
Lecture 11 — Threads and Concurrency
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 35

Thread Cancellation
Thread cancellation is exactly what it sounds like: a running thread will beterminated before it has finished its work.
The thread that we are going to cancel is called the target.

ECE 252 2 / 35

Cancellation Type
1 Asynchronous Cancellation
2 Deferred Cancellation

thread can declare its own cancellation type through the use of the function:
pthread_setcanceltype (i n t type , i n t *oldtype)

type: PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS

oldtype: previous state, if we care.

ECE 252 3 / 35

Send Cancellation

The pthread command to cancel a thread is pthread_cancel and it takes oneparameter (the thread identifier).

To check if the current thread has been cancelled, the function call is
pthread_testcancel which takes no parameters.

It’s polite to check this, if it’s a risk.

ECE 252 4 / 35

Cancellation Points

A large number of functions are cancellation points.

That is, the POSIX specification requires there is an implicit check for cancellationwhen calling one of those functions.

Even more are “potential cancellation points” – maybe, maybe not?

ECE 252 5 / 35

Not Now!
Sometimes a thread could die before it has cleaned up.

This can leave memory allocated, things locked...

ECE 252 6 / 35

Cleanup Handler

We can prevent this with cancellation handlers.

The functions for cleaning up are:
/* R e g i s t e r c l eanup hand le r , w i th argument */
pthread_cleanup_push (vo id (* routine) (vo id *) , vo id *argument) ;/* Run i f e xe cu t e i s non − z e ro */
pthread_cleanup_pop (i n t execute) ;

The push function always needs to be paired with the pop function at the samelevel in your program (where level is defined by the curly braces).

ECE 252 7 / 35

Don’t You Forget About Me

Consider the following code:
vo id * do_work (vo id * argument) {

s t r u c t job * j = malloc (s i z e o f (s t r u c t job)) ;/* Do someth ing u s e f u l w i th t h i s s t r u c t u r e *//* Ac t ua l work to do not shown */
free (j) ;
pthread_exit (NULL) ;}

ECE 252 8 / 35

Don’t You Forget About me
vo id cleanup (vo id * mem) {

free (mem) ;}
vo id * do_work (vo id * argument) {

s t r u c t job * j = malloc (s i z e o f (s t r u c t job)) ;
pthread_cleanup_push (cleanup , j) ;/* Do someth ing u s e f u l w i th t h i s s t r u c t u r e *//* Ac t ua l work to do not shown */
free (j) ;
pthread_cleanup_pop (0) ; /* Don ’ t run */
pthread_exit (NULL) ;}

ECE 252 9 / 35

Ah! Ah! Ah!
Next, we’ll do an example where we don’t use the return value of a thread, butdo use attributes.
For the sake of simplicity: we are just going to count!

ECE 252 10 / 35

Slightly Larger Example
i n c l u de < pthread . h>
i n c l u de < s t d i o . h>
i n t sum ; /* Shared Data */
vo id *runner (vo id *param) ;
i n t main (i n t argc , char **argv) {

pthread_t tid ; /* the th read i d e n t i f i e r */
pthread_attr_t attr ; /* s e t o f th read a t t r i b u t e s */
i f (argc ! = 2) {
fprintf (stderr , " usage : %s < i n t e g e r va lue >\n " , argv [0]) ;
r e tu rn − 1 ;}

i f (atoi (argv [1]) < 0) {
fprintf (stderr , "%d must be >= 0\n " , atoi (argv [1])) ;
r e tu rn − 1 ;}

pthread_attr_init (&attr) ; /* s e t the d e f a u l t a t t r i b u t e s */
pthread_create (&tid , &attr , runner , argv [1]) ; /* c r e a t e the th read */
pthread_join (tid , NULL) ;
printf (" sum = %d\n " , sum) ;
pthread_attr_destroy (&attr) ;
pthread_exit (NULL) ;}

ECE 252 11 / 35

Slightly Larger Example
vo id *runner (vo id *param) {

i n t upper = atoi (param) ;
sum = 0;
f o r (i n t i = 1 ; i <= upper ; i++) {

sum += i ;}
pthread_exit (0) ;}

In this example, both threads are sharing the global variable sum.

Do we have coordination?

ECE 252 12 / 35

Coordination, Count to 10
Yes! The parent thread will join the newly-spawned thread (i.e., wait until it isfinished) before it tries to print out the value.
If it did not, the parent would print the sum early.
Let’s do a different take on that program.

ECE 252 13 / 35

Slightly Larger Example 2
i n c l u de < pthread . h>
i n c l u de < s t d i o . h>
i n c l u de < s t d l i b . h>
i n t sum = 0;
vo id * runner (vo id *param) {

i n t upper = atoi (param) ;
f o r (i n t i = 1 ; i <= upper ; i++) {

sum += i ;}
pthread_exit (0) ;}

ECE 252 14 / 35

Slightly Larger Example 2
i n t main (i n t argc , char ** argv) {

pthread_t tid [3] ;
i f (argc ! = 2) {

printf ("An i n t e g e r va l ue i s r e qu i r e d as an argument . \ n ") ;
r e tu rn − 1 ;}

i f (atoi (argv [1]) < 0) {
printf ("%d must be >= 0 . \ n " , atoi (argv [1])) ;}

f o r (i n t i = 0; i < 3 ; ++i) {
pthread_create (&tid [i] , NULL , runner , argv [1]) ;}

f o r (i n t j = 0; j < 3 ; ++j) {
pthread_join (tid [j] , NULL) ;}

printf (" sum = %d . \ n " , sum) ;
pthread_exit (0) ;}

What happens when we run this program?
ECE 252 15 / 35

Sometimes...

