
Lecture 16 — The Readers-Writers Problem
By Jeff Zarnett and Seyed Majid Zahedi

jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca
Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 43

Reader/Writer Locks
Reads don’t interfere with one another so we can let them run in parallel!
But sometimes writes occur, and nobody can read when this happens.

Image Credit: Understood.org
ECE 252 2 / 43

Reader/Writer Rules

1 Any number of readers may be in the critical section simultaneously.
2 Only one writer may be in the critical section (and when it is, no readers areallowed).

This is very often how file systems work.

ECE 252 3 / 43

With Variation
This is similar to, but distinct from, the general mutual exclusion problem and theproducer-consumer problem.

Readers do not modify the data (consumers do take things out of the buffer,modifying it).

If any thread could read or write the shared data structure, we would have to usethe general mutual exclusion solution.

Allowing multiple readers can permit better performance!

And there are many scenarios where updates are rare but reads are common.

ECE 252 4 / 43

Readers-Writers Solution 1

Let us keep track of the number of readers at any given time with readers.

We will need a way of protecting this variable from concurrent modifications, sothere will have to be a binary semaphore mutex.

We will also need one further semaphore, roomEmpty.

A writer has to wait for the room to be empty (i.e., wait on the roomEmptysemaphore) before it can enter.

ECE 252 5 / 43

Readers-Writers Solution 1
Writer

1. wait(roomEmpty)
2. [write data]
3. post(roomEmpty)

Reader

1. wait(mutex)
2. readers++
3. if readers == 1
4. wait(roomEmpty)
5. end if
6. post(mutex)
7. [read data]
8. wait(mutex)
9. readers--
10. if readers == 0
11. post(roomEmpty)
12. end if
13. post(mutex)

ECE 252 6 / 43

Readers-Writers Solution 1 Analysis

The first reader that arrives encounters the situation that the room is empty, so it“locks” the room (waiting on the roomEmpty semaphore).

That will prevent writers from entering the room.

Additional readers do not check if the room is empty; they just proceed to enter.

When the last reader leaves the room, it indicates that the room is empty(“unlocking it” to allow a writer in).

ECE 252 7 / 43

Readers-Writers Solution 1 Analysis
This pattern is sometimes called the light switch.

ECE 252 8 / 43

Readers-Writers Solution 1 Analysis
The reader code has that situation that makes us concerned.A wait on roomEmpty inside a critical section controlled by mutex.

With a bit of reasoning, we can convince ourselves that there is no deadlock.

A reader waits on roomEmpty only if a writer is currently in its critical section.

As long as the write operation takes finite time, eventually the writer will postthe roomEmpty semaphore and the threads can continue.

Deadlock is not a problem.

ECE 252 9 / 43

Readers-Writers Solution 1 Analysis

There is, however, a second problem that we need to be concerned about.

Suppose some readers are in the room, and a writer arrives.

The writer must wait until all the readers have left the room.

When each of the readers is finished, it exits the room.

In the meantime, more readers arrive and enter the room.

ECE 252 10 / 43

Readers-Writers Solution 1 Analysis

So even though each reader is in the room for only a finite amount of time, thereis never a moment when the room has no readers in it.

This undesirable situation is not deadlock, because the reader threads are notstuck, but the writer (and any subsequent writers) is (are) going to wait forever.

This is an instance of starvation.

We might want to improve on this solution such that there is no longer thepossibility that a writer starves.

ECE 252 11 / 43

Readers-Writers Solution 2

When a writer arrives, any readers should be permitted to finish their read.No new readers should be allowed to start reading.

Eventually, all the readers currently in the critical section will finish.

The writer will get a turn, because the room is empty.

When the writer is done, all the readers that arrived after the writer will be ableto enter.

ECE 252 12 / 43

Readers-Writers Solution 2
Writer

1. wait(turnstile)
2. wait(roomEmpty)
3. [write data]
4. post(turnstile)
5. post(roomEmpty)

Reader

1. wait(turnstile)
2. post(turnstile)
3. wait(mutex)
4. readers++
5. if readers == 1
6. wait(roomEmpty)
7. end if
8. post(mutex)
9. [read data]
10. wait(mutex)
11. readers--
12. if readers == 0
13. post(roomEmpty)
14. end if
15. post(mutex)

ECE 252 13 / 43

Readers-Writers Solution 2 Analysis

Does this solution satisfy our goals of avoidance of deadlock and starvation?

Starvation is fairly easy to assess: the first attempt at the solution had onescenario leading to starvation and this solution addresses it.

You should be able to convince yourself that the solution as described cannotstarve the writers or readers.

