ECE 252: Systems Programming and Concurrency Spring 2024

Lecture 11 — Threads and Concurrency
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi

More on Threads

We got a brief introduction to working with threads and learned how to create a new thread, how one exits
(returning a value or not) and how to collect a value from it. Let’s take a moment to consider cancellation.

Thread Cancellation. Thread cancellation is exactly what it sounds like: a running thread will be terminated
before it has finished its work. Once the user presses the cancel button on the file upload, we want to stop the
upload task that was in progress. The thread that we are going to cancel is called the target (because we shoot
targets, I guess) and there are two ways a thread might get cancelled [SGG13]:

1. Asynchronous Cancellation: One thread immediately terminates the target.

2. Deferred Cancellation: The target is informed that it is cancelled; the target is responsible for checking
regularly if it is terminated, allowing it to clean itself up properly.

The pthread attributes can be used to set the cancellation type before it is created. A thread can declare its own
cancellation type through the use of the function:

pthread_setcanceltype(int type, int xoldtype)

The first parameter is the new state we’d like this thread to take on, which would be one of the constants
PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS. The second parameter will be updated to point
to what the previous state was (although we might not care).

In deferred cancellation, a thread is responsible for checking if it has been cancelled, and if so, and stopping
its activity and cleaning up (closing open files, etc.) before it terminates. It’s possible, though generally poor
programming practice (and very difficult), to never check for cancellation.

Given that a thread can effectively ignore a cancellation if it is the deferred cancellation type, why would we ever
choose that over asynchronous cancellation? Suppose the thread we are cancelling has some resources. If the
thread is terminated in a disorderly fashion, the operating system may not reclaim all resources from that thread.
Thus a resource may appear to be in use even though it is not, denying that resource to other threads and processes
that may want to use it [SGG13].

The pthread command to cancel a thread is pthread_cancel and it takes one parameter (the thread identifier).
By default, a pthread is set up for deferred cancellation. In the function that runs as a thread, to check if the
thread has been cancelled, the function call is pthread_testcancel which takes no parameters.

Suppose your background task is to upload a bunch of files, consecutively. It is good programming practice to check
pthread_testcancel at the start or end of each iteration of the loop, and if cancellation has been signalled, clean
up open files and network connections, and then pthread_exit. Thus, if the thread has been told to cancel, it
will do as it is told within a fairly short period of time.

It is noteworthy that a large number of functions are cancellation points; that is, the POSIX specification requires
there is an implicit check for cancellation when calling one of those functions. There is an even larger number
of functions that are “potential cancellation points”, where the specification says that they could be cancellation
points (but maybe aren’t). You’ll have to check the spec to see if that is the case for a specific function if there is a
scenario where unexpected cancellation is a problem.

Now’s not a good time! With the presence of cancellation points or asynchronous cancellation, sometimes a
thread can be terminated before it has cleaned up some resources. This is undesirable. One way that we can guard
against this is to register cleanup handlers for that thread. If, say, our thread allocated some memory, it would be
wise to register a cleanup handler that deallocates that memory in case the thread should die unceremoniously.
The function signatures are:

pthread_cleanup_push(void (*routine)(voidx), void *argument); /% Register cleanup handler, with argument x/
pthread_cleanup_pop(int execute); /% Run if execute is non-zero */

To add a cleanup handler, the push function is used. Its two arguments are the function that is supposed to run,
and a pointer to the argument that cleanup function will need.

The push function always needs to be paired with the pop function at the same level in your program (where
level is defined by the curly braces). You should think of them as being like the opening curly brace at the start
of a statement and the closing curly brace at the end; they have to be correctly matched up. The pop function
takes one argument: whether it should run or not. If the thread is cancelled, the cleanup function will run; if it
continues to the pop function, then you get to choose whether it runs or not.

Consider the following code:

void* do_work(voidx argument) {
struct job * j = malloc(sizeof(struct job));
/* Do something useful with this structure x/
/* Actual work to do not shown x/
free(j);
pthread_exit(NULL);

Suppose that the thread is cancelled during the block operating on j and it is set up for asynchronous cancellation.
This means that the code will never get to the free() call, which means that the memory allocated at the beginning
is leaked! We can remedy this with application of a cleanup handler:
void cleanup(void* mem) {

free(mem);

}

void* do_work(voidx argument) {
struct job * j = malloc(sizeof(struct job));
pthread_cleanup_push(cleanup, j);
/* Do something useful with this structure x/
/* Actual work to do not shown */
free(j);
pthread_cleanup_pop(0); /* Don’t run x/
pthread_exit(NULL);

And you may note that you could actually save a line of code by removing the free() call and changing the
argument to the pop function to be 1: this means the cleanup function runs and it does free the memory allocated.
Nice!

