
Lecture 14-1 — Synchronization Patterns

Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

ECE 252 1 / 48

Synchronization Patterns

There are a number of common synchronization patterns that occur frequently
and we can use semaphores to solve them.

These synchronization patterns are ways of co-ordinating threads or processes.

We have already examined serialization and mutual exclusion; there are more.

Throughout this section we will use pseudocode and something like “Statement
A1” could be any valid statement in the program.

ECE 252 2 / 48

So Text Me, Maybe

ECE 252 3 / 48

Signalling

Recall from earlier the example with Alice and Bob at the power plant.

This was signalling.

Signalling can be used in general as a way of indicating that something has
happened.

Suppose we have a semaphore named sem, initialized to 0.

Thread A

1. Statement A1
2. post(sem)

Thread B

1. wait(sem)
2. Statement B2

ECE 252 4 / 48

Analysis of Signalling

If B gets to the wait statement first, it will be blocked (as the semaphore is 0)
and cannot proceed until someone posts on that semaphore.

When A does call post, then Bmay proceed.

If instead A gets to the post statement first, it will post and the semaphore value
will be 1.

Then, when B gets to the wait statement, it can proceed without delay.

Regardless of the actual order that the threads run, we are certain that
statement A1 will execute before statement B2.

ECE 252 5 / 48

Rendezvous

ECE 252 6 / 48

Rendezvous

The rendezvous is an expansion of the signalling pattern so that it works both
ways.

Two threads should be at the same point before either of them may proceed
(they “meet up”).

Suppose we have:

Thread A

1. Statement A1
2. Statement A2

Thread B

1. Statement B1
2. Statement B2

ECE 252 7 / 48

Rendezvous

The desirable property is that A1 should take place before B2 and that B1 should
take place before A2.

As each thread must wait for the other, two semaphores will be needed: one to
indicate that A has arrived and one for B.

We will assign them the names aArrived and bArrived and initialize both to 0.

ECE 252 8 / 48

Rendezvous Solution 1

A first attempt at a solution:

Thread A

1. Statement A1
2. wait(bArrived)
3. post(aArrived)
4. Statement A2

Thread B

1. Statement B1
2. wait(aArrived)
3. post(bArrived)
4. Statement B2

ECE 252 9 / 48

Rendezvous Solution 1 Analysis

The problem here should be obvious: thread A gets to the wait statement and
will wait until B posts its arrival before it can proceed.

Thread B gets to its wait statement and will wait until A posts its arrival before it
will proceed.

Unfortunately, each thread is waiting for the other to post and neither of them
can get to the actual post statement because they are both blocked.

ECE 252 10 / 48

Deadlock

Neither thread can proceed.

The situation can never be resolved, because there is no external force that
would cause one or the other to be unblocked.

This is a situation called deadlock, and it is a subject that will receive a great deal
of examination later on.

For now, an informal definition is: all threads are permanently stuck.

Obviously, this is undesirable.

ECE 252 11 / 48

Rendezvous Solution 2

What if instead, the threads reverse the order and post first before waiting?

Thread A

1. Statement A1
2. post(aArrived)
3. wait(bArrived)
4. Statement A2

Thread B

1. Statement B1
2. post(bArrived)
3. wait(aArrived)
4. Statement B2

ECE 252 12 / 48

Rendezvous Solution 2 Analysis

This solution works: if A gets to the rendezvous point first, it posts its arrival and
waits for B.

If B gets there first, it posts its arrival and waits for A.

Whichever gets there last will post and unblock the other, before it calls wait.

It will be able to proceed directly; the first thread to arrive already posted.

ECE 252 13 / 48

Rendezvous Solution 3

A variation on this can also work where only one thread posts first and the other
thread posts second.

Thread A

1. Statement A1
2. wait(bArrived)
3. post(aArrived)
4. Statement A2

Thread B

1. Statement B1
2. post(bArrived)
3. wait(aArrived)
4. Statement B2

ECE 252 14 / 48

Rendezvous Solution 3 Analysis

While this solution will not result in deadlock, it is somewhat less efficient than
the previous: it may require an extra switch between processes.

As long as we are certain that deadlock will not occur, a solution is acceptable.

Nevertheless, the previous solution is provably better.

ECE 252 15 / 48

Rendezvous Analysis

What if we needed to add a third thread, C, to this rendezvous?

What would we have to change?

ECE 252 16 / 48

Rendezvous of 3 Threads

Let’s add C to the party:

Thread A

1. Statement A1
2. post(aArrived)
3. wait(bArrived)
4. wait(cArrived)
5. Statement A2

Thread B

1. Statement B1
2. post(bArrived)
3. wait(aArrived)
4. wait(cArrived)
5. Statement B2

Thread C

1. Statement C1
2. post(cArrived)
3. wait(aArrived)
4. wait(bArrived)
5. Statement C2

Does this work?

