
Lecture 13 — Semaphores
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 34

Mutual Exclusion through Messages

The earlier definition of mutual exclusion was informal.

There are additional desirable properties that will be used to evaluate anysolution:

Mutual exclusion must apply.
A thread that halts outside the critical section must not interfere with otherthreads.
It must not be possible for a thread requiring access to a critical section tobe delayed indefinitely.

ECE 252 2 / 34

Mutual Exclusion through Messages

There are additional desirable properties that will be used to evaluate anysolution:

When no thread is in the critical section, a thread that requests accessshould be allowed to enter right away.
No assumptions are made about what the threads will do or the number ofprocessors in the system.
A thread remains inside the critical section for a finite time only.

ECE 252 3 / 34

Back to Springfield

ECE 252 4 / 34

Back to Springfield
Recall from earlier the example of the employees Alice and Bob who worked atthe Springfield Nuclear Power Plant in Sector 7G.

Suppose there is a third employee at the power plant, Charlie, who works on theday shift at the same time as Alice.

Safety rules say that at least one of them has to monitor the safety of the reactorat all times and therefore they cannot both take lunch at the same time.

If we cannot predict when lunch begins or how long it will last, how can Alice andCharlie co-ordinate to make sure they don’t take lunch at the same time?

ECE 252 5 / 34

At the Power Plant

Before Alice gets up from her desk to go for lunch, she calls Charlie.

If he does answer, she may proceed.

If Charlie does not answer, Alice will know he is not at his desk.Therefore she cannot leave at the moment.

ECE 252 6 / 34

At the Power Plant

She can call again, constantly, until she reaches Charlie (busy-waiting), but thisties up a phone line nonstop and is effort intensive for Alice.

If she doesn’t want to do that, at this point she has two options:Wait some period of time (perhaps 15 minutes) and call again. OrLeave a message in Charlie’s voice mail box, asking him to call her back.

Then Alice can go about her work until she gets a call from Charlie and as soon asthat happens, she may step out for lunch.

ECE 252 7 / 34

Power Plant to Computer World

Busy waiting has already been found inadequate as a solution.

It wastes CPU time that another thread could be putting to productive use.

The approach of “wait 15 minutes and try again” might be adequate for Alice as ahuman, but for the computer it is not ideal.

ECE 252 8 / 34

At the Power Plant

If A fails to get in, then sleeps for 2000 ms before trying again, if B is finishedafter 20 ms, then thread A waits unnecessarily for 1980 ms.

What we want is something that resembles the call-when-finished semantics ofAlice leaving a message and Charlie calling her back.

ECE 252 9 / 34

Semaphore
A semaphore is a system of signals used for communication.

Before ships had radios, when two friendly ships were in visual range, they wouldcommunicate with one another through flag semaphores.

Each ship had someone holding certain flags in a specific position.

Thus, the two ships could co-ordinate at (visual range) distance.

This worked dramatically better than many alternatives (e.g., shouting).

ECE 252 10 / 34

Semaphore

Image Credit: Wikipedia user Denelson83
ECE 252 11 / 34

The Computer Semaphore

The computer semaphore was invented in 1965 by Edsger Dijkstra.

He described a data structure that can be used to solve synchronization problemsvia messages.

Although the version we use now is not exactly the same as the originaldescription, even 50 years later, the core idea is unchanged.

ECE 252 12 / 34

Semaphore
Semaphore is a non-negative integer variable.

It can be initialized to 0 or a positive integer.

The semaphore has two operations: wait and post.

In the original paper, wait was called P and post was called V, but the names incommon usage have become a little more descriptive.

Note: post is also called signal in many textbooks.

ECE 252 13 / 34

Semaphore: Wait

When wait is called, if the semaphore value is positive, it is decremented, andthe calling thread may continue.

If the semaphore is 0, the current thread must wait its turn.

The thread that called wait will be blocked by the operating system, just as if itasked for memory or a disk operation.

This is sometimes referred to as decrementing the semaphore.

ECE 252 14 / 34

Semaphore: Post

The post (or signal) operation is how a thread signals the waiting thread(s).

When this is called, if the semaphore is 0 and there is at least one other threadblocked awaiting that semaphore, one of the blocked threads may be unblocked.

Otherwise, the semaphore value is incremented.

This is also sometimes called incrementing the semaphore.

ECE 252 15 / 34

Mutal Exclusion with (Binary) Semaphore
Initialize the semaphore to 1.
The wait operation is how a thread tries to enter the critical section.
When wait is called, if the semaphore value is 1, it is set to 0, allowing the threadto enter the critical section and continue. Otherwise, the current thread isblocked.
The post operation is how a thread exits the critical section.
When post is called, if the semaphore is 0 and there is at least one other threadblocked, one of the blocked threads may be unblocked. Otherwise, thesemaphore is incremented.

ECE 252 16 / 34

Caffeine - the Stuff of Life?

Image Credit: Brandt Kofton
Analogy: you like coffee, and going to a particular coffee shop because there youcan get your drink exactly the way you like it.
“Half caf, no whip, extra hot, extra foam, two shot, soy milk latte.”

ECE 252 17 / 34

Delicious Coffee

After this beverage it may be the case that you need to use the washroom.

The washroom may be locked at such places (usually because they are worriedhomeless people or non-customers may use the facilities).

So to get in you will need the key, which is available by asking one of theemployees.

ECE 252 18 / 34

Programmers Convert Caffeine into Code

If nobody is currently in the washroom, you will get the key and can proceed.

If it is currently occupied, you will have to wait.

