
Lecture 6 — Inter-Process Communication
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 56

IPC Motivation
When 2+ processes would like to co-ordinate/exchange data the mechanism iscalled inter-process communication.
If a process shares data with another process in the system, the operating systemwill provide some facilities to make this possible.
The motivations for inter-process communication are fairly obvious.

ECE 252 2 / 56

IPC Preliminaries
Before proceeding, we need to define some things.

It is the transfer of data from one process to another.

The data being transferred is typically referred to as themessage.

The process sending that message is the sender.

The process receiving it will be the receiver.

This terminology may seem (painfully) obvious.

ECE 252 3 / 56

Thanks!

ECE 252 4 / 56

IPC: What to Send

The processes involved must have some agreement on:What data a message should contain; andThe way the data is formatted.

There may be defined standards, e.g., XML.

The processes themselves must be aware the message is in XML format.

How this agreement is made falls outside the purview of the OS.

ECE 252 5 / 56

Messages: (A)synchronous
Sending and receiving of messages may be either synchronous or asynchronous.

Synchronous Send: the sender sends the message and then is blocked fromproceeding until the message is received.

Asynchronous Send: the sender can post the message and then carry on.

Synchronous Receive: the receiver is blocked until it receives a message.

Asynchronous Receive: the receiver is notified there is no message available andcontinues execution.

ECE 252 6 / 56

Messages: (A)synchronous

Thus there are four combinations to consider, three of which are common:

1 Synchronous send, synchronous receive
2 Synchronous send, asynchronous receive
3 Asynchronous send, synchronous receive
4 Asynchronous send, asynchronous receive

We may also have “acknowledgement” messages.

ECE 252 7 / 56

Producer-Consumer Problem
A general paradigm for understanding IPC is known as the producer-consumerproblem.

The producer creates some information.

The information is later used by the consumer.

Example: the database produces data to be consumed by the shell.

This is a general problem and applicable to client-server situations.

ECE 252 8 / 56

IPC Implementation Strategies

There are three approaches we will consider on how we can accomplish IPC:

1 Shared memory.
2 The file system.
3 Message passing.

All are quite common.

ECE 252 9 / 56

Shared Memory

ECE 252 10 / 56

Shared Memory

Conceptually, the idea of shared memory is very simple.

A region of memory is designated as being shared with some processes.

Those processes may read and write to that location.

To share an area of memory, the OS must be notified.

ECE 252 11 / 56

Shared Memory

Normally, a region of memory is associated with exactly one process (its owner).

That process may read and write that location.Other processes may not.

If a second process attempts to do so, the operating system will intervene andthat will be an error.

If a process wants to designate memory as shared, it needs to tell the operatingsystem it is okay.

ECE 252 12 / 56

Shared Memory
The OS needs to know that the memory is referenced by two processes.

If the first one terminates and is reaped, the memory may still be in use by thesecond process.

The previously-shared region should not be considered free as long as the secondprocess is still using it.

Once the area of memory is shared, when either process attempts to access it, itis just a normal memory access.

The kernel is only involved in the setup and cleanup of that shared area.

ECE 252 13 / 56

Shared Memory

ECE 252 14 / 56

Shared Memory: Risk

When a section of memory is shared, there is the possibility that one processoverwrites another’s changes.

To prevent this, we need a system of co-ordination.

...A subject we will return to later.

ECE 252 15 / 56

File System

ECE 252 16 / 56

File System

Another way for 2 processes to communicate is through the file system.

Unlike shared memory, messages stored in the file system are persistent.

Can be used if the sender & receiver know nothing about one another.

ECE 252 17 / 56

File System

The producer may write to a file in an agreed upon location.

The consumer may read from that same location.

The operating system is still involved because of its role in file creation andmanipulation.

ECE 252 18 / 56

File System: Co-ordination
If one file is being used then we still have the problem of co-ordination.
We can get around this, however, by using multiple files with unique IDs.
Example from a co-op work term: if the producer is generating XML data, it canwrite in a file in a designated import/ directory.
The consumer program scans the directory, and imports files.
In this case, since one process writes files and another reads them, there is nopossibility that one process overwrites the data of another.
If the sender chooses distinct file names, it will not overwrite a message if asecond message is created before the receiver picks up the first.

ECE 252 19 / 56

Message Passing

ECE 252 20 / 56

Message Passing

Message passing is a service provided by the operating system.

The sender will give the message to the OS and ask that it be delivered to arecipient.

There are two basic operations: sending and receiving.

Messages can be of fixed or variable size.

ECE 252 21 / 56

Message Passing

Our experience with postal mail, or e-mail, suggests that to send a messagesuccessfully, the sender needs to indicate where the message should go.

Under direct communication, each process that wants to communicate needs toexplicitly name the recipient or sender of the communication.

We have to know some identifier for the other processes; not very flexible.

ECE 252 22 / 56

Signals
Signals are interrupts with a specified ID.

