
Lecture 15 — The Producer-Consumer Problem
By Jeff Zarnett and Seyed Majid Zahedi

jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca
Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 34

Monty Python and the Holy Compiler

The producer-consumer problem, the readers-writers problem, and the diningphilosophers problem.
ECE 252 2 / 34

Produce and Consume
First: the producer-consumer problem, also sometimes called thebounded-buffer-problem.

Two processes share a common buffer that is of fixed size.

One process is the producer: it generates data and puts it in the buffer.

The other is the consumer: it takes data out of the buffer.

This problem can be generalized to have p producers and c consumers.

ECE 252 3 / 34

Consume, Obey
Rules:

The buffer is of capacity BUFF_SIZE.
Cannot write into a full buffer
Cannot read from an empty buffer

To keep track of the number of items in the buffer, we will have some variable
count.

This is a shared variable, so we need a mutex for it.

ECE 252 4 / 34

Are We There Yet?
If busy-waiting is permitted, we can get away with one mutex.
Shown below is one loop iteration for each of the producer & consumer.
Producer

1. [produce item]
2. added = false
3. while added is false
4. lock(mutex)
5. if count < BUFF_SIZE
6. [add item to buffer]
7. count++
8. added = true
9. end if

10. unlock(mutex)
11. end while

Consumer

1. removed = false
2. while removed is false
3. lock(mutex)
4. if count > 0
5. [remove item from buffer]
6. count--
7. removed = true
8. end if
9. unlock(mutex)

10. end while
11. [consume item]

ECE 252 5 / 34

No Busy-Waiting

While this accomplishes what we want, it is inefficient.

Let’s add a new rule that says we want to avoid busy-waiting.

The producer gets blocked if there are no available spaces.

The consumer gets blocked if there’s nothing to consume.

ECE 252 6 / 34

When You Lose Track of the Number of Sets...

ECE 252 7 / 34

Use Semaphores To Count

Use 2 general semaphores, each with maximum value of BUFF_SIZE.

items: starts at 0 and represents how many spaces in the buffer are full.

spaces: starts at BUFF_SIZE and represents the number of spaces in the bufferthat are currently empty.

ECE 252 8 / 34

Producer-Consumer with Waiting
Producer

1. [produce item]
2. wait(spaces)
3. [add item to buffer]
4. post(items)

Consumer

1. wait(items)
2. [remove item from buffer]
3. post(spaces)
4. [consume item]

Does this work?

Are there any implicit assumptions?

ECE 252 9 / 34

Assumptions made? I assume so...

(1) The actions of adding an item to the buffer and removing an item from thebuffer add to and remove from the “next” space.

(2) There is exactly one producer and one consumer in the system.

If we have two producers, for example, they might be trying to write into thesame space at the same time, and this would be a problem.

ECE 252 10 / 34

Mmmmmmmulti-Consume!
To generalize this solution to allow multiple producers and multiple consumers,we need a mutex.
Producer

1. [produce item]
2. wait(spaces)
3. wait(mutex)
4. [add item to buffer]
5. post(mutex)
6. post(items)

Consumer

1. wait(items)
2. wait(mutex)
3. [remove item from buffer]
4. post(mutex)
5. post(spaces)
6. [consume item]

Does this work?
Anything... worrying?

ECE 252 11 / 34

Cancel Red Alert

The hint that we might have a problem is one wait statement inside another.

But it doesn’t guarantee a problem...

We should be able to reason through why there is (or isn’t) a problem.

ECE 252 12 / 34

Alternative Solution: PC
Producer

1. [produce item]
2. wait(mutex)
3. wait(spaces)
4. [add item to buffer]
5. post(items)
6. post(mutex)

Consumer

1. wait(mutex)
2. wait(items)
3. [remove item from buffer]
4. post(spaces)
5. post(mutex)
6. [consume item]

Does this work?

ECE 252 13 / 34

The Tiny Details...

This solution does have the deadlock problem!

Imagine at the start of execution, the buffer is empty and the consumer runsfirst...

Do you see the problem now?

This could also happen with the producer.

ECE 252 14 / 34

Problems are Only Sometimes a Problem

If this solution were implemented, it wouldn’t guarantee a deadlock occurs.

In fact, it probably works fine most of the time.

Once, however, we have found one scenario that can lead to deadlock, there isno need to look for other failure cases.

We can replace this solution with a better one.

