents) command.
The parent process will go to the wait statement and wait for the child process to complete. The child process
runs ls, listing the contents of the directory. Then it finishes. The parent process, finally, prints “Child Complete”
to the console.

Thus, the output is:

jz@Freyja:~/fork$./fork
fork fork.c
Child Complete with status: 0
jz@Freyja:~/fork$

Or, to represent this visually:

Process creation with the fork system call [SGG13].

What about termination? On the assumption that the process is terminating normally and not being killed, the
system call for that is exit. If the program itself has no explicit call to exit, the return statement at the end of
main will have the same effect.

Use of Fork Design Problem. It’s not necessary for a child to replace itself with another one. Let us do an
example of how we might write a program where both parts are in the same source file.

There is a task that can be split into parts ’A’ and ’B’. You may assume there are implementations for the functions
int execute_A() and int execute_B() that work correctly (and are not shown). If either of the execution
functions returns a non-zero value, this indicates an error.

Use fork() to create a child process. The child process should call function execute_B() and return the result
to the parent. The parent process should call execute_A() and collect its result. The parent should then collect

3

the result of the child using wait() and then produce the console output described in the next paragraph. If no
errors occurred, main should return 0; otherwise it should return -1.

If an error occurs, it should be reported to the console including the error number (e.g., “Error 7 Occurred.”). If
more than one error occurs, report both errors. If both functions return zero, it means all is well and the program
should print “Completed.” to the console.

Use of Fork Design Solution The solution:
int main(int argc, char** argv) {

pid_t pid;
int child_result;
int parent_result;

pid = fork();

if (pid < 0) { /* Fork Failed */
return -1;

} else if (pid == 0) { /* Child */
return execute_B();

} else { /* Parent */
parent_result = execute_A();
wait(&child_result);

}

if (child_result == 0 && parent_result == 0) {
printf("Completed.\n");
return 0;

}

if (child_result != 0) {
printf("Error %d Occurred.\n", child_result);

}
if (parent_result != 0) {
printf("Error %d Occurred.\n", parent_result);

}

return -1;
}

The Fork Bomb

We will take a slight digression from the general topic of processes to discuss a denial-of-service attack against
UNIX systems that is called the “Fork Bomb”. The idea behind the attack is to call fork repeatedly until the number
of processes spawned is too high for the system to manage and it either crashes or is so slow that no useful work
can get done. As you can imagine, this is caused by repeatedly calling fork. Each time a program does so, there
are now two processes running, each of which calls fork. There are then 2n processes after each of n invocations
and this exponential growth will soon crash up against the limits of the system.

A system configured to defend against this may impose limits on (1) the total number of processes a user may
create; and (2) the rate at which a user may spawn a new process.

Note: do not attempt this on anything other than your personal computer at home. It is a denial of service attack
and would certainly count as misuse of resources on any system. Accordingly, trying to do it will very likely result
in a ban. Getting banned from using university computer resources is not conducive to completing your degree.

4

Signals

UNIX systems use signals to indicate events (e.g., the Ctrl-C on the console). Signals also are things like exceptions
(division by zero, segmentation fault), etc. A signal may be synchronous if the signal occurs as a result of the
program execution (e.g., dividing by zero); it is asynchronous if it comes from outside the process (e.g., the user
pressing Ctrl-C or one process or thread sending a signal to another). Signals are, in the end, interrupts with a
certain integer ID.

By default, the kernel will handle any signal that is sent to a process with the default handler. The behaviour of
the default handler may be to ignore the signal, but some signals (segmentation fault) will result in termination
of the process.

Here are some of the many signals described in the POSIX.1-1990 standard:

Signal Comment Value Default Action
SIGHUP Hangup detected 1 Terminate process
SIGINT Keyboard interrupt (Ctrl-C) 2 Terminate process
SIGQUIT Quit from keyboard 3 Terminate process, dump debug info
SIGILL Illegal instruction 4 Terminate process, dump debug info
SIGKILL Kill signal 9 Terminate process
SIGSEGV Segmentation fault (invalid memory reference) 11 Terminate process, dump debug info
SIGTERM Termination signal 15 Terminate process
SIGCHLD Child stopped or terminated 20,17,18 Ignore
SIGCONT Continue if stopped 19,18,25 Continue the process if stopped
SIGSTOP Stop process 18,20,24 Stop process

Alternatively, a process may inform the operating system it is prepared to handle the signal itself (such as doing
some cleanup when the Ctrl-C is received instead of just dying). In any event, a signal needs to be handled, even
if the handling is to ignore it. Note that the signals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.

On the command line, the command to send a signal is alsokill followed by a process ID. Normally a command
like kill 24601 will send SIGHUP to a process, which will, by default, kill the process. The process has an
opportunity to clean things up if it wants to. If the process is still stuck, you can “force” kill the process by sending
SIGKILL with the command kill -9 24601. The -9 parameter says to send signal 9 (SIGKILL) rather than
the default 1 (SIGHUP). Some users are eager to jump to kill -9 whenever a process is stuck, but it’s usually
worthwhile to attempt a less severe killing (SIGHUP or Ctrl-C) so that the process can at least try to clean up.

A signal is, interestingly, a form of inter-process communication: you are sending a signal from one process to
another, even if it’s your terminal doing the sending. When we have more than one process, we might want them
to communicate, so we should look into how to make that happen.

References

[SGG13] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts (9th Edition).
John Wiley & Sons, 2013.

5