For very small values of the argument, nothing goes wrong.

For a large number we get some strange and inconsistent results. Why?

There are three threads that are modifying sum.

But what does “at the same time” mean?

ECE 252 16 / 35

Multiprocessing

Not that long ago, a typical computer had one processor with one core.

It could accordingly do exactly one thing at a time.

1 processor: 1 general purpose processor that executes user processes.

There may be special-purpose processors in the system (RAID controller).

Only one general purpose processor so we call it a uniprocessor system.

ECE 252 17 / 35

Multiprocessing

Now, desktops, laptops, and even cell phones are using multi-core processors.

A quad-core processor may be executing four different instructions from fourdifferent threads at the same time.

In theory, multiple processors may mean that we can get more work done in thesame amount of (wall clock) time, but this is not a guarantee.

ECE 252 18 / 35

Terminology Note

Terminology note: we often refer to a logical processing unit as a core.

CPU may refer to a physical chip that contains 1+ logical processing units.

As far as the operating system is concerned, it does not much matter if a systemhas four cores in four physical chips or four cores in one chip.

Either way, there are four units that can execute instructions.

ECE 252 19 / 35

Execution

1 process, 1 thread: it does not matter how many cores are available.At most one core will be used to execute this task.

If there are multiple processes, each process can execute on a different core.

But what if there are more processes and threads than available cores?

We can hope that the processes get blocked frequently enough and long enough?

ECE 252 20 / 35

Chest Day Best Day

“Can I work in with you?”
ECE 252 21 / 35

Execution

Switch between the different tasks via a procedure we call time slicing.

So thread 1 would execute for a designated period, such as 20 ms, then thread 2for 20 ms, then thread 3 for 20 ms, then back to thread 1 for 20 ms.

To the user, it seems like threads 1, 2, and 3 are being executed in parallel.20 ms is fast enough that the user does not notice the difference.

ECE 252 22 / 35

Single Core Execution

ECE 252 23 / 35

Multi Core Execution
Time slicing will still occur, if necessary:

ECE 252 24 / 35

Parallelism

Multiple threads at the same time = tasks completed faster?

ECE 252 25 / 35

Merge Sort Example

Recall from data structures and algorithms the concept of merge sort.

This is a divide-and-conquer algorithm like binary search.

Split the array of values up into smaller pieces, sort those, and then merge thesmaller pieces together to have sorted data.

ECE 252 26 / 35

Merge Sort Example

ECE 252 27 / 35

Parallelism and Speedup

Depends on the nature of the task!

Fully parallelized: 2× Threads = 2× Speed

Partially parallelized: 2× Threads = (1 < n < 2)× Speed

Cannot be parallelized: 2× Threads = 1× Speed

ECE 252 28 / 35

Heard, Chef!

ECE 252 29 / 35

Speedup Example
Suppose: a task that can be executed in 5 s, containing a parallelizable loop.

Initialization and recombination code in this routine requires 400 ms.

So with one processor executing, it would take about 4.6 s to execute the loop.

Split it up and execute on two processors: about 2.3 s to execute the loop.

Add to that the setup and cleanup time of 0.4 s and we get a total time of 2.7 s.

Completing the task in 2.7 s rather than 5 s represents a speedup of about 46%.

ECE 252 30 / 35

Amdahl’s Law
Gene Amdahl came up with a formula for the general case of how much faster atask can be completed based on how many processors we have available.
Let us define S as the portion of the application that must be performed seriallyand N as the number of processing cores available.
Amdahl’s Law:

speedup ≤ 1
S+ 1−SN

ECE 252 31 / 35

Amdahl’s Law

Take the limit as N → infinity and you will find the speedup converges to 1S .

The limiting factor on how much additional processors help is the size of S.

Matches our intuition of how it should work.

ECE 252 32 / 35

Amdahl’s Law on the 5 s Task
Applying this formula to the example from earlier:

Processors Run Time (s)1 52 2.74 1.558 0.97516 0.687532 0.5437564 0.471875128 0.4359375

ECE 252 33 / 35

Observations on the 5 s Task

1. Diminishing returns as we add more processors.

2. Converges on 0.4 s.

The most we could speed up this code is by a factor of 50.4 ≈ 12.5.

But that would require infinite processors (and therefore infinite money).

ECE 252 34 / 35

Speedup as Function of # Processors
20

18

16

14

12

10

8

6

4

2

0

Amdahl's Law

Parallel portion

Number of processors

50%
75%
90%
95%

S
p

ee
d

u
p

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Image credit: wikipedia
ECE 252 35 / 35