ECE 252 14 / 43

Readers-Writers Solution 2 Analysis
On to deadlock: the reader code is minimally changed from before
The writer has that dangerous pattern: two waits.
If the writer is blocked on the roomEmpty semaphore, no readers or writerscould advance past the turnstile and no writers.
If the writer is blocked on that semaphore, there are readers in the room.
The readers will individually finish and leave (their progress is not impeded).
So the room will eventually become empty; the writer will be unblocked.

ECE 252 15 / 43

Readers-Writers Solution 2 Analysis
Note that this solution does not give writers any particular priority: when awriter exits it posts on turnstile and that may unblock a reader or a writer.

If it unblocks a reader, a whole bunch of readers may enter before the next writeris unblocked and locks the turnstile again.

That may or may not be desirable, depending on the application.

In any event, it does mean it is possible for readers to proceed even if a writer isqueued.

If there is a need to give writers priority, there are techniques for doing so.

ECE 252 16 / 43

Business Class Passengers Board in Zone 1

Image Credit: Tag Along Travel
ECE 252 17 / 43

Business Class Passengers Board in Zone 1

Let’s modify the solution so that writers have priority over readers.

We will probably want to break up the roomEmpty semaphore into noReadersand noWriters.

A reader in the critical section should hold the noReaders semaphore and awriter should hold noWriters and noReaders.

ECE 252 18 / 43

Writer Priority
Writer

1. wait(writeMutex)
2. writers++
3. if writers == 1
4. wait(noReaders)
5. end if
6. post(writeMutex)
7. wait (noWriters)
8. [write data]
9. post(noWriters)

10. wait(writeMutex)
11. writers--
12. if writers == 0
13. post(noReaders)
14. end if
15. post(writeMutex)

Reader

1. wait(noReaders)
2. wait(readMutex)
3. readers++
4. if readers == 1
5. wait(noWriters)
6. end if
7. post(readMutex)
8. post(noReaders)
9. [read data]

10. wait(readMutex)
11. readers--
12. if readers == 0
13. post(noWriters)
14. end if
15. post(readMutex)

ECE 252 19 / 43

Analysis: Writer Priority

Yikes! The complexity for the writer increased dramatically.

The reader is not all that different than it was before.

The writer now is to some extent the mirror image of the reader.

ECE 252 20 / 43

Writer-Reader Implementation with Monitor
We will use the mutex for mutual exclusion (duh!).

We will use ok2write for writers and ok2read for readers to wait on.

Four variables are used to track the state of waiting/active readers and writers:

1 ww for # of waiting writers;
2 wr for # of waiting readers;
3 aw for # of active writers; and
4 ar for # of active readers.

ECE 252 21 / 43

Solution 1
Writer

1. lock(mutex)
2. while aw + ar > 0
3. ww++
4. cond_wait(ok2write, mutex)
5. ww--
6. end while
7. aw++
8. unlock (mutex)
9. [write data]

10. lock(mutex)
11. aw--
12. if ww > 0
13. cond_signal(ok2write)
14. else if wr > 0
15. cond_broadcast(ok2read)
16. end if
17. unlock (mutex)

Reader

1. lock(mutex)
2. while aw + ww > 0
3. wr++
4. cond_wait(ok2read, mutex)
5. wr--
6. end while
7. ar++
8. unlock(mutex)
9. [read data]

10. lock(mutex)
11. ar--
12. if ar == 0 && ww > 0
13. cond_signal(ok2write)
14. end if
15. unlock(mutex)

ECE 252 22 / 43

Analysis of Solution 1
Due to the use of a single mutex, at any given time, we know exactly how manywaiting/active reader and writer threads we have.

This pseudocode prioritizes writers over readers for two main reasons.

(1) writers wait if there are any active readers or writers. Readers, on the otherhand, wait if there are any active or waiting writers.

(2) on their way out, each writer signals another waiting writer if there are any.The last writer signals all waiting readers if there are any (broadcast). Conversely,the last reader only signals a waiting writer if there are any.

ECE 252 23 / 43

RWLock Syntax
We can write our own writer-reader lock.
rwlock_init (rwlock_t * rwlock)
rwlock_destroy (rwlock_t * rwlock)
rwlock_r_lock (rwlock_t * rwlock)
rwlock_w_lock (rwlock_t * rwlock)
rwlock_r_unlock (rwlock_t * rwlock)
rwlock_w_unlock (rwlock_t * rwlock)

We can acquire a read lock, or a write lock.
Pretty self-explanatory, which is which and when you use what.
All functions take one argument: rwlock, the lock.