ECE 252 17 / 48

Too Much Waiting

No – this will also lead to a deadlock.

A post(aArrived) unblocks one thread waiting for A...
But now there are two threads waiting for it!

Analysis tool: look at the number of wait and post statements.
Here, they are not in balance.

ECE 252 18 / 48

Rendezvous of 3 Threads, Again

Let’s try again to add C to the party:

Thread A

1. Statement A1
2. post(aArrived)
3. post(aArrived)
4. wait(bArrived)
5. wait(cArrived)
6. Statement A2

Thread B

1. Statement B1
2. post(bArrived)
3. post(bArrived)
4. wait(aArrived)
5. wait(cArrived)
6. Statement B2

Thread C

1. Statement C1
2. post(cArrived)
3. post(cArrived)
4. wait(aArrived)
5. wait(bArrived)
6. Statement C2

How about now?

ECE 252 19 / 48

Three, Being the Third Number...

This works! Our wait and post statements are balanced.

You can imagine that the complexity increases if there are more threads...

And adding thread D would mean changing A, B, C as well... Not ideal...

ECE 252 20 / 48

Waiting Our Turn...

ECE 252 21 / 48

Mutual Exclusion

We saw previously the motivation and concept of mutual exclusion through
messages in the linked list example.

The general form in pseudocode for binary semaphore mutex (i.e., semaphore
initialized to 1) is of course:

Thread A

1. wait(mutex)
2. critical section
3. post(mutex)

Thread B

1. wait(mutex)
2. critical section
3. post(mutex)

ECE 252 22 / 48

Mutual Exclusion

Whichever thread gets to the wait statement first will proceed immediately and
not be blocked at all.

If mutex semaphore were initialized to 0 then neither thread could ever get to
the post statement or ever get into the critical section (deadlock).

ECE 252 23 / 48

Symmetric vs. Asymmetric Solutions

Threads A and B are identical here.

This is a symmetric solution.

It is easier to make predictions about the behaviour of the threads when they all
do the same thing.

If the different threads have different sections of code, they are asymmetric.

The symmetric solutions very often scale well.

ECE 252 24 / 48

Multiplex

In addition to the binary semaphore, we also discussed the general semaphore.

If the general semaphore is initialized to n, then at most n threads can be in the
critical section at a time.

Example: restaurants have a certain number of tables and seats.

If more people wish to dine than there are seats available, those customers must
wait until some seats become available (other customers leave).

Restaurants generally want to pack in as many seats as possible, but fire safety
regulations set a maximum occupancy for a given space.

ECE 252 25 / 48

Multiplex

Suppose that the system has a problem that when too many concurrent database
requests are happening.

The queries become slow and eventually time out.

A potential solution is to protect all database accesses with a binary semaphore,
so only one database query can run at any time.

Analysis may reveal that this is too restrictive a policy; perhaps we can execute 5
queries concurrently without any slowdown.

Then initialize the semaphore with a value of 5, allowing at most 5 threads into
the critical section at any time.

ECE 252 26 / 48

Multiplex

This is a symmetric solution, so it will work for arbitrarily many threads.

Thread K
1. wait(mutex)
2. critical section
3. post(mutex)

This looks exactly like the solution for mutual exclusion, as it should.

The only difference is how many threads can enter the critical section at a time.

ECE 252 27 / 48

That’s One Kind of Barrier

ECE 252 28 / 48

Barrier

The barrier pattern is a generalization of the rendezvous pattern;
A way of having more than two threads meet up at the same point.

Given n threads, each of which knows that the total number of threads is n.

When the first n− 1 threads arrive, they should wait until the nth arrives.

As a solution we might consider a variable to keep track of the number of threads
that have reached the appropriate point.

This variable is shared data; modification of it should be in a critical section.

ECE 252 29 / 48

Barrier

Thus, we will have a semaphore, initialized to 1, called mutex to protect that
counter.

Then we will have a second semaphore, barrier that will be the place where
threads wait until the nth thread arrives.

ECE 252 30 / 48

Barrier Solution 1

Thread K

1. wait(mutex)
2. count++
3. post(mutex)
4. if count == n
5. post(barrier)
6. end if
7. wait(barrier)

ECE 252 31 / 48

Barrier Solution 1 Analysis

When the nth thread arrives, it unlocks the barrier and then may proceed.

If there is more than one thread waiting at the barrier, the first thread will be
unblocked when the nth thread posts on it.

There are no other post statements!

The other threads waiting are stuck, waiting for a post that never comes.

ECE 252 32 / 48

Barrier Solution 2

ECE 252 33 / 48

Barrier Solution 2

The nth thread to arrive should post n times:

Thread K

1. wait(mutex)
2. count++
3. post(mutex)
4. if count == n
5. for i from 1 to n
6. post(barrier)
7. end for
8. end if
9. wait(barrier)

ECE 252 34 / 48

Barrier Solution 2 Analysis

This allows all n threads to proceed (none get stuck), but it is less than ideal.