Image Credit: Steven Puetzer/Getty Images

They don’t really contain a message.
ECE 252 23 / 56

Signal: No Message

The fact that a signal contains no message is a limitation that means signals can’tbe used for every single interprocess communication scenario.

When the fire alarm sounds in a building, you don’t need an accompanying voiceannouncement!

Why?

ECE 252 24 / 56

Signal: Preparation

You have previously been informed that when the fire alarm sounds it means youneed to exit the building.

Signals: you need to know what to listen for and what’s supposed to happen ifyou want to react accordingly.

ECE 252 25 / 56

Programmatic Signals

The appropriate header for including signals is signal.h.

It contains the definitions that let you write SIGKILL instead of having to put anexplicit int 9.

Unfortunately there is not always 100% agreement between differentimplementations about what the higher signal numbers mean.

ECE 252 26 / 56

Programmatic Signals

There are two functions for sending a signal programmatically:
i n t kill (i n t pid , i n t signo) ;
i n t raise (i n t signo) ;

Both functions return 0 if they were successful and -1 if they were unsuccessful.

The raise function sends the signal to the current process.

ECE 252 27 / 56

Finding the Identity of a Stranger
We need to know the process ID of the recipient.

But how do processes find one another’s IDs? Registration!

mysql (a database) server will put its process ID in the file
/var/run/mysqld/mysqld.pid.

In that file is just the number of its process ID (e.g., 1494).

Any other communication method will work!

ECE 252 28 / 56

Why not Function Overload?!

The kill function does different things depending on its first argument.

pid > 0

pid == 0

pid == -1

pid < -1

ECE 252 29 / 56

The Null Signal

You can also invoke the kill function with a 0 argument for the signal.

This is called the null signal.

It does not actually send any signal, but can be used to check if the recipientprocess exists.

But beware: process IDs are only relatively unique!

ECE 252 30 / 56

Did You Get My Text?!

A process can only actually deal with a signal when that process is running.

A signal is generated by something, and it is later delivered to the recipient.

But during the time between generation and delivery, we say the signal ispending.

It will be delivered at the first opportunity.

ECE 252 31 / 56

Awk-ward!

ECE 252 32 / 56

Refuse to Listen

For most (but not all) signals, your process can choose to refuse to listen.

This is called blocking signals, and can be done to any with with the exception of
SIGKILL and SIGSTOP.

When a signal is blocked, it just remains in the pending state until signals of thattype are unblocked.

Blocking is meant to be temporary.

ECE 252 33 / 56

Signal Default Actions

Signals have a default action.

The action taken when the signal is delivered is the disposition of the signal.

If you don’t explicitly change what happens when the signal arrives, the default(see the table) happens.

But we can change it.

ECE 252 34 / 56

Signal Choices

Option 1: Ignore it.

Option 2: Run a signal handler.

Option 3: Run the default option.

We will focus on Option 2 here.

ECE 252 35 / 56

MANY WHELPS! HANDLE IT!
If we decide to register a signal handler, the function is:
vo id (* signal (i n t signo , vo id (* handler) (i n t))) (i n t) ;

signo: Signal number to watch for
handler: Function to run to handle the signal.
So a sample signal handler would be:
vo id sig_handler (i n t signal_num) {/* Handle the s i g n a l i n some way */}

ECE 252 36 / 56

Signal Handler Workflow

ECE 252 37 / 56

Tread Carefully!

The content of your signal handler, however, is restricted.

Because the handler deals with an interrupt and runs between two instructions itis important to make sure that the signal handler doesn’t mess anything up.

If the signal handler runs in the middle of malloc and the signal handler itselfcalls malloc it could put the memory management in an invalid state!

We can only use functions that are reentrant.

ECE 252 38 / 56

Do Some Research

There are tables of what functions are safe to invoke from within a signal handler.

In general what you are looking for is a designation of async-signal safe.

ECE 252 39 / 56

Blocked

To block a signal, unblock one, or just find out what the current state is, thefunction is:
i n t sigprocmask (i n t how , cons t sigset_t * set , sigset_t * old_set) ;

The first argument says what we’re trying to do here: SIG_BLOCK,
SIG_UNBLOCK, SIG_SETMASK.

Third argument: updated to the old values (if provided).

ECE 252 40 / 56

I am the Mask you wear...

There are some helper functions to fill in the mask:
i n t sigemptyset (sigset_t *set) ; /* I n i t i a l i z e an empty s i g s e t _ t */
i n t sigaddset (sigset_t *set , i n t signal) ; /* Add s p e c i f i e d s i g n a l to s e t */
i n t sigfillset (sigset_t *set) ; /* Add ALL s i g n a l s to s e t */
i n t sigdelset (sigset_t *set , i n t signal) ; /* Remove s p e c i f i e d s i g n a l from s e t */
i n t sigismember (sigset_t *set , i n t signal) ; /* Re tu rn s 1 i f t rue , 0 i f f a l s e */

ECE 252 41 / 56

Signal Blocking Example
sigset_t set ;
sigset_t previous ;
sigemptyset (&set) ; /* I n i t i a l i z e s e t */
sigaddset (&set , SIGINT) ; /* Add S IG INT to i t */
sigprocmask (SIG_BLOCK , &set , &previous) ; /* Add S IG INT to the mask *//* S IG INT i s b l o c ked i n t h i s s e c t i o n */
sigprocmask (SIG_SETMASK , &previous , NULL) ; /* Re s t o r e p r e v i o u s mask */

ECE 252 42 / 56

Waiting for a Page

If you want to pause your program for a bit until the call is interrupted by a signal,there is the function int pause().