ECE 252 24 / 43

Code Example

rwlock_t rwlock ;
vo id init () {

rwlock_init (&rwlock) ;}
vo id cleanup () {

rwlock_destroy (&rwlock) ;}
vo id * writer (vo id * arg) {

rwlock_w_lock (&rwlock) ;
write_data (arg) ;
rwlock_w_unlock (&rwlock) ;}

vo id * reader (vo id * read) {
rwlock_r_lock (&rwlock) ;
read_data (arg) ;
rwlock_r_unlock (&rwlock) ;}

ECE 252 25 / 43

Would This Work?
Writer

1. lock(mutex)
2. while aw + ar > 0
3. ww++
4. cond_wait(ok2write, mutex)
5. ww--
6. end while
7. aw++
8. unlock (mutex)
9. [write data]

10. lock(mutex)
11. aw--
12. if ww > 0
13. cond_signal(ok2write)
14. else if wr > 0
15. cond_broadcast(ok2read)
16. end if
17. unlock (mutex)

Reader

1. lock(mutex)
2. while aw + ww > 0
3. wr++
4. cond_wait(ok2read, mutex)
5. wr--
6. end while
7. ar++
8. unlock(mutex)
9. [read data]

10. lock(mutex)
11. ar--
12. if ar == 0 && ww > 0
13. cond_signal(ok2write)
14. end if
15. unlock(mutex)

ECE 252 26 / 43

How About This?
Writer

1. lock(mutex)
2. while aw + ar > 0
3. ww++
4. cond_wait(ok2go, mutex)
5. ww--
6. end while
7. aw++
8. unlock (mutex)
9. [write data]

10. lock(mutex)
11. aw--
12. if ww > 0
13. cond_signal(ok2go)
14. else if wr > 0
15. cond_broadcast(ok2go)
16. end if
17. unlock (mutex)

Reader

1. lock(mutex)
2. while aw + ww > 0
3. wr++
4. cond_wait(ok2go, mutex)
5. wr--
6. end while
7. ar++
8. unlock(mutex)
9. [read data]

10. lock(mutex)
11. ar--
12. if ar == 0 && ww > 0
13. cond_signal(ok2go)
14. end if
15. unlock(mutex)

ECE 252 27 / 43

How About This?
Writer

1. lock(mutex)
2. while aw + ar > 0
3. ww++
4. cond_wait(ok2go, mutex)
5. ww--
6. end while
7. aw++
8. unlock (mutex)
9. [write data]

10. lock(mutex)
11. aw--
12. if ww > 0
13. cond_broadcast(ok2go)
14. else if wr > 0
15. cond_broadcast(ok2go)
16. end if
17. unlock (mutex)

Reader

1. lock(mutex)
2. while aw + ww > 0
3. wr++
4. cond_wait(ok2go, mutex)
5. wr--
6. end while
7. ar++
8. unlock(mutex)
9. [read data]

10. lock(mutex)
11. ar--
12. if ar == 0 && ww > 0
13. cond_broadcast(ok2go)
14. end if
15. unlock(mutex)

ECE 252 28 / 43

What About Starvation?

Readers could starve because writers have higher priority.

But this starvation is ‘OK’ because it is allowed by design.

However, the code suffers from another form of starvation for writer threads.

This starvation has the same nature as we discussed for the producer-consumerimplementation (the ‘where is my ice cream?’ problem).

ECE 252 29 / 43

What About Starvation?

In particular, a writer could indefinitely wait for other writer threads.

As we discussed in the previous lecture, the probability of such an eventhappening is extremely low.

So, we might want to leave this as is and move on.

However, like before, let’s try to make our solution 100% starvation-free!

ECE 252 30 / 43

Solution 2: Does It Work?
Writer
1. lock(mutex)
2. while aw + ar + ww > 0
3. ww++
4. cond_wait(ok2write, mutex)
5. ww--
6. end while
7. aw++
8. unlock (mutex)
9. [write data]

10. lock(mutex)
11. aw--
12. if ww > 0
13. cond_signal(ok2write)
14. else if wr > 0
15. cond_broadcast(ok2read)
16. end if
17. unlock (mutex)

Reader

1. lock(mutex)
2. while aw + ww > 0
3. wr++
4. cond_wait(ok2read, mutex)
5. wr--
6. end while
7. ar++
8. unlock(mutex)
9. [read data]

10. lock(mutex)
11. ar--
12. if ar == 0 && ww > 0
13. cond_signal(ok2write)
14. end if
15. unlock(mutex)

ECE 252 31 / 43

Analysis of Solution 2

It could cause a deadlock (why?).

Instead, to properly address the issue, we should take the same approach wetook with the producer-consumer implementation.

Namely, we use a take-a-number system and make writers wait in a FIFO line.