The thread that runs last is very likely the lowest priority thread.

When it posts on the semaphore, the thread that has just been unblocked will be
the next to run.

Then the system switches back, at some later time, to the thread currently
unblocking all the others.

Worst case, 2n process switches, when it could be accomplished with n.

ECE 252 35 / 48

Barrier Solution 3

Have each thread unblock the next:

Thread K

1. wait(mutex)
2. count++
3. post(mutex)
4. if count == n
5. post(barrier)
6. end if
7. wait(barrier)
8. post(barrier)

ECE 252 36 / 48

This Has a Name!

ECE 252 37 / 48

Barrier Solution 3 Analysis: The Turnstile

This pattern (wait followed immediately by post) is called a turnstile.

The analogy should be familiar to anyone who has travelled by subway.
A turnstile allows one person at a time to go through.

A turnstile pattern allows one thread at a time to proceed through, but can be
locked to bar all threads from proceeding.

Initially the turnstile in the above example is locked, and the nth thread unlocks it
and permits all n threads to go through.

ECE 252 38 / 48

Barrier Solution 3 Analysis

In this solution we are reading the value of count, a shared variable, without the
protection of a semaphore.

Is this dangerous?

Yes, but some alternatives could be worse.

For instance, consider this:

Thread K

1. wait(mutex)
2. count++
3. if count == n
4. post(barrier)
5. end if
6. wait(barrier)
7. post(barrier)
8. post(mutex)

ECE 252 39 / 48

Barrier Solution 3A Analysis

The problem here is deadlock once again.

The first thread waits on mutex and then goes to wait on the barrier
semaphore.

At this point, the first thread is blocked.

When a second thread comes along, it will wait on mutex but can get no further
because the first thread has not posted on it.

ECE 252 40 / 48

Barrier Solution 3A Analysis

The counter will be 1, but cannot get past 1.

The condition of count equalling n can never be true.

Thus, all the threads are stuck.

This is a common source of deadlock: blocking on a semaphore while inside a
critical region.

ECE 252 41 / 48

Reusable Barrier

The barrier solution we have is good.

The way it is implemented now, count can increase but never decrease.

Once the barrier is open, it can never be closed again.

Programs very often do the same thing repeatedly, so a one-time use barrier is
not ideal; it would be better to have a reusable barrier.

Idea: Decrement count after the rendezvous has taken place.

ECE 252 42 / 48

Reusable Barrier Solution 1

Thread K

1. wait(mutex)
2. count++
3. post(mutex)
4. if count == n
5. post(turnstile)
6. end if
7. wait(turnstile)
8. post(turnstile)
9. [critical point]

10. wait(mutex)
11. count--
12. post(mutex)
13. if count == 0
14. wait(turnstile)
15. end if

ECE 252 43 / 48

Reusable Barrier Solution 1 Analysis

There are two problems with the above implementation.

Suppose thread n− 1 is about to execute line 4 and then there is a process switch
and the nth thread comes to this point.

Both of them will find that count is equal to n and therefore both threads will
post the turnstile.

The same problem occurs on line 13.

ECE 252 44 / 48

Reusable Barrier Solution 2

Thread K

1. wait(mutex)
2. count++
3. if count == n
4. post(turnstile)
5. end if
6. post(mutex)
7. wait(turnstile)
8. post(turnstile)
9. [critical point]

10. wait(mutex)
11. count--
12. if count == 0
13. wait(turnstile)
14. end if
15. post(mutex)

ECE 252 45 / 48

Reusable Barrier Solution 2 Analysis

This solves the problem previously identified by putting the checks of count
inside the critical section controlled by mutex.

Suppose one particular thread gets through the second mutex but is running in a
loop and gets back through the first mutex again.

This would be like one thread being one “lap” ahead of the others.

We can prevent this by having two turnstiles: first all threads wait at the first
turnstile until the last gets there and lets them through.

Then all threads wait at a second turnstile until the last gets there and lets them
all through again.

ECE 252 46 / 48

Reusable Barrier Visually

This solution can also be called a two-phase barrier because all threads have to
wait twice: once at each turnstile.

ECE 252 47 / 48

Reusable Barrier Solution 3
Thread K
1. wait(mutex)
2. count++
3. if count == n
4. wait(turnstile2)
5. post(turnstile1)
6. end if
7. post(mutex)
8. wait(turnstile1)
9. post(turnstile1)

10. [critical point]
11. wait(mutex)
12. count--
13. if count == 0
14. wait(turnstile1)
15. post(turnstile2)
16. end if
17. post(mutex)
18. wait(turnstile2)
19. post(turnstile2)

ECE 252 48 / 48

