Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

ECE 252 1/37

On the Line

We established a connection, but so far have neither sent nor received any data.

WAITING FOR TECH SUPPORT

Either side can send or receive.
Figuring out whose turn it is will be the job of client and server.

Same for what the content is.

ECE 252 2/37

int send(int sockfd, const void* msg, int length, int flags);

sockfd: Socket to send the data to.

msg: Bytes of data to be sent.

length: Size of the message.

flags: Options; giving in O will suffice.

Return value: number of bytes sent.

ECE 252 3/37

If something went wrong, the function returns -1..
The errno variable will tell you more about what exactly went wrong.

Under ideal circumstances, the number of bytes sent equals the length
parameter.

Otherwise - not all data was sent!

ECE 252 4/37

char *msg = "Hello_world!"
int len = strnlen(msg, 13);
int sent = send(sockfd, msg, len, 0);

In real life it might be best to check for -1.

Networks are tricky and can fail. Checking is worthwhile...

ECE 252 5/37

If I Can Just Repack It..

Under ideal circumstances the number of bytes is equal to the length.

There is a limit to the amount of data that you can send in one chunk.

ECE 252 6/37

How Much Space Do We Have?

The actual amount you can send in one chunk is reasonably-sized (~1KB).

You can’t memorize a number & assume that will be true across all systems!

So if you have a significant chunk of data to send, you'll need to check how much
was sent and then you are responsible for sending out the rest.

ECE 252 7/37

Blowing Up Our Phones...

Track the number of bytes sent and keep calling send, updating the pointer as
you advance:

int sendall(int socket, char *buf, int *len) {

int total = O; // how many bytes we’ve sent
int bytesleft = *len; // how many we have left to send
int n;

while(total < *len) {
n = send(socket, buf + total, bytesleft, 0);
if (n == -1) {
break;
}
total += n;
bytesleft -= n;

}
*len = total; // return number actually sent here
return == -17? -1 : 0; // return -1 on failure, O on success

Send is called as many times as necessary.

ECE 252 8/37

Receiving You Loud and Clear...

And if you'd like to receive data, the call for this is recv():

int recv(int sockfd, void * buffer, int length, int flags);

sockfd: Where to receive data from.
buffer: Where the data goes

length: the maximum size of that buffer.
flags: flags can also be O here.

Return value: the number of bytes actually read into the buffer.

ECE 252 9/37

Return values with special meaning:
-1: then an error occurred and check errno for more details.

0: the other side hung up on you: they closed the socket.

ECE 252 10/37

Knowing that the other side is finished sending data may not be easy!

Options:

m Pre-defined length of message
m Negotiated at the start of communication
m Wait for them to hang up

ECE 252 1/37

Suppose we are sending more than just a string.

Can we do a fancy thing and write directly to a struct by making the buffer
location the location of that struct and the length the sizeof that type?

ECE 252 12/37

Yes, you can but this requires that the representation you receive over the
network to be exactly the same as your struct.

A more sensible approach is to serialize your data in some way, and then
de-serialize it on the other side.

ECE 252 13/37

Serial Killers

e
Al i
com]

ECE 252 14/37

Serialize

Serialization is the process of converting the data to some sort of
byte-representation.

Then later it can be reconstructed via the deserialization process.

This means that no particular data format is needed and systems that don’t use
the same software or architecture, even, can communicate easily.

ECE 252 15/37

In a practical scenario there’s no need to write your own (de)serialization routine.

There exist libraries like protobuf - ¢ that are designed explicitly for this
purpose.

Pick a good one and use it.

ECE 252 16/37

That's how we send and receive data.
When we're done, we just call close () on the socket and that is the end.

We now know how to communicate over the network.

ECE 252 17/37

Datagrams

Calling is for old people and we just want to text people!

int sendto(int sockfd, const void* msg, int length, unsigned int flags,
const struct sockaddr* to, socklen_t tolength)

int recvfrom(int sockfd, void* buffer, int length, unsigned int flags,
struct sockaddr* from, int* fromlength)

Each send has parameters for where to send the data to and each receive tells
you where the data is being received from.

ECE 252 18/37

If you call connect () on a datagram socket, you can then skip some of this.
Then you can use the regular send and recv operations.

The transport is still UDP, but the source and destination don’t need to be added
every time.

ECE 252 19/37

That’s No Moon!

ECE 252 20/37

So cURL me maybe?

In most situations, however, we don’t work with sockets directly when dealing
with URLs.

Instead we are likely to use cURL (or similar), a network communication and
transfer request library.

It is only for the client-side and isn’t meant to be used for server-side operations.

ECE 252 21/37

Webservices!

Imagine that you want to access a webservice.

Servers have “endpoints” that clients connect to via HTTP, and then the client can
get aresponse.

There are numerous examples of services that use this mechanism and they often
adhere to some design principles like REST (REpresentational State Transfer).

ECE 252 22/37

GET course/ece252/grade

If we wished to communicate, for example, a GET request, then we can put
together a connection via a socket.

Write the “"GET / HTTP/1.0\r\n"” into a string and send that message via send ().

But: no need to do it by hand because we can do this very easily with libcurl.