ECE 252 15 / 34

Multiple Producer-Consumer Example
i n c l u de < s t d l i b . h>
i n c l u de < pthread . h>
i n c l u de < s t d i o . h>
i n c l u de <math . h>
i n c l u de <semaphore . h>
de f i ne BUFF_S IZE 100
i n t buffer [BUFF_SIZE] ;
i n t pindex = 0;
i n t cindex = 0;
sem_t spaces ;
sem_t items ;
sem_t mutex ;
i n t produce (i n t id) {

i n t r = rand () ;
printf (" P roducer %d produced %d . \ n " , id , r) ;
r e tu rn r ;}

vo id consume (i n t id , i n t number) {
printf (" Consumer %d consumed %d . \ n " , id , number) ;}

ECE 252 16 / 34

Multiple Producer-Consumer Example
vo id * producer (vo id * arg) {

i n t * id = (i n t *) arg ;
f o r (i n t i = 0; i < 10000; ++i) {

i n t num = produce (* id) ;
sem_wait (&spaces) ;
sem_wait (&mutex) ;
buffer [pindex] = num ;
pindex = (pindex + 1) % BUFF_SIZE ;
sem_post (&mutex) ;
sem_post (&items) ;}

free (arg) ;
pthread_exit (NULL) ;}

ECE 252 17 / 34

Multiple Producer-Consumer Example
vo id * consumer (vo id * arg) {

i n t * id = (i n t *) arg ;
f o r (i n t i = 0; i < 10000; ++i) {

sem_wait (&items) ;
sem_wait (&mutex) ;
i n t num = buffer [cindex] ;
buffer [cindex] = − 1 ;
cindex = (cindex + 1) % BUFF_SIZE ;
sem_post (&mutex) ;
sem_post (&spaces) ;
consume (*id , num) ;}

free (id) ;
pthread_exit (NULL) ;}

ECE 252 18 / 34

Multiple Producer-Consumer Example
i n t main (i n t argc , char ** argv) {

sem_init (&spaces , 0 , BUFF_SIZE) ;
sem_init (&items , 0 , 0) ;
sem_init (&mutex , 0 , 1) ;
pthread_t threads [2 0] ;
f o r (i n t i = 0; i < 1 0 ; i++) {

i n t * id = malloc (s i z e o f (i n t)) ;*id = i ;
pthread_create (&threads [i] , NULL , producer , id) ;}

f o r (i n t j = 1 0 ; j < 20; j++) {
i n t * jd = malloc (s i z e o f (i n t)) ;*jd = j − 1 0 ;
pthread_create (&threads [j] , NULL , consumer , jd) ;}

f o r (i n t k = 0; k < 20; k++) {
pthread_join (threads [k] , NULL) ;}

sem_destroy (&spaces) ;
sem_destroy (&items) ;
sem_destroy (&mutex) ;
pthread_exit (0) ;}

ECE 252 19 / 34

PC with Monitor

Use 1 mutex for mutual exclusion.

Use 2 CVs for waiting.

full: CV for producers to wait on when buffer is full.

empty: CV for consumers to wait on when buffer is empty.

ECE 252 20 / 34

Multi PC!
Producer

1. [produce item]
2. lock(mutex)
3. while count == BUFF_SIZE
4. cond_wait(full, mutex)
5. end while
6. [add item to buffer]
7. count++
8. cond_signal(empty)
9. unlock(mutex)

Consumer

1. lock(mutex)
2. while count == 0
3. cond_wait(empty, mutex)
4. end while
5. [remove item from buffer]
6. count--
7. cond_signal(full)
8. unlock(mutex)
9. [consume item]

Does this work?

ECE 252 21 / 34

Starvation: Where is My Ice Cream?
There is a subtle fairness issue, called starvation, which happens when a threadnever gets a chance to run.
Consider a producer thread A that is waiting on the full CV.
Suppose that a consumer thread B arrives, consumes an item, and signals full.
At this point, another producer thread C arrives and goes to the ready queue.
The consumer thread B exits. The OS schedules C, which produces an item andmakes the buffer full again.
The producer thread A runs next and has to wait again. This could continueinfinitely, starving thread A.

ECE 252 22 / 34

Starvation: Where is My Ice Cream?

The probability of this happening is extremely low (close to zero!).

So, we might be fine with it and leave it as is.

However, if we want to make our code 100% starvation-free, our solution willinvolve a take-a-number approach.

ECE 252 23 / 34

Take A Number!

ECE 252 24 / 34

Take-a-number System
In this approach, before accessing the buffer, each incoming thread takes anumber.

They then check the now-serving display to see if it’s their turn. If not, they waitfor their turn.

To implement this solution, we introduce p_turn and c_turn variables to trackturns for producers and consumers, respectively.

We also introduce next_p_turn and next_c_turn variables to indicate the
now-serving number for producers and consumers, respectively.

ECE 252 25 / 34

Solution 2
Producer

1. [produce item]
2. lock(mutex)
3. my_turn = p_turn++
4. while count == BUFF_SIZE ||

next_p_turn < my_turn
5. cond_wait(full, mutex)
6. end while
7. [add item to buffer]
8. count++
9. next_p_turn++

10. cond_signal(empty)
11. unlock(mutex)

Consumer

1. lock(mutex)
2. my_turn = c_turn++
3. while count == 0 ||

next_c_turn < my_turn
4. cond_wait(empty, mutex)
5. end while
6. [remove item from buffer]
7. count--
8. next_c_turn++
9. cond_signal(full)

10. unlock(mutex)
11. [consume item]

Does this work?

