
ECE 252: Systems Programming and Concurrency Spring 2024

Lecture 13 — Semaphores
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi

Mutual Exclusion through Messages

The earlier definition of mutual exclusion said only that one thread may be in the critical section at a time. This is
the minimum, but there are additional desirable properties that will be used to evaluate any solution [Sta14]:

1. Mutual exclusion must apply (this criterion eliminated most of the flag examples earlier).

2. A thread that halts outside the critical section must not interfere with other threads (the strict alternation
routine, even if implemented with Test-and-Set, would fail on this criterion).

3. It must not be possible for a thread requiring access to a critical section to be delayed indefinitely (the
situation where all threads get stuck, each thinking another is in the critical section, would fail this criterion).

4. When no thread is in the critical section, a thread that requests access should be allowed to enter right away
(no unnecessary waiting).

5. No assumptions are made about what the threads will do or the number of processors in the system (so it
should be a general solution, not a special case).

6. A thread remains inside the critical section for a finite time only (this is more of an assumption than a
criterion, but our solution must provide a way to indicate the thread has left the critical section).

Recall from earlier the example of the employees Alice and Bob who worked at the Springfield Nuclear Power
Plant in Sector 7G. Suppose there is a third employee at the power plant, Charlie, who works on the day shift at
the same time as Alice. Safety rules say that at least one of them has to monitor the safety of the reactor at all
times and therefore they cannot both take lunch at the same time. If we cannot predict when lunch begins or how
long it will last, how can Alice and Charlie co-ordinate to make sure they don’t take lunch at the same time?

A possible solution: before Alice gets up from her desk to go for lunch, she calls Charlie. If he does answer, she
may proceed. If Charlie does not answer, Alice will know he is not at his desk and she cannot leave at the moment.
She can call again, constantly, until she reaches Charlie (busy-waiting), but this ties up a phone line nonstop and
is effort intensive for Alice. If she doesn’t want to do that, at this point she has two options: one is to simply wait
some period of time (perhaps 15 minutes) and call again in the hopes that at that time Charlie will be back from
lunch. A better approach would be for Alice to leave a message in Charlie’s voice mail box, asking him to call her
back when he has finished lunch. Then Alice can go about her work until she gets a call from Charlie and as soon
as that happens, she may step out for lunch.

Busy waiting has already been found inadequate as a solution. It wastes CPU time that another process or thread
could be putting to productive use. The approach of “wait 15 minutes and try again” might be adequate for Alice
as a human, but for the computer it is not ideal. If thread B is in the critical section when A tries to get in, and A
then sleeps for 2000 ms before trying again, this at least means A is not wasting CPU cycles while it tries futilely
to ask “is it my turn now? Now? Now? Now? Now? Now?”, but if B is finished after 20 ms, then thread A waits
unnecessarily for 1980 ms.

What we want is something that resembles the call-when-finished semantics of Alice leaving a message and Charlie
calling her back. That solution is called the Semaphore.
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Semaphore

A semaphore, outside of the context of computing, is a system of signals used for communication. Before ships
had radios, when two friendly ships were in visual range, they would communicate with one another through flag
semaphores, which is a fancy way of saying each ship had someone holding certain flags in a specific position.
Thus the two ships could co-ordinate at a distance, even if the distance was limited to visual range. This worked
dramatically better than many alternatives (e.g., shouting).

The computer semaphore was invented in 1965 by Edsger Dijkstra, a brilliant Dutch computer scientist who is
sometimes maligned in textbooks as being eccentric or unusual. He described a data structure that can be used to
solve synchronization problems via messages in [Dij68]. Although the version we use now is not exactly the same
as the original description, even 50+ years later, the core idea is unchanged.

Semaphore is a non-negative integer variable. It can be initialized to 0 or a positive integer. The semaphore has
two operations: wait and post. In the original paper, wait was called P and signal was called V, but the names
in common usage have become a little more descriptive. Mind you, if you can read/write Dutch, the names make
some sense: P is short for proberen, “to test”, and V is short for verhogen, “to raise” or “to increment”. But, for
historical reasons as much as any other, the traditional lingua franca of computers is English, so the English names
have tended to dominate. Furthermore, post is also called signal in many textbooks.