This function always returns -1 and it suspends your program until the signalhandler runs.

This can be useful if we really do need to wait for something...

ECE 252 43 / 56

Pass Your Message.

ECE 252 44 / 56

That... Did Not Help
To deal with the process ID problem, what we would like is indirectcommunication where the messages are sent to mailboxes (queues).

ECE 252 45 / 56

UNIX Message Passing

UNIX gives us this: message queues.

The max sizes and numbers of queues are implementation-specific.

In a real implementation, limits are something you need to consider:

1 Wait for the space to be available (block).
2 Overwrite older messages (sometimes this is what you want).
3 Discard the current message (leave the old ones as they are).

ECE 252 46 / 56

This is Key
The first step in message-passing is to get a key that identifies a specific queue.

Keys are just integer values, so we would like them to be unique (or close to it).

One method is to generate the key with the “file to key” function found in
sys/ipc.h:
key_t ftok (char *pathname , i n t proj) ;

The file does have to exist.

ECE 252 47 / 56

Keep it Secret, Keep it Safe

Another way we can get a key is using the constant IPC_PRIVATE.

If we give the constant in where a key_t is expected then a guaranteed uniquekey is returned.

This method is used when there is a parent and child relationship between theprocesses that want to communicate.

ECE 252 48 / 56

Get the Queue
Regardless of how we generate the key, we use it to get the queue with thefunction:
i n t msgget (key_t key , i n t flag) ;

key: the key we have generated or IPC_PRIVATE.
flag: UNIX permissions, optionally IPC_CREAT with IPC_EXCL.
The permissions follow the UNIX permission standards, e.g. 0600.
IPC_CREAT: create queue (if does not exist).
IPC_EXCL: fail if trying to create and queue already exists.
Returns: the queue ID.

ECE 252 49 / 56

What does a message look like?
Unlike in a lot of other contexts, here, the message has a defined structure:
s t r u c t msgbuf {

l ong mtype ;
char mtext [1] ;} ;

ECE 252 50 / 56

Not Quite...

Whatever message type you want to send has to have the first part be a longvalue; anything is fine after that.
s t r u c t pirate_msgbuf {

l ong mtype ; /* must be p o s i t i v e */
s t r u c t pirate_info {

char name [3 0] ;
char ship_type ;
i n t notoriety ;
i n t cruelty ;
i n t booty_value ;} info ;} ;

ECE 252 51 / 56

Sending Data
i n t msgsnd (i n t msqid , cons t vo id *ptr , size_t nbytes , i n t flag) ;

msgid: queue ID.

ptr: message to send.

nbytes: size of the message (not including mtype).

flag: 0 for blocking, IPC_NOWAIT for return with error if queue full.

ECE 252 52 / 56

Receiving Data
ssize_t msgrcv (i n t msqid , vo id *ptr , size_t nbytes , l ong type , i n t flag) ;

msgid: queue ID.
ptr: where the message will go.
nbytes: size of the message (not including mtype).
type: kind of message you want.
flag: 0 for blocking, IPC_NOWAIT for return with error if queue empty.

ECE 252 53 / 56

Type Options

type == 0

type > 0

type < 0

ECE 252 54 / 56

Destroy!
i n t msgctl (i n t msqid , i n t command , s t r u c t msqid_ds * buf) ;

msgid: queue ID.

command: IPC_RMID to delete the queue.

buf: use NULL.

This immediately deletes the queue and all messages inside!

ECE 252 55 / 56

Example of Message Passing
s t r u c t msg {

l ong mtype ;
i n t data ;} ;

i n t main (i n t argc , char ** argv) {
i n t msgqid = msgget (IPC_PRIVATE , 0666 | IPC_CREAT) ;
i n t pid = fork () ;
i f (pid > 0) { /* Paren t */

s t r u c t msg m ;
m . mtype = 42 ;
m . data = 252 ;
msgsnd (msgqid , &m , s i z e o f (i n t) , 0) ;} e l s e i f (pid == 0) { /* C h i l d */
s t r u c t msg m2 ;
msgrcv (msgqid , &m2 , s i z e o f (i n t) , 42 , 0) ;
printf (" Rece i ved %d ! \ n " , m2 . data) ;
msgctl (msgqid , IPC_RMID , NULL) ;}

r e tu rn 0;}

ECE 252 56 / 56

