
Lecture 9 — Pipes and Shared Memory
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 39

More IPC

In addition to message passing, we should talk about pipes and shared memory.

ECE 252 2 / 39

UNIX Pipes
In UNIX, we can create a pipe to set up communication.

ECE 252 3 / 39

UNIX Pipes

The producer writes in one end; the consumer receives on the other.

This is unidirectional, so if bidirectional communication is desired, two pipesmust be used (going in different directions).

ECE 252 4 / 39

Constructing a UNIX Pipe

The method is pipe and it is constructed with the call:
pipe(int fileDescriptors[])where fileDescriptors[0] is the read-end; and
fileDescriptors[1] is the write-end.

Yes, fileDescriptorsmeans that UNIX thinks of a pipe as a fileeven though it is in memory.

ECE 252 5 / 39

UNIX Pipes

ECE 252 6 / 39

UNIX Pipes
The pipe is a block of main memory interpreted as a circular queue.

Each entry in the queue is fixed in size and usually one character.

The sender may place the message into the queue in small chunks.

The receiver gets data one character at a time.

The sender and receiver need to know when the message is finished.

Solutions: termination character, or declared length at the start.

ECE 252 7 / 39

Named Pipes
A UNIX pipe may be stored on disk.

When this happens, we call it a named pipe.

Unless we make it a named pipe, a pipe exists only as long as the processes arecommunicating.

Regular pipes require a parent-child process relationship.Named pipes do not.

Named pipes are also bidirectional, but one direction at a time.

ECE 252 8 / 39

UNIX Command Line Pipes

You may have worked with pipes on the UNIX command line.

A command like cat fork.c | less creates a pipe;.

It takes the output of the cat program and delivers it as input to less.

ECE 252 9 / 39

Pipe Code Example
Use fork to spawn a new child process and then setting up a communicationpipe between the parent and child.

We will send a message “Greetings” from the parent to the child.

char write_msg [BUFFER_SIZE] = " G r e e t i n g s " ;
char read_msg [BUFFER_SIZE] ;
i n t fd [2] ;
pid_t pid ;
i f (pipe (fd) == − 1) {
fprintf (stderr , " P ipe f a i l e d ") ;
r e tu rn 1 ;}

ECE 252 10 / 39

Pipe Code Example, Continued
/* f o r k a c h i l d p r o c e s s */

pid = fork () ;
i f (pid < 0) {/* e r r o r o c cu r r ed */
fprintf (stderr , " Fo rk F a i l e d ") ;
r e tu rn 1 ;}

i f (pid > 0) { /* pa ren t p r o c e s s *//* c l o s e the unused end o f the p i pe */
close (fd [READ_END]) ;
/* w r i t e to the p i pe */
write (fd [WRITE_END] , write_msg , strlen (write_msg)) ;
/* c l o s e the w r i t e end o f the p i pe */
close (fd [WRITE_END]) ;

}

READ_END is defined as 0 in a #define directive.
WRITE_END is defined as 1 in a #define directive.

ECE 252 11 / 39

Pipe Code Example, Continued
e l s e { /* c h i l d p r o c e s s *//* c l o s e the unused end o f the p i pe */

close (fd [WRITE_END]) ;
/* read from the p i pe */
read (fd [READ_END] , read_msg , BUFFER_SIZE) ;
printf (" read %s " , read_msg) ;/* c l o s e the w r i t e end o f the p i pe */
close (fd [READ_END]) ;}

r e tu rn 0;}

Does the output match what’s supposed to happen?

Or are there extra characters?

ECE 252 12 / 39

Creating a Named Pipe

If we wanted to create a named pipe, the system call is mkfifo.

Sometimes a named pipe is called a FIFO.

As it is a file, it can be manipulated with the usual UNIX file system calls: open,
read, write, and close.

ECE 252 13 / 39

Shared Memory

Conceptually, the idea of shared memory is very simple.

A particular region of memory is designated as being shared between multipleprocesses, all of whom may read and write to that location.

To share an area of memory, the OS must be notified.