When wait is called, if the semaphore value is positive, it is decremented, and the calling thread may continue.
If the semaphore is 0, the calling thread must wait its turn. The thread that called wait will be blocked by the
operating system, just as if it asked for memory or a disk operation. This is sometimes referred to as decrementing
the semaphore.

When post is called, if the semaphore is 0 and there is at least one other thread blocked awaiting that semaphore,
one of the blocked threads may be unblocked. Otherwise, the semaphore is incremented. This is also sometimes
called incrementing the semaphore.

We can use (binary) semaphores to create mutual exclusion. To do this, we initialize the semaphore to 1. The
wait operation on the semaphore is how a thread attempts to enter the critical section. When wait is called, if the
semaphore value is 1, it is set to 0, allowing the thread to enter the critical section and continue. Otherwise, the
current thread is blocked. The post operation on the semaphore is how a thread exits the critical section. When
post is called, if the semaphore is 0 and there is at least one other thread blocked, one of the blocked threads may
be unblocked. Otherwise, the semaphore is incremented.

If this is still confusing, consider the following analogy. Suppose you like coffee, and going to a particular coffee
shop because there you can get your drink exactly the way you like it: half caf, no whip, extra hot, extra foam,
two shot, soy milk latte1. After this delightful beverage it may be the case that you need to use the washroom.
The washroom is locked at such places, so to get in you will need the key, which is available by asking one of
the employees. If nobody is currently in the washroom, you will get the key and can proceed. If it is currently
occupied, you will have to wait. When the key is returned, if anyone is waiting, the employee will give the key to
the first person in line for the washroom; otherwise he or she will put the key away behind the counter.

Observe that the operating system is needed to make this work: if thread A attempts to wait on a semaphore that
some other thread already has, it will be blocked and the operating system knows not to schedule it to run until it
is unblocked. When thread B is finished and posts to the semaphore it is holding, that will unblock A and allow
it to run again.

Note also that the semaphore does not provide any facility to “check” the current value. Thus a thread does not
know in advance if it will block when it waits on the semaphore. It can only wait and may be blocked or may
proceed directly into the critical section if there is no other thread in there at the moment.

When a thread signals a semaphore, it likewise does not know if any other thread(s) are waiting on that semaphore.
1For the record, the author drinks tea, black.
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There is no facility to check this, either. When thread A signals a semaphore, if another thread B is waiting, B
will be unblocked and either thread A or thread B may continue execution (or both, if it is a SMP system), or
another unrelated thread may be the one to continue execution. We have no way of knowing.

On the subject of observation, note that nothing about the semaphore as so defined protects against certain “bad”
behaviour. Suppose thread C would like to enter the critical section. The programmer of this task is malicious as
well as impatient: “my task is FAR too important to wait for those other processes and threads,” he says, as he
implements his code such that before he waits on the semaphore, he posts to it. Even though A or B might be in
the critical section, the semaphore gets incremented so he is more or less certain that his program will now get to
enter the critical section. It’s not foolproof: if there are other threads waiting, they might get woken up to proceed
instead of C; much depends on the scheduler. Nevertheless, this is really bad: one process can wreak all kinds of
havoc by letting another process into the critical section. Though the example here makes the author of thread C
a scheming villain (because the example is funnier that way), such a situation may occur without malicious intent
if it is simply the result of a programming error.

Example: Linked List Integrity

Wewill now examine a situation where a semaphore helps to prevent a synchronization error. This example comes
from [HZMG15]. Imagine we have a shared linked list defined as:
typedef struct single_node {
void *element;
struct single_node *next;

} single_node_t;

typedef struct single_list {
single_node_t *head;
single_node_t *tail;
int size;

} single_list_t;

void single_list_init( single_list_t *list ) {
list->head = NULL;
list->tail = NULL;
list->size = 0;

}

bool push_front( single_list_t *list, void *obj ) {
single_node_t *tmp = malloc( sizeof( single_node_t ) );

if ( tmp == NULL ) {
return false;

}

tmp->element = obj;
tmp->next = list->head;
list->head = tmp;

if ( list->size == 0 ) {
list->tail = tmp;

}

++( list->size );
return true;

}

If only one thread can access this data structure, we do not have a problem, but it was a shared linked list. Suppose
a thread runs and tries to add an element A to the list using the push_front function. Right before the increment
of the size field takes place there is a process switch. At this point, the new node has been allocated and initialized,
the pointers of head and tail have been updated, but size is 0.
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The linked list at the time of the thread switch [HZMG15].