ECE 252 26 / 34

Analysis of Solution 2

Solution 2 is a step in the right direction, but it has a problem.

In particular, a signal could be delivered to a wrong thread—a thread whose turnhas not yet come—who will wake up, check the conditions, and go to sleep again,wasting the signal.

When there is equal number of cond_wait and cond_signal, each wastedsignal directly translates to a waiting thread that never wakes up!

ECE 252 27 / 34

IMMA GO SLEEP!

ECE 252 28 / 34

Solution 3
Producer
1. [produce item]
2. lock(mutex)
3. my_turn = p_turn++
4. while count == BUFF_SIZE ||

next_p_turn < my_turn
5. cond_wait(full, mutex)
6. end while
7. [add item to buffer]
8. count++
9. next_p_turn++

10. cond_broadcast(empty)
11. unlock(mutex)

Consumer
1. lock(mutex)
2. my_turn = c_turn++
3. while count == 0 ||

next_c_turn < my_turn
4. cond_wait(empty, mutex)
5. end while
6. [remove item from buffer]
7. count--
8. next_c_turn++
9. cond_broadcast(full)

10. unlock(mutex)
11. [consume item]

Does this work?

ECE 252 29 / 34

Analysis of Solution 3
This solves the problem with waking up a ‘wrong’ thread. However, it still has aproblem.
This problem involves threads that wait because it’s not their turn, not becausethe buffer is full or empty.
Such threads should be signaled by a thread of their own type, because theremight be no signals coming for threads of the other type.
If the buffer is not empty, a consumer thread leaving the critical section shouldsignal other consumer threads that are waiting.
Similarly, if the buffer is not full, a producer thread leaving the critical sectionshould signal other producer threads that are waiting.

ECE 252 30 / 34

Solution 4
Producer
1. [produce item]
2. lock(mutex)
3. my_turn = p_turn++
4. while count == BUFF_SIZE ||

next_p_turn < my_turn
5. cond_wait(full, mutex)
6. end while
7. [add item to buffer]
8. count++
9. next_p_turn++

10. if count != BUFF_SIZE
11. cond_broadcast(full)
12. end if
13. cond_broadcast(empty)
14. unlock(mutex)

Consumer
1. lock(mutex)
2. my_turn = c_turn++
3. while count == 0 ||

next_c_turn < my_turn
4. cond_wait(empty, mutex)
5. end while
6. [remove item from buffer]
7. count--
8. next_c_turn++
9. if count != 0

10. cond_broadcast(empty)
11. end if
12. cond_broadcast(full)
13. unlock(mutex)
14. [consume item]

Does this work?
ECE 252 31 / 34

Analysis of Solution 4
This solution works.

However, it is very inefficient in the sense that we wake everyone up, eventhough only one of them is allowed to proceed.

To properly solve the fairness issue and avoid inefficiency, threads need to sendtheir signal to the right waiting thread.

We can achieve this by manually creating a FIFO list of waiting threads.

Each thread will have their own CV to wait on. Once a thread is done, they signalexactly the next thread in the line:

ECE 252 32 / 34

There Has To Be A Line!

ECE 252 33 / 34

Solution 5
Producer
1. [produce item]
2. lock(mutex)
3. my_turn = p_turn++
4. fifo_push(p_fifo, my_full)
5. while count == BUFF_SIZE ||

next_p_turn < my_turn
6. cond_wait(my_full, mutex)
7. end while
8. [add item to buffer]
9. count++

10. next_p_turn++
11. fifo_pop(p_fifo)
12. if count != BUFF_SIZE &&

!fifo_is_empty(p_fifo)
13. cond_signal(fifo_head(p_fifo)
14. end if
15. if !fifo_is_empty(c_fifo)
16. cond_signal(fifo_head(c_fifo))
17. end if
18. unlock(mutex)

Consumer
1. lock(mutex)
2. my_turn = c_turn++
3. fifo_push(c_fifo, my_empty)
4. while count == 0 ||

next_c_turn < my_turn
5. cond_wait(my_empty, mutex)
6. end while
7. [remove item from buffer]
8. count--
9. next_c_turn++
10. fifo_pop(c_fifo)
11. if count != 0 &&

!fifo_is_empty(c_fifo)
12. cond_signal(fifo_head(c_fifo)
13. end if
14. if !fifo_is_empty(p_fifo)
15. cond_signal(fifo_head(p_fifo))
16. end if
17. unlock(mutex)
18. [consume item]

ECE 252 34 / 34