When the key is returned, if anyone is waiting, the employee will give the key tothe first person in line for the washroom.

Otherwise, they will put the key away behind the counter.

ECE 252 19 / 34

Semaphores: OS Support

Observe that the operating system is needed to make this work.

If thread A attempts to wait on a semaphore that some other thread already has,it will be blocked.

The operating system knows not to schedule it to run until it is unblocked.

When thread B is finished and signals the semaphore it is holding, that willunblock A and allow it to run again.

ECE 252 20 / 34

No Checking
The semaphore does not provide any facility to “check” the current value.

A thread doesn’t know in advance if it will block when it waits on a semaphore.
It can only give it a shot. Either it will be blocked or proceed directly.

ECE 252 21 / 34

Post

When a thread posts on a semaphore, it likewise does not know if any otherthread(s) are waiting on that semaphore.

There is no facility to check this, either.

When thread A signals a semaphore, we don’t know what thread will continueexecution.

ECE 252 22 / 34

Semaphore: Bad Behaviour
Nothing in the semaphore as defined protects against certain bad behaviour.
Suppose thread C would like to enter the critical section.
The programmer of this task is malicious as well as impatient: “my task is FAR tooimportant to wait for those other processes and threads,” he says.
He implements his code: before he waits on the semaphore, he posts on it.
Even though A or Bmight be in the critical section, the semaphore isincremented.
So he is fairly certain that his program will now get to enter the critical section.

ECE 252 23 / 34

Semaphore: Bad Behaviour

It’s not foolproof: if there are other threads waiting, they might get woken up toproceed instead of C; much depends on the scheduler.

Nevertheless, this is really bad: one process can wreak all kinds of havoc byletting another process into the critical section.

Though the example here makes the author of thread C a scheming villain, such asituation may occur if it is simply the result of a programming error.

ECE 252 24 / 34

Semaphore Example: Linked List Integrity
typedef s t r u c t single_node {

vo id *element ;
s t r u c t single_node *next ;} single_node_t ;

typedef s t r u c t single_list {
single_node_t *head ;
single_node_t *tail ;
i n t size ;} single_list_t ;

vo id single_list_init (single_list_t *list) {
list−>head = NULL ;
list−>tail = NULL ;
list−>size = 0;}

ECE 252 25 / 34

Semaphore Example: Linked List Integrity
bool push_front (single_list_t *list , vo id *obj) {

single_node_t *tmp = malloc (s i z e o f (single_node_t)) ;
i f (tmp == NULL) {

r e tu rn false ;}
tmp−>element = obj ;
tmp−>next = list−>head ;
list−>head = tmp ;
i f (list−>size == 0) {

list−>tail = tmp ;}
++ (list−>size) ;
r e tu rn true ;}

ECE 252 26 / 34

Using the Linked List
If only one thread access this data structure, we do not have a problem.
Suppose a thread tries to add an element A to the list using push_front.
Right before the increment of the size field there is a process switch.
At this point, the new node has been allocated and initialized, the pointers of
head and tail have been updated, but size is 0.

ECE 252 27 / 34

Using the Linked List
Now, the second thread executes and wants to add B to the linked list.

In the conditional statement, list->size == 0 evaluates to true.

Thus, the tail pointer is updated.

ECE 252 28 / 34

Using the Linked List

When the first thread gets to run again, it will resume where it left off.

It increments the size integer, leaving the final state: head and tail both pointto element B, even though there is element A in the list.

ECE 252 29 / 34

Inconsistent State
This is an inconsistent state.

The linked list has two elements in it but the tail pointer is wrong.

An attempt to remove an element from the list will reveal the problem.

Remove the front element? Check if head and tail are equal. That may give themistaken impression that B is the last element in the list. We lost A!

Or the head pointer will be updated but tail will still point to B even after it hasbeen freed, which can result in a segmentation fault or invalid access.

ECE 252 30 / 34

Semaphore Syntax

The syntax we will use is as follows:
sem_init (sem_t* semaphore , i n t shared , i n t initial_value) ;
sem_destroy (sem_t* semaphore)
sem_wait (sem_t* semaphore)
sem_post (sem_t* semaphore)

ECE 252 31 / 34

Applying the Semaphore to the Linked List
typedef s t r u c t single_node {

vo id *element ;
s t r u c t single_node *next ;} single_node_t ;

typedef s t r u c t single_list {
single_node_t *head ;
single_node_t *tail ;
i n t size ;
sem_t sem ;} single_list_t ;

vo id single_list_init (single_list_t *list) {
list−>head = NULL ;
list−>tail = NULL ;
list−>size = 0;
sem_init (&(list−>sem) , 0 , 1) ;}

ECE 252 32 / 34

Applying the Semaphore to the Linked List
bool push_front (single_list_t *list , vo id *obj) {

single_node_t *tmp = malloc (s i z e o f (single_node_t)) ;
i f (tmp == NULL) { r e tu rn false ; }
tmp−>element = obj ;
sem_wait (&(list−>sem)) ; {

tmp−>next = list−>head ;
list−>head = tmp ;
i f (list−>size == 0) {

list−>tail = tmp ;}++ (list−>size) ;
} sem_post (&(list−>sem)) ;
r e tu rn true ;}

ECE 252 33 / 34

Applying the Semaphore to the Linked List

The critical section here just encloses the modification of the shared linked list.

In theory one might put the wait and signal operations at the start and end of theentire function, respectively.

This is, however, suboptimal: it forces unnecessary waiting.

Including the call to malloc is especially bad; the memory allocation itself canblock if insufficient memory is available.

ECE 252 34 / 34

