
14-2 —Monitors
By Jeff Zarnett and Seyed Majid Zahedi

jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca
Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 28

What’s Wrong With You?

As we have seen so far, using semaphores correctly is not straightforward.

For example, changing the order of wait and post operations can easily lead todeadlock.

Semaphores serve a dual purpose: they are used for both mutual exclusion andscheduling constraints.

ECE 252 2 / 28

Who Said What?

Dijkstra himself noted this:
During system conception it transpired that we used the semaphores intwo completely different ways. The difference is so marked that, lookingback, one wonders whether it was really fair to present the two waysas uses of the very same primitives. On the one hand, we have thesemaphores used for mutual exclusion, on the other hand, the privatesemaphores.

ECE 252 3 / 28

Monitors

Uh... wait... this isn’t the right kind.

ECE 252 4 / 28

What’s a Monitor?

A monitor consists of a mutex (lock) and at least one condition variable(CV).

Multiple CVs can be associated with the same mutex, but not vice versa.

The mutex is used for mutual exclusion, and CVs are used for schedulingconstraints.

We will next look into pthread mutex and CVs.

ECE 252 5 / 28

Mutex Syntax

While it is possible, of course, to use a semaphore as a mutex, a more specializedtool for this task is the pthread mutex.

In fact, it’s generally good practice to use the more specialized tool.

ECE 252 6 / 28

Mutex Syntax
The structure representing the mutex is of type pthread_mutex_t.
pthread_mutex_init (pthread_mutex_t *mutex , pthread_mutexattr_t *attributes)

mutex: the mutex to intiialize.
attributes: the attributes; NULL is fine for defaults.
Shortcut if you do not want to set attributes:
pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER ;

By default, the mutex is created as unlocked.
ECE 252 7 / 28

Lock and Unlock
pthread_mutex_lock (pthread_mutex_t *mutex)
pthread_mutex_trylock (pthread_mutex_t *mutex) /* Re tu rn s 0 on s u c c e s s */
pthread_mutex_unlock (pthread_mutex_t *mutex)

Unlock is self-explanatory.

pthread_mutex_lock is blocking.

pthread_mutex_trylock is nonblocking.

Trylock will come up soon when we look at classical synchronization problems.

ECE 252 8 / 28

Destroy the Mutex
pthread_mutex_destroy (pthread_mutex_t *mutex)

Destroy is also self-explanatory.

An attempt to destroy the mutex may fail if the mutex is currently locked.

Attempting to destroy a locked one results in undefined behaviour.

ECE 252 9 / 28

Condition Variables

Condition variables are another way to achieve synchronization.
ECE 252 10 / 28

Condition Variables

Conceptually, a CV is a queue on which a thread may wait inside a critical sectionfor a condition to become true.

While a thread is waiting on a CV, other threads may enter the critical section tomodify the shared data.

These other threads can then signal the CV to indicate that the condition hasbecome true after the changes have been made.

ECE 252 11 / 28

Condition Variable

Consider a monitor with mutex m and a CV c.

There are three main operations on c:

cond_wait(c, m)

cond_signal(c)

cond_broadcast(c)

ECE 252 12 / 28

CV: Wait
cond_wait takes the following steps.

Step (1): atomically:

1 unlock the mutex m;
2 put the calling thread on c’s wait queue; and
3 block the calling thread (i.e., make it sleep) and yield the processor toanother thread.

Step (2): Once a waiting thread is subsequently notified/signaled (see below) andresumed, it will automatically try to re-lock the mutex m.

ECE 252 13 / 28

Step (1)

The atomicity of operations within Step (1) is crucial.

One failure mode that could occur if these operations were not atomic is amissed wakeup.

ECE 252 14 / 28

CV: Signal
cond_signal is called by a thread to indicate that a condition associated with chas become true.

A thread that calls cond_signal should do so while it is still inside the criticalsection, before unlocking the mutex m.

If there are waiting threads on c’s wait queue, then cond_signal will move oneof them to the ready queue.

If there are no waiting threads, then the signal is ignored.

In other words, unlike semaphores, CVs arememory-less.

ECE 252 15 / 28

CV: Broadcast

HEY GUYS!!! GUESS WHAT!!!
cond_broadcast is similar to cond_signal but wakes up all waiting threads in
c’s wait queue if there are any.

ECE 252 16 / 28

What Should I Do With This?
Waiting Thread

lock(m)
/* critical section */
while !is_condition_true()

cond_wait(m, c)
end while
/* rest of critical section */
unlock(m)

Signaling Thread

lock(m)
/* critical section */
if is_condition_true()

cond_signal(c)
end if
/* rest of critical section */
unlock(m)

ECE 252 17 / 28

Why Should We Loop?