ECE 252 32 / 43

Solution 3
Writer
1. lock(mutex)
2. my_turn = w_turn++
3. fifo_push(w_fifo, my_ok2write)
4. while aw + ar > 0 ||

next_w_turn < my_turn
5. ww++
6. cond_wait(my_ok2write, mutex)
7. ww--
8. end while
9. aw++

10. fifo_pop(w_fifo)
11. unlock (mutex)
12. [write data]
13. lock(mutex)
14. aw--
15. next_w_turn++
16. if ww > 0
17. cond_signal(fifo_head(w_fifo))
18. else if wr > 0
19. cond_broadcast(ok2read)
20. end if
21. unlock (mutex)

Reader
1. lock(mutex)
2. while aw + ww > 0
3. wr++
4. cond_wait(ok2read, mutex)
5. wr--
6. end while
7. ar++
8. unlock(mutex)
9. [read data]
10. lock(mutex)
11. ar--
12. if ar == 0 && ww > 0
13. cond_signal(fifo_head(w_fifo))
14. end if
15. unlock(mutex)

ECE 252 33 / 43

Seek and Destroy

An extension of the readers-writers problem: the search-insert-delete problem.
Three kinds of thread: searcher, inserter, deleter.

ECE 252 34 / 43

Searcher Rules

Searchers merely examine the list; hence they can execute concurrently witheach other.

Searcher threads must call void search(void* target) where theargument to the searcher thread is the element to be found.

These most closely resemble readers in the readers-writers problem.

ECE 252 35 / 43

Inserter Rules
Inserters add new items to the end of the list; only one insertion may take placeat a time.

However, one insert can proceed in parallel with any number of searches.

Inserter threads call node* find_insert_loc() to find where to do theinsertion.

Then void insert(void* to_insert, node* after) where thearguments are the location and the element to be inserted.

Inserters resemble readers, with restrictions.

ECE 252 36 / 43

Deleter Rules

Deleters remove items from anywhere in the list. At most one deleter processcan access the list at a time.

When the deleter is accessing the list, no inserters and no searchers may beaccessing the list.

Deleter threads call void delete(void* to_delete).

These resemble writers.

ECE 252 37 / 43

Let’s Get It Done

It turns out we don’t need to modify things too much to allow for this third kindof thread.

We need to keep track of when there are “no inserters” and “no searchers”.

Plus another mutex to go around the actual insertion...

ECE 252 38 / 43

Search-Insert-Delete
pthread_mutex_t searcher_mutex ;
pthread_mutex_t inserter_mutex ;
pthread_mutex_t perform_insert ;
sem_t no_searchers ;
sem_t no_inserters ;
i n t searchers ;
i n t inserters ;

vo id init () {
pthread_mutex_init (&searcher_mutex , NULL) ;
pthread_mutex_init (&inserter_mutex , NULL) ;
pthread_mutex_init (&perform_insert , NULL) ;
sem_init (&no_inserters , 0 , 1) ;
sem_init (&no_searchers , 0 , 1) ;
searchers = 0;
inserters = 0;}

ECE 252 39 / 43

Search-Insert-Delete
vo id * searcher_thread (vo id *target) {

pthread_mutex_lock (&searcher_mutex) ;
searchers ++ ;
i f (searchers == 1) {
sem_wait (&no_searchers) ;}

pthread_mutex_unlock (&searcher_mutex) ;
search (target) ;
pthread_mutex_lock (&searcher_mutex) ;
searchers − −;
i f (searchers == 0) {
sem_post (&no_searchers) ;}

pthread_mutex_unlock (&searcher_mutex) ;}

ECE 252 40 / 43

Search-Insert-Delete
vo id * deleter_thread (vo id * to_delete) {

sem_wait (&no_searchers) ;
sem_wait (&no_inserters) ;
delete (to_delete) ;
sem_post (&no_inserters) ;
sem_post (&no_searchers) ;}

ECE 252 41 / 43

Search-Insert-Delete
vo id * inserter_thread (vo id *to_insert) {

pthread_mutex_lock (&inserter_mutex) ;
inserters ++ ;
i f (inserters == 1) {
sem_wait (&no_inserters) ;}

pthread_mutex_unlock (&inserter_mutex) ;
node * insert_after = find_insert_location () ;
pthread_mutex_lock (&perform_insert) ;
insert (to_insert , insert_after) ;
pthread_mutex_unlock (&perform_insert) ;
pthread_mutex_lock (&inserter_mutex) ;
inserters − −;
i f (inserters == 0) {
sem_post (&no_inserters) ;}

pthread_mutex_unlock (&inserter_mutex) ;}

ECE 252 42 / 43

Make It Work

Could you implement Search-Insert-Delete with a rwlock_t despite there beingthree kinds of thread?

ECE 252 43 / 43