Attributes and Using Memory to Pass Data. The earlier example used the return value of a thread. Sometimes,
of course, we don’t want to do that. One of the advantages of the use of threads is that data can be passed between
threads using memory directly. In this case, because there is no return value that we care about, we can use NULL
in the call to join. This example also shows how to initialize and the attributes, although it doesn’t override any
of the defaults.

#include <pthread.h>
#include <stdio.h>

int sum; /* Shared Data x/

void xrunner(void *param);

int main(int argc, char =sxargv) {

pthread_t tid; /x the thread identifier x/
pthread_attr_t attr; /* set of thread attributes x/

if (argc '=2) {
fprintf(stderr,"usage:_%s_<integer_value>\n", argv[0]);
return -1;

}

if (atoi(argv[l]) <0) {
fprintf(stderr, "%d_must_be_>=_0\n", atoi(argv[1l]));
return -1;

}

/* set the default attributes x/
pthread_attr_init(&attr);
/* create the thread */
pthread_create(&tid, &attr, runner, argv[1l]);
pthread_join(tid, NULL);
printf("sum_=_%d\n", sum);
pthread_attr_destroy(&attr);
pthread_exit(NULL);

}

void xrunner(void xparam) {
int upper = atoi(param);

sum = 0;

for (int i = 1; i <= upper; i++) {
sum += 1i;

}

pthread_exit(0);

}

In this example, both threads are sharing the global variable sum. We have some form of co-ordination here
because the parent thread will join the newly-spawned thread (i.e., wait until it is finished) before it tries to print
out the value. If it did not join the spawned thread, the parent thread would print out the sum early.

Count to 10... Let’s do a different take on that program:

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

int sum = 0;

void* runner(void xparam) {
int upper = atoi(param);
for (int i = 1; i <= upper; i++) {
sum += 1i;
}
pthread_exit(0);

int main(int argc, charxx argv) {
pthread_t tid[3];

if (argc !'=2) {
printf("An_integer_value_is_required_as, an_argument.\n");
return -1;

}
if (atoi(argv[l]) <0) {
printf("S%d_must_be_>=_0.\n", atoi(argv[l]));

}

for (int i =0; 1 < 3; ++1i) {
pthread_create(&tid[i], NULL, runner, argv[l]);

}
for (int j =0; j < 3; ++j) {

pthread_join(tid[j], NULL);
}

printf("sum_=_%d.\n", sum);

pthread_exit(0);

What’s going wrong here? For very small values of the argument, nothing, but for a large number we get some
strange and inconsistent results. Why? There are three threads that are modifying sum. And, it turns out, that this
is a problem - if threads are trying to write to the same place at the same time, things can go wrong. But what
does “at the same time” mean in the context of a program? To understand that, we need to think about how the
hardware behaves and how the OS schedules the work.

Concurrency

Not that long ago, a typical computer had one processor with one core. It could accordingly do exactly one thing
at a time. When we say there is one processor, it’s one general purpose processor that executes user processes.
There may be additional special-purpose processors in the system (e.g., a RAID controllelﬂ) but there is only one
general purpose processor so we call it a uniprocessor system.

Now, desktops, laptops, and even cell phones are almost certainly using multi-core processors. A quad-core proces-
sor may be executing four different instructions from four different threads at the same time. In theory, multiple
processors may mean that we can get more work done in the same amount of (wall clock) time, but this is not a
guarantee.

Terminology note: we often refer to a logical processing unit as a core. The term CPU may refer to a physical chip
that contains one or more logical processing units. As far as the operating system is concerned, it does not much
matter if a system has four cores in four physical chips or four cores in one chip; either way, there are four units
that can execute instructions.

If there is exactly one process with one thread running in the system, then it does not matter how many cores
are available: at most one core will be used to execute this task. If there are multiple processes, each process can
execute on a different core. But what do we do if there are more processes and threads than available cores? We
can hope that the processes get blocked frequently enough and long enough so that all processes get to run, but
this is not something we can count on.

Our solution is that the CPU should switch between the different tasks via a procedure we call time slicing. So
thread 1 would execute for a designated period, such as 20 ms, then thread 2 for 20 ms, then thread 3 for 20
ms, then back to thread 1 for 20 ms. To the user, it seems like threads 1, 2, and 3 are being executed in parallel,
because 20 ms is fast enough that the user does not notice the difference.

single core | Ty T T3 Ta T4 Tz T3 T4 T4

time

Execution of different Threads 73 through 7} on a single core [SGG13].

Time slicing of execution will still occur, if necessary. Continuing our example, if there are four threads running
on a dual-core system, time slicing is necessary to run all those programs.

IThe graphics card seems like a more obvious example, but these days there are various programs that can make use of the powerful GPU
to do general purpose computation.

core 1 Tq T3 T1 T3 T4 e

core 2 To Ty To Ta To “es

time

Execution of different Threads T} through 7, on two cores [SGG13].