ECE 252 18 / 28

Ice Cream

Suppose that thread A locks the mutex and enters the critical section.

It then checks if there is ice cream in the freezer and calls cond_wait becausethere is none.

Inside cond_wait, the mutex is unlocked before thread A is put to sleep.

ECE 252 19 / 28

Ice Cream

Next, thread B arrives, locks the mutex, and enters the critical section.

Thread B buys ice cream and puts it in the freezer.

Subsequently, thread B signals the condition variable.

Since thread A is the only waiting thread, it wakes up and moves to the readyqueue.

ECE 252 20 / 28

Ice Cream
Thread B continues to run and eventually exits the critical section.

Before thread B finishes its execution, thread C arrives and is put in the readyqueue alongside thread A.

Thread B finishes its execution, and the OS picks thread C as the next thread torun.

Thread C locks the mutex, enters the critical section, and eats the ice cream.

Thread C then finishes up and exits the critical section.

ECE 252 21 / 28

Ice Cream

When A runs, there is no ice cream in the freezer.
Therefore, thread A must check the condition and call cond_wait again.

ECE 252 22 / 28

That’s Not All!

Java User Manual:
Whenwaiting upon a Condition, a spuriouswakeup is permitted to occur,in general, as a concession to the underlying platform semantics. Thishas little practical impact on most application programs as a Conditionshould always be waited upon in a loop, testing the state predicate thatis being waited for.

ECE 252 23 / 28

Can We Apply This To What We Know?

The condition variable with broadcast can be used to replace some of thesynchronization constructs we’ve seen already.

What patterns could be replaced?

ECE 252 24 / 28

Broadcast Barrier
Consider the barrier pattern from earlier.There are n threads, and we wait for the last one to arrive.
With Semaphores

1. wait(mutex)
2. count++
3. if count == n
4. post(barrier)
5. end if
6. post(mutex)
7. wait(barrier)
8. post(barrier)
9. /* critical section */

10. wait(mutex)
11. counter--
12. if counter == 0
13. wait(barrier)
14. end if
15. post(mutex)

With Monitor

1. lock(mutex)
2. count++
3. if count == n
4. cond_broadcast(barrier)
5. end if
6 while count < n
7. cond_wait(barrier, mutex)
8. end while
9. unlock(mutex)

10. /* critical section */
11. lock(mutex)
12. counter--
13. unlock(mutex)

ECE 252 25 / 28

Spidey Sense Tingling?

We give up the mutex lock when we wait on the condition variable.

The fact that we don’t get to the unlock statement first does not cause a problem.

So we are alright.

The last thread doesn’t wait on the condition at all because there’s no need to!

It knows that it is last and there’s nothing to wait for so it should proceed.

ECE 252 26 / 28

Condition Variable Syntax
pthread_cond_init (pthread_cond_t *cv , pthread_condattr_t *attributes) ;
pthread_cond_wait (pthread_cond_t *cv , pthread_mutex_t *mutex) ;
pthread_cond_signal (pthread_cond_t *cv) ;
pthread_cond_broadcast (pthread_cond_t *cv) ;
pthread_cond_destroy (pthread_cond_t *cv) ;

As with other pthread functions we’ve seen there are create and destroy calls.

ECE 252 27 / 28

Barrier Pattern Code Example
typedef s t r u c t {

i n t count ;
i n t total ;
pthread_mutex_t mutex ;
pthread_cond_t cv ;} barrier_t ;

vo id init_barrier (barrier_t *b , i n t num) {
b−>count = 0;
b−>total = num ;
pthread_mutex_init (&b−>mutex , NULL) ;
pthread_cond_init (&b−>cv , NULL) ;}

vo id destroy_barrier (barrier_t *b) {
pthread_mutex_destroy (&b−>mutex) ;
pthread_cond_destroy (&b−>cv) ;}

ECE 252 28 / 28

Barrier Pattern Code Example
vo id enter_barrier (barrier_t *b) {

pthread_mutex_lock (&b−>mutex) ;
b−>count = b−>count + 1 ;
i f (b−>count == b−>total) {
pthread_cond_broadcast (&b−>cv) ;}

whi le (b−>count < b−>total) {
pthread_cond_wait (&b−>cv , &b−>mutex) ;}

pthread_mutex_unlock (&b−>mutex) ;}
vo id exit_barrier (barrier_t *b) {

pthread_mutex_lock (&b−>mutex) ;
b−>count = b−>count − 1 ;
pthread_mutex_unlock (&b−>mutex) ;}

ECE 252 29 / 28