ECE 252 23/37

#include <stdio.h>
#include <curl/curl.h>

int main(int argc, char** argv) {

CURL *curl;
CURLcode res;

curl_global_init (CURL_GLOBAL_DEFAULT);

curl = curl_easy_init();

if(curl) {
curl_easy_setopt(curl, CURLOPT_URL, "https://example.com/");
res = curl_easy_perform(curl);

if(res !'= CURLE_OK) {
fprintf(stderr, "curl_easy_perform () _failed: _%s\n", curl_easy_strerror(res)):

curl_easy_cleanup(curl);

}

curl_global_cleanup();
return O;

ECE 252

24/37

Recycle, Reduce, Reuse

A handle can be used multiple times if you need, although you may need to
update the options that are set on it to reflect the new things you'd like to happen

If we wanted to re-use a handle but clear all the settings there is
curl_easy_reset.

ECE 252 25/37

Setting up Callbacks

LWHAT YOUR MUT'_I'IE*IS THINI(ING

+ o

ECE 252 26/37

Almost certainly, however, we want to do something useful with the data we got.
Or, we might have some data that we need to send.

For each direction, what we want to set up is a callback.

ECE 252 27/37

Read Callback, Write Callback

The read callback is used when you are uploading data to the server (sometimes
this is a POST operation).

The write callback is used when you are receiving data from the server (this can
be a GET operation).

You may set up a read or write callback (or both) for an operation.

There can be different callbacks for different easy handles, of course.

ECE 252 28/37

Write Callback Function

A write function has to have the following signature

size_t write_callback(char *ptr, size_t size, size_t nmemb, void *userdata);

The name can be anything you like.

size_t: represents a size and can be treated like an integer.

ptr: points to whatever data we received.

nmemb: the size of that data.

size: always 1.

user data: arbitrary structure we get to pass directly to this function.

Return value: number of bytes processed.

ECE 252 29/37

The spec requires that the returned size is the number of bytes of the data
successfully processed.

If it’s not equal to the size of nmemb then the library interprets that as an error in
writing.

ECE 252 30/37

Read Callback Function

size_t read_callback(char *buffer, size_t size, size_t nitems, void *inputdata);

buffer: the area where you are going to put the data to send.

size: the size of each data element.

nitems: the number of items.

In practice you will just want to calculate the maximum buffer size by multiplying
these two things together.

Return value: the number of bytes successfully put there; O signals end-of-file.

ECE 252 31/37

Registration

To register the read and write callback respectively, there are two steps.

One to register the function, and another to set the data

CURLcode curl_easy_setopt(CURL *handle, CURLOPT_READFUNCTION, read_callback);
CURLcode curl_easy_setopt(CURL *handle, CURLOPT_READDATA, void *pointer);

CURLcode curl_easy_setopt(CURL *handle, CURLOPT_WRITEFUNCTION, write_callback);
CURLcode curl_easy_setopt(CURL *handle, CURLOPT_WRITEDATA, void *pointer);

ECE 252 32/37

Callback Example

#include <stdio.h>
#include <string.h>
#include <curl/curl.h>

const char data[]="Lorem ipsum_dolor_sit _amet,_consectetur_adipiscing_ "
"elit._Sed_vel_urna_neque._Ut_quis_leo_metus._Quisque_eleifend, _ex_at_ "
"laoreet rhoncus,_odio_ipsum_semper_metus, _at_tempus_ante_urna_in_mauris._ "
"Suspendisse _ornare _tempor_venenatis._Ut_dui_neque,_pellentesque_a_varius_ "
"eget, mattis vitae _ligula._ Fusce_ut_ pharetra_est._ Ut_ullamcorper _mi_ac_ "
"sollicitudin ,semper. _ Praesent_sit_amet_tellus _varius,b posuere_nulla_non, "
"rhoncus ipsum.";

struct data {
char *readptr;
size_t sizeleft;

N

ECE 252 33/37

Callback Example

size_t read_callback(void *dest, size_ t size, size_t nmemb, void *userp) {
struct data *d = (struct data *) userp;
size_t buffer_size = size * nmemb;

if (d->sizeleft > 0) {
/* copy as much as possible from the source to the destination */
size_t copy_this_much = d->sizeleft;
if (copy_this_much > buffer_size) {
copy_this_much = buffer_size;

memcpy (dest, d->readptr, copy_this_much)

d->readptr += copy_this_much;
d->sizeleft -= copy_this_much;
return copy_this_much;

}

return O; /* no more data left to deliver */

}

ECE 252 34/37

int main(int argc, char** argv) {

CURL *curl;
CURLcode res;

struct data * d = malloc(sizeof(struct data));

d->readptr = data;
d->sizeleft = strlen(data);

res = curl_global_init(CURL_GLOBAL_DEFAULT);
if (res !'= CURLE_OK) {

fprintf(stderr, "curl_global_init () _failed: _%s\n",

return 1;

}

curl_easy_strerror(res)

ECE 252

35/37

Callback Example

curl = curl_easy_init();
if (curl) {
curl_easy_setopt(curl,

/* Now specify we want to POST data

CURLOPT_URL,

"https://example.com/index.cgi");

*/

curl_easy_setopt(curl, CURLOPT_POST, 1L);

curl_easy_setopt(
curl_easy_setopt

curl,
(curl,

res = curl_easy_perform(curl);
/* Check for errors */
if (res != CURLE_OK) {
fprintf(stderr,
curl_easy_strerror(
}
curl_easy_cleanup(curl);
}
free(d);
curl_global_cleanup();
return O;

CURLOPT_READFUNCTION,
CURLOPT_READDATA, d);

read_callback);

"curl_easy_perform () failed: _%s\n",
res));

ECE 252

36/37

Not Just Coincidence

In these examples and our brief overview, we have really only scratched the
surface of what the curl library can do.

But this is enough to get the flavour of how it works and to begin to do useful
work with it.

Such as, perhaps, a lab?

ECE 252 37/37