ECE 252 14 / 39

What’s yours is mine...
Normally, a region of memory is associated with exactly one process (its owner).

The kernel is only involved in the setup and cleanup of that shared area.
ECE 252 15 / 39

Whose Turn Is It Anyway?

When a section of memory is shared, there exists the possibility that one processwill overwrite another’s changes.

To prevent this sort of problem, we will need a mechanism for co-ordination...

A subject we will return to later.

ECE 252 16 / 39

Share a Key

Suppose we want to share a section of memory.

We need to obtain a key that identifies a specific memory segment.

Either use IPC_PRIVATE or generate it with ftok() as before.

ECE 252 17 / 39

Workflow for Shared Memory

Create a new shared memory segment – shmget.
Attach the shared memory segment – shmat.
Then the process can use the shared memory.
Detach – shmdt.
Delete the shared memory segment, done by one process only – shmctl.

ECE 252 18 / 39

Create
To create a shared memory segment, or get a reference to an existing one, weuse shmget.
i n t shmget (key_t key , size_t size , i n t shmflg) ;

The first argument is the key, which can be either the result of a ftok() call orthe constant IPC_PRIVATE.
size: how many bytes of memory are to be shared.
shmflg: access permissions (UNIX standards, eg 600)Optional: IPC_CREAT, IPC_EXCL
Return value: the integer ID of the shared memory segment.

ECE 252 19 / 39

Attach
vo id * shmat (i n t shmid , cons t vo id * shmaddr , i n t shmflg) ;

shmid: ID of the shared memory segment.
shmaddr: where it should go; always use NULL.
shmflg: optionally, SHM_RDONLY
Return value: standard C pointer with the address of shared memory.
But how do we know what the shared memory segment ID is?

ECE 252 20 / 39

This is the key for what?

If we created the segment ourselves, we obviously know where it is.

But presumably you want some other process to have it as well.

If two processes use the same input values for ftok() they will get the sameresult, so that’s one method.

Or, if a parent attaches a shared memory segment and then calls fork(), thechild inherits the shared memory segments, so it’s is already set up.

ECE 252 21 / 39

Detach Cable!

ECE 252 22 / 39

Detach Segment

When we are done with a segment we can detach from it with shmdt.
i n t shmdt (cons t vo id * shmaddr) ;

shmaddr: the address returned by the attach call

If we forget, it happens at process termination (but don’t forget!)

ECE 252 23 / 39

Delete Shared Memory
i n t shmctl (i n t shmid , i n t cmd , s t r u c t shmid_ds *buf)

This function can do a lot more than delete it, such as modify properties of thedata structure that is used to control shared memory.

The command is IPC_RMID (“remove ID”).

We must leave the last argument as NULL for this deletion.

Deletion may be deferred!

ECE 252 24 / 39

Shared Memory Example
de f i ne _XOPEN_SOURCE
i n c l u de < s t d i o . h>
i n c l u de < s t d l i b . h>
i n c l u de < s y s / shm . h>
i n c l u de < s t r i n g . h>
i n c l u de < un i s t d . h>
i n c l u de < s y s / wa i t . h>
i n t main (i n t argc , char ** argv) {

i n t shmid = shmget (IPC_PRIVATE , 32 , IPC_CREAT | 0666) ;
i n t pid = fork () ;
i f (pid > 0) { /* Pa ren t */

waitpid (pid , NULL , 0) ;
vo id * mem = shmat (shmid , NULL , 0) ;
printf (" The msg r e c e i v e d from the c h i l d i s %s . \ n " , (char *) mem) ;
shmdt (mem) ;
shmctl (shmid , IPC_RMID , NULL) ;} e l s e i f (pid == 0) { /* C h i l d */
vo id * mem = shmat (shmid , NULL , 0) ;
memset (mem , 0 , 32) ;
sprintf (mem , " H e l l o World ") ;
shmdt (mem) ;}

r e tu rn 0;}
ECE 252 25 / 39

Consult the Map

ECE 252 26 / 39

Altenative: mmap()

An alternative approach for shared memory involves the use of mmap(), afunction nominally used to map a file into memory.

