
Lecture 10 — Threads
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 29

What is a Thread?

Recall our earlier examination of the process.

A process has three major components:

1 An executable program;
2 The data created/needed by the program; and
3 The execution context of the program.

A process has at least one thread, and can have many.

ECE 252 2 / 29

What is a Thread?

The term “thread” is a short form of Thread of Execution.

A thread of execution is a sequence of executable commands that can bescheduled to run on the CPU.

Threads also have some state and stores some local variables.

Most programs you will write in other courses have only one thread;that is, your program’s code is executed one statement at a time.

ECE 252 3 / 29

Multithreaded Programs

A multithreaded program uses more than one thread, (some of the time).

A program begins with an initial thread (where the mainmethod is).

That main thread can create some additional threads if needed.

Threads can be created and destroyed within a program dynamically.

ECE 252 4 / 29

Threads and Processes

ECE 252 5 / 29

Thread Possessions

In a process that has multiple threads, each thread has its own:

1 Thread execution state.
2 Saved thread context when not running.
3 Execution stack.
4 Local variables.
5 Access to the memory and resources of the process (shared with all threadsin that process).

ECE 252 6 / 29

Single vs. Multithreaded

ECE 252 7 / 29

Thread Notes

All the threads of a process share the state and resources of the process.

If a thread opens a file, other threads in that process can also access it.

The way programs are written now, few are not multithreaded.

ECE 252 8 / 29

UI Thread
One common way of dividing up the program into threads is to separate the userinterface from a time-consuming action.
Consider a file-transfer program.
If the user interface and upload method share a thread, once a file upload hasstarted, the user will not be able to use the UI anymore.

Not even to click the button that cancels the upload!
ECE 252 9 / 29

Solving the UI Thread Problem

We have two options for how to alleviate this problem.

Option 1: fork a new process to do the upload; orOption 2: Spawn new thread.

In either case, the newly created entity will handle the upload of the file.

The UI remains responsive, because the UI thread is not waiting for the uploadmethod to complete.

ECE 252 10 / 29

Thread Motivation

Why threads instead of a new process?

Primary motivation is: performance.

1 Creation: 10× faster.
2 Terminating and cleaning up a thread is faster.
3 Switch time: 20% of process switch time.
4 Shared memory space (no need for IPC).
5 Lets the UI be responsive.

ECE 252 11 / 29

Common Usage of Threads

1 Foreground and Background Work
2 Asynchronous processing
3 Speed of Execution
4 Modular Structure

ECE 252 12 / 29

Thread Drawbacks

There is no protection between threads in the same process.

One thread can easily mess with the memory being used by another.

This once again brings us to the subject of co-ordination, which will follow thediscussion of threads.

Also, if any thread encounters an error, the whole process might be terminatedby the operating system.

ECE 252 13 / 29

Thread States

Each individual thread will have its own state.

Our process model has seven states.The thread state model is the simpler five-state model.

If a process is blocked, we don’t really care why (even if the OS does).

ECE 252 14 / 29

Five State Model
Five state model, once again:

ECE 252 15 / 29

Five State Model

The transitions work the same way as the state transitions for a process.

As with a process, a thread in any state can transition to terminated.

When a process is terminated, all its threads are terminatedRegardless of what state it is in.

ECE 252 16 / 29

The POSIX Thread
The term pthread refers to the POSIX standard (also known as the IEEE 1003.1cstandard) that defines thread behaviour in UNIX.

pthread_create

pthread_exit

pthread_join

pthread_detach

pthread_yield

pthread_attr_init

pthread_attr_destroy

pthread_cancel

pthread_testcancel

ECE 252 17 / 29

Let’s Make a New Thread
pthread_create (pthread_t *thread ,

cons t pthread_attr_t * attr ,
vo id * (* start_routine) (vo id *) ,
vo id *arg) ;

thread: a pointer to a pthread identifier and will be assigned a value when thethread is created.
attr: attributes; may be NULL for defaults.
start_routine: the function the new thread is to run.
arg: The argument passed to the routine we want to start.