Now, the second thread executes and wants to add B to the linked list. In the conditional statement, list->size
== 0 evaluates to true. Thus, the tail pointer is updated.

The linked list after the second thread adds B [HZMG15].

When the first thread gets to run again, it will resume where it left off: it increments the size integer, leaving the
final state: head and tail both point to element B, even though there is element A in the list.

The linked list after the first thread resumes [HZMG15].

This is an inconsistent state: the linked list has two elements in it but the tail pointer is wrong. An attempt to
remove an element from the list will reveal the problem, which can manifest in a few ways, depending on how
the removal routine is implemented. If we try to remove the front element we might check that head and tail
are equal, and that may give the mistaken impression that B is the last element in the list, so we “lose” A and it
becomes a memory leak. Or perhaps the head pointer will be updated but tail will still point to B even after it
has been freed, which can result in a segmentation fault or invalid access.

Semaphore Syntax

In UNIX, the semaphores are always general. So, the functions are:
sem_init( sem_t* semaphore, int shared, int initial_value);
sem_destroy( sem_t* semaphore )
sem_wait( sem_t* semaphore )
sem_post( sem_t* semaphore )

Of these functions, the only one where the parameters are not obvious is the initialization routine. The parameter
shared will be set to either 0 or 1: 1 if the semaphore is to be shared between processes (e.g., using shared
memory), 0 otherwise. I’ll also take a moment also to point out the importance of getting the initial value correct.
If we choose the wrong initial value then our program might get stuck or we might not get the mutual exclusion
behaviour we are supposed to have.

Applying the Semaphore to the Linked List

Now that we have the appropriate syntax we can apply it to the linked list example from this section. We will add
to the linked list structure (struct single_list) a semaphore: sem_t sem;. In the initialization routine, we
need to call the initialization method: sem_init( &( list->sem ), 0, 1 );
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Finally, the semaphore_wait and semaphore_signal operations need to be added to push_front at the start
and end of the critical section, respectively. Recall from earlier that we want the critical section to be as small as
it can be. Putting it all together:
typedef struct single_node {
void *element;
struct single_node *next;

} single_node_t;

typedef struct single_list {
single_node_t *head;
single_node_t *tail;
int size;
sem_t sem;

} single_list_t;

void single_list_init( single_list_t *list ) {
list->head = NULL;
list->tail = NULL;
list->size = 0;

sem_init( &( list->sem ), 0, 1 );
}

bool push_front( single_list_t *list, void *obj ) {
single_node_t *tmp = malloc( sizeof( single_node_t ) );

if ( tmp == NULL ) {
return false;

}

tmp->element = obj;

sem_wait( &( list->sem ) ); {
tmp->next = list->head;
list->head = tmp;

if ( list->size == 0 ) {
list->tail = tmp;

}
++( list->size );

} sem_post( &( list->sem ) );

return true;
}

Strictly speaking, the braces ({ }) to enclose the critical region (between the wait and signal operations) are not
necessary. This is just a use of C syntax to make it more obvious what the critical region is and to make it harder
to make a mistake.

The critical section here just encloses the modification of the shared linked list. In theory one might put the wait
and signal operations at the start and end of the entire function, respectively. This is, however, suboptimal: it
forces unnecessary waiting. In this specific example, including the call to malloc is especially bad; the memory
allocation itself can block if insufficient memory is available. Thus the process currently in the critical section is
blocked and that means no other thread can enter the critical section. This might result in the system getting
totally stuck [HZMG15].
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