But we can also use this for IPC!

ECE 252 27 / 39

Mapping
vo id * mmap (vo id * address , size_t length , i n t protection , i n t flag ,

i n t fd , off_t offset) ;

address: where you want the mapped region to go; use NULL.
length: how many bytes to map.
protection: rules for how memory can be used.
flag: mode for mapping.
fd: file descriptor of the file to map.
offset: how far from the start of the file mapping begins.

ECE 252 28 / 39

Protection Flags

Valid values are PROT_NONE, PROT_READ, PROT_WRITE, and PROT_EXECUTE.

They can be combined with the bitwise OR operator.

Whatever flags you choose have to be consistent with how the file was openedwith open.

ECE 252 29 / 39

PROT_NONE

What’s the point of PROT_NONE, if all things are forbidden?
ECE 252 30 / 39

Flags

Flags can be one of two options: MAP_PRIVATE or MAP_SHARED.

Private: modifications are not visible to other processes mapping the same fileand not written out to the underlying file.

Shared: modifications are visible to other processes and written out to the file...but maybe not instantly.

ECE 252 31 / 39

Memory Mapped File

ECE 252 32 / 39

Protection

If we wish to change the protection rules for a section, we use mprotect.
i n t mprotect (vo id * address , size_t length , i n t prot) ;

address: the memory to modify protection of.

length: the size of said memory.

prot: the new protection rules.

ECE 252 33 / 39

Synchronize

i n t msync (vo id * address , size_t length , i n t flags) ;

address: the memory to synchronize.
length: how many bytes to synchronize.
flags: mode for synchronization; use MS_SYNC (blocking).

ECE 252 34 / 39

Unmap
i n t munmap (vo id * address , size_t length) ;

address: the memory to unmap.

length: how many bytes to unmap.

A segment would be unmapped automatically when a process exits, but asalways it is polite to unmap it as soon as you know that you are done with it.

ECE 252 35 / 39

Memory Mapping Example
de f i ne _XOPEN_SOURCE
i n c l u de < s t d i o . h>
i n c l u de < s t d l i b . h>
i n c l u de < s y s / shm . h>
i n c l u de < s t r i n g . h>
i n c l u de < un i s t d . h>
i n c l u de < s y s / wa i t . h>
i n c l u de < s y s / s t a t . h>
i n c l u de < f c n t l . h>
i n c l u de < s y s /mman . h>
i n t main (i n t argc , char ** argv) {

i n t fd = open (" example . t x t " , O_RDWR) ;
s t r u c t stat st ;
stat (" example . t x t " , &st) ;
ssize_t size = st . st_size ;
vo id * mapped = mmap (NULL , size , PROT_READ | PROT_WRITE , MAP_SHARED , fd , 0) ;

ECE 252 36 / 39

Memory Mapping Example
i n t pid = fork () ;
i f (pid > 0) { /* Pa ren t */

waitpid (pid , NULL , 0) ;
printf (" The new con ten t o f the f i l e i s : %s . \ n " , (char *) mapped) ;
munmap (mapped , size) ;} e l s e i f (pid == 0) { /* C h i l d */

memset (mapped , 0 , size) ; /* E ra se what ’ s t h e r e */
sprintf (mapped , " I t i s now Ove rwr i t t en ") ;/* Ensu re data i s s y n c h r o n i z e d */
msync (mapped , size , MS_SYNC) ;
munmap (mapped , size) ;}

close (fd) ;
r e tu rn 0;}

ECE 252 37 / 39

The Example is... Flawed
The example works acceptably in the sense that we successfully overwrite thedata with the new data and the parent process sees the change.

But things get weird if we tried to write fewer bytes than the original message.

In general, the mapped area size cannot change.

Linux has mremap but this is not portable...

But this would be great for something like sorting an array, wouldn’t it?The sorted array is the same size as the input and we could share the work...

ECE 252 38 / 39

