
Lecture 7 — Sockets
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 31

Network Communication

Former US Senator Ted Stevens

ECE 252 2 / 31

Network Communication
If two processes aren’t on the same machine, we need to use the network.
The network is frequently portrayed as a mysterious cloud blob:

The Apple iCloud icon

ECE 252 3 / 31

The Socket
The socket API describes how to communicate over the network.
The socket is the concept for how to establish a communication channel.
There are two ways we can communicate: datagrams and connection streams.

ECE 252 4 / 31

Call or Text?

The connection stream is like a telephone call.

Both parties have to be on the line to communicate.

Datagram is like texting or sending a letter in the mail.

Datagrams are unidirectional and can get lost!

ECE 252 5 / 31

Sockets are Files
Much like everything else in UNIX, a socket is handled like a file.
To create a socket, we need the sys/socket.h header
i n t socket (i n t domain , i n t type , i n t protocol)

Domain: address format; AF_INET (IPv4)
Type: what kind of data; SOCK_DGRAM or SOCK_STREAM
Protocol: how data is transported; 0 for default (TCP/IP).

ECE 252 6 / 31

Check the Boot of the Car for your Jumper
Speaking the same dialect is important.
Consider a 4-byte integer. Two possible organizations:

Network protocol specifies the use of big-endian!
ECE 252 7 / 31

Translate!

Included in the arpa/inet.h header are some functions to help us out.

Their use is advisable even if you’re sure the system you are using is big-endian,because of portability of your code.
uint32_t htonl (uint32_t hostint32) /* T r a n s l a t e 4 by te i n t to network format */
uint16_t htons (uint16_t hostint16) /* T r a n s l a t e 2 by te i n t to network format */
uint32_t ntohl (uint32_t netint32) /* T r a n s l a t e 4 by te i n t to hos t format */
uint16_t ntohs (uint16_t netint16) /* T r a n s l a t e 2 by te i n t to hos t format */

ECE 252 8 / 31

An Internet Address
When we want to call someone, we have to put in their phone number.

If we want someone to call us, we need a phone number and we need to beready to receive calls.

An internet address is represented by the following structure:
s t r u c t sockaddr_in {
sa_family_t sin_family ; /* Addres s f am i l y */
in_port_t sin_port ; /* Po r t number */
s t r u c t in_addr sin_addr ; /* I P v4 Addres s */} ;

ECE 252 9 / 31

Initializing an Address
s t r u c t sockaddr_in addr ;
addr . sin_family = AF_INET ;
addr . sin_port = htons (2520) ;
addr . sin_addr . s_addr = htonl (INADDR_ANY) ;

AF_INET is IPv4.
You are probably quite familiar with how they look: 192.168.0.1
But if you want to go to uwaterloo.ca a translation to an IP address takes place.
Here we chose a constant value, INADDR_ANYChoose an address of the current computer.

ECE 252 10 / 31

Ports: Like Apartments!
Imagine your computer is then an apartment building; the port number is whichapartment the connection is made with.

Different services (processes) are communicating over different ports.

No two processes can be using the same port at the same time.

By convention, ports with numbers below 1024 considered to be reserved forsystem services.

Example: ssh on port 22.

ECE 252 11 / 31

Address Lookup

ECE 252 12 / 31

Address Lookup

We probably only rarely use IP addresses directly; we use human-friendly names.

For example, you use ssh username@ecelinux.uwaterloo.ca and don’tneed to manually look up the IP address for the server.

Looking up hostnames and the like is somewhat complex (and not the focus), sowe will just learn one method for doing this.

Many examples and older texts use the function gethostbyname(), but this isnow deprecated.

ECE 252 13 / 31

Get Address Info!
The function is prototyped in in netdb.h:
i n t getaddrinfo (cons t char *node , / / e . g . "www. example . com" or I P

cons t char *service , / / e . g . " h t t p " or po r t number
cons t s t r u c t addrinfo *hints ,
s t r u c t addrinfo **res) ;

node: hostname or IP address.
service: protocol or port number.
hints: used to restrict the kind of connection you want.
res: pointer to be updated with the result.

ECE 252 14 / 31

Look Up an Address Example
s t r u c t addrinfo hints ;
s t r u c t addrinfo *serverinfo ; / / w i l l p o i n t to the r e s u l t s
memset (&hints , 0 , s i z e o f hints) ; / / make su r e the s t r u c t i s empty
hints . ai_family = AF_INET ; / / Choose I P v4
hints . ai_socktype = SOCK_STREAM ; / / TCP stream so c k e t s
hints . ai_flags = AI_PASSIVE ; / / f i l l i n my I P f o r me
i n t result = getaddrinfo ("www. example . com" , " 2520 " , &hints , &serverinfo) ;
i f (result ! = 0) {

r e tu rn − 1 ;}
s t r u c t sockaddr_in * sain = (s t r u c t sockaddr_in *) serverinfo−>ai_addr ;/* Do t h i n g s w i th t h i s */
freeaddrinfo (serverinfo) ;

Assuming that all went well, the serverinfo pointer is now pointing to a linkedlist of struct sockaddr.
Most of the time we just need the first result.

ECE 252 15 / 31

Uh, where am I again?

If we are interested in getting the structure for the local computer, we canmanually initialize the struct sockaddr_in as we did earlier.

Or we can call getaddrinfo() with NULL as the node parameter.

It’s possible to use NULL for the hints if you are willing to accept the defaults

To deallocate the information that has been allocated, use freeaddrinfo().

ECE 252 16 / 31

If you find a fork in the road... keep it

Up until now what we’ve learned applies to both the client and server side.

Now the paths diverge.

If we are the client, we’d like to connect to a server.

This is the easier workflow. We just call connect().