Parallelism and Speedup

No doubt it has occurred to you that if there are multiple threads running at the same time, it means a task will get
completed faster, right? Well... maybe. It depends a lot on what the task is. There is some overhead involved in
splitting a task up and re-combining the results (if necessary), but in most circumstances the overhead is negligible
compared to the amount of time working on the task.

If a task can be fully parallelized, it means the task can be split up in such a way that adding a second executing
thread would double the speed of execution. Imagine painting an apartment. It would take one person 12 hours
to paint the whole apartment and two people could complete the job in 6 hours. The pattern continues: three
people can complete the job in 4 hours, four people in 3 hours, et cetera. This is the ideal, but in the real world
there will be a limit to how many additional workers you can add and continue to have this speedup characteristic.
At some point, the overhead of adding more threads is no longer negligible. In theory, you could hire 720 painters
and finish the job in 1 minute, but at some point you cannot physically fit any more painters into the room.

If a task can be partially parallelized, it means the task can be divided, but doubling the workers doesn’t result
in completing the job in half the time. Two chefs working together in a kitchen might take 75% of the time it
would take one chef to cook a meal. Adding the extra worker to the kitchen improved the speed at which food
was prepared, but it’s not doubled. The chefs can work independently some of the time, but at other times one
has to wait for the other; the sauce cannot be put on the chicken until the chicken comes out of the oven.

If a task cannot be parallelized at all, then no amount of extra workers will speed it up. Some tasks can only be
done sequentially. You can’t cook the steak in one minute by putting it in five ovens (this makes the chef very
mad).

Let us consider an example from [HZMGI15]: Suppose we have a task that can be executed in 5 s and this task
contains a loop that can be parallelized. Let us also say initialization and recombination code in this routine
requires 400 ms. So with one processor executing, it would take about 4.6 s to execute the loop. If we split it
up and execute on two processors it will take about 2.3 s to execute the loop. Add to that the setup and cleanup
time of 0.4 s and we get a total time of 2.7 s. Completing the task in 2.7 s rather than 5 s represents a speedup of
about 46%.

A smart fellow by the name of Gene Amdahl came up with a formula for the general case of how much faster a
task can be completed based on how many processors we have available. Let us define S as the portion of the
application that must be performed serially and N as the number of processing cores available. Amdahl’s Law:

1
speedup< T 1_-G
gy 1-S

N

This is a math formula, after all, and you can do things like take the limit as NV approaches infinity and you will
find the speedup converges to % So the limiting factor on how much additional processors help is, of course, the

size of the S term in the equation. That squares well with our intuition about how this should work. If the task is
completely sequential (cannot be parallelized at all), we cannot make it faster and ﬁ will produce a maximum
speedup of 1; or in other words... no speedup at all.

Applying this formula to the example from earlier, we get the following run times:

Processors | Run Time (s)
1 5

2 2.7

4 1.55

8 0.975

16 0.6875

32 0.54375

64 0.471875
128 0.4359375

There are two observations from this data immediately. The first is that we get diminishing returns as we add more
processors. Going from 1 to 2 processors reduced the runtime dramatically, but going from 64 to 128 reduced the
run time only a very small amount. The second is that as we continue to add more processors we are converging
on a run time of 0.4 s, which fits our expectations of what would happen with infinite processors. The serial part
will take 0.4 s no matter what, and with infinite processors the parallel part would be (effectively) instant. Again,
applying the formula, the most we could speed up this code is by a factor of 0%1 ~ 12.5. It is not possible to do
better than this. In reality we will never be able to equal the limit either, because nobody has infinite processors

available, considering that would take an infinite amount of space and an infinite amount of money...

Merge Sort Example. Recall from data structures and algorithms the concept of merge sort. This is a divide-
and-conquer algorithm like binary search. Split the array of values up into smaller pieces, sort those, and then
merge the smaller pieces together to have sorted data. To get this done, we might have many threads sorting and
one thread merging the sorted lists together into a larger, sorted list. Visually, this looks like:

Original List
7,12,19,3,18,4,2,6,15,8 |

Sorting Sorting
Threadg Thread,

7,12,19, 3,18 4,2,6,15,8

Merge Thread

‘ 2,3,4,6,7,8,12, 15, 18,19 ‘
Sorted List

Multithreaded sorting [SGG13].

References

[HZMG15] Douglas Wilhelm Harder, Jeff Zarnett, Vajih Montaghami, and Allyson Giannikouris. A Practical In-
troduction to Real-Time Systems for Undergraduate Engineering. 2015. Online; version 0.15.08.17.

[SGG13] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts (9th Edition).
John Wiley & Sons, 2013.