ECE 252 18 / 29

Start Routine
The type of start_routine above is a function signature.

Thus, the pthread_create function has to be called with the name of afunction matching that signature, such as:
vo id * do_something (vo id * start_params)

After creating a new thread, the process has two threads in it.

Scheduling of the threads is up to the operating system.

ECE 252 19 / 29

There Can Be Only One
C: it is normal to have a single return value from a function, but usually we canhave multiple input parameters.
But here we get only one of each?
Define a struct for the argument and return type!
vo id * function (vo id * void_arg) {

parameters_t *arguments = (parameters_t *) args ;/* c on t i n u e a f t e r t h i s */}

We have to cast it inside the thread anyway...
The caller of the pthread_create function has to know what kind of argumentis expected in the function being called.

ECE 252 20 / 29

Attributes
Attributes can be used to set whether a thread is detached or joinable,scheduling policy, etc.

By default, new threads are usually joinable (that is to say, that some otherthread can call pthread_join on them).

To prevent a thread from ever being joined, it can be created in the detachedstate (or use pthread_detach)

For virtually all scenarios that we will consider in this course the default valueswill be fine.

ECE 252 21 / 29

Threadception
There is no mandatory hierarchy of threads.

Image Credit: Blaise Barney

New threads can create other threads.
ECE 252 22 / 29

OffWe Go

The thread executes its function, until of course it gets to the end.

Usually, it will terminate with pthread_exit.

The use of pthread_exit is not the only way that a thread may be terminated.

Sometimes we want the thread to persist (hang around), but if we want to get areturn value from the thread, then we need it to exit.

ECE 252 23 / 29

Nobody’s Listening

If a thread has no return values, it can just return NULL;

This will send NULL back to the thread that has joined it.

If the function that is called as a task returns normally rather than calling the exitroutine, the thread will still be terminated.

ECE 252 24 / 29

Oh... Guess You Didn’t Need This After All

Another way a thread might terminate is if the pthread_cancel function.We’ll come back to this topic in more detail soon.

A thread may also be terminated indirectly: if the entire process is terminated orif main finishes first (without calling pthread_exit itself).

End main with pthread_exit to automatically wait for all spawned threads.

ECE 252 25 / 29

Report, Number One!

ECE 252 26 / 29

Report, Number One!

Like the wait system call, the pthread_join is how we get a value out of thespawned thread:
pthread_join (pthread_t thread , vo id ** retval) ;

thread: the thread you wish to join.

retval: wait... two stars?

ECE 252 27 / 29

Gotta Play the Level Again, Only Got 2 Stars

What we are looking for is a pointer to a void pointer.

That is, we are going to supply a pointer that the join function will update to bepointing to the value returned by that function.

Typically we supply the address of a pointer.

Maybe the example makes it clearer.

ECE 252 28 / 29

Collecting Return Value
i n c l u de < s t d l i b . h>
i n c l u de < s t d i o . h>
i n c l u de < pthread . h>
vo id * run (vo id * argument) {

char * a = (char *) argument ;
printf (" P rov i ded argument i s %s ! \ n " , a) ;
i n t * return_val = malloc (s i z e o f (i n t)) ;*return_val = 99 ;
pthread_exit (return_val) ;}

i n t main (i n t argc , char ** argv) {
i f (argc ! = 2) {

printf (" I n v a l i d a r g s . \ n ") ;
r e tu rn − 1 ;}

pthread_t t ;
vo id * vr ;
pthread_create (&t , NULL , run , argv [1]) ;
pthread_join (t , &vr) ;
i n t * r = (i n t *) vr ;
printf (" The o the r th read re tu rned %d . \ n " , *r) ;
free (vr) ;
pthread_exit (0) ;}

ECE 252 29 / 29