ECE 252 17 / 31

Connect
i n t connect (i n t sockfd , s t r u c t sockaddr *addr , socklen_t len) ;

sockfd: the socket file descriptor (the intwe got back from the call to socket).

addr: address structure from our lookup.

len: size of the address structure.Use either sizeof or ai_addrlen.

ECE 252 18 / 31

Connect Example
s t r u c t addrinfo hints ;
s t r u c t addrinfo *res ;
i n t sockfd ;
memset (&hints , 0 , s i z e o f (hints)) ;
hints . ai_family = AF_INET ;
hints . ai_socktype = SOCK_STREAM ;
getaddrinfo ("www. uwater loo . ca " , "80" , &hints , &res) ;
sockfd = socket (res−>ai_family , res−>ai_socktype , res−>ai_protocol) ;
i n t status = connect (sockfd , res−>ai_addr , res−>ai_addrlen) ;

The return value (status) tells us if we were successful.
0 indicates success.
Check codes by looking at the man pages:
http://man7.org/linux/man-pages/man2/connect.2.html

Success means we’re ready to communicate!
ECE 252 19 / 31

http://man7.org/linux/man-pages/man2/connect.2.html

Server: Bind, Listen, Accept

The overview of what steps the server is going to do is bind, listen, and accept.

The bind step is how we choose what port we are going to connect to.

The listen step is the part where we wait for connections from a client.

Then the last step is accept: establish the connection so we can start talking.

ECE 252 20 / 31

Bind, Listen, Accept

ECE 252 21 / 31

Bind
bind(): associate the socket with whatever port we want to use.

When the ssh daemon is available for connection, it’s because it has bound itselfto the port 22 using bind.
i n t socketfd = socket (AF_INET , SOCK_STREAM , 0) ;
s t r u c t sockaddr_in addr ;
addr . sin_family = AF_INET ;
addr . sin_port = htons (2520) ;
addr . sin_addr . s_addr = htonl (INADDR_ANY) ;
bind (socketfd , (s t r u c t sockaddr *) &addr , s i z e o f (addr)) ;

With that done, we’ve acquired the resource of port 2520 for our use.

ECE 252 22 / 31

Client Side Port?

You’ll notice also bind() did not happen on the client side.

This is because we don’t care on the client side what the outgoing port number is.

So we can just skip that step, unless we have a reason to care.

ECE 252 23 / 31

Listen
listen(): int this step we wait for incoming connections.

This is the simplest step and you just call:
i n t listen (i n t sockfd , i n t backlog) ;

We listen on a socket that has been bound with bind and we’ll allow a backlogup to backlog connections.

If the queue is full the server system will reject additional requests.

ECE 252 24 / 31

Acceptance is the Last Stage
So we’ve chosen a socket (got a phone number).
We’ve said we’re ready to listen (our phone is turned on).
The next step is to accept() incoming connect requests (press the green icon).
i n t accept (i n t sockfd , s t r u c t sockaddr *addr , socklen_t *len) ;

The first parameter is, of course, the socket that we are listening to.
The second and third parameters are the information about the client. Weallocate these, pass them in, and they are updated by the call to accept.
If we don’t care at all about who the client is you can give in NULL.

ECE 252 25 / 31

Accept: “Always Two, There Are”

The return value is a new file descriptor which describes a new socket.

Further communication takes places over that socket (and not the original one).

The original socket is still used for accepting connections, and the new one is thesocket used for communication with the client.

If accept is called and no requests are in the queue, the server is blocked until arequest arrives. We simply wait for the connection.

ECE 252 26 / 31

Put the Pieces Together
s t r u c t sockaddr_in client_addr ;
i n t client_addr_size = s i z e o f (s t r u c t sockaddr_in) ;
i n t newsockfd ;
i n t socketfd = socket (AF_INET , SOCK_STREAM , 0) ;
s t r u c t sockaddr_in server_addr ;
server_addr . sin_family = AF_INET ;
server_addr . sin_port = htons (2520) ;
server_addr . sin_addr . s_addr = htonl (INADDR_ANY) ;
bind (socketfd , (s t r u c t sockaddr *) &server_addr , s i z e o f (server_addr)) ;
listen (socketfd , 5) ;
newsockfd = accept (socketfd , (s t r u c t sockaddr *) &client_addr , &client_addr_size) ;
/* Do someth ing u s e f u l */
close (newsockfd) ;
/* L a t e r when a l l i s done */
close (socketfd) ;

ECE 252 27 / 31

Acceptance is Ongoing

Unless communication is a one-time thing, we call accept in some sort of loop.

We then are constantly accepting new connections and doing something usefulwith each, before going on to the next.

ECE 252 28 / 31

Blocked Number
We could save ourselves some trouble by not caring about the client address:
i n t newsockfd ;
i n t socketfd = socket (AF_INET , SOCK_STREAM , 0) ;
s t r u c t sockaddr_in server_addr ;
server_addr . sin_family = AF_INET ;
server_addr . sin_port = htons (2520) ;
server_addr . sin_addr . s_addr = htonl (INADDR_ANY) ;
bind (socketfd , (s t r u c t sockaddr *) &server_addr , s i z e o f (server_addr)) ;
listen (socketfd , 5) ;
newsockfd = accept (socketfd , NULL , NULL) ;/* Do someth ing u s e f u l */
close (newsockfd) ;
/* L a t e r when a l l i s done */
close (socketfd) ;

ECE 252 29 / 31

Connection Established

We are finally ready for the client and server to communicate.
ECE 252 30 / 31

Connection Established

The client communicates using its original socket file descriptor.

The server communicates using the new file descriptor.

Likely you will move some of the boilerplate into your own function, e.g.:
i n t connect_to (cons t char * host , cons t char * port) ;

Next: let’s actually communicate!

ECE 252 31 / 31